
2
Mathematical Background

This chapter provides an overview of the main tools for analytic stud-
ies. We briefly review differential equations including linear, constant
coefficient equations, separable equations, linearization and qualita-
tive analysis.

2.1 Mathematical Preliminaries

Differential equations are relations between unknown function, y(t),
and its’ derivatives, F

⇣
dny
dtn ,

d(n�1)y
dt(n�1) , ...,

dy
dt ,y(t), f (t)

⌘
. As in algebra,

one of the goals is to determine the unknown that satisfies some con-
straint this relationship – for example F

⇣
dny
dtn ,

d(n�1)y
dt(n�1) , ...,

dy
dt ,y(t), f (t)

⌘
=

0. A few examples are,
dy
dt

� f (t) = 0,
✓

d2y
dt2

◆2

+
d2y
dt2

dy
dt

+ sin(t) = 0,
✓

d3y
dt3

◆
dy
dt

+ y = et .

One could naively think of the goal of determining y(t) as some
sort of integration. For the first example above,

dy
dt

� f (t) = 0,
Z dy

dt
dt =

Z
f (t)dt,

y(t) =
Z

f (t)dt.

9
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Sometimes we can undo the derivatives. The solution to the equation
dy
dt � f (t) = 0 is y(t) =

R
f (t)dt. Recalling from calculus that until we

have specified the domain, these integrals are indefinite and only deter-
mined up to a constant. For an equation that has a highest derivative n
(referred to as an nth order differential equation), we find n integration
constants that need to be determined.

The theory of differential equations is very well developed, es-
pecially for the types of models that we will mainly be considering,
namely initial value problems. For these types of differential equations,
the integration constants are determined by providing information at
a specific time, Information is typically the value of the function and
enough derivatives to determine the constants (remember the initial po-
sition and velocity in the projectile motion section). The most widely
used alternative to this is to provide information about the unknown
function at multiple points. These equations are typically referred to as
boundary value problems and are more technically challenging.

For initial value problems, broadly speaking as long as all the func-
tions involved are well-behaved (are able to be differentiated a suitable
number of times and have no singularities), one can show that there is
a unique solution to the equation. We will focus exclusively on these
and for the most part initial value problems have unique solutions as
long as we prescribe initial values. We can then turn to finding these
solutions. To do this, it is often useful to classify initial value problems
since certain methods are only useful for certain classes of equations.
The reasons to cover analytic methods (that is methods that you can
do on paper and completely understand) are two-fold. First, our analy-
sis will lead to insight reality-checks for our models. Second, since we
will be doing a lot of of numerical simulations, having certain behav-
iors in hand will help us interpret our simulations.

Differential equations can be differentiated into two broad cate-
gories – linear or nonlinear depending on whether the relationship
F(d(n)y

dt(n)
, d(n�1)y

dt(n�1) , ...,
dy
dt ,y(t), f (t)) is linear, with no terms with products

of terms containing y(t), or not. Solution techniques and questions
about uniqueness of solutions depend a lot on the classification.



Mathematical Preliminaries 11

2.1.1 Linear

Linear initial value problems can be written as,

an(t)
dny
dtn +an�1(t)

d(n�1)y
dt(n�1) + ...+a1(t)

dy
dt

+a0(t)y(t) = f (t)

y(0) = y0
dy
dt

(0) = y1

...
dn�1y
dtn�1 (0) = yn�1

If the right-hand-side is zero, this is a homogenous equation and
y(t) = 0 is a candidate solution, depending on the initial conditions
provided.

There are many techniques for analyzing these, but we will focus
on one more restrictions. If the coefficients are constant, there is a com-
pletely algorithmic way to understand the solution. For a concrete ex-
ample, we can consider a second order example,

a
d2y
dt2 +b

dy
dt

+ cy = 0 (2.1)

y(0) = y0
dy
dt

(0) = y1.

