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Abstract

We derive a model of gel dynamics based on a two-phase description of the gel where
one phase consists of networked polymer and the second phase is the fluid solvent. We
describe the treatment of the chemical structure of polymer network and the non-
Newtonian stress on the network. The model is used to analyse the dynamics of a
gel forced to move between two flat plates by a pressure gradient. The distribution
of the network phase is shown to be nonuniform and dependent on the pressure drop.
There is a range of pressure gradients for which the network has regions of high and

low volume fraction separated by a sharp boundary.
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1 Introduction

There are numerous biological and biotechnological examples where the structure and dy-
namics of polymer gels regulates the local environment. Biological examples include main-
tenance of structural integrity in biofilms [7], cellular cytoplasm [3], force generators in
Myxobacteria [13], chemical diffusion and adsorption mediation in biofilm clusters [11]. Gel
patches and ingestible pills used to regulate the diffusion and adsorption of drugs are exam-
ples of bioengineered gels. Quantifying the role of the polymer gel in such diverse systems
requires understanding the effect of the physical and chemical structure of the polymers on
the material properties of the system.

Gels are composed of a polymer network and a fluid solvent. This composition endows
gels with properties different than those of viscous materials for two primary reasons. First,
the polymeric structure induces viscoelastic behavior such as creep, relaxation and shear
thinning. Second, the chemical structure of the polymer induces force causing gel swelling
and de-swelling. In this paper we first introduce a two-phase description of gel dynamics
that emphasizes these two important differences between gels and Newtonian fluids. The

behavior of a pressure driven gel between two flat plates is analyzed in a manner similar to



the standard Poiseulle flow problem. Results from this analysis indicate that the steady-
state network profile depends on the pressure gradient in a relatively complicated manner.
There is an intermediate range of pressure gradients for which the majority of the network
compressed and is located near the plates creating a channeled region which is relatively free
of polymer. This channeled solution bifurcates from a nearly uniform network distribution

by forming a deep, narrow channel.

2 A Model of Gel Dynamics

Gels consist of two materials, networked polymer and fluid solvent, where the network en-
capsulates the solvent. The polymer network can be formed by several different interactions
between the polymers themselves including covalent bonding, coulombic bonding, hydrogen
bonding and physical entanglement.

In response to external conditions gel networks absorb or expel solvent causing swelling
or contraction respectively. Thus the structure of the gel depends on the temperature,
solvent composition, pH, hydrostatic pressure and ionic concentrations. The potential which
is responsible for the swelling properties of the gel is referred to as osmotic or swelling
pressure.

Forces due to osmotic pressure are not the only forces acting on the polymer network.
Deformation of the gel induces forces due to the elastic nature of the polymer network. The
elasticity is caused by both the elasticity of the polymers themselves and polymer interac-
tions. That is, a single polymer acts as a spring for small deformations while entanglement
and cross-linking causes the network to resist deformations. The behavior is in general
not well described by a simple linear relationship between displacement (strain) and stress
primarily because the deformations are typically large.

Because the cross-links may be broken, a strain imposed on the gel and held induces
a stress which dissipates, a process referred to as relaxation. Further, if a fixed stress is
imposed on the gel, the gel will continue to displace, which is referred to as creep. The
two behaviors of creep and relaxation indicate that gels are viscoelastic materials, therefore

the constitutive relationship between stress and strain is more complicated than for viscous



materials.

Here we assume that a gel is composed of two immiscible materials, polymer network and
fluid solvent. The resulting model is similar to other models [3, 5, 8, 10, 12] that describe the
gel as a two-phase material. The primary variation among models in the literature results
from the treatment of the viscoelastic stress and the swelling pressure.

In the following sections we describe a general model of gel dynamics and specify the
forms of the viscoelastic stress and osmotic pressure used in this investigation. The resulting
model is then used to study the distribution of the polymer network when the gel is forced

to move between two flat plates by a pressure gradient.

2.1 Model Derivation

We consider a region of space that contains networked polymer and solvent, where the
volume fraction of network, #,, and the volume fraction of solvent, #;, sum to one. The
network is assumed to act as a constant density, viscoelastic material while the solvent acts
as a Newtonian fluid of much less viscosity than the networked material. The velocities of
network and solvent are denoted U'n and U's respectively.

