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Abstract

Almost all moist surfaces are colonized by microbial biofilms. Biofilms are impli-
cated in cross-contamination of food products, biofouling and various human infec-
tions such as dental cavities, ulcerative colitis and chronic respiratory infections. The
recalcitrance of biofilms to typical antibiotic and antimicrobial treatments is one fo-
cus of current investigations. Neither reaction-diffusion limitation nor heterogeneities
in growth-rate explain the observed tolerance. Another hypothesis is that special-
ized ’persister’ cells, which are extremely tolerant of antimicrobials, are the source of
resistance.

In this investigation, we describe the formation of ’persister’ cells which neither
grow nor die in the presence of antibiotics. We propose that these cells are of a
different phenotype whose expression is regulated by the growth rate and the antibiotic
concentration. Based on several experiments describing the dynamics of persister cells,
we introduce a mathematical model that is used to describes the effect of a periodic
dosing regiment. Results from our analysis indicate that the relative dose/withdrawal
times are important in determining the effectiveness of such a treatment. A reduced
model is also introduced and the similar behavior is demonstrated analytically.

Keywords: Persister, tolerance, biofilm, dosing, resistance

1 Introduction

It has been estimated that 99% of all bacteria live in structured communities termed biofilms
[2]. Recently the US National Institutes of Health announced that, “Biofilms are medically
important, accounting for over 80% of microbial infections in the body”. Understanding
resistance mechanisms for bacterial biofilms is of paramount importance in treating bacterial
infections [7, 8, 21, 1, 14, 20]. There are several hypotheses concerning resistance mechanisms
which can be placed into three broad categories: transport limitation, physiological tolerance
and phenotypic resistance.

Biofilm structure can prevent an applied antimicrobial agent from reaching the entire
bacterial population by mechanisms such as a neutralizing reaction with components of
the biofilm [29, 10], synthesis of an antimicrobial degrading enzyme [16, 3] and adsorption
of the antimicrobial by the exo-polymeric substance (EPS) [19]. There have been several
mathematical models of biofilm disinfection that include diffusion and various antimicrobial-
degrading reactions [25, 12, 6]. These studies indicate that if the reaction is catalytic and
does not degrade the neutralizing agent, bacteria deep within the biofilm are not exposed to
the antimicrobial agent. Otherwise, even though lowered diffusion and degrading reactions
slow the penetration, the antimicrobial will eventually penetrate the entire biofilm. Unless
there are other protective mechanisms at work the bacteria would eventually be eradicated.

Because most biocides and antibiotics are more effective at killing respiring bacteria than
non-respiring bacteria [7], disinfection will be spatially dependent. In particular, there will
be regions within the biofilm where nutrient is not available. The bacteria in these regions
will exhibit decreased respiration leading to decreased susceptibility to disinfection. This
protective mechanism is termed physiological resistance. Analysis of mathematical models
predict that bacteria on the surface of the biofilm are killed before those deep within the
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biofilm [6, 23] . Since the nutrient penetrates further as the bacteria are killed, constant
exposure to antimicrobials will eventually eradicate the bacteria. Since long-term exposure
to antimicrobials does not lead to complete eradication of bacteria [28, 17, 8] other resistance
mechanisms must be explored.

The focus of this paper is on the mechanism of phenotypic resistance. Because transport
limitation and physiological tolerance cannot explain the typical bi-phasic nature of survival
data, tolerance due to phenotypic variation is currently being investigated [27, 21]. It has
been shown that quorum sensing mechanisms, known to be linked with biofilm formation [9],
may also be linked to antibiotic resistance [22, 13, 27]. Quorum sensing is involved in up-
regulation of multi-drug efflux pumps [4], although this may not play a role in the antibiotic-
resistant phenotype [18]. Variations in the maximum specific growth rates may result in
varying susceptibility of bacteria [27]. A novel explanation of the bi-phasic disinfection curves
is the existence of ’persister’ cells which are extremely tolerant of antibiotics. The physiology
of such cells is not well understood, although their existence has been demonstrated [11, 17,
21]. As yet, there is no consensus as to what phenotypic variations are primarily responsible
for biofilm tolerance [21].

