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Between-Host Disease Models

Between-host models are often referred to as epidemiological models.
This is one of the few chapters where we do not specify a particular bi-
ological context. The framework of these models is extremely general
and include diseases such as the flu, HIV, Covid and other commu-
nicable and vector-born diseases. Sensitivity methods include visual
screening methods such as spider plots, tornado plots and

|
6.1 Historical Background

Mathematics has been used to study disease progression within a pop-
ulation since at least the 1600s when John Graunt used death records
from London to develop a method to estimate the risk of dying for
different diseases [22]. In fact, it is arguable that alongside ecological
models, epidemiological models have been among the earliest models
developed as well as those with some of the most lasting affect on peo-
ples daily lives. Insurance costs depends on factors that are, in part,
determined by these models. The development of drugs from antibi-
otics, to antivirals, to vaccines (both in the development of the vaccine
and in the use of the vaccine to prevent the spread of diseases) are
motivated and assisted using mathematical models. Questions such as
where should governments allocate resources for disease prevention
such as HIV prevention (needle exchange? education?) and outbreak
diseases like Ebola, West Nile virus are influenced by epidemiologi-
cal models. Mathematicians from Daniel Bernoulli — who introduced
a model of smallpox treatments in 1760 — to John Snow — who stud-
ied the spread of cholera and used his quantitative theory to locate
the source of a cholera outbreak in London to current mathematicians
including those working with governments throughout the world use
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mathematical models to inform decision-making as well as preventa-
tive methods. During the development of modern theory, models have
gone from highly disease specific (e.g. focusing on one disease in one
region) to relatively general (focusing on theoretical and qualitative re-
sults) to back to more complex and specific models that use the general
theory as a guide to understanding.

The outbreak and spread of COVID-19 is an example that is oc-
curring at the time of this writing. Predicting the spread of the disease,
excess mortality, impact of methods to control the pandemic and even
economic cost of the disease all rely on models. Because models rely
on specific assumptions each model analysis often produces different
predictions. It is the job of modelers to separate out predictions that
differ in magnitude, such as the percent of the population that will be
infected, from those that do not, such as whether or not a disease will
become endemic (i.e. permanently circulating in the population). It is
also the job of modelers to assess the most viable targets for controlling
the disease. One of the most controversial topics during the Covid pan-
demic was the extent masks helped prevent the spread of the disease.
Part of this controversy was a consequence of evolving understanding
of the spread of the disease. Masks help more if the disease is airborne
than if it is not. Another source of different quantitative predictions
was a lack of knowledge of specific measurements such as how many
particles different types of masks can filter. These sorts of questions
can be addressed by estimating the parameter sensitivities as well as
analyzing aspects of mathematical models.

Another interesting outcome of the global pandemic is the preva-
lence of terms that are fundamental in epidemiology — terms like ‘herd
immunity’ and ‘R naught (Rp)’. It is defined as the number of new
infections caused by one infected member of the population over the
course of the infection. Intuitively, if R is smaller than one the infec-
tion spreads too slowly to maintain or increase in number. This quan-
tity is of fundamental importance in epidemiology since it provides
the border between the spread and decline of a disease. Therefore es-
timates of Ry and the effect policy decisions have on Ry are central to
community response to an infectious disease [26, 27, 5].

What is less understood is how to estimate this from data and from
models. In demography this could be estimated by taking the total
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number of offspring in a year and dividing this by the total adult pop-
ulation to arrive at the average offspring per adult produced in a year.
However, there are clear issues with this including how to draw a line
between adults and offspring and how to adjust for variations within
a year. The other difficulty with this method is that it is not at all pre-
dictive. It may describe whether your population was increasing or de-
creasing last year, but it does not predict whether the population will
grow in the following year. This is a particular deficiency when consid-
ering infectious diseases and epidemiology since the goal is to develop
strategies to counter the spread of diseases including ones that are cur-
rently spreading. Having some predictive model helps guide policy de-
cisions during disease outbreaks.

The concept of the basic reproduction number was actually de-
scribed in the 1920’s in the context of demographics about 60 years
before it was well established in the study of the spread of diseases.
In demographics Ry is a measure of the number of offsprings per each
female member of the population. Again, it is intuitive that larger R
implies faster growth. Demographics and epidemiology share many
characteristics and many of the earliest research in both fields was
performed by Lotka who was interested in population dynamics in a
general sense.