The equation describing the momentum of the polymer network is given by the balance
of four forces that act on the network. Surface forces are given by V - (6,,0,), where o, is
the network stress tensor. We assume that o,, = g, + 0. where the viscous and viscoelastic
stresses are denoted o, and o, respectively. The viscous stress tensor is proportional to
the velocity gradient, o, = n(V(fn + V(fnT). The non-Newtonian stress tensor is given by
constitutive relations which depend on the material and flow regimes [1]. Here we take the
elastic stress to be proportional to the elastic strain which is determined by the displacement
gradient. We do not allow for creep or relaxation of stress. Since the displacements are not
small, we use a finite strain tensor. The displacement of a fluid particle relative to fixed

Eulerian coordinates is determined by
7 =1+ D(T,t),

where 7’ denotes the past position of the fluid particle and the components of the vector D



are the displacements.

Following the development given in [1], we relate the stress to the relative Cauchy strain

tensor
ox’; ox!
= _ J
Cl@ iy = 3 a—x; — dij,
where F;; = g—fj is the deformation gradient tensor and d;; = 0 if 7 # j.
J

We must also specify equations describing the change in displacements due to advection.
The time derivative is measured in convected coordinates (i.e., relative to a fixed coordinate
system). We assume that the gel is an elastic solid with rest position at which there is no
network strain while displacements from rest induce a strain on the network. Relaxation of
the network has been ignored since we are primarily interested in coupling between elastic

stress and network motion. Thus

9B+ v-(BU,) =T, W)

The motion of the solvent influences the network through frictional drag which we model
by h anOS(U'n — 173), where l_jn and U’n are the network and solvent velocities and Ay is the
constant coefficient of friction.

The third force is induced by the chemically active nature of the polymers within the
gel. To model this force, we assume that there exists an osmotic pressure, ¥ (), gradients
of which introduce force on the polymers. Additional description of this term is provided
below.

The final force that is included is due to hydrostatic pressure, P. Balancing these forces

yields

V - (Bnon) — hb,0,(T, — U,) (2)
—V¥(9,) —6,VP = 0.

The equation governing the solvent momentum is derived in a similar manner. However,

the fluid is chemically passive so there is no osmotic force on the solvent and the stress is



Newtonian. Also, because the viscosity of the fluid is assumed to be much less than that of

the network, we neglect the viscous stress. Force balance yields
hi0,0,(U, — U,) —,VP = 0. (3)

The redistribution of polymer network is governed by the conservation equation

a e
T + V- (6,U,) 0 (4)

and a similar equation governs the conservation of solvent, namely

0 o
S0.+V-0.0) = o. (5)

Assuming that 6, + 6, = 1, we combine (4) and (5) to conclude that the divergence of

the average flow, Hnﬁn + 05175, is zero, i.e. ,
V - (0,0, + 6,0,) = 0. (6)

The equations 1, 2, 3, 4 and 6 define the equations which govern the gel dynamics, subject

to boundary conditions which depend on the specific problem.

2.2 Osmotic Pressure

Although there are many models of gel dynamics in the literature which include terms
representing osmotic pressure [2, 3, 5, 6, 9, 10, 12], there is little agreement on either the
definition or the derivation of this term. The treatment of this term varies from qualitative
[3, 5] to quantitative [12]. In [6, 9, 10] a specific functional form of the osmotic pressure is
not given. In fact, there has been little investigation of the dynamic behavior using different
forms of the swelling pressure. Therefore our first task is to derive a model of swelling
pressure which reflects some experimental results. Specifically, in many experiments a blob
of gel is suspended in a solvent causing the gel to swell. The amount of swelling is a measure

of the effectiveness of the solvent. In general, the gel does not completely dissolve, instead



the blob swells a certain amount and then persists with a lower volume fraction, maintaining
a distinct interface between the gel and the surrounding solvent. We wish to determine what
choice of W, if any, allows for the existence of an edge between the gel and the surrounding
solvent.