Here, we incorporate current biological observations into a mathematical model of bacte-
rial tolerance. This model is used to explore optimal dosing strategies. Although the model
applies to spatially uniform populations of bacteria, we view this as a first step towards a
more realistic model in a biofilm setting. We first summarize the experiments that motivate
the model, then describe our assumptions and consequent model. Several simulations used
to estimate parameters and explore dosing protocols will be described. Finally, we introduce
a simplified model which can be treated analytically.

2 Planktonic Experiments

Bacterial tolerance to antibiotics has been well established, but the specific mechanisms are
still being investigated. In [11] the tolerance of both planktonic and biofilm cultures of B.

cepecia bacteria to ciprofloxacin and ceftazidime was compared. Bacterial populations were
grown in rotary shakers (planktonic) and polycarbonate membranes (biofilm). At given
times, samples of comparable number were taken, diluted and exposed to the antibiotics for
one hour. By sampling at different times, resistance is linked to the growth stage. That
is, the untreated population showed logistic growth with little or no lag stage, followed
by exponential growth and then a drop in the growth rate due to nutrient limitation. Both
planktonic and biofilm bacteria showed drastic increase in tolerance to both antibiotics during
during exponential growth. Thus, the growth rate/phase of the culture plays an important
role in determining antibiotic susceptibility. In this study the planktonic bacteria are always
more susceptible to biofilm bacteria at equivalent stages of growth although this result has
been contradicted [26]. Because the biofilm cultures were disrupted and suspended before
treating them, the increased resistance is not from any physical barrier. Instead, tolerance
results from physiological and phenotypic variations.

In another investigation similar experiments were performed on planktonic populations of
E. coli, P. aeruginosa and S. aureus [17]. The focus of this investigation is on the generation
of persisters, cells which neither grow nor die in the presence of antibiotics. Cultures of
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Figure 1: Growth-stage dependence of persister formation. The solid curve shows the time
course of an unchallenged population of bacteria. At designated times samples were taken
and enumerated after three hour exposure to to ampicillin (triangles) or oflaxacin (dia-
monds). The data for the broken lines are not time-courses but indicate the dependence of
persister expression on the growth-stage. Data courtesy of K. Lewis.

bacteria were cultured in a shaker overnight. At designated times 1 ml of cells were treated
with antibiotics for three hours and the surviving bacteria were enumerated. The time-
dependent killing of exponential phase bacteria in the exponential phase was determined
by incubating a culture and then exposing the cells to antibiotics. The population was
then enumerated at specified times. The ratio between the surviving population and the
initial population gave a measure of the effectiveness of the antibiotic. Survival curves show
that within 0.5-1 hour more than 99% of the cells were killed. Continued exposure had no
significant effect on the surviving population indicating the existence of ’persister cells’.

The investigators then show that the persisters cells are not mutants by re-suspending
the bacteria and incubating them with aeration for 16-24 hours. The survival curves are the
same as that of the initial exposure. Next the growth-state dependence of persisters was
determined by challenging samples of a growing culture at designated times. The results
indicate that persister formation was constant during the lag and early exponential phases.
During the mid-exponential phase the number of persisters increased abruptly. Results from
these experiments are shown in Figure 1.

In both studies antibiotics with different targets are used, a β-lactam and a fluoro-
quinolone. This is important, because fluoroquinolones are known to be effective against
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non-growing cells. This indicates that the resistance mechanism is more complicated than
purely physiological resistance.

In the following sections we describe a mathematical model of the dynamics of the sus-
ceptible and persister bacterial cells with one growth limiting substrate. In the absence of
antibiotic, the susceptible bacteria consume substrate and reproduce. When antibiotic is
added, a fraction of the the susceptible cells are killed while another fraction convert to
persister cells. Persister cells are not killed by the antibiotic nor do they grow. Instead, if
there is no antibiotic, persister cells revert to susceptible cells at a fixed rate.

