
Pattern Formation by Bacteria-Driven Flow

N. G. Cogan* and Charles W. Wolgemuthy

*Department of Mathematics, Tulane University, New Orleans, Louisiana 70118; and yDepartment of Cell Biology, University of
Connecticut Health Center, Farmington, Connecticut 06030-3505

ABSTRACT Some marine bacterial species form mucosal layers, called veils, on sulfidic marine sediment. The bacteria

attached to this veil actively swim and exert force on the surrounding fluid. The bacteria can break free of the veil and swim,

chemotacting back to the veil. Over time the veil forms holes arranged in a hexagonal pattern. Motivated by this system, we

present a simplified model to describe pattern formation induced by force-generating bodies embedded in a layer surrounded by

fluid. When the bacteria break free of the layer, they are advected by the flow and diffuse. Competition between the fluid flow

generated by the embedded bacteria and diffusion of the swimmers leads to a novel instability that drives bacterial aggregation.

Analytic and numeric analysis of this system correctly defines the length scale and developmental timescale for the biological

system. Similar flow dynamics may also play a role in other biological systems such as encrusting bryozoan colonies.

INTRODUCTION

Pattern formation during morphogenesis is a well-known and

highly studied process. Often, cell movements exert force on

the environment, and the environment, in turn, exerts force

back on the cells. This feedback can lead to complex phe-

nomena. A classic example is mesenchymal morphogenesis

where crawling cells pull on the extracellular matrix (Trink-

haus, 1980). The stress induced in the matrix produces

anisotropy in the layer that affects the cells’ motion. This

mechanical coupling results in spatially organized cell aggre-

gations. Physical models capture the dynamic interplay pre-

sent in this system and provide useful insights on the biology

(Murray, 1993; Murray et al., 1983; Oster et al., 1983). This

interplay between development and the environment is seen

inmany other biological systems such as limbmorphogenesis

(Wolpert and Stein, 1984), formation of microvilli (Oster

et al., 1985), and, more recently, mechanical stress has been

shown to induce neurogenesis in nonneuronal cell cultures

(Feron et al., 1999).

Similar coupling with the environment leads to pattern

formation in developing biofilms (Stoodley et al., 1999). A

biofilm is a microbial aggregate with constituent microbes

connected to each other and a substrate by means of an

extracellular polymeric substance, which is a muscous or

gel-like polymer matrix secreted by the microbes (Bryers and

Characklis, 1982; Costerton et al., 1995). Biofilms are

medically and technologically important as they cause

infection, corrode equipment, and lead to higher costs for

production and distribution of product. Some sulfide-

oxidizing bacteria aggregate into bacterial veils, colonies

similar to biofilms that form above sulfidic marine sediment

(Fenchel, 1994; Fenchel and Glud, 1998; Jorgensen and

Revsbech, 1983; Thar and Kuhl, 2002). These veils form

when swimming cells get stuck together by the mucous they

secrete. Although stuck to the aggregate, the bacteria keep

rotating their flagella pulling oxygen-rich fluid through the

colony. Advection and consumption of oxygen set up an

oxygen gradient toward which other bacteria chemotact.

This process leads to veil growth. A fully developed veil is,

therefore, a mucous mat with embedded bacteria that are ac-

tively rotating their flagella (Fig. 1 a).

Bacterial veils sit near the bacteria’s optimal oxygen

concentration (2–10 mM, depending on species) (Fenchel

and Glud, 1998; Thar and Kuhl, 2002). The cells are attached

to the veil, typically on the upper or oxic side, via a long,

thread-like stalk. These stalks sometimes break and the cells

detach from the veil. Once free, the cells actively swim.

Chemotaxis in a U-shaped pattern then brings the cells back

to the veil where they can reattach (Thar and Kuhl, 2003).

Pattern formation in the veil is dependent on the height of

the veil from the surface (Fenchel and Glud, 1998). When the

veil is over a depression in the sediment or when it is raised

sufficiently off the surface, a honeycomb-type pattern of

regularly spaced holes form in the veil (Fig. 1 b) (Fenchel

and Glud, 1998; Thar and Kuhl, 2002). In veils produced by

Thiovulum majus, these hole patterns occur in striped and

honeycomb patterns (R. Thar, private communication). The

holes are typically separated on a length scale comparable to

the height of the veil off the surface. Particle tracking near

these holes show that they are sources of outflow (Fenchel

and Glud, 1998). Interestingly, very similar patterns arise in

encrusting bryozoan colonies where ciliated filter feeders

pull nutrient-rich fluid down into the colony (Larsen and

Riisgard, 2001).

