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Abstract

We consider a dynamic model of biofilm disinfection in two dimen-
sions. The biofilm is treated as a viscous fluid immersed in a fluid
of less viscosity. The bulk fluid moves due to an imposed external
parabolic flow. The motion of the fluid is coupled to the biofilm in-
ducing motion of the biofilm. Both the biofilm and the bulk fluid are
dominated by viscous forces, hence the Reynolds number is negligible
and the appropriate equations are Stokes equations.

The governing partial differential equations are recast as boundary
integral equations using a version of the Lorenz reciprocal relationship.
This allows for robust treatment of the simplified fluid/biofilm mo-
tions. The transport of nutrients and antimicrobials, which depends
directly on the velocities of the fluid and biofilm, is also included. Dis-
infection of the bacteria is considered under the assumption that the
biofilm grows slowly compared to the time-scale of diffusion/advection.

Keywords: Biofilm, Two-Fluid, Boundary Integral Method, Regu-

larized Stokeslets

1 Introduction

Because of the many health, environmental and industrial processes that
are impacted by bacteria biofilms, understanding the failure of antimicrobial
treatments is of paramount importance. Currently there are several hypothe-
sis concerning tolerance mechanisms that include phenotypic, environmental
and structural mechanisms [10, 23, 30, 19]. Because it is likely that all of
the mechanisms play some role in conferring tolerance mathematical models
have been introduced to investigate these mechanisms [1, 5, 3, 14, 32, 13].

In this investigation, we expand a previous continuum model of biofilm
disinfection [5] to include the coupled motion of the biofilm and the external
fluid. In part, this is an important step in the development of a continuum
model of disinfection that includes the material properties of the biofilm.
However, we also find another mechanism that alters the effectiveness of an-
timicrobial treatment. We find that the motion of the biofilm can alter the
killing effectiveness of continuous dosing. This effect depends on the rela-
tive viscosities of the fluid/biofilm materials as demonstrated by simulations
comparing the killing curves for varying biofilm viscosities. We also demon-
strate the dependance of the efficiency on the initial biofilm geometry with
simulations comparing ideal geometries.
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The manuscript is organized as follows: The first section gives an overview
of the model and numerical implementation. This has been described previ-
ously in more detail [4] so the description will be relatively brief. We then
describe the numerical simulations and comparisons. We conclude with a
discussion and summary of the results.

2 Model Description

2.1 Overview

The fundamental simplification that we make in this investigation concerns
the material properties of the biofilm. It is well known that the biofilm
exhibits viscoelastic properties; however, the dominant behavior depends on
the time-scale of interest. For disinfection, this time scale is on the order
of hours while the relaxation time for biofilms has been estimated on the
order of seconds [18]. Therefore we treat the biofilm as a viscous fluid whose
viscosity is much larger than that of the the external bulk fluid. The length
scale is set by a typical thickness of a biofilm which is on the order of 500
microns, the velocity scale depends on the experimental procedure. We are
focusing our attention on low flow systems such as those in [32], which include
experiments with slowly flowing external fluids. Using typical values for the
velocities in these experiments and the viscosity of water as the reference
viscosity, we find that the Reynolds number, which is a compares the inertial
scales to the viscous scales, is much less than one. This indicates that the
inertial terms are negligible and we will treat both the biofilm and the bulk
fluid as viscous fluids governed by Stokes equations.

For each time-step we determine the fluid and biofilm velocities as de-
scribed below. Once the fluid and biofilm velocities are determined, we com-
pute the advection, diffusion and reaction of the chemical substances. Since
the chemical constituents equilibrate rapidly, the chemical concentrations are
assumed to be at quasi-steady-state. We note that the diffusion coefficient is
reduced within the biofilm. This is handled as in [5]. In particular, because
the biofilm/fluid interface is not sharp in general, the diffusion coefficient
varies smoothly from the external fluid to the internal biofilm. We smooth
the diffusion coefficient with a fixed transition region between the value in
the bulk fluid and that in the biofilm. The transition region is calculated
independent of the discretization. Finally the bacterial concentration is de-
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Figure 1: Schematic of the domain, Ω. The region is separated into two
sub-regions, Ω(1), the bulk fluid region, and Ω(2), the biofilm region, by an
interface Γ.

termined by solving a conservation equation that includes disinfection and
advection of the bacteria. Each of these equations and the numerical methods
for approximating the solutions are described below.