3 Model Assumptions and Description

We denote the bacterial phenotypes as Bs and Bp for susceptible and persister density,
respectively. We assume that there is one growth-limiting substrate, S, and one antibiotic,
A. The population of susceptible bacteria changes due to growth, death due to antibiotic
action, loss due to transition to persister cells and gain as the persistent cells revert back to
susceptible cells. Thus, the equation governing the dynamics of the susceptible population
is given qualitatively as,

dBs

dt
= g(Bs, S)

︸ ︷︷ ︸
− d(Bs, S, A)

︸ ︷︷ ︸
(1)

Growth Disinfection

− l(Bs, S, A)
︸ ︷︷ ︸

+ r(Bp, S, A)
︸ ︷︷ ︸

.

Loss Reversion

Growth is described by Monod kinetics with maximum specific growth rate, Monod
coefficient and yield denoted µmax, Ks and Y , respectively. Thus the growth term is

g(Bs, S) =
µmax

Y

S

Ks + S
Bs.

It has been shown experimentally that inactive or slowly growing bacteria are more toler-
ant to antibiotic exposure [5, 15]. This observation has led to several models of disinfection
which explicitly address this mechanism by linking the disinfection rate to the growth rate
of the bacteria [23, 6]. These studies indicate that physiological properties of bacteria play
an important role in conferring tolerance.

Moreover, disinfection depends on the type of antibiotic used since fluoroquinolones are
known to be partially effective in killing non-growing bacteria [21]. Therefore, if the antibiotic
is a beta-lactam then the disinfection rate is assumed to be proportional to the growth rate.
If the antibiotic is a fluoroquinolone we allow for disinfection in the absence of growth,
although at a reduced rate. We model the disinfection term in Equation 1 as,

d(Bs, S, A) = kd(A, t)µmax

S + α

Ks + S
Bs,

5



where α is zero for beta-lactam and non-zero for fluoroquinolone. The function kd(A, t)
depends on the antibiotic concentration. In particular, kd = 0 if A = 0 and is nonzero
otherwise. Since the dose strategies are time dependent, the disinfection rates also depend
on time.

Although the mechanism that induces persister formation is not known, it is linked to
the growth stage of the bacteria. One possible mechanism that could account for the abrupt
change in the rate of persister formation is the presence of auto-regulatory signal. It is well
known that expression of many genes associated with biofilm formation are regulated by
such signals and can cause changes in the behavior of the bacteria[9]. Here we assume that
the loss of susceptible cells to the persister population occurs at a rate that depends on both
the growth rate and the antibiotic concentration. Mathematically we have,

l(Bs, S, A) = kl(A, t)µmax

S

Ks + S
Bs.

This incorporates the dependence of the persister formation rate on the growth-stage. In
particular, when the population is in the stationary phase there is essentially no persister
formation. During the exponential growth stage there is a relatively high rate of persister
formation. Since the transition from susceptible to persister is assumed to be caused by
exposure to the antibiotic, kl is also time dependent.

We assume that persister cells only revert to susceptible cells if there is no applied an-
tibiotic. This assumption is also motivated by the experiments in [21] where susceptibility
is recovered after several hours of incubation without antibiotic present while there is es-
sentially no change in the population for continuous exposure. Mathematically we have
r(Bp, S, A) = kg(A, t)Bp, where kg is zero if there is antibiotic present and non-zero other-
wise.

Putting these together gives the equation governing the dynamics of the susceptible
population as

dBs

dt
=

µmax

Y

S

Ks + S
Bs − kd(A, t)µmax

S + α

Ks + S
Bs (2)

−kl(A, t)µmax

S

Ks + S
Bs + kg(A, t)Bp.

Persister cells are not killed by the antibiotic, instead the population changes as cells
convert to and from susceptible cells,

dBp

dt
= kl(A, t)µmax

S

Ks + S
Bs − kg(A, t)Bp. (3)

We assume that substrate is being consumed only by the susceptible population so the
equation governing the substrate concentration is,

dS

dt
= −µmax

S

Ks + S
Bs. (4)

Equations 2 - 4 describe the dynamics for suspended populations of susceptible and
persisting bacteria and substrate. In the next section, we describe simulations which yield
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Parameter Symbol Units Value Source
Maximum Specific Growth Rate µs h−1 0.417 [23]
Yield Coefficient Y 0.2 [23]
Monod Coefficient Ks mg l−1 0.2 [23]
Maximum Disinfection Rate kd h−1 40 Estimated
Non-growing Disinfection α mg l−1 0.07 Estimated
Rate of Loss kl h−1 0.001 Estimated
Rate of Gain kg h−1 0.05 Estimated