We will come up with a solution by noticing that we already know
a function whose derivatives are related to that function. This is the
definition of the exponential, el t . So we can guess this as a solution
and substitute this into Equation 2.2. This gives us, al 2el t +blel t +
cel t = 0. Since the exponential is never zero, we can simplify this to
find the characteristic equation,

al 2 +bl + c = 0.

This is an algebraic equation for l , so we know that there are two
values of l that satisfy the equation,

l± =
�b±

p
b2 �4ac

2a
.
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These are referred to as eigenvalues, which is a term that may be
familiar if you have had linear algebra. The most important thing to
notice at this point is that y(t) = Ael t is a solution for each of these
values of l and for any value of A. Linear combinations of both of
the solutions leads to a solution since the differential equation is linear.
In general any solution to the differential Equation 2.2 can be written
y(t) = Ael+t +Bel�t . The initial conditions determine A and B.

There are certain things to be aware of. First, what if the values
of l± are complex? How do we understand el+t in this case? What
happens if b2 � 4ac = 0? For a short version that is applicable to this
material, we note that if the eigenvalues are real and distinct, the so-
lutions are exponential and the solutions either exponential increase
or decrease to zero. If the eigenvalues are complex conjugate pairs,
l± = R± iI the solutions can be written as combinations of eRt sin(It)
and eRt cos(It). These solutions oscillate with amplitudes that grow or
decay according to whether R is positive, negative or zero.

There is also the case where the eigenvalues are real and repeated.
In a differential equations course you learn methods to deal with this.
In this book it is less useful to address this. This is what is often re-
ferred to as a non-generic case. That is, it requires a precise relation-
ship in the parameters. The point of view that comes from sensitivity
and as a practical applied mathematician is that parameters are not ab-
solute, fixed values. They may vary between individual experiments,
between individual species, between times of the year or other small
differences. As such, it tends to be less important to understand things
that require exact values of parameters and we focus on things that
occur in wider parameter spaces.

One more useful piece of information is that any higher order dif-
ferential equation can be written as a system of lower-order differen-
tial equations. If we define a new variable, u = dy

dt , we can see that
du
dt =

d2y
dt2 =�b

a
dy
dt �

c
ay. Equation 2.2 can be written differently,

dy
dt

= u

du
dt

= �b
a

dy
dt

� c
a

y =�b
a

w� c
a

y.
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This can be written very succinctly as

dy
dt

= My (2.2)

, where,

M =


0 1
� c

a �b
a

�

We define y =< y(t),u(t)>.
It turns out that the eigenvalues of this matrix are equivalent to the

roots of the characteristic equation 2.2. We will see that our numerical
methods are typically written in this form and, in fact, many of the
models come in this form.

That works well for a very restricted class of equations – lin-
ear, constant coefficient, homogenous initial value problems. However,
most processes in nature are nonlinear. This means that we have to have
some way to analyze nonlinear equations. To do this, we will introduce
two analytic methods that will be supplemented with direct numerical
simulations. The first method illustrates one of the most useful insights
in mathematics, namely if we look close enough, most nonlinear pro-
cesses can be approximated by linear processes. This is used in all ar-
eas of mathematics including topology, algebra, differential equations,
etc. Any student has seen this in calculus where nonlinear functions are
approximated by linear functions using Taylors’ theorem. We can do
this for differential equations. The second tool is to look at the qual-
itative behavior of solutions by considering how the derivatives of y
control the rate of change of aspects of the graph of y. We will do this
in the context of first order equations in this chapter, but in subsequent
chapters we will explore the same processes for higher order equation-
s/systems.

2.1.2 Nonlinear Equations

Nonlinear equations are much more difficult to solve analytically.
There are several classes that are generally solvable and are focused
on in a course in differential equations.

It is typical to write the implicit relationship between y(t) and its’
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deriviatives, F
⇣

dny
dtn ,

d(n�1)y
dt(n�1) , ...,

dy
dt ,y(t), f (t)

⌘
= 0, in terms of the high-

est derivative,

dny
dtn = G

 
d(n�1)y
dt(n�1) , ...,

dy
dt

,y(t), t

!
.