There are two groups that dominate the development of modern
epidemiology and provide an interesting insight into the role a quan-
titative theory plays in the development of science [61]. In the 1890’s
through the early 1900’s Ronald Ross studied malaria and was the first
to show that mosquitos transmit the malaria parasite. Although it had
already been shown that certain parasites can live in the mosquito gut,
Ross argued that the spread of malaria was caused by the mosquito as a
disease vector and that controlling the mosquito population could pre-
vent the spread of the disease within human populations. This idea was
already ’in the air’ in the early 1900’s with several practical trials of
mosquito control to reduced the spread of dengue fever; however, these
empirical methods often failed inexplicably. Ross was motivated to use
quantitative relationships between insect control and disease spread to
develop estimates for the amount of mosquito population needed to be
reduced and how large an area needed to be treated. Ross developed
mathematical models that were combined with data that indicated that



116 Between-Host Disease Models

it was not necessary to eradicate the entire mosquito population. In-
stead he estimated a threshold density below which the disease would
not spread.

This work was extended and refined by George Macdonald in the
1950’s. Macdonald extended Ross’ theoretical model that had com-
partments for susceptible and infected humans and mosquito density,
by including compartments that represented infected mosquitos and
details about the mosquito life-stages and infectivity. Macdonald de-
veloped his theory at the same time that DDT was created and widely
used. This lead Macdonald to focus on important aspects of control
which extended the application of the theory. Additionally, Macdonald
worked closely with field studies to refine estimates of key parameters.
Together, the Ross-Macdonald provided a template, generally specific
to the spread of malaria, for the interplay between theory and applica-
tion.

In 1927 Kermack and McKendrick published one of the clas-
sic papers in mathematical biology — ‘A Contribution to the Mathe-
matical Theory of Epidemics’ [38]. This paper generalized the Ross-
Macdonald theory and presented a very general theory of epidemics. A
special case developed in this paper is the version of epidemiological
models that most students learn and the one presented below. It is one
of the most fundamental models used in biology sharing overlap with
ecological, demographic and population models.

Although Kermack and McKendrick are credited with modern epi-
demiological models, it must be noted that Ross, Macdonald and Ker-
mack and McKendrick all focused on a population threshold that deter-
mines whether the disease spreads or not if it is introduced into a pop-
ulation. In some cases (as we will show below) the threshold and the
basic reproduction number provide the same information. But in gen-
eral, Ry provides a more robust understanding about the spread of an
infectious disease. It took almost 30 years for Ry to replace the popula-
tion threshold in epidemiology even though it was in widespread use in
demography to estimate population decline. Epidemiology rests on in-
cremental advancement in the science from observations that indicate
the most important biological processes, for example the insect vector,
to quantitative estimates based on the current knowledge that are com-
pared to observations to determine next generation models. The theory
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also needed cross-fertilization to develop practical methods to combat
the spread of infectious diseases.

There are many methods to calculate Ry. One of the most intuitive
is to determine parameters for which the infected population increases,
Z—f > 0 when the disease is introduced into a susceptible population.
This is equivalent to determining whether the disease free state is sta-
ble or not. We note that this is not the only method used to estimate
the propagation of the disease and is sometimes difficult to provide
biological interpretations.

|
6.2 Two Compartment Models
6.2.1 Model

Epidemiological models are excellent examples of compartmental
models. The dependent variables in these models are conceptualized
as compartments with connections between compartments represent-
ing transitions between compartments. An example compartmental di-
agram is shown in Figure 6.1.