Implications of the form of the osmotic pressure can be seen from analysis of a simplified
one dimensional model of network redistribution due to swelling pressure. In the absence
of frictional interaction (hy = 0) and elastic restoring force (o, = 0), network motion is
governed by the balance of forces due to viscous stress, osmotic pressure and hydrostatic
pressure. Once the network and solvent velocities are uncoupled we can take U; = (0 which
implies that VP = 0, from equation 4. If we further assume that equation 2 depends only
on x, we obtain equations which we use to motivate our choice of ¥. Assuming that #,, and

U'n are time independent in equation 4, the steady, one-dimensional equations governing the

network distribution are

d dv, d
d d?6,
%(envn) = 6@’ (8)

d20,
dz?

where V,, is the z-component of U_‘n We have introduced the term € in equation 8 to
smooth out sharp interfaces in the network distribution assuring that the solutions are C'*°.
For the solutions to be physically reasonable the solution should persist in the limit € — 0.

We take W(6,,) = YosOn> (0n — Ore ), where 0, is a reference volume fraction. Our goal is
to show that the proposed form of the osmotic pressure yields a transition layer between two
different network volume fractions, zero and a reference value. This is a necessary feature of
our model since, in general, gels do not dissolve when submerged in a poor solvent. Instead
the gel swells, but the ’edge’ of the gel is still evident.

We nondimensionalize these equations by setting V = V/Vy, & = x/L, ¥(0,) = ¥ /y,swhere

Vo = % is a velocity scale, L is the length of the domain, which assumed to be finite. Sub-

€
Voo

stituting these into the above equations collecting all of the scaling parameters into ¢ =

nVo
Los

and 7 = = 1 and dropping the nondimensional ’hat’ notation yields the nondimensional



equations

d(. %)  dU(6,)

dz B de (9)
e, vy, d?é,,
o € R (10)

To conserve 6,, we require %’ = 6,V, at x = 0 andl (i.e. no-flux) . We also require
the velocity to be zero at the boundary. Integrating equations 9 and 10, and applying the

boundary conditions yields

av,

= n\Un — Upre FEk 1
0 6 (9 0 f)+ 0 ( 1)
do,, 0,V
@ T e (12)

since U(6,,) = 02(6,, — Orey).

We seek solutions of this system which have a sharp transition layer between 6, = 0 and
0, = bre by requiring (6,,V,) = (0,0) and (0, V) = (Ores,0) to be critical points of the
system which implies £, = 0. We then construct a heteroclinic trajectory connecting the

two critical points by solving

an 077, - eref
— = e———*. 1
o, — v, (13)
This equation is separable and has solution
VQ 02
7” = 6(5" — Oresbn) + ks. (14)

For this trajectory to be a heteroclinic connection the velocity must vanish at 6,, = 0,.y,

€h? . . .
50 k3 = —2¢L. Therefore the trajectories are V,, = +/€(6,, — 0,.7) and since
2 !

0 0n Vi
dz €’
= iM’
Ve




the trajectory is flat near 6, = 0 and 0, = 0,.f. This argument can be extended to show
that edged solutions exist for ¥(6,) of the general form ¥(6,) = 62 f(6,,), where f(f,.;) =0
and f(6,) <0 for 6, < 0,..

Having determined that the form of the osmotic pressure specified above yields steady
solutions consisting of transition layers between 6, = 0 and 6, = 0,.; we now wish to
determine how these steady solutions may arise.

Notice that any constant 6, is a solution of equations 9 and 10 with V,, = 0. In the
following we determine the stability of the constant solutions by considering the associated

dynamic problem

8 av, oV (6,)
9 _ 1
or (On ox ) or (16)
o8, 0O %0,
o o) = e (17)

Linearizing these equations about the constant steady-state solutions, i.e 8, = 6+ ¢(z, t)

and V,, = V,,; + u yields the linear system,

o, W ,0u 30
505, Thg) = Vo, (18)
op 0 . 0%¢

To determine the stability of the steady solutions, we assume that ¢(x,t) = eM®(z) and

determine the sign of the real part of \. Under these assumptions the above system reduces

to
0%u ,00
oz = Yy (20)
ou 0%®

Because the domain is the interval (0,1), we assume a solution of the form u(z) =

A; cos(nmx)+ By sin(nrzx) and ®(z) = A, cos(nmx)+ By sin(nmx). The boundary conditions,

_ 8o _
U=

> = 0, imply that A; = B, = 0 and equations 20 and 21 reduce to a matrix equation



for the constants B; and Ag

—(77,7T)20031+77,7T\IJ,A2 =0 (22)

nmfyBy + (A + e(nm)?) 4y = 0. (23)

For nontrivial solutions to this equation to exist the determinant of the coefficient matrix

must vanish, so that

A = —(e(nm)® +T'(6)). (24)

In the limit € — 0, the stability depends on the sign of W'. If the sign of ¥'(6y) is positive
the solution is stable and if it is negative the solution is unstable. Thus fro the function
U(0,) = Yos02(0n — Orey), a uniform gel with 6, < %%0,«6 7 is unstable and will self-compress

while a uniform gel with 6, > ’yosgﬂre 7 is stable.