Table I: Parameters used in the simulations.

results comparable to experimental results shown in [17]. Then we show results from a
simulated dosing protocol entailing application of a constant concentration of antibiotic for
a specified length of time, withdrawing the antibiotic and allowing the population to regrow.
The results depend dramatically on the length of dose/withdrawal times. In particular,
for short withdrawal times there is a persister population generated which is eliminated
extremely slowly. If the treatment is terminated before the persister population is cleared,
there is rapid regrowth of the bacterial population. For long withdrawal times the susceptible
population is only transiently eliminated. The persister cells, generated from the dosing
step, are a source for the susceptible population which reproduce. There are intermediate
withdrawal times where neither of these cases occurs.

Following this section we introduce a simplified model which is amenable to analytic
treatment. The reduced model still retains the fundamental behavior of successful treatment
for intermediate dose/withdrawal times.

3.1 Parameters

Table I lists the parameters and values. We have used typical values for maximum growth
rate, yield and Monod coefficient. The four parameters which depend on the antimicrobial
agent, kd, α, kl and kg were estimated. We assume that the rates are linearly proportional
to A and we determined the constants of proportionality.

The parameters regarding disinfection rate and the rate of transformation from suscep-
tible to persister cells were chosen to fit the time-dependent kill curve for constant exposure
found in [17] (see Figure 2). In the experiment antibiotic was applied continuously so kd

and kl are constant in time. Since we assume that there is no reversion from persistent to
susceptible whenever there is antibiotic applied the reversion rate, kg, is zero. The values of
kd and kl are chosen to match the time-scale for the plateau region and also the effectiveness
of each antibiotic. Comparing the predicted survival curves with the data indicate that our
model is capturing both the gross qualitative trends as well as the correct scales.

Once the parameters kd and kl have been fixed, we simulate the growth-stage dependence
of persister formation. In the experiments, bacteria were disinfected as a suspension. Periodic
samples were taken from the reactor and exposed to antibiotic and then enumerated. This
generates two curves, an untreated growth curve and a treated growth curve. It should be
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Figure 2: Time-dependent killing curve for cells treated continuously with antibiotic. Here
the disinfection parameters are constant in time, since there is always antibiotic present.
This qualitatively agrees with data from [17] and shows the distinct bi-phasic nature, typical
for antibiotic treatment. We are primarily concerned with the time scale associated with
clearance and our parameters have been chosen so that the plateau region begins within the
first 1

2
hour. The parameters are listed in Table I.
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noted that the treated growth curve is not a time-series, but rather a representation of the
estimated persister population for various stages of growth. In our simulations, we began
with initial conditions corresponding to 1 × 107 susceptible cells, zero persister cells and
substrate concentration of twice Ks.

In these simulations the antibiotic is either never applied (to generate an untreated growth
curve) or applied continuously to bacteria at particular growth stages. Thus the parameters
are not time dependent, rather there are separate experiments being performed, one with no
antibiotic being applied and those where antibiotic is being applied continuously to bacteria
in fixed stages of growth. The untreated growth curve is determined by solving Equations
2 - 4 using the package ODE45 in MATLAB with kd, kg and kl zero. Once the untreated
simulation is completed, we use values of Bs, Bp and S at specified times, and simulate the
effect of constant exposure to antibiotic for three hours. Our simulation results for both
β-lactam and fluoroquinolone antibiotics are shown in Figures 3 and 4.

Finally, we assume that persister cells lose their persister phenotype after several gener-
ations which yields an estimate for kg. The results shown below do not depend qualitatively
on the estimate for kg, rather it is only necessary that persisters are capable of reverting
back to susceptible.

3.2 Simulated Dosing Experiment - ODE

In this section we describe results from a simulated dosing experiment motivated by com-
ments in [21].The author describes a possible treatment that requires applying an antibiotic
for a period of time, killing all susceptible bacteria while generating small population of per-
sister cells. Withdrawing the antibiotic allows the persister cells to grow and revert back to
susceptible cells. At this point a second application will remove virtually all of the bacteria.