2.2 Governing Equations

Bulk fluid and Biofilm Motion:
Because the time scale for the simulations is on the order of hours which

is much less than the time scale for biofilm growth we also assume that
the biofilm does not grow during the disinfection. Therefore both fluids
are incompressible. The fluids occupy a region Ω, which is a channel for this
manuscript, and are separated by a surface, Γ. We denote the two subregions
as Ω(1) and Ω(2) for the bulk fluid and biofilm regions, respectively (see Figure
1).

The dynamics of both the bulk fluid and the biofilm are governed by the
incompressible Stokes equations

∇ · σ(∗) = 0 (1)

∇ · U(∗) = 0, (2)

where ∗ = 1, 2 denotes variables in the bulk and biofilm regions, respectively.
Stokes equations describe conservation of momentum and mass with stress
tensors σ∗ = P ∗I+µ∗(∇U∗ +∇U∗T) contain both the hydrostatic pressures,
P ∗, and the viscous stresses proportional to the deformation gradient tensor.

There are several methods for treating the two fluid problem including
immersed interface [20, 25, 22], immersed boundary [26] and the boundary
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integral method [4, 8, 16, 28]. We choose to transform the equations gov-
erning the materials in each sub-domain, Ω(1) and Ω(2) (i.e. bulk fluid and
biofilm) into a single integral equation whose solution is the velocity at each
point in the domain. This method is referred to as the boundary integral
method (BIM) and is described in more detail below. We will refer to the

velocity of the system obtained using BIM as ~U henceforth.
Constituents Disinfection of the bacteria within a biofilm depends on

many factors. There have been numerous experimental [10, 14, 30, 15, 34, 23]
and mathematical [31, 13, 32, 5] investigations of various biofilm resistance
mechanisms. There is no consensus on the dominant mechanisms; however,
because typical antimicrobial agents and antibiotics are most effective killing
respiring bacteria [19] spatially dependent nutrient consumption leads to re-
gions of lowered biocide effectiveness.

Because of the link between local nutrient availability and disinfection,
accurate, realistic models of the dynamics of nutrient and antimicrobial con-
centrations must be considered. Since the diffusion of chemical constituents is
fast compared to the time-scale of biofilm motion, we describe the concentra-
tions of nutrient, S(~x, t), and antimicrobial by reaction/diffusion/advection
equations at quasi-steady-state,

~U(~x, t) · ∇S(~x, t) = ∇ · (Ds∇S(~x, t)) − µs

S

Ks + S
B(~x, t) (3)

~U(~x, t) · ∇A(~x, t) = ∇ · (Da∇A(~x, t)) + R(A, B, S). (4)

The diffusion coefficients of nutrient and antimicrobial agent, Ds(~x) and
Da(~x), are assumed to be smaller in the biofilm region than in the flow region
with reduction factors are denoted rs and ra, respectively. The consumption
of nutrient by the bacteria is modeled by Monod kinetics, where µs, Ys and
Ks denote the maximum specific growth rate, yield coefficient and Monod
coefficient, respectively.

We note that the reaction term in Equation 4 depends on the antimicro-
bial agent being used since some agents are highly reactive with components
of the biofilm. For this investigation we will assume that there is no reac-
tion (R == 0) which implies that the antimicrobial agent equilibrates to the
source concentration thus eliminating the need to compute the solution to
Equation 4.

Bacteria The bacterial population at a point in space is changed by the
advection of the biofilm as well as by disinfection at a rate that is propor-
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tional to the substrate consumption. Combining these we find the equation
governing the bacterial concentration is,

∂B

∂t
+ ∇ · (~UB) = −α

S

Ks + S
B(~x, t), (5)

where B is zero outside the biofilm region. The coefficient α has adsorbed
the antimicrobial source concentration.

2.3 Numerical Implementation

Velocities:
The boundary integral method (BIM) for treating fluid problems in var-

ious parameter regimes has been extensively studied in the past several
decades. This method relies on the existence of a Green’s function for the
PDE operators. The immediate practicality of this method is apparent for
fluids that can be treated as inviscid or as Stokes fluids [28, 16]. In either of
these cases Greens functions for various domains are readily obtained.