In this article, we suggest a simplified model to describe

how fluid flow driven by the bacterial veil can lead to pat-

terns of regularly spaced holes in the colony. As depicted in

Fig. 1 a, we note that, in the presence of a hole, recirculating

flow above the veil will tend to push any free-swimming

Submitted September 21, 2004, and accepted for publication January 21,

2005.

Address reprint requests to Charles W. Wolgemuth, E-mail: cwolgemuth@

uchc.edu.

� 2005 by the Biophysical Society

0006-3495/05/04/2525/05 $2.00 doi: 10.1529/biophysj.104.053348

Biophysical Journal Volume 88 April 2005 2525–2529 2525



bacteria back into the veil away from the hole. This

advection of free-swimming bacteria will tend to clump the

bacteria together. As higher concentrations of bacteria form

in these clumps stronger circulating flow is generated, which

further promotes aggregation. Therefore, we break the bac-

terial population into two groups, a group that is bound to

the veil and a group that is not bound and can thus swim

freely above the veil. The bound cells are stuck in place at the

location of the veil. The veil height above the sediment

surface, h, is presumably set by the coupling of the sulfide

oxidation reaction to the fluid flow (Thar and Kuhl, 2002).

For the purposes of this article, we make no predictions

about what sets this height and assume that it is constant

across the veil. Rotation of the bound cells’ flagella exerts a

net force on the surrounding fluid inducing a flow field with

velocity, v. On a timescale tb, the bound cells break free of

the veil and become part of the free-swimming population.

The free population swims, chemotacts, and is advected by

the flow created by the bound population. The random

swimming of the free cells acts as an effective diffusion (Berg,

1993), with diffusion constant, Df. Assuming that the height

of the veil is constant and set by the sulfide/oxygen gradients

implies that any chemotaxis will tend to drive the bacteria

back to the veil. Due to the regularity of the chemotactic

U-shaped pattern, detached cells will on average swim a

height d above the veil and remain detached for a time tf. In

particular, we are assuming that oxygen consumption and

transport along with the fluid flow determine d and tf. It is

likely that these parameters depend in a nontrivialway on both

the fluid velocity and the oxygen concentration, but, for

simplicity, we will assume they are constants. In addition, we

will also only treat advection of the free population parallel to

the veil surface.We denote by nf and nb the number density of

free-swimming and bound cells, respectively. For a one-

dimensional veil in a two-dimensional fluid, the dynamic

equations governing the two populations of bacteria are

@nb

@t
¼ �

1

tb
nb 1

1

tf
nf ; (1)

@nf

@t
¼ Df

@
2
nf

@x
2 �

@

@x
ðnfvx;dÞ1

1

tb
nb �

1

tf
nf ; (2)

where vx,d is the fluid velocity in the x-direction a height d

from the veil.

On average, bacterial veils are a few hundred microns

above the surface of the sediment and the flow rates are 30–

100 mm/s (Fenchel and Glud, 1998; Thar and Kuhl, 2002).

This leads to an estimate of 10�2 for the Reynolds number of

the fluid near the veil, and, therefore, inertial effects should

be negligible. This Reynolds number is consistent with the

experimental observation of a diffusive boundary layer

above the veil (Thar and Kuhl, 2002). Ignoring inertial ef-

fects, the fluid velocity around the veil satisfies the incom-

pressible Stokes equation,

h=
2
v� =p ¼ 0;

= � v ¼ 0; (3)

where h is the viscosity of the fluid and p is the pressure.

At the veil, the bound bacteria exert a force per length, K,

on the surrounding fluid. We assume that this force is

directed straight down and proportional to nb. Therefore,

K ¼ �anbŷ: It is common in viscous fluid dynamics to

approximate the flow generated by a continuous distribution

of force generators by the flow induced by a line of singular

solutions to the Stokes equation. A single point source of

force acting in a viscous fluid induces a flow known as

a Stokeslet (Lorentz, 1896). Dipole and doublet sources are

also possible (see, for example, Pozrikidis, 1992). In this

framework, boundary conditions at distant surfaces are

handled using image charges (Blake, 1971). Because the

Stokes equations are linear, the net flow of the fluid is given

by a superposition of these singular solutions. The fluid flow

generated by the bacterial veil is, therefore,

vi ¼
1

4ph

Z
dx0Gijðx; x0ÞKj; (4)

FIGURE 1 (a) Schematic diagram showing the bacterial veil with

embedded and swimming bacteria and the idealized fluid flow (arrows).

The holes provide an outlet for circulation flow. (b) Two-day-old veil

showing honeycomb pattern of regular spaced (; 300 mm) holes. Picture

courtesy of R. Thar.
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where Gij(x, x0) is the Green’s function tensor describing

the flow at point x generated by point sources at x0. The

boundary conditions are enforced by the proper choice of

Gij. In Eq. 4, i labels the Cartesian coordinates.