We begin our simulations with a population of susceptible cells which are exposed to
nutrient and an antibiotic for a fixed length of time, denoted Td. The nutrient is initially
twice Ks. The susceptible cells are quickly eliminated and a small population of persister
cells is produced. The antibiotic is removed allowing the cells to grow for a fixed length
of time, Tw. Persister cells revert to susceptible cells, which then consume nutrient and
reproduce. This completes one dose/withdrawal period. After one dose/withdrawal period,
fresh nutrient is added and the cycle is repeated. Results from numerical experiments, with
a dose period of 10 hours and varying withdrawal period are shown in Figures 5 - 7. If the
bacterial population is not eliminated within approximately 30 days the treatment is deemed
ineffective and the simulation is stopped.

For short withdrawal periods the treatment fails to eliminate the persister population
within the alloted time period (see Figure 5). If the treatment is discontinued, the population
quickly regrows. For large withdrawal periods the susceptible population is not eliminated.
Instead, the susceptible population responds to the treatment quickly while generating a
persister population. The persisters are a source of susceptible cells once the antibiotic is
withdrawn. This results in an ineffective treatment (see Figure 6). There are intermediate
dose/withdrawal pairs for which the treatment is effective in clearing both the susceptible
and persister population (see Figure 7). This indicates that periodic dosing may be effective,
but the dosing regiment must be specific to the bacterial kinetics. The withdrawal period
must be long enough to allow the persister cells to revert to susceptible cells but not long
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Figure 3: Growth-stage dependence of persister formation for bacteria challenged with a
β-lactam (growth-rate dependent) antibiotic. The squares represent the cell count before
challenge and the triangles are the cell count after the challenge. The solid curve corresponds
to the untreated population, so the disinfection parameters kd and kl are zero. The dashed
curve is generated by taking bacteria at indicated and exposing them to a constant level
of antibiotic (kd and kl nonzero) for three hour and interpolating the data. We see an
abrupt increase in the number of surviving bacteria at approximately five hours indicating
an increase in the number of persister type bacteria. Our results agree well with the data
in [17]. We also see that as the growth-rate goes to zero, because of nutrient depletion, the
entire population becomes tolerant.
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Figure 4: Growth-stage dependence of persister formation for bacteria challenged with a
fluoroquinolone (non-growth-rate dependent) antibiotic. The squares represent the cell count
before challenge and the diamonds are the cell count after the challenge. The solid curve
corresponds to the untreated population, so the disinfection parameters kd and kl are zero.
The dashed curve is generated by taking bacteria at indicated and exposing them to a
constant level of antibiotic (kd and kl nonzero) for three hour and interpolating the data.
Again, we see an abrupt increase in the number of surviving bacteria at approximately five
hours. Our results agree well with the data in [17]. Because the antibiotic is effective against
non-growing cells, we do not see saturation to the untreated cell count as in Figure (3).
Instead, the cell count saturates to a lower level.
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Figure 5: Periodic dosing experiment with withdrawal period of one hour. We see that,
while the susceptible cells are killed, the persister population is being killed very slowly.
This treatment was not successful.
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Figure 6: Periodic dosing experiment with withdrawal period of ten hours. We see that nei-
ther the susceptible nor the persister cells are eliminated. This treatment was not successful.
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Figure 7: Periodic dosing experiment with withdrawal period of eight hours. We see that
both the susceptible and persister cells are killed indicating a successful treatment.
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Figure 8: Survival curves for susceptible and persister cells along with the envelopes of the
curves. The envelopes are given by the maximum of the populations during the dosing cycle.
This gives an overall view of the effect of the dosing strategy.

enough for the susceptible cells to reach the exponential growth stage.
To find the optimal withdrawal length, we measure the change in population as a func-

tion of this length. The envelope of the survival curves is the maximum of the respective
populations during each cycle (see Figure 8). The slope of the envelope on a logarithmic
scale gives the exponential rate of change in the population. For successful treatments, the
maximum rate is negative. In Figure 9, we show the maximum slope of the logarithm of
the envelope as a function of the withdrawal time. Minimizing this curve gives the optimal
strategy for the parameters given in Table I and Td = 10 hours. In this care the optimal
value for Tw is approximately 7.5 hours.