The main idea behind BIM is to use a version of the Lorenz reciprocal
relation [24] to recast the governing PDE’s as boundary integrals equations.
In general the reciprocal identity allows one to obtain information about a
given flow, U using information about another known flow, U′. Because the
flow field for a viscous fluid with a singular force can be calculated directly
[7], we use this as the comparison flow. Once the reciprocal relation is derived
the governing equations can be recast as integral equations whose domain is
the boundary between the fluids.

We relate the unknown velocity U∗ to the flow induced by a singular
force with intensity f at a point x0, U′. Thus U′ is a fundamental solution
to incompressible Stokes equations

∇ · σ′ = fδ(x − x0) (6)

∇ ·U′ = 0, (7)

where σ = −P I + µ(∇U +∇UT). This is a convenient flow to use since the
solution can be computed easily using Fourier transforms [27]. In two spatial
dimensions the solution is

U′(x) = −
f

4πµ
ln(r) + (f · x)

x

4πµr2

= −
f

4πµ
G, (8)
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where r = ‖x−x0‖ and G is the two-dimensional Stokeslet. The correspond-
ing pressure and stress tensor are

P ′ =
(f · x)

2πr2

σ = −
f

4πµ
T. (9)

The reciprocal relation for the bulk flow is determined by relating solu-
tions to Equations 1 and 2 to 6, 7. By direct calculation, we find that

∇ · (Uσ′) −∇ · (Uσ′) = fδ(x − x0)U, (10)

which is the classical reciprocal relation.
Integrating the reciprocal relation, with various placements of the singular

force, we recast Equations (1) and (2), with ∗ = 1 as an integral equation
whose domain is the interface Γ. The integral equation relates the bulk fluid
velocity to the traction jump across the interface, denoted ∆σ = (σ(1)−σ(2)),
and the velocity (see [27] Chapter 5). The motion of the bulk fluid is

U
(1)
j (x0) = −

1

4πµ(1)

∫
Γ

∆σikηk(x)Gij(x,x0) dl(x)

+
1 − λ

4π

∫
Γ

Ui(x)Tijk(x,x0)ηk(x) dl(x), (11)

where λ = µ(2)

µ(1) . Equation 11 governs the j-th component of the external fluid
velocity.

In a similar manner, we obtain an integral equation for the motion in
Ω(2),

U
(2)
j (x0) = −

1

4πµ(1)λ

∫
Γ

∆σikηk(x)Gij(x,x0) dl(x)

+
1 − λ

4πλ

∫
Γ

Ui(x)Tijk(x,x0)ηk(x) dl(x). (12)

These two integral equations govern the coupled motion of the external
bulk fluid and the internal biofilm. Because the flows must be continuous at
the boundary, we can obtain the boundary velocity by taking limit of 11 and
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12 as x0 moves to the boundary. These limits both converge to

Uj(x0) = −
1

2πµ(1)(λ + 1)

∫
Γ

∆σikηk(x)Gij(x,x0) dl(x)

+
κ

2π

∫
PV

Γ

Ui(x)Tijk(x,x0)ηk(x) dl(x), (13)

where κ = 1−λ
1+λ

. The latter integral is an improper integral that must be
handled with care. There are many methods for evaluating this integral that
depend on the dimension of Γ as well as the kernel of the integral. In this
situation, the singularity is integrable and straightforward quadrature rules
work well [28].

To close the system in a straightforward manner we impose a constitutive
relation relating the jump in traction, ∆σik to mean curvature ∆σ = γη∇· η
(see [27]) .

One could use these equations to determine the velocity at each point
in the domain; however, a more effective method has been developed in [4].
This method uses Equation 13 to determine the velocity of the interface.
This, in turn, is used as data to determine forces that must be applied to
the domain so that the material (fluid or biofilm) moves with the calculated
velocities. These forces are then used to update the velocities. More details
can be found in [4, 5]. Essentially, this hybrid method uses BIM to determine
the boundary motion and the method of regularized Stokeslets to determine
the velocity away from the boundary.