We will assume an infinite, one-dimensional bacterial veil

at y ¼ h. The fluid is considered to be two-dimensional and

semiinfinite with a no-slip boundary condition at y ¼ 0.

Therefore, the Green’s function in Eq. 4 is (Pozrikidis, 1992):

Gijðx; x0Þ ¼ SijðXÞ � SijðX
I
Þ1 2h

2
G

D

ij ðX
I
Þ � 2hG

SD

ij ðX
I
Þ;

(5)

where X ¼ x � x0, X
I ¼ x� xI0; and xI0 ¼ ðx0;�hÞ is the

location of the image charges. In Eq. 5, Sij is the two-

dimensional Stokeslet tensor, andGD
ij andG

SD
ij are the dipole

potential and periodic doublet tensors that enforce the no-slip

boundary condition at y ¼ 0 (for a complete description, see

Pozrikidis, 1992). Using Eqs. 4 and 5,

vx;d ¼ �
a

4ph

Z
N

�N

dx0nbðx0ÞGxy; (6)

where

Gxy ¼
8h

2
ðh1 dÞðx � x0Þð2hd1 d

2
� ðx � x0Þ

2
Þ

ððx � x0Þ
2
1 d

2Þððx � x0Þ
2
1 ð2h1 dÞ

2
Þ
2 ; (7)

is the xy component of the Green’s function (Eq. 5) evaluated

at y ¼ h 1 d.

A natural rescaling of Eqs. 1 and 2 is x̃ ¼ x=h and

t̃ ¼ Df t=h
2: A typical bacterial diffusion constant is Df ;

10�5cm2/s (Berg, 1993). Thus, the characteristic timescale

for the veil is tD [ h2/Df ; 100 s. This choice of rescaling

leads to four dimensionless control parameters that define the

dynamics of the system. k� ¼ tD/tb and k1 ¼ tD/tf are rate

constants that set the relative equilibrium concentration of

bound to unbound bacteria (at equilibrium, nb ¼ k1 nf /k�).
~dd ¼ d=h is the dimensionless average swimming height, and

Pc ¼ ah3/4hDf acts like a Peclet number and defines the

relative importance of advection to diffusion. Scaling

arguments suggest that for Pc � 1; the homogeneous

equilibrium distribution of bound and unbound bacteria

will be stable, whereas, for Pc.
;

1; flow generated by the

bound bacteria should lead to aggregation and hole

formation as described previously. Near the veil, the fluid

velocity is ;10�2cm/s. Therefore, Pc ; 10.

To analyze the stability about the homogeneous distribu-

tion, we set nf;b ¼ n
ð0Þ
f;b1en

ð1Þ
f;b e

gt cos qx̃: Expanding Eqs. 1, 2,
and 6 to first order in e leads to a linear system for the

perturbations n
ð1Þ
b and n

ð1Þ
f ;

ðg1 k�Þn
ð1Þ

b � k1 n
ð1Þ

f ¼ 0;

�ðk� 1Pc uÞn
ð1Þ

b 1 ðg1 q
2
1 k1 Þn

ð1Þ

f ¼ 0; (8)

where the first-order component of the advection term is

u ¼ n
ð0Þ

f qe
�q~dd

ð~ddð1� e
�2q

Þ � 2qe
�2q

ð11 ~ddÞÞ: (9)

Setting the determinant of the linear system in Eq. 8 to

zero defines the growth rate of the q-mode,

g ¼
1

2
ððq

2
1 k1 1 k�Þ

2
1 4ðPck1u� k�q

2
ÞÞ

1=2

�
1

2
ðq

2
1 k1 1 k�Þ: (10)

FromEq. 10, the zeros ofg are set byPck1u� k�q
2¼ 0.As

these roots only depend on the ratio of k� to k1, the behavior

of the instability is independent of the absolute magnitude of

these rate constants. In Fig. 2, we plot g as a function of q for

Pc¼ 0.1,Pc¼ 1, andPc¼ 10.Weuse values k1¼ 10, k�¼ 1,

and ~dd ¼ 0:3: For small values of q, the growth rate is damped

out due to the inability to set up recirculating flows on length

scales much longer than h. For large q, diffusion dominates

and the growth rate is negative. As suggested by the scaling

arguments, positive values ofg exist forPc.
;

1 and advection

from the recirculating flow drives the system unstable. The

length scale for the instability is set byq,which gives a spacing

of approximately h.

Numerical solution of Eqs. 1 and 2 using a conservation

form discretization on the periodic domain �2p # x # 2p;

two-dimensional, periodic Green’s functions to integrate

Eq. 6 (Pozrikidis, 1992); and an explicit, variable time-step

method (MATLAB ode15s) confirms the linear stability

analysis. Fig. 3 shows the onset and development of the

instability over time for two different values of h. For these

simulations, we set nf ¼ 1.0 1 jf (x) and nb ¼ 10.0 1 jb(x),

where jf,b are small random perturbations. As time pro-

gresses, a sharp peak or peaks develop in both the bound and

free populations. As expected, changing h by a factor of 3

produces an equivalent change in q.