Results from the simulations predict that there is an optimal dosing strategy. However,
because the differential equations are nonlinear and non-autonomous it is difficult to proceed
with any analytic treatment. In the following section, we simplify the model by assuming
that the nutrient level is constant. This reduces the model from a system of three coupled
nonlinear, non-autonomous equations to a system of two linear, non-autonomous equations.
These equations can be solved analytically and the dynamics of the populations of susceptible
and persistent bacteria reduce to a two-dimensional map. The success of the dosing strategy
is determined by the eigenvalues of the map.
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Figure 9: Maximum rate of change for the population of cells as a function of the with-
drawal length. The maximum rate of change of envelope of the population is calculated for
various withdrawal lengths. We see that for withdrawal time shorter than approximately 9
hours, the treatment is effective. For withdrawal periods longer than this, the overall popu-
lation actually increases. The minimum of this curve gives the optimal withdrawal time as
approximately 7.5.
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4 Simplified Model

Assuming that the nutrient concentration is constant in time gives,

dBs

dt
= k̂sBs − k̂d(A, t)Bs (5)

−k̂l(A, t)Bs + k̂g(A, t)Bp

dBp

dt
= k̂l(A, t)Bs − k̂g(A, t)Bp. (6)

We further assume that the antibiotic level switches instantaneously from application to
withdrawal. Under these assumptions, k̂s is a positive constant while k̂d and k̂l are zero
if there is no antibiotic and non-zero otherwise. The rate of reversion from persister to
susceptible, k̂g, is non-zero only if the antibiotic is not applied. The solution to Equations 5
and 6 with initial conditions Bs(0) and Bp(0) are

Bs(t) =

{

Bs(0)e(k̂r−k̂d−k̂l)t A ≥ 0
(Bs(0)+Bp(0))k̂g+Bs(0)k̂r

k̂g+k̂r
ek̂rt −

Bp(0)k̂g

k̂g+k̂r
e−k̂gt A = 0,

and

Bp(t) =

{

Bp(0) + k̂lBs(0) e(k̂r−k̂d−k̂l)t−1

k̂r−k̂d−k̂l

A ≥ 0

Bp(0)e−k̂gt A = 0.

We begin with an initial population of bacteria which are all susceptible (i.e. Bs(0) =
Bs, Bp(0) = 0) and apply an antibiotic for a length of time Td. The population of each
phenotype is,

Bs(Td) = Bs(0)e(k̂r−k̂d−k̂l)Td (7)

Bp(Td) = k̂lBs(0)
e(k̂r−k̂d−k̂l)Td − 1

k̂r − k̂d − k̂l

. (8)

Using these values as initial conditions for the dynamics with A = 0 for a length of time
Tw we obtain the new populations,

Bs(Tw) =
(Bs(Td) + Bp(Td))k̂g + Bs(Td)k̂r

k̂g + k̂r

ek̂rTw −
Bp(Td)k̂g

k̂g + k̂r

e−k̂gTw (9)

Bp(Tw) = Bp(Td)e
−k̂gTw . (10)

We define M as the map taking (Bs(0), Bp(0)) to (Bs(Tw), Bp(Tw)) which can be written
as a matrix with entries

M1,1 =
(k̂2

r + k̂gk̂r − k̂rk̂d − k̂gk̂l − k̂gk̂d)e
k̂rTw+(k̂r−k̂d−k̂l)Td − k̂gk̂le

−k̂1Tw

(k̂g + k̂r)(k̂r − k̂d − k̂l)
(11)

M1,2 =
k̂g

k̂g + k̂r

(ek̂rTw − e−k̂gTw) (12)

M2,1 =
k̂l

k̂r − k̂d − k̂l

(e(k̂r−k̂d−k̂l)Td − 1)e−k̂gTw (13)

M2,2 = e−k̂gTw . (14)
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Figure 10: The curve in the Td, Tw-plane for which the eigenvalue is equal to one. Above
this curve, the eigenvalue is less than one, while below this curve the eigenvalue is greater
than one.

