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Introduction

Modeling is a central concept in mathematical biology since there are
not fundamental ‘laws’ to rely on. Therefore it is important to have an
idea of a model in mind. By definition, models are approximations of
reality. Good models are capable of providing insight into biological
hypotheses and built to be refined and adjusted.

All models are wrong, but
some are useful.

Attributed to George E. P. Box

Models should be as simple as
possible, but no simpler.

Adaptation of Albert Einstein

1.1 What is a model?

Models are the translation of a real world problem into a statement
or question in mathematical language. Models connect the lab scien-
tist, clinician or practitioner to the mathematician/quantitative scien-
tist. Bridging this gap requires an understanding of both languages, as
well as an appreciation of the gap between them.

Like translations, there can be good and bad translations – those
that are accurate, those that capture the spirit of the primary language
and those that open up insights. So what makes a good model? This
depends a lot of the context. Some qualities that make good models
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include accuracy (how true to the science is the model), flexibility (if
you change the experiment slightly, do you need a brand new model?),
simplicity (is the model tractable?), practicality (does it include things
that are not measurable?).

1.2 Projectile Motion

There are many relationships that are really models. For example,
D = rt models the how the distance travels depends on the rate and
time. The ideal gas law relates pressure, volume and temperature,
PV = nRT . Einstein derived a model describing the relationship be-
tween energy and mass, e = Mc2. All of these are models that provide
insight into different processes. There are distinctions between these
models. It is hard to imagine how D = rt could not be an accurate
model (although there is an underlying assumption that the rate is con-
stant) while the ideal gas law becomes less and less accurate when the
gas is close to a phase transition, say near the condensation point. The
last relationship depends on assumptions underlying much of modern
physics. So models can come in a range of subjective interpretation.

We will detail one model that is familiar to any student in calculus
– projectile motion. We assume that an object is fired directly upwards
from a certain height above ground. The object goes up, stops moving,
reverses direction and returns down. A description of the height of the
object as a function of time is y(t) = �1

2gt2 + v0t + y0. Gravitational
acceleration is denoted g, the initial velocity and positions are v0 and
y0. There is a choice in frame of reference where we are assuming
that gravity only acts in one direction (the object is dropped or thrown
vertically with no horizontal displacement) and that gravity causes ac-
celeration in the ‘negative’ direction. If the object starts with a positive
height, y0 and is released the height will decrease.

This is often presented as ‘projectile motion’ and as though it is
always true. We could think of this function as the model – we can
make predictions about the time it takes to return to y = 0 or what is
the maximum height the object reaches. However, viewing this rela-
tionship that way obscures a broader modeling method – How do we
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adjust this for multiple objects? How In calculus you might have seen
this as a question about motion under constant acceleration. Acceler-
ation is the rate of change of velocity, v(t) and Newton argued that
acceleration due to gravity is constant so that,

dv
dt

= �g.

Since g is a constant, we can integrate both sides,

v(t) = �gt + c0.

Now we know how the velocity changes over time and velocity is
the rate of change of position,

dy
dt

= �gt + c0.

Since g and c0 are constant, we can integrate both sides,

y(t) = �1
2

gt2 + c0t + c1. (1.1)

You can almost see the correspondence between y =�1
2gt2+v0t+

y0 and y(t) = �1
2gt2 + c0t + c1, but we have not yet determined the

integration constants. We have to provide some information to do this.
If we denote the initial position – the position at time 0 as y(0) = y0,
and plug this into 1.1, we find that c1 = y0.

So what is c0? One way to determine it is if we define the initial
velocity, v(0) = v0. Then the velocity (the derivative of the position,
y(t)) is,

dy(t) = �gt + c0. (1.2)

Evaluating this at t = 0, we find that c0 = v0.
So the ‘model’ y = �1

2gt2 + v0t + y0 is really the solution to the
model,

d2y
dt2 = �g. (1.3)
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This is a differential equation, and if we prescribe information
y(0) = y0 and dy

dt (0) = v0, we can solve this completely.
But where did the model come from? Part of the point of this book

is to learn how to invent these sorts of models, so we won’t go into
too much detail here. However, this is a nice example that has roots
to Newton and the time that calculus was created. One of Newton’s
most valuable contribution is the idea of Laws – that are general prin-
ciples that lead to mathematical statements. One of his laws of motion
(the second) states that f = ma. That is, there is a balance between
forces applied on an object and the acceleration of the objects mass.
So Equation 1.3 is really a translation of Newton’s second law (with a
bit of algebra),

ma = f ,
d2y(t)

dt2 =
f
m
,

= �g.

This is a model of the position of an object under constant accelera-
tion. From a modeling standpoint, we started with a very broad ‘law’ –
Newton’s second law – and then translated this in the case of assuming
only (constant) gravitational attraction. This model can be completely
solved for predictions. The next tasks depend on many things including
the goals of the model, how the predictions compare to observations;
however, for all good models, there are testable predictions.