To solve Equation 13, we are then confronted with a system of coupled
integral equations which can be written as

W = b +
κ

2π

∫
Γ

KW dl(x). (14)

where W = (U
(1)
1 ,U

(1)
2 ). The vector b contains the Stokeslet and the tensor

K contains the related stress tensor, both of which are known.
A straightforward method for solving the discretized integral equations is

Nystroms method [35] which requires a quadrature rule:

∫ b

a

y(s)ds =

n∑
j=1

ωjy(sj),

where ωj denotes the weights of the quadrature rule. For our simulations we
use Gauss-Legendre quadrature.
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Both the vector b and the kernel of the integral equation have integrable
singularities. This can make naive Nystrom’s method unstable. We choose
to regularize these terms using the method of regularized Stokeslets. For this
we solve the regularized version of the singular Stokes’ equation

∇ · σ = f0φǫ(x − x0) (15)

∇ ·U = 0, (16)

where φǫ(x − x0) denotes a cutoff or blob function. There are many choices
for the regularization term φǫthat yield regularized Stokeslet and stress [7] .

Once we have the regularized stresses we discretize the initial interface
into n control points. We then solve Equation 14, with the vector b and the
kernel K replaced with the regularized version.

Applying the quadrature rule to the regularized problem

W = bǫ +
κ

2π

∫
Γ

KǫW dl(x), (17)

yields a discrete system of the form

W(x0) = b(x0) +
κ

2π

n∑
j=1

Kǫ(x − x0)W(x)ωj. (18)

Evaluating this at the n control points leads to

W(x0,i) = bx0,i +
κ

2π

n∑
j=1

Kǫ(x0,i − xj)W(x0,i)ωj . (19)

This system can be inverted using any convenient iterative solver (i.e.
gmres or conjugate gradient). Once the velocities of the interface are cal-
culated, we use techniques developed in [7] to obtain the velocities away
from the interface. The boundary points are then moved at their prescribed
velocity, a new boundary is determined and the process is repeated.

Constituents:
The steady-state nutrient concentration is determined numerically using

ADI with second order-accurate upwinding to avoid excessive numerical dif-
fusion. We note that the diffusion coefficient varies between the biofilm region
and the bulk fluid region. This is primarily due to the restriction imposed
by the polymeric component of the biofilm. Rather than treat the diffusion
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coefficient as discontinuous, we smooth the values between Dbulk and Dbiofilm

by a continuous approximation of the Heaviside function. Thus we have a
smoothly varying diffusion coefficient. This allows for standard treatment of
the diffusion/advection equation as well as yielding an approximation that
is independent of the discretization. More details can be found in [5].

Bacterial Concentration: We use a simple implementation of the
method of lines with second order upwinding and Matlab’s ode-suite to solve
the discretized bacterial advection and disinfection equation. Thus we dis-
cretize the spatial component of the bacterial concentration, where the ad-
vection terms are given explicitly. This yeilds a system of ODE’s which are
solved with a fourth order Runga-Kutta algorithm.

3 Simulations

It is often advantageous for bacteria to form biofilms either to evade pre-
dation (i.e. human immune system) [9] or to take advantage of alternative
metabolic processes. In [18], the authors argue that the biofilms ability to
react elastically to transient stresses and viscously to long term stresses allow
the biofilm to stay in environmentally favorable environments while avoiding
catastrophic material failures explains observed visco-elastic properties.

This investigation was motivated by the need to understand how biofilms
protect the bacteria from disinfection. In particular, because the estimated
viscosity of the biofilm is extremely high compared to that of the bulk fluid
[18] we would like to understand what effect the viscosity of the biofilm has
on disinfection. Although there are many possible tolerance mechanisms,
we only include physiological tolerance (i.e. nutrient dependent disinfection)
and delayed penetration through a diffusional barrier. We then compared
the disinfection curves for varying biofilm viscosities

Since the biofilm moves with the fluid, one could argue that the motion
of the biofilm should decrease the effectiveness of the disinfectant since the
bacteria move away from the disinfectant. Alternatively, one could argue
that as the dynamics of the geometry of the biofilm interface could increase
the effectiveness since the surface area is enlarged as the biofilm moves with
the fluid allowing for easier penetration of nutrient. In the absence of a
compelling heuristic argument or experimental results mathematical model-
ing and simulations were used to address the question. Parameters for the
simulations are given in Table 3.
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Parameter Symbol Units Value Source