Kermack and Mckendrick

McKendrick was a medical doctor as well as a competent mathe-
matician who published more than 50 papers on epidemiological
theory. Kermack as trained as in mathematics and chemistry but
an accident left him blind so he focused on theoretical studies.
The 1927 paper written by Kermack and McKendrick is a rel-
atively controversial paper but not because of its’ content. This
paper is often cited as the foundation of the SIR model; how-
ever, the differential equations as described here are only de-
scribed as a special case of a more general framework. In fact,
the differential equations were explored by Ross, McDonald and
others. Kermack and McKendrick made important contributions
— mainly by connecting the concept of per capita infection with
a propagation threshold.
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Host

Susceptible -3 Exposed -3 Infected 3 Recovered

Susceptible =3 | Infected

Vector

Figure 6.1: Schematic of a compartmental model. This example in-
cludes susceptible, exposed, infected and recovered host populations
with susceptible and infected compartments for the disease vector. This
schematic is relevant for diseases such as malaria, but not for diseases
spread person to person such as the flu.

The basic ingredients to epidemiological models require some dis-
tinction between members of the population in order to describe how
the disease propagates. The simplest model distinguishes members
who are sick and those that are not sick but have the potential to be-
come sick. In the simplest diseases, the illness is passed from infected
individuals directly to susceptible members. We will begin with an ill-
ness that never kills the infected individual but the individual never re-
covers from. In this case our population has two compartments shown
in Figure 6.2 — susceptible, S, and infected, /. A word equation that
describes the dynamics is,

Rate of Change of S = Lossof Sto/,
Rate of Change of I = Gain of  from S.

If we denote the rate at which susceptible individuals become in-

Host

Susceptible =3 Infected

Figure 6.2: Disease schematic with only two compartments.
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fected as k, we can make some logical inferences about this rate. First
it must depend on both S and I since there should be not transfer
from susceptible to infected if either of these compartments is zero,
so k = k(S,I) and both k(0,7) = 0 and k(S,0) = 0. There are many
forms of this rate but if we assume that the interactions between sus-
ceptible and infected individuals is random we can assume that the law
of mass action approximates the rate of interaction and that transmis-
sion of the disease proportional to the product of S and 7, k(S,1) = kSI.
We note that this assumptions is definitely not universally true — dur-
ing the COVID pandemic it became clear that front line workers (e.g.
doctors and nurses) necessary workers have higher rates of contracting
the disease implying that the transmission was not random. Another
example where random interactions is not appropriate are diseases that
pass from mother to child. This is an assumption that we should exam
closely if we find the predictions from our analysis are unreasonable.
Realistically, there are no important diseases which can be represented
with this model. These are diseases for which there is no cure, but is
never deadly. Instead, we can think of this as a step-wise model that
provides a possible road-map to understanding the dynamics.

6.2.2 Analysis

Given our assumptions, we can translate the word equations into dif-
ferential equations,

ds
— = —kSI 6.1
7 : (6.1)
dl
— = kSI 6.2
I (6.2)

Recall that we assumed the population was constant since there
were not births or deaths included — another way to see that this as-

sumption is consistent with this model is to add these two equations to
find,

dS+dI _ o
d dt
d(S+1)
S/ )
dt ’

S+1 = N.
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Where we used the fact that the sum of derivatives is the derivative of
the sum and that if the derivative of a function is zero the function is
constant (denoted N). We see that the total population is always con-
stant and we can use this to simplify the equations. Since S+1 =N,
S = N — I and we can substitute this into Equation 6.2,

dl

dr

This should be familiar since it is the logistic equation. We see that

I=0and =N (thatis S = 0) are the only steady-states and that/ =0 is

unstable for all values of k. We can use the stability of the disease free

state to understand how the disease spreads when initially introduced
into the population. Because,

d (kI(N —1))
dt

= KI(N-=I).

o = kN
> 0, 6.3)

the disease free state is always unstable. In this overly simplified
model, there is no parameter choice where the disease does not prop-
agate, so the concept of a particular parameter value that separates the
spread and decline of the disease state is not really applicable. Instead,
all parameters lead to an increase in the infected compartment.

6.2.3 Sensitivity Analysis: Spider Plot

There are many measures of the spread of a disease. For epidemics,
one measure might be the maximum of the infected population since
this gives some indication of the strain on hospitals. For this two-
compartment model, we know that the maximum is N so there would
be no variation in the maximum value. Therefore all parameters includ-
ing the total population, N, transmission rate, k and initial condition
would have the same sensitivity.