The success or failure of the dosing strategy in this simplified situation is determined by
the eigenvalues of the map M . If the magnitude of each eigenvalues is less than one, the
repeated dose/withdrawal will eventually eradicate both populations. Otherwise there will
be growth of one or both of the phenotypes, indicating an unsuccessful outcome.

We find that one of the eigenvalues is less than one for all nonzero dose/withdrawal
times. The curve in the (Td, Tw)-axis for which the second eigenvalue is equal to one is
shown in Figure 10. Above this curve the eigenvalue is less than one, while below this curve
the eigenvalue is greater than one. We also show the value of the eigenvalue for fixed dose
time and varying withdrawal times in Figure 11. This curve agrees qualitatively with the
simulations shown in Section 3.2. In particular, we see that for short withdrawal times we
have successful treatment. The rate at which the populations decrease to zero for varying
Tw has a unique minimum. Both the longest successful withdrawal time and the optimal
withdrawal time are similar to those obtained in Section 3.2.

We also find that for withdrawal time larger than approximately 9.3 there is no successful
treatment. Although the results are shown only for Td less than 5 hours, this conclusion is
true for much larger values (i.e. Td > 40 hours). The withdrawal time along with unbounded
growth produces too many bacteria for the treatment to be effective.

18



0 1 2 3 4 5 6 7 8 9 10
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7
Eigenvalue, Dose time = 2

Withdrawal time

E
ig

en
va

lu
e

Figure 11: The largest eigenvalue for fixed Td = 2 as a function of the withdrawal time.
For withdrawal times less than approximately nine hours, the eigenvalue is less than one,
indicating a successful treatment. The minimum value occurs at approximately 7.5 hours,
which agrees well with results from Section 3.2.
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5 Discussion

We have presented a mathematical model of bacterial tolerance based experimentally ob-
served ’persister cells’. These cells are a dormant phenotype that is expressed at a rate that
depends on the population growth rate and the antibiotic concentration. Parameters of the
model have been chosen to yield results comparable to experiments.

We use the model to test the hypothesis that alternating dose/withdrawal of the antibiotic
results in elimination of all bacteria. The optimal strategy is also determined. Results of
this analysis do not depend on the mechanism which induces the expression of the persistent
phenotype. It is only necessary that the formation of persisters is related to the growth
stage. This does not address the more difficult question concerning the regulation of persister
expression. It seems reasonable to suppose that rather than linking the rate of formation of
persisters to the growth rate there is a quorum sensing signal. Thus there may be a switch
analogous to that which governs the expression of the biofilm phenotype.

Because we assume that the rate of persister formation is proportional to the growth rate,
we find that persister cells are formed throughout the growth-cycle. This is not reflected in
experimental results (Dr. Kim Lewis personal communication). Instead, it seems that there
is no persister formation until the mid to late exponential phase. This may indicate that the
expression of the persister phenotype is regulated by an auto-inductive signal

The specific mechanism governing the reversion from persister back to susceptible pheno-
type does not qualitatively alter the results of the analysis. As long as there is some reversion
from persister back to susceptible the persister cells will act as a source for the regrowth
of the bacterial population. This is a major problem for bacterial biofilm infections, since
persister cells within the biofilm are also physically protected from the immune system by
the surrounding polymer gel.

The dynamics of persister formation are clearly more complicated in a biofilm setting.
In a recent paper [24], the authors consider a model of persister formation within a growing
biofilm. Results from model simulations suggest that persisters can accumulate within the
biofilm although the production of persisters near the surface of the biofilm is outpaced by
reproduction of susceptible bacteria. If the rate of formation of persisters is instead related to
the antibiotic and the growth rate the question is much more delicate since both the nutrient
and the antibiotic must diffuse through the biofilm. The concentrations of antibiotic and
nutrients depend on reactions within the biofilm which can alter the dynamics of persister
formation.

In conclusion, we have shown that both persister and susceptible cells can be eliminated
from a suspended population by an alternating dose/withdrawal strategy. It remains to
be determined whether the same strategy will be effective in a biofilm setting where the
transport of nutrient and antibiotic is more complicated.
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