The linear stability analysis shows a long-wave zero mode

(Fig. 2). The presence of a zero mode is known to lead to

chaotic behavior in some circumstances (Kliakhandler and

Malomed, 1997; Tribelsky and Tsuboi, 1996). We studied

FIGURE 2 Growth rate versus wave number for Pc ¼ 0.1 (dashed line),

Pc ¼ 1.0 (solid line), and Pc ¼ 10 (dotted-dashed line). For all plots, k1 ¼
10.0, k� ¼ 1.0, and ~dd ¼ 0:3:
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the behaviors of our model on domain sizes of up to 20p in

length and ran the simulations for times 10 times longer than

the time it took to reach steady state. Based on these studies,

we found no apparent effect due to the presence of the zero

mode. Eventually a steady state is reached where the maxi-

mum density is set by the initial total concentration of bac-

teria. As the bacteria continuously secrete mucilage, regions

of high density of bound bacteria get replenished with gel. In

regions of low density, the gel presumably degrades or is

washed away by the flow and a hole is formed. As the veil

gets closer to the sediment surface, the wavelength of the

instability decreases (Fig. 3).

Using Eq. 4 and the numerical solution of nb, it is possible

to calculate the flow in the entire two-dimensional, semi-

infinite domain. Fig. 4 shows the flow at three different time

steps for the simulation depicted in Fig. 3 (bottom panels). A

uniform, infinite distribution of bound bacteria does not

generate flow as the symmetry does not permit recirculation.

At early times, the only flow that is possible arises from the

random initial perturbation (Fig. 4, top panel). As the

instability begins to develop, vorticity in the flow field sets

up a recirculating flow pattern (Fig. 4, middle panel). Similar

flows are seen near the holes in bacterial veils (see Fenchel

and Glud, 1998). At late times, the sharp aggregation of the

bacteria leads to localized spots of downward flow separated

by wider and weaker counter current (Fig. 4, bottom panel).

This article demonstrates that detachment and reattach-

ment of sulfidic bacteria to the mucus veil they create is

sufficient to account for the evenly distributed pattern of

holes that develop in mature veils. Experimentally, it is ob-

served that the distance between holes is comparable to the

veil height, as is predicted by this model. Simulations also

show that the spacing of the holes is moderately dependent

on the force exerted by the bacteria on the fluid, which may

account for the larger spacing observed in veils of faster

swimming bacteria. As our one-dimensional model produces

a characteristic wavelength, it suggests that in two di-

mensions either rolls, square, or hexagonal patterns are pos-

sible. Both rolls and hexagonal patterns have been observed

experimentally, suggesting that tuning of a parameter, such

as the height of the veil, h, or the force per bacterium, a, will

transition between these different possibilities in a more

complete, two-dimensional model.

We have neglected the physical properties of the mucosal

gel. Flow-through gels can lead to ‘‘hole-like’’ instabilities

(N. G. Cogan and J. Keener, unpublished data) and may play

a role in bacterial veil formation. In addition, the strong

recirculating current that develops due to the aggregation of

the bacteria may also lead to spatial variations in the oxygen

concentration. As the bacteria are known to be chemotactic

(Thar and Kuhl, 2003), oxygen gradients arising from the

flow may also contribute to hole formation. An alternative

model based purely on chemotaxis has recently been sug-

gested (R. Thar and M. Kuhl, unpublished data); however,

this model does not take into account the large-scale flows

away from the veil or the advection of the bacteria. Similar

fluid dynamical coupling may also play a substantial role in

the development of bryozoan colonies (Larsen and Riisgard,

2001).

The authors thank R. Thar for useful discussions and the image in Fig. 1,

and M. Zajac for a critical reading of the manuscript.

FIGURE 3 Time evolution of nb (left) and nf (right) from numerical

simulation of Eqs. 1, 2, and 6. Top panels show result for h ¼ 1.0; bottom

panels for h ¼ 3.0.

FIGURE 4 Time series of flow pattern during hole formation. (Top panel)

At t̃ ¼ 0; random initial conditions produce a small flow. (Middle panel) At

t̃ ¼ 4; the bacteria have started to aggregate in three locations. At these

locations there is a strong downward flow. In locations where there are fewer

bacteria, the return flow dominates the flow produced by the bacteria, setting

up circular flow patterns. (Bottom panel) Flow at t̃ ¼ 8: Scaling of arrows in

top panel is larger to make the arrows more visible.
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