It also might be of interest to see how fast the disease is spreading.
This could be quantified early in the disease process when the disease
is first introduced or at different time points to see if the disease is
increasing the rate of spread or not. This could be determined by the
right-hand-side of Equation 6.3.
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Another marker that provides information about the disease pro-
gression is the time the infected population reaches half of the maxi-
mum (N). This is a standard measure for sigmoidal curves referred to
as the half-saturation constant . The workflow for this would be,

1. Select a parameter set

2. Solve the differential equation

3. Determine the time that I = %’, Qol = Ty
4. Save this value.

We should note that for this example we could solve the equation
analytically and find the half-saturation constant from the solution. We
are using this as an example to motivate the sensitivity method. We
will use a graphical method that provides information about the im-
pact of parameter variations in a relative way. These methods are often
referred to as ‘ranking’ methods since the goal is to determine which
parameters have more impact than others rather than quantify the effect
of varying parameters. Spider plots are relatively simple to understand.
We change each parameter, one at a time, sweeping through percent
changes (above and below the nominal value). Plotting the Qol’s si-
multaneously provides a quick way to judge the relative importance
taking into account the precent differences.

We will add some more interesting behavior to the equations that
we will solve numerically since the SI model is completely solvable, so
is much less interesting. For demonstration purposes, we can add vital
dynamics. We will maintain the two classes, but assume that there is
an immigration term (or a birth term) that enters the susceptible pop-
ulation and a death term for the infected population. The new model
is,

ds
= = rS(S—K)—kSI, (6.4)
dt
dl
= = kSI-6l. 6.5
7 (6.5)

This gives us six parameters to consider: r, k, k, and § and the ini-
tial populations. To decide on a Qol, we first solve the equations for
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Figure 6.3: Susceptible/Infected dynamics including vital dynamics.

specific parameters. We will use qualitative parameters (e.g. not tuned
for any specific observations): » = .05, k = 100, k = .05, and 6 = .3.
We will start with initial conditions, So = 99 and Iy = 1 so that the ini-
tial infected population is 1% of the initial populations. An example of
the dynamics is shown in Figure 6.3. We see that adding vital dynamics
can add oscillations, although this is parameter dependent.

We will use the ratio of / and the total population as the Qol —
since this may oscillate, we will take the long-time solution. it can be
shown that there is a stable equilibrium, so this is reasonable choice.
We show the spider plots for a 50% variation above and below the
nominal parameter set (see Figure 6.4).

We see immediately that r and k lead to decreasing Qol while 0 is
positively correlated. Each of these has a stronger effect than varying
any of the other parameters. In fact, it is impossible to see both the
effect of varying Sp and I because they have exactly the same effect at
all levels of variation.

6.3 Classical SIR
6.3.1 Model

We now move to the classic SIR (Susceptible, Infected, Recovered)
model represented by the schematic diagram in Figure 6.5. This model
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Figure 6.4: Spider plots comparing one-at-a-time variation of parame-
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can be used to represent the dynamics of a disease which is not deadly
but everyone eventually recovers. One could imagine a very mild cold,
for example. Although we should point out that there are segments of
the population that could be challenged by almost any immune system
challenge. Immune compromised individuals, elderly, or other subsets
of the population need to be accounted for differently. We are also still
neglecting births, so we have to keep this in mind when we examine
our results.

If we assume that the infection has a fixed recovery rate, Y, we can

Host
Susceptible -3 Infected -3 Recovered

Figure 6.5: Disease schematic susceptible, infected and recovery
states.
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write the equations governing the disease dynamics,

ds
— = —kSI 6.6
7 ; (6.6)
dl
— = kSI—vI 6.7
7 iz (6.7)
dR
— = 7L 6.8
7 v (6.8)

It is worth noting that the road-map laid out by the SI model pro-
vides some insight into the next steps. If we add the equations we find
that,

dS dlI dR

“H 4= =0
dt+dt+dt ’
d(S+I1+R)
— 7 =0,
dt
S+I+R = N.

So we can eliminate one of the compartments by replacing it with
the difference between the total population and each of the other com-
partments — for example R = N — S — I. Because there are no births and
deaths the total population is always N. For the SIR model, the pop-
ulation flows into the recovered compartment, which is not connected
to the rest of the compartments in any other way so we can focus on
the S and 7 dynamics and use the algebraic relationship, R=N —S—1,
for R.

dS

— = —kSI 6.