Where G encodes all of the steps needed to isolate dny
dtn .

To be very clear, we can start with first order equations which can
be written as,

dy
dt

= G(y, t). (2.3)

These cannot be solved by integrating both sides since the unknown
y occurs on both sides. There are some cases where we can almost do
this though. If G(y, t) = G1(y)G2(t) we can rewrite the equation,

Separation of Variables
Consider the differential equation,

dy
dt

=
t
y
,

y(0) = 1.

We can solve this using separation of variables:

dy
dt

=
t
y
,

ydy = tdt,Z
ydy =

Z
tdt,

y2 = t2 + c,

which gives an implicit solution for y.
The initial condition, y(0) = 1, implies that c = 1 and we can
write an explicit solution y(t) =±

p
t2 +1.
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dy
dt

= G(y, t) = G1(y)G2(t),

G1(y)dy = G2(t)dt.

This is a slight abuse of notation but can be made formally cor-
rect. Then integrating both sides with respect to the arguments gives
an implicit solution,

Z
G1(y)dy =

Z
G2(t)dt.

It should be noted, however, that this does not work in general.
Even when it does work, the solution is often only written implicitly
and may be quite complicated and unwieldy.

2.2 Linearization

Linearization is one of the major concepts in mathematics. Almost all
branches use linearization to approximate the behavior of nonlinear
processes. Applied mathematics relies on linearization to a wide ex-
tent. We will begin with a brief review from calculus since this is often
the first place we see the formal idea of linearization.

Start with a function of an independent variable t, say f (t). Taylors’
theorem states that under some conditions on f , we can write f (t) as
a polynomial, P(t) = Âi ait i. Moreover, there is an interval about any
point in the domain of f (where f obeys certain restrictions), where
f (t) = P(t). This is a remarkable result that provides insight into how
to integrate and differentiate a range of functions, since we know that
integration and differentiation of polynomials has a predictable pat-
terns. But how do we determine P(t)? Taylors’ theorem states that,
near any point, t, we can write f (t) as,

f (t) = f (a)+
d f
dt

(a)(t �a)+
d2 f
dt2 (a)

2!
(t �a)2 +

... +
dn f
dtn (a)

n!
(t �a)n)+ error.
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Therefore the coefficients of the polynomials are related to the deriva-
tives of f . It also means that as long as t is close to t, (t � a)i is very
small. So we could approximate f ,

f (t)⇡ f (a)+
d f
dt

(a)(t �a),

where the error term can usually be estimated using the mean value
theorem. Graphically, this means that near any point, a nice enough
function can be thought of as a line.

This idea can be used to approximate nonlinear differential equa-
tions by linear equations. To introduce the topic, we will start with the
simplest case of a scalar equation of the form,

dy
dt

= f (y), (2.4)

y(0) = y0,

although this idea can be generalized to other forms of differential
equations. One of the most important restrictions that we are requir-
ing is that the right-hand-side cannot depend explicitly on time. These
equations are referred to as autonomous equations and are the main
focus of this text. There are other methods that are used for non-
autonomous equations and can be found in textbooks on differential
equations (for example [7]).

In this case, the goal is to determine the behavior of the solution. In
calculus, we need a specific place to linearize near. Linearization is in-
herently a local argument and cannot in general be used everywhere. In
calculus we linearize at a point. In differential equations, we linearize
around a known solution. This seems counter-intuitive at first, since
the goal was to find a solution in the first place. However, it is often
simple to find some special solutions to differential equations. For ex-
ample, we can look for for solutions that do not depend on time. These
are steady-state solutions and are constants that satisfy the differential
equation. To find steady-state solutions, ȳ, we have to solve,

f (ȳ) = 0.

There may be no steady-states, in which case we cannot proceed
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with the linearization and we have to do something else such as direct
numerical simulations. Otherwise, we have at least one solution, ȳ. We
then want to find out how the solution behaves near this steady-state.
We define the solution we are studying as,

y(t) = ȳ+ eY (t). (2.5)

The function Y (t) is close to ȳ as long as eY (t) is ‘small’. We will not
be perfectly precise here about how small is small enough but the idea
is that understanding the dynamics of Y (t) can provide information
about y(t).