3 Channeling in a Gel-Poiseulle Flow

We now turn to a simple flow problem illustrating one difference between gel dynamics and
Newtonian fluid dynamics. We consider the motion of a gel between two flat plates with a
constant imposed pressure drop.

The motion is assumed to be two-dimensional where z, y and U, = (Vi, W,) denote
the horizontal and vertical coordinates and velocities respectively. For Newtonian fluids the
steady-state z-independent velocity profile is parabolic in g for all pressure drops. This is not
the case for the gel-Poiseulle flow. Instead, the steady-state profile of the network volume
fraction undergoes a large change as the magnitude of the pressure gradient varies.

To demonstrate this, we seek a solution of equations 2 through 6 that is the analog of
Poiseulle flow - the horizontally independent, steady velocity profile for a fluid forced between
two flat plates by a pressure drop.

Under the assumption that D; and D, are independent of x, the elements of the defor-

10



mation gradient tensor F;; are

o'
hta |
ox ’
ax' o 8D1
oy Oy’
oy’
7 -
0z ’
8_y' = 1+ 9D,
dy Ay’
and the stress tensor becomes
0 0D1

_ dy
On =79

9y 9y

8Dy 0D;2 8Dy | ODy?
+2 oy + dy

We change from vector to component notation here, so that the following simplifications are

more apparent. In component form the steady-state equations for the gel-Poiseulle flow are

0 0 oP 0 0
na_y(gna_yvn) - a—l' + ’Ya_y(ana_yDl)
0 0 0 oP
na—y(Hna—y a—y\I’
0 oD, 2 oD OD,2
o (On( o 4220+

W,) —

oy oy oy oy
oP
hb,(Ve, = V) — E
oP
hbn (W, — Wy) — n
9 (0., + (1= 0,)W,)
ay n n n S
0
— (0, W,
5 (0.17:)
0
—(D
0
—(D

0,

(25)

(26)
(27)
(28)
(29)
(30)
(31)

(32)

Here we allow for network diffusion, with diffusion coefficient ¢ but our goal is to solve the

system in the limit € — 0.

11



The distance between the two plates is taken to be L, hence the domain of the problem
consists of an infinite strip (—oco < z < o0) X (0 < y < L). The boundary conditions are
D, =Dy =0and e% =0,W, at y = 0, L, implying that there is neither network movement
nor network flux at the boundary.

We can simplify these equations substantially. Integrating equation 30 and solving for

the vertical velocity of the network we find

0
W, =e2 1 (33)
Oy,
which combined with equation 29 yields
(1—6,)W, =co. (34)

These can be used in equation 28 to solve for the 36—}; as

8P Co
% = hia(Wa = = i

)- (35)

The boundary conditions imply that ¢; = ¢ = 0, hence Wy, = 0 and %—5 = h;e%.

Because V,, = 0 at steady-state, and the equations are independent of z, ?9_1; is independent

of z. That is, equation 27 implies that P = Gz + P(y).

Integrating equation 25 and solving for 86% yields
oD G
0% _ S¥+e (36)
Ay VOn

We specify a by assuming that the steady-state profiles are symmetric about the center line,
Yy = % We also relate the vertical displacements to the network volume fraction using the

Jacobian of the transformation

12



where 6, is the original homogeneous distribution of the network.
Finally, equation 26 reduces to an ordinary differential equation relating the volume

fraction of the network to y and parameters G, v, hy, etc.

d( d % do,
Wiy (end—m ~ My

v d Gy —GL/2\* 0, B
% % (0"(<T> +() —1)) =0 (37)

We nondimensionalize equation 37 by defining the nondimensional terms €¢* = L%”e and

* hf

F= T substituting these into equation 37, dropping the *-notation and integrating once

yields
d oe
dy
—(==) | — -
€ (0”dy( 0, )) ehb, (6n)