7 ; (6.9)
dl

— = kSI—vyl 6.10
R = N-S—1. 6.11)

6.3.2 Analysis

Notice that for a steady-state either / = 0. This is can be seen in Figure
6.6, where the the rates of infection and recovery are different. We see
different dynamics for the susceptible population. in either case, S =0
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Figure 6.6: Dynamics for low infectivity, N = 1000, £k = 0.005 and
Y = 0.5.Comparison between two different disease examples. One is
less infective(k = 0.005) than the other (k = 0.01). These differences
result in very different outcomes.

and R = N as t — oo. In the first case, k = 0.005 and y = 1. There is a
wave of infection that recedes. The second case has a faster recovery
time, Y = 2 and we still see a wave that passes. The second case has a
residual of susceptible people who have not had the disease.

This disease wave that sweeps through the population is relatively
simple here because the recovered population is immune and there are
not variations in the susceptible population. Still, the peak of the wave
depends on the characteristics of the disease — How easily is it trans-
mitted? How fast is the recovery time? For many epidemics the goal
is to reduce the peak infected population to reduce the impact on the
infrastructure — this leads to methods to ‘flatten the curve’.

There are several other aspects of the dynamics that are worth not-
ing. The peak for the higher infectivity disease occurs earlier and is
higher. This has policy implications since this means the number of
people who have the disease and may require treatment is higher and
more concentrated. This had a tremendous impact on the hospital in-
frastructure during the waves of COVID and was the focus of a lot of
the modeling to predict resource needs.

These observations can be used to develop Qol’s that are geared
to answering specific policy questions such as the effectiveness of dis-
ease prevention — for example social distancing in terms of COVID or
condom use for sexually transmitted diseases.

We can also try and understand the estimates of Ry. For the SIR
model, one estimate for Ry can be seen by determining when fl—f > 0.
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Going back to Equation 6.8, we can see that if kST — yI > 0, the infec-
tion grows. At the beginning of an epidemic most of the population is

R naught (R()

Ry is notation for the basic reproductive ratio’ and is a measure
of whether a disease can spread throughout a population or not.
Intuitively, if an infected individual is not able to infect at least
one other person the disease will not spread since the secondary
infections are fewer than the primary infections. In reality, this
is far too simplistic of an idea. First of all this does not provide
an algorithm for approximating the number of secondary infec-
tions. Second, diseases can be far more complicated with far
different dynamics in the even of reinfection, for different mem-
bers of the population and different behavior patterns. Therefore
there has been widespread interest in how to calculate Ry more
accurately.

The most straightforward definition of Ry is through the rate of
change of the infected population. If this is positive, the disease
is expanding and Ry is large. Otherwise Ry is small. The diffi-
culty with this is that it is difficult to interpret this biologically in
any general sense. It is the method that we rely on here, however.
Another method is the survival function approach [27] where
there is a large population and F(a) defines the probability that
an individual remains infectious for a time interval of length
a. The average number of secondary infections caused by an
infected individual will be denoted b(a). Then, we can define
Ry = [, b(a)F (a)da. This can be extended to complex models
but rapidly becomes unwieldy.

The most general method is referred to as the ‘next generation
matrix’. This matrix is a statement of how the susceptible and in-
fected populations change over one generation. This matrix de-
fines the evolution of the population in discrete steps. The max-
imum eigenvalue of this matrix defines Ry. This is arguably the
most general and accurate method to use. However, it is quite
intricate in general so we will not focus on it.
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Figure 6.7: Comparison of the infected population for different values
of a.

susceptible so that S =~ N so,

kSI—yI ~I(kN—vy) > 0
if
AT
Y

We can define Ry = ¥ which ratio of the fraction of the population
that is infected and the fraction that recovers. We can check whether
this makes sense for our examples. The simulations shown in Figure
6.6 have Ry = w =10and Ry = w = 20, so the disease
propagates. If we remove a portion of the population so that the sus-
ceptible population that has the potential of contracting the disease is
aN, we can vary o and determine what percentage of the population
needs to be quarantined to prevent the spread of the disease. Examin-
ing Figure 6.7, we find that as long as o < .05 the disease essentially
does not spread — that is an estimate of about 95% of the population

must be removed from the susceptible population.