To derive an equation for Y (t), we put the solution in Equation 2.5
into Equation 2.4,

dy
dt

= f (y),

dȳ+ eY (t)
dt

= f (ȳ+ eY (t)),

e dY (t)
dt

= f (ȳ+ eY (t)),

= f (ȳ)+ e f 0(ȳ)Y (t)+ error.

We have used the fact that ȳ does not depend on time to simplify the
left-hand-side and Taylors’ theorem to approximate f (y) with a linear
approximation near ȳ. Notice that this provides an equation for Y (t),

dY (t)
dt

= f 0(ȳ)Y (t). (2.6)

Since ȳ is constant and this equation is linear, we know exactly how
Y (t) behaves since the solution is Y (t) = ke f 0(ȳ)t . If f 0(ȳ) > 0, Y (t)
increases and y(t) moves away from ȳ. On the other hand, if f 0(ȳ)<=,
Y (t) decreases and the solution moves towards ȳ. This says something
specific about the steady-state solution, ȳ. If f 0(ȳ) > 0, we refer to
the steady-state as unstable. If f 0(ȳ) < 0, ȳ is stable. If f 0(ȳ) = 0, the
linearization fails and we have to use different arguments to understand
the behavior.

We can generalize this idea. If we have a system of n nonlinear
differential equations,
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dy1

dt
= f1(y1,y2, ...,yn),

dy2

dt
= f2(y1,y2, ...,yn),

... ...
dyn

dt
= fn(y1,y2, ...,yn)

we define the steady-state as a vector ȳ = (ȳ1, ȳ2, ..., ȳn). We look near
ȳ,

y = ȳ+ eY(t),

by inserting this into the differential equations to find,

dY
dt

= JY, (2.7)

We use the notation J since the matrix we have obtained is referred to
as the Jacobian. The Jacobian is a useful concept, and for us one of the
uses is to shorten some of the calculations. The Jacobian,

J =

2

66666666664

∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
xn

...
... . . . ...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
xn

3

77777777775

(2.8)

We show the details for planar systems in the appendix.

2.3 Qualitative Analysis

The last thing that we will review here is a method for understanding
the broad behavior of the solutions of differential equations. This does
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not provide useful information for quantifiable predictions. However,
it is quite useful for modeling as it can give insight into the general
behavior of solutions to models. This often helps diagnose issues with
the model that prevent reasonable physical interpretation. Just as lin-
earization does not provide all information (but restricted to starting
near a known solution), neither does qualitative analysis.

We will see that qualitative analysis is almost always restricted to
scalar or planar systems and it is useful to look at each one separately.
We start with scalar equations,

dy
dt

= f (y).

We will again restrict our discussion to autonomous equations and
note that we are not imposing initial conditions. Qualitative analysis
provides information for the behavior for all initial conditions.

We can consider the graph of the function f (y) (see Figure 2.1).
Where f crosses the y-axis, f (y) = 0 which means dy

dt is zero there.
That is all roots of f (y) are steady-state solutions. As long as f is
nice enough (continuous and differentiable), if the sign of f changes
between y1 and y2, there is a root. That means that dy

dt has to be of one
sign between the roots of f . That means that the solution y is either
increasing or decreasing on intervals that do not contain a root. We can
sketch the direction that the solution moves on the ‘phase-line’ (see
Figure 2.1). This can be used to sketch the solution of the equation as
a function of time.

The argument for planar curves is similar but a bit more involved.
Consider the system of equations,

dx
dt

= f (x,y),

dy
dt

= g(x,y).