+(en<<—GygnG/2)2+<Z—:)2—1>) =k (39

which must be solved subject to the constraint that mass is conserved

1
/ 0, dy = 0. (39)
0

Although simpler than the original system, there is quite a lot of structure in Equation
38. In particular, Equation 38 is a second order ODE which is singular in the limit ¢ — 0
(i.e. no network diffusion). The outer equation (¢ = 0), is an algebraic equation relating
the network volume fraction to the location between the plates. In the outer region, the
steady state network profile is given by the solution of the algebraic equation and the profile
depends on the pressure drop GG and the integration constant k. We find that for some values
of GG, there is a non-functional relationship between these which suggests the existence of
interior layers for some parameter values. In the following section we describe the transition

layer solution of equation 38.
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4 The Channeling Bifurcation

In this section we analyze the bifurcation structure of channels by examining the solutions
of equation 38 in the singular limit ¢ — 0. We assume that the initially uniform gel at 0, is
stable so that U'(6,) > 0. Setting e = 0, we find that the solution profile 6, (y) must satisfy
the equation

H(y,0,) = G*(y —1/2)* + h(6,) = 0, (40)

where
h(6n) = —6n U (6,) + 0,9 (6,) + 6, — 62 — k. (41)

~

Here k has been redefined so that H(6,) = 0 when & = 0.

Finally, the solution profile 6, (y) must satisfy the integral constraint

/0 u(y)dy = b, (42)

We assume

U () = £6p (0 — Ores) (43)

where Kk = A’Wﬂ represents the strength of osmosis compared to the elastic modulus. Thus,
the gel is capable of supporting an edge.

First we make some observations about the function A(f). Because h(0) = 9;12 > 0, and
h(6,) < 0 for large 6,, there is always at least one positive and one negative root. Since
h(#) is a quartic polynomial, there can be as many as three positive roots of H(y,6,) = 0
depending on the value of k. To see this, in figure 1 are shown four different plots of h(6,,)
for four values of £ = 0,2,3.5,5 (top to bottom).

If 3k062, s > 8, then the function h(6,) has two positive inflection points. Without inflec-
tion points the solution of H(y,6,) = 0 is unique for all y. Otherwise there is the possibility
of profiles with interior layers. Thus, interior layer solutions exist only if x is sufficiently
large.

If there exists a value of y, say yo for which H (yq, #,,) does not have a unique solution, we

introduce an inner scaling of equation 38 defining y* = £7/2. Substituting this into equation

14



38, dropping the y* notation and taking the leading order terms we obtain

‘%
d_y(a) — U(0,)/0n
+ ((G‘UOO;HGQ)2 + (2—2)2 — 1) = kb,. (44)

By the change of variable w = In(6,), we can simplify this to

2
O | Fw; G, ye) = 0, (45)
0y?

where F(w; G, yy) = ¥(e¥)e ™ + ((Gy";G/Q)2 + (3—3)2 — 1) — ke™. There exists a solution

eu)

[4] to the inner-layer equation 45 if F' has three positive roots, w_ < wy < w, and if

/ " Pdw =0, (46)

Inverting the transformation yields an equivalent requirement in the variable 6,,. An interior

layer will be fit at y = yo if H(yo, 6,) = 0 has three positive roots, say 6 < 0y < 6,, and if

b+ H(yOa Hn)

5 df, = 0. (47)

Otherwise the profile will not have a boundary layer.

The most convenient way to solve this problem is to fix £ and to find the corresponding
values of G and y, (if any) for which solutions exist. If h(6*) = 0 and h(f,) is monotone
decreasing for 6, > 6*, then there is a unique solution of H(y, 6,) = 0, for any value of G as
seen in figure 1 with £ = 2 and for £ = 5. In figure 2 the solution profiles 6,(y) for £ =5
are shown for three different values of G.

Moreover, since G acts as a y-axis scale factor for these profiles it is apparent that
) ! 0. (y)dy is a monotone decreasing function of G. Thus, it is easy to find the unique value

0

of G for which fol On(y)dy = 6,. For the profiles shown in figure 2, this unique value of G is

15
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Figure 1: Plot of h(f) as a function of § for £ = 0,2,3.5,5. Other parameter values are
K = 20,000, fye; = 6, = 0.1,
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Figure 2: Plot of 0, (y) for k = 5 and G = 2,4.022,6. Other parameter values are x = 20, 000,
Oref = 6, =0.1.
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Figure 3: Plot of 6, (y) for £k = 2 and G = 1.74. Other parameter values are x = 20, 000,
Oref = 0, = 0.1.