6.3.3 Sensitivity Analysis: Tornado Plots

We will again make the model a bit more complex so that there are
a few more parameters to deal with. Just as in the SI model, we can
include basic vital dynamics so that there are births of susceptible and
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Figure 6.8: Tornado plot of the effect of a 50% increase or decrease
in each parameter. We see that there is some asymmetry implying that
decreasing kK and r has a stronger effect on the Qol than increasing
these parameters. Also, this has a stronger, relative affect on the Qol.

deaths of infected. Our new model is,

dS
— = rS(x—8)—ksI, (6.12)
dl
— = kSI—yI-4I 6.13
= v -6, (6.13)
dR
ak-_ 6.14
= Y (6.14)

Our parameters are the growth rate (r = .1), the carrying capacity (kK =
2 % N), infectivity rate (k = .01), death rate (8 = .01), recovery rate
(y=".5) and total initial population (N = 1000).

To consider the sensitivity, we can compare the Qol for the low,

versus high values of the parameters. The specific Qol shown in is the
Ssteady

L. . Ssteady+1:€teady

this is using tornado plots. These are horizontal bar plots that show

differences in increasing (on the right) and decreasing (on the left)
each parameter, one at a time. Just as spider plots give a visual and
relative comparison, tornado plots quickly show whether increasing or
decreasing a parameter has a larger effect. It also compares the vari-
ation in each parameter. A plot for this example is shown in Figure
6.8.

same as the one for the SI model: . One way to visualize
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There are several caveats — this is still one-at-a-time sensitivity. A
slightly more subtle issue is that just looking at the increase and de-
crease assumes that the behavior is linear. If the sensitivity is nonlinear
(for example quadratic) it is possible to mis-represent the variation.

6.4 Waning Antigens

There are numerous examples of infectious diseases where the SIR
model is not accurate because recovery does not grant permanent im-
munity as in diseases like measles. Instead, after a waiting time a
recovered individual becomes susceptible so the model becomes an
SIRS. It is important to note that the rate of transition between recov-
ered and susceptible matters a lot as it modulates the speed of disease
propagation. It is also a key measurable quantity used to estimate vac-
cination strategies. The goal of vaccination is to move members of the
population from the susceptible category into the recovered category.
There are many assumptions underlying this strategy that have varying
degrees of correctness and depend on specific diseases. For example,
we are assuming that recovery from the disease is equal to immunity
from vaccination which is a tenuous assumption without proof. There
are many diseases where there is a substantial difference between an in-
duced immune response from a vaccination and the response from the
active infection. However, all vaccine strategies aim to decrease R by
reducing the number of susceptible individuals that an infected individ-
ual to interact with. If a vaccine program is slower than the timescale
of recovery to increased susceptibility, Rp may never decrease enough
to stop the spread of the disease.

For now, we will assume that there is no vaccine for the disease
and that once an individual has been infected and recovered they move
from the recovered compartment to the susceptible compartment at
fixed rate (see Figure 6.9). We are again neglecting vital dynamics so
we expect the total number of individuals in the population to remain
constant — which will guide our analysis.
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Figure 6.9: Disease schematic with four compartments.

6.4.1 Model: SIRS

Using the familiar compartmental model, we describe the dynamics of
all compartments. The equations are the same as the SIR model except
that we have added the transition from recovered to susceptible at a
rate o.

ds
— = —kSI+aR 6.15
7 +QR, (6.15)
dI
— = kSI—ylI 6.16
7 Vi, (6.16)
dR
— = yI-aR. 6.17
I V-« (6.17)

Again, we have a conservation law since there are no deaths in this
model: ‘Zl—f + Z—f + ‘2—15 = 0 so that R = N — S — I and the system of three
Equations 6.16 - 6.17 can be reduced to two equations,

Z_f = —kSI+a(N—S—1), (6.18)

dl

== kSI—ql 6.19

I I (6.19)
(6.20)

Interestingly, the estimate for Ry we used for the SIR model, based
solely on whether I grows or decays, is the same for the SIRS model.
This suggests that this simple definition of R is missing something
— either that or our understanding of the spread of a disease is not
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Figure 6.10: Comparison between three different disease examples
where there is waning antigen so that recovered individuals can be-
come susceptible. The parameters are: k = 0.001, y = .2, So = 500,
Ip = 10, Ry = 0. The transition from recovered to susceptible is o =
0.01,0.0125,0.25.)

sophisticated enough. The models are not the same, the behavior is
also not the same so it seems hard to imagine our measure of disease
propagation should be the same.