Maximum Specific Growth Rate µs h−1 0.417 [31]
Yield Coefficient Yb 0.8 [31]
Monod Coefficient Ks mg l−1 0.1 [31]
Antimicrobial Agent Influent Concentration Ca mg l−1 5 - 20 [31]
Nutrient Influent Concentration Cs mg l−1 10 [31]
Nutrient Diffusion Coefficient Ds m2h−1 9.67 × 10 −6 [31]
Antimicrobial Agent Diffusion Coefficient Ds m2h−1 1.80 × 10 −6 [31]
Biofilm/Bulk Diffusivity Reduction r∗ 0.9 [32]
Length Scale L m 10−2 Assumed
Max. Flow Rate Umax m h−1 0-3.4 Assumed
Disinfection Rate Coefficient: κ 0.4 Assumed
Biofilm Viscosity µ cP 1 - 1000 × water Assumed

Table I: Parameters used in the simulations

Simulation 1: Generic Interface

In this set of simulations we consider the disinfection of a generic biofilm
cluster whose initial geometry is shown in Figure 2. Survival curves were gen-
erated by simulating the effect of disinfection with a constant concentration
of biocide and nutrient source. The survival of the bacteria is calculated by
R

B
R

B0
, where B0 is the initial concentration of bacteria. This gives the ratio of

surviving bacteria as a function of time. We considered the effects of varying
the viscosity of the biofilm over several orders of magnitude. In figure 3, we
show the survival curves for various viscosities. As the viscosity increases,
we see a decrease in the effectiveness of the disinfection. The survival curves
converge to that of the fixed biofilm as the viscosity tends towards infinity.
Apparently, the viscosity plays a role in the disinfection efficiency. In fig-
ures 4-7, we show the domain and contours of the nutrient concentrations for
varying viscosities. We see that the nutrient is better able to penetrate the
biofilm with lower viscosity. This seems to support the hypothesis that the
expansion of the surface area increases the susceptibility of the bacteria. The
next set of simulations examines disinfection for varying initial interfaces and
fixed viscosity. Here we see the dependance of the disinfection on the initial
geometry.

Simulation 2: Two Disjoint Hemispheres versus Triangle
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Figure 2: Initial generic interface used in Simulation 1.

We then simulated the disinfection for a biofilm with an interface that is
initially two disjoint hemispheres of differing radii and compared the results
with those obtained for two triangular regions (see Figure 8. Rather than
vary the viscosity, we explored the results for different initializations of the
interfaces. This was in part motivated by the observation that the lower
viscosity generic interface seemed to be more ’streamlined’ that the higher
viscosity generic interface. Thus we consider whether the initial arrangement
of the interface could be related to the effectiveness of disinfection. The
results of these simulations are summarized in Figure 9.

Here we see that the interaction between the geometry and the advec-
tion/diffusion of chemical species is more complicated than just ’streamlin-
ing’. Intuitively, one would think that the relationship between effectiveness
(i.e. time-scale of disinfection) would be similar between domains in column
one and column two; however this is not the case. In Figure 10, we com-
pare the arc lengths as a function of time for each of the domains. We see
that even though the lower right of Figure 8 has larger arc length it is less
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Figure 3: Comparisons of the survival curves for varying viscosities. As the
viscosity increases, we see a delay in the disinfection indicating that the less
viscous biofilms are more susceptible to treatment than the higher viscosity
biofilms. We note that as the viscosity increases, the survival curves converge
to that of the fixed biofilm domain as indicated by the overlap between the
curves for µ = 5000 and µ = 10000.
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Figure 4: This shows a snapshot of the biofilm with viscosity µ = 500 at time
t = 96(min). The evolved interface is shown along with labeled contours of
the nutrient levels. Here we see that the nutrient has almost fully penetrated
the biofilm, the bacteria are all susceptible at close to their maximum rate.