In this case, we could predict the maximum height of an object that
is thrown, the time at which the object reaches that height, when the
object hits the ground, etc. But what if we talk to an experimentalists
and we are asked what the terminal velocity is? This is the constant
speed that an object reaches when falling. But a look at this model
indicates that there is no such thing. In fact, this model assumes the
velocity increases like the square of the time! As modelers, we have
to ask what is wrong – our prediction does not match observations. A
little exploration uncovers the trouble. There are many other forces that
act on the object. There is air-resistance, coriolis force, even forces at
the atomic scales. We have to consider which to include and which to
exclude. Do we need to include relativistic effects? This is a commonly
accepted model of motion that appears at odds with Newton’s model.
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There is no complete answer for this. In principle all forces need to
be accounted for, but this is like a 1-1 scale map. It does not really help
matters. But we can work at estimating which forces matter the most.
In this case, unless the velocity gets very large, or the mass of the object
is tiny or huge, the main forces that matter when considering terminal
velocity is drag. We can then develop a model for drag and go back
to our experimental colleague and compare our new, revised predic-
tion with their observations. This loop between observations leading
to models leading to predictions leading to revised observations is one
of the most successful ways for science to progress. Modeling is a cru-
cial step to this leading to quantitive questions (how fast does an object
have to move before constant acceleration deviates from observations
by more than 5%) that drive experimental design and insight.

In this book, we will also consider a less standard view of models.
In many situations, we know that there are many interactions. Consider
a gene network schematic shown in Figure 1.1. Clearly there is a lot
going on. For complicated networks, the models get extremely large
- think thousands of equations with tens of thousands of parameters.
How can we possibly assess such a model?

We will show how to use sensitivity analysis to reduce the model
and make simplifications that greatly aid the connection between mod-
els and experiments. This has a different philosophy than used to un-
derstand projectile motion. In that situation, we had a simple model
that may or may not reflect observations. If the predictions are inaccu-
rate, we look for additional terms. We could think of this as a bottom
up approach where you start small and add to the model as need. A top
down approach takes a large amount of current knowledge and tries to
pinpoint the most relevant parts for specific predictions. Both stand-
points are valid and useful and we will move back and forth between
them but it is very useful to know the differences between them.

An additional issue that mathematical biologists have to grapple
with is the lack of universal laws in biology. There are very few prin-
ciples that can be viewed in a way that is similar to Newton’s laws of
motion. Instead, we have to work a bit harder to develop principles that
can be translated into theoretical models. Some principles are broad –
we use conservation laws in many of the chapters. Some are known
from other disciples – the law of mass action has been well developed
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Figure 1.1: Example of a network diagram

in chemistry. Other principles that guide models is the philosophy that
mathematics is portable and that some aspects of models are in some
way generic – Biological ‘switches’ often follow the form of Fitzhugh-
Nagumo like dynamics. In all of these cases it is very helpful to have a
library of models that we know. Therefore many of the examples in the
chapters begin with historically important models that set a framework
to work within.

For most of the models developed in this book, we will start with
simple models and add to them as needed. This has certain specific
limitations that we should all be aware of. The main limitation that we
will acknowledge is the massive amount of mathematics that can be
brought to bear on biological questions. Topics ranging from statistics,
calculus, differential equations, machine learning, topology, abstract
algebra, graph theory, number theory, geometry, numerical analysis
and others have all been used to obtain important insight into biolog-
ical processes. There is no one book that will cover the diversity of
topics. Even so, there is no one researcher who uses all of these meth-
ods. For about the past two hundred years, methods from calculus have
been extremely effective in translating hypotheses concerning the nat-
ural world into mathematical language which can be used to analyze,
predict and quantify observations. We will focus almost exclusively on
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differential equation models – for historical reasons they are the most
prevalent but they are also quite flexible.

1.3 Problems

Problems 1.1 Show that if an object is accelerating due to gravity,
there is no maximum velocity

Problems 1.2 Suppose an object is thrown in the air from a height of
zero. What is the maximal height that is reached if the initial velocity
is 3 ft/s?

Problems 1.3 Drag force or air resistance is one of the forces that is
neglected in simple projectile motion. One difficulty in modeling air
resistance is that direction of the force depends on the velocity. For a
projectile fired into the air, the drag force acts in the same direction
as gravity when the projectile is moving upwards and in the opposite
when the object is moving downwards.

(a) Show that the force F = �v2sgn(v) is consistent with this where
sgn(v) is 1 if v > 0 or -1 if v < 0.

(b) Consider a ball dropped from rest at height, h. Find the solution to
the position as a function of time including air resistance. What is
the terminal velocity? Does the concept make sense?

(c) How fast does an object need to be traveling before air resistance
is 10% of the force of gravity?