We can compare among different parameters and see important dif-
ferences. In Figure 6.10, we show dynamics where the only parameter
difference is the rate of antigen waning — that is how quickly recov-
ered individuals enter the susceptible population. For low values, we
see one isolated peak and as the rate of transition between recovered
and susceptible increases we see repeated waves of infection and even-
tually a state where the infection never recedes and is endemic in the
population. We will focus on the mathematical mechanisms for the
waves of disease and consider how sensitivity analysis can provide in-
sight into controlling secondary waves rather than digging deeper into
the epidemiological aspect of Ry.
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6.4.2 Analysis

How do we understand the differences in Figure 6.10? The first step is
to return to our standard starting point: Steady-state analysis. Looking
at Equations 6.19 and 6.20 to find steady-states, we can see that / =0,
S = N and R = 0 is a steady-state. But there is another one with § = %

N-1 N-1) . o .
and I = a(a +Yk) ,R=N-— a(a +Yk)' Linearization provides the reasons
for the repeated waves as well as indication of the change between

endemic and transient (See homework 6.8).

6.4.3 Sensitivity Analysis: Cobweb Diagrams

What can sensitivity analysis tell us about the behavior of the disease?
Since the generic behavior — meaning the behavior that depends on
a range of parameter values rather than one specific set of parameter
values — is a decaying oscillation, it might be useful to know what
controls the number of waves in a given time period. It also might be
useful to know how the peaks of the waves depends on the parameters.
This gives two Qols that are easier to say in words than in equations.
One way would be to determine the number of times the derivative of
I(t) is zero in a given time interval. Since this happens at the peaks and
troughs it indicates the number of times the infectivity rate changes
direction. We could also determine the value of I at these points to
determine the amplitude of the oscillations. This type of Qol illustrates
a key difference between sensitivity analysis that is useful in biological
settings than other, more engineering based, settings. In engineering
applications it is often more standard to have the dependent variables
of a model be identified as the Qol. Often this is because engineering
models are often developed with specific reliability issues in mind.
Oscillations are not simple to measure, numerically — especially
when the shape of the curves can change. We will use a Qol that dis-
tinguishes between endemic and transient — namely, the value of the
infected population is small or not (that is whether the infection is en-
demic or not). To indicate the sensitivity, we will use cobweb plots.
The idea is to choose parameter sets where each parameter is perturbed
from the basal state. The perturbations are randomly chosen and inde-
pendent and are typically a percentage change from nominal. Once the
parameter set is chosen, the solution is determined numerically. The
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Figure 6.11: A variation of 100% indicating parameters that distin-
guish between high and low. )

Qol is sorted into bins. We are using two bins although others can be
used. The parameters that lead to specific bins are connected visually.
There are many different coloring options that help identify different
aspects of the sensitivity. In Figure 6.11, we show a simple coloring
identifying which parameters lead to high/low infected population.

There are a two parameters that appear to be well separated. When
the infection tends to pass and not be endemic ¢ is lower and 7 is
higher. There are other inferences that can be drawn from the shading
— for example, Y is very certainly a parameter that moves the system
between endemic and not while the initial conditions do not matter
much at all.

We should also note that cobwebbing is the only global method
that we have discussed in this chapter — the others are one-at-a-time.
Global methods carry much more information, but are typically more
complex to code up.
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6.5 Caveats and State of the Art

We should make some mention about the scaling that we are using.
There are two standard ways to implement the SIR-type models. These
can be either dimensionalized or nondimensionalized — there are useful
reasons for each, but it is important to understand the differences.