15



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.84807

0.
92

40
4

0.92404

x

y

Figure 5: This shows a snapshot of the biofilm with viscosity µ = 1000 at
time t = 96(min). The evolved interface is shown along with labeled contours
of the nutrient levels. We see that the nutrient has not penetrated as far as
the simulation with µ = 500 indicating that there is some level of protection
being offered to the bacteria as seen in the survival curves in Figure 3.
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Figure 6: This shows a snapshot of the biofilm with viscosity µ = 5000 at time
t = 96(min). The evolved interface is shown along with labeled contours of
the nutrient levels. Again, this is consistent with the results shown in Figure
3
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Figure 7: This shows a snapshot of the stationary biofilm at time t = 96(min).
The interface is shown along with labeled contours of the nutrient levels.
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Boundaries for Simulation 2

Figure 8: Initial domains for the second simulation set. The second column
is the reverse orientation of the first column. We were interested to compare
the disinfection curves for these regions for fixed viscosity
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Figure 9: This shows the comparison of survival curves for the regions shown
in Figure 8.
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Figure 10: The arc length as a function of time for the regions in the second
simulation set. The arc length was calculated numerically at each time step.
The colors of the arc length curves correspond to the colors in Figure 8: blue
- triangular 1, red - triangular 2, black - hemispherical (large first) and green
- hemispherical (small first)

susceptible to disinfection. Comparing the triangular regions, we see that
interface in the upper right has larger arc length and is more susceptible to
disinfection.

Time Scale of Disinfection To try and understand this more fully, we
considered methods to determine when the ’knee’ of the disinfection curve
occurs. The time at which the disinfection rate is maximal depends on the
penetration time of the nutrient since the disinfectant rate depends on the
nutrient availability and the biocide (which is constant in these simulations).
To determine this time scale, we use the time course of nutrient concentration
determined by the numerical simulations. We find the time at which the
minimum values of the nutrient within the biofilm domain is .05 and .5 of
the nutrient source concentration, t.05 and t.5 respectively. In Figure 11, we
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indicate these times on the survival curves indicating that these times are
covering the ’knee’ of the curve for all our simulations.

Finally, we consider several other models of biofilm disinfection and com-
pare the penetration times. In particular, we would like to determine the
effects the motion of the biofilm region and the external flow have on the
survival curves and penetration times. In [33], the author calculates the
penetration time for various antimicrobial agents (e.g. nonreactive, reactive,
sorbing) for a flat slab biofilm. Here there is no external flow. Instead the
concentration of the biocide is constant at the interface. This can be up-
graded to include a mass transfer boundary layer to incorporate the external
flow in a qualitative manner.

We consider three simulations; the first is a numerical method similar to
the analytic results in [33] where the bulk fluid is well mixed and there is
no external flow, the second second incorporates explicit treatment of the
external fluid with a fixed interface, and the final includes the motion of
the biofilm and the external fluid. In each of these simulations the initial
interface is a hemisphere of radius .5. As in the rest of the manuscript, our
disinfection model allows us to track the nutrient concentration in order to
track the disinfection of the biofilm. For the first simulation a boundary layer
of the nutrient concentration is fixed at the interface and we consider diffusion
of the nutrient into the biofilm. In the second simulation, we account for the
motion of the external fluid while the biofilm region is fixed. In the third
simulation, we allow for the biofilm to move as a viscous fluid with viscosity
500 times that of water. In Figure 12, we show the survival curves as well as
the times at which the nutrient has penetrated to .05 and .5% of the source
concentration. Again, we see that we are well able to capture the ’knee’ of
the survival curve. We also see that the pure diffusive case under-estimates
the penetration times.

4 Discussion

We find that the disinfection is delayed as the biofilm viscosity increases.
This suggests that if the viscosity of bacteria could be artificially increased,
say by heating the substratum , disinfection might be aided. Because the
disinfection of the bacteria is proportional to the growth rate, we also note
that this implies that the less viscous biofilm has a lower overall growth rate
that that of the fixed biofilm.
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Figure 11: Survival curves with the time at which the nutrient has penetrated
so that the minimum value within the biofilm region is .05, indicated by the
blue circle, and .5, indicated by the red circle. This indicates a measure of
the dependence of the disinfection on the penetration of the nutrient.
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Figure 12: Survival curves for three simulations with the time at which the
nutrient has penetrated so that the minimum value within the biofilm region
is .05, indicated by the blue circle, and .5, indicated by the red circle. The
survival curves for no external or internal flow (red), no internal flow (green)
and both external and internal flows (blue) are shown.
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We have also considered how the nutrient penetration time sets the max-
imum disinfection rate. This timescale is contrasted with other simplified
models. In particular, we see that as the viscosity of the biofilm increases,
the penetration time decreases. This indicates that although diffusion within
the biofilm can delay the penetration of chemicals, neglecting the external
and internal flows has a measurable effect on the estimate of penetration
times.
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