4.022.

Similarly, for small values of k£, unique solutions can be obtained. For example, figure
3 shows the solution profile for £ = 2. Again, since the y-axis for this profile is scaled by
G, the unique value of G for which fol 0,(y)dy = 0, is easily determined. For the profile in
figure 3, this value is G = 1.74.

If the function h(6,) is not monotone decreasing then there is the possibility of nonunique

solutions of H(y,#,) = 0. If a (positive) level x can be found so that

O 2 + h(6,)

N

&, and this boundary

then a boundary layer can be inserted into the profile at y, = % +
layer can be used to connect the largest solution of H(yo,6,) = 0 with the smallest. A plot
of a profile that results is shown in figure 4.

Notice that for this value of & (=2), there are two possible solution profiles, one with no
interior layer shown in figure 3, and one with a boundary layer shown in figure 4. These
profiles obtain for different values of G. For other values of k£, the boundary layer profile is

the only possible solution. A profile of this type occurs for £ = 3.5 and is shown in figure 5.

In this way, for each value of k£ we determine all possible solutions and their corresponding

17
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Figure 4: Plot of 8,(y) for £ = 2 and G = 2.47 with a boundary layer inserted at yo = 0.46.
The dashed curves shows all possible solutions of H (y,6,) = 0. Other parameter values are
k = 20,000, 0. = 6, =0.1.
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Figure 5: Plot of 0,,(y) for k = 3.5 and G = 3.39 with a boundary layer inserted at yo = 0.43.
The dashed curves shows all possible solutions of H(y,6,) = 0. Other parameter values are
k = 20,000, O, = 6, =0.1.
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Figure 6: Plot of G vs. k for the solutions of the gel-flow problem. For this plot, £ = 20, 000,
Oref =0, =0.1.

values of G. A plot of the relationship between £ and G is shown in figure 6. Here we see
two curves. The lower curve that extends from £ = 0 to £ = 2.9 corresponds to solutions
like those shown in figure 3 , with no boundary layer. The upper curve that bifurcates from
the lower curve at about £ = 1.4 (with yo = %) corresponds to channeled solutions, with a
boundary layer as shown in figure 4 and 5 for k¥ < 5. These solutions merge smoothly into
non-boundary layer solutions such as those shown in figure 2 as k£ increases.

The significant feature of these two curves is that for some values of G there are two
possible solutions, a boundary layer solution and a non-boundary layer solution. Thus, the
solution of the gel-flow problem is not unique.

The behavior of the fluid flow through these two different solution types is understandably

different, as the channeled solution permits a higher flux for the same cost. This is illustrated

by figure7 where the flux of solvent,

! 1 11-6
J:/ Vidy = — dy 49
0 hf 0 en ( )

is plotted as a function of G for the two different solution types. Not surprisingly, if two
solutions are possible for the same value of GG, the boundary layer solution permits a larger

solvent flux than the non-boundary layer solution.
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Figure 7: Plot of solvent flux as a function of GG. For this plot, x = 20,000, 0, = 6, = 0.1.

5 Discussion

From this analysis we can deduce the physical mechanism that underlies the formation of
channels in a gel. If the osmotic force is sufficiently strong compared to the elastic restoring
force, then under sufficiently high pressure gradient, it is energetically favorable to compress
the gel near the wall, and swell the gel in the interior, thereby forming a low resistance
channel.

This same conclusion is correct for all gels for which there are two stable gel concen-
trations. That is, if ¥(6,) is such that ¥'(f,) < 0 for 0 < 0, < 6, < 0* < 1 and is
positive elsewhere, then if the uniform gel distribution has g, > 0* and if the osmotic force
is sufficiently strong compared to the elastic force, channels will form under sufficiently high
pressure gradient flows. This follows from the analysis of the previous section which relied
entirely upon the generic ”cubic” shape of the function ¥(f,), and not on its details. Any
function ¥(h,) with similar structure will lead to the same bifurcation channeling behavior.

This work was supported by the NSF-FRG grant #DMS 0139926
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