‘We can start with the dimensionalized version,

ds

— = —kSI+aR 6.21
7 + OR, (6.21)
dl

— = kSI—vyI 6.22
dR

— = vylI-aR. 6.23
o7 V-« (6.23)

All the state (dependent) variables are measured in units of pop-
ulation (individuals, or appropriate units of individuals such as mil-
lions). We can measure the independent variable in units of time (for
epidemics days is often appropriate). The units of the left-hand-sides
must match the units on the right-hand-sides. Therefore

[‘;_ﬂ:Mtim = [kSI] = [K][S)[1).

Therefore, [k] = m and k is a per capita rate. At the same

time, o an 7y are rates, [*] = ﬁ This is important when using param-
eters relevant to specific diseases.
As before, the conservation law implies that the total population is

N. This provides a scaling for the populations in terms of fractions of

the total. Define s(¢) = %, i(t) = I](v—l), an r(t) = %. Then % = N%

and [s] = 1. We can re-write the equations in non-dimensional form,

d

d—‘; — —Nksi+oar, (6.24)
a

d—; —  Nksi—¥i, (6.25)
T i (6.26)

dr
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The parameter group, Nk has dimensions of  — since,

NK] =

population

population x time’
1

time

This means that the initial conditions for the two scalings must
be consistent (non-dimensional scales are on the order of one, dimen-
sional scale on the order of N). The parameters that involve nonlinear
combinations of variables need to be scaled to either per capita or per
time.
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6.6 Problems
Problems 6.1 Consider the SIRS model,

d
G _ _isi+ar, (6.27)
dt
dl
— = kSI—vyl 6.28
dR
— = vyl—oaR. 6.29
o = r-a (6.29)

(a) Find the equilibria

(b) Compare these with the two-variable version using the conserva-
tion of the population (Equations 6.16, 6.17 and S+1+ R = N).

(c) Use any method to determine the stability of these equilibria

(d) Demonstrate the stability properties numerically using specific val-
ues of parameters that imply stability for the steady-states.

Problems 6.2 (a) Show that the maximum of the two-compartment
(SI) model is N

(b) Demonstrate this using the numerical codes.

(c) What do you note about the approach to the equilibria?

Problems 6.3 (a) Solve Equation 6.3 for I(t)

(b) Write an expression for the analytic value of the half-saturation
constant

(c) Use this to compare with the sensitivity method approximated nu-
merically.

(d) Change the Qol to the value of the rate of change of the in-
fected compartment evaluated at an increasing sequence of points,
(0,t1,12,13,t4). Compare the sensitivity plots for different times.
What do you see as ty gets large?
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Problems 6.4 What do the sensitivity methods show for the sensitivity
of the maximum of the two compartment model with respect to param-
eters? Are there differences in the methods?

Problems 6.5 Suppose the population is split into two different sub-
sets: healthy and immune compromised.

(a) Sketch a schematic where there are 4 compartments: Healthy sus-
ceptible, compromised susceptible, infected and recovered.

(b) Write a model that expands the susceptible compartment S in the
SIR model to S = Sy, + S..

(c) What happens if S. do not become infected but are removed from
the population? Show this numerically.

(d) Is this realistic? What happens to the total population? What would
happen if there was a transition between Sy, and S.?

Problems 6.6 Consider the SEIR model for these cases:

* Including a quarantine for sick people.
* Include vaccination

* Include age structured: The simplest way to do this is to consider
SEIR models for some division of the population: Youth, Adults,
Aged. Youth become Adults at a particular rate. We then have
compartments for Susceptible, exposed, infected, recovered - youth
(adults, aged). Just as susceptible can become exposed, youth can
become adults at a specific rate.

For all of these, provide representative simulations of the dynamics for
some simple parameters. Consider the steady-state behavior. Can you
find an analytic representation of the steady-states?

Problems 6.7 Explore different methods to quantify the number of os-
cillations occur in a fixed interval. You might explore the command
tspan[np.argmax (np.gradient (yp.y[1l],tspan)<0)] as
a starting place. Here np.gradient (yp.y[1],tspan) is the
numerical derivative of yp_y [1] and np.argmax (a<0) provides
the index of a that is the first occurrance of a negative value of a. The
time this happens is in tspan.
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Problems 6.8 Use sensitivity to determine the parameters that are
mainly responsible for distinguishing between endemic and transient

disease dynamics.