The curves f (x,y) and g(x,y) can be drawn in the (x,y)-plane.
Above f , x must be increasing. While below f , x is decreasing. Simi-
larly, the evolution of y depends on which side of g we are. We can also
see that the solution curve must be tangent to the vector field ( f ,g). So
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Figure 2.1: Phase line showing how f (y) determines whether y increases or
decreases and the qualitative sketch of the solutions, y(t) for different initial
conditions.

it is possible to see how trajectories move in the phase-plane – where
we think of the solution as a parameterized curve (x(t),y(t)) (see Fig-
ure 2.2).
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Figure 2.2: Phase plane showing the x and y-nullclines. The direction of
increase/decrease in the solution x and y are shown. The same phase plane is
shown with a sketch of the trajectories.

2.4 Problems

Problems 2.1 Classify the following differential equations as linear
or nonlinear. Also indicate the order of the differential equation

(a) dy
dt +2y = sin(t)

(b) t d2y
dt2 +

dy
dt =

⇣
1

(1+t3)

⌘
�
⇣

3t2

(1+t2)

⌘
y

(c) �
⇣

d2y
dt2

⌘4 dy
dt = 4

(d) 4d5y
dt5 + cos(t) = 0

(e) yd3y
dt3 � t2 dy

dt + y = 0

(f) t5 d2y
dt2 + t2 dy

dt + y = sin(t)

Problems 2.2 A relation or operator, F(x) is linear if two properties
hold: F(x+ y) = F(x)+F(y) and F(cx) = xF(x).
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(a) Show that the derivative operator is linear

(b) Suppose that y1(t) and y2(t) both solve the equation,

d2y
dt2 + sin(t)

dy
dt

+ cos(t)y = 10,

dy
dt

(0) = 1,

y(0) = 1.

Show that y1(t)+ y2(t) is also a solution.

(c) Show that a linear combination of any two solutions to the differ-
ential equation,

d2y
dt2

dy
dt

+ y2 = 0,

dy
dt

(0) = 10,

y(0) = 10.

is not a solution to the equation. (Hint: There is no reason to try
and solve this equation but see if y = ay1 + by2 is a solution if y1
and y2 are.)

Problems 2.3 Euler’s formula states that eix = cos(x)+ isin(x).

(a) Use Euler’s identity to show that eR±iI = eR cos(I)± ieR sin(t)

(b) Find two linear combinations of y1(t) = eR cos(I)+ ieR sin(t) and
y2(t) = eR cos(I)� ieR sin(t) that involve either cos(t) or sin(t).

Problems 2.4 The following steps show how to relate the solution to
a second order, linear, constant coefficient differential equation with
complex eigenvalues to real-valued solutions.

Consider the differential equation d2y
dt2 +4dy

dt +5y = 0.

(a) Find the eigenvalues

(b) Use Euler’s formula to write the two solutions in terms of cos(at)
and sin(at).
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(c) Show that the real and complex part of the solutions are themselves
solutions.

Problems 2.5 The eigenvalues of a 2⇥2 matrix,

A =


a b
b d

�

Can be found by finding the roots of the determinant of A� l I,
where I is the 2⇥2 identity matrix,

(a) Find the eigenvalues of

A =


2 1
�3 1

�

(b) Show that the eigenvalues of the matrix associated with Equation
2.2 are the same as the roots of the characteristic polynomial of
d2y
dt2 =�b

a
dy
dt �

c
ay.

Problems 2.6 Use separation of variables to solve,

(a)

dy
dt

= y(y+2),

y(0) = 1,

(b)

dy
dt

= y(t +3),

y(0) = 1,

Problems 2.7 (a) Sketch the graph of a nonlinear function f (x), along
with the linearization at a point, x0.

(b) Use the sketch to show how the linearization provides an approxi-
mation of the function value at x0 +dx.
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Problems 2.8 Find and classify the steady-states of the following dif-
ferential equations:

(a) dy
dt = y(1� y)

(b) dy
dt =�1+ x2

(c) dy
dt = sin(x).

Problems 2.9 Suppose we have the planar system of differential equa-
tions,

dx
dt

= x� xy,

dy
dt

= �y+ xy.

(a) Find all equilibiria

(b) Find the Jacobian at the equilibria

(c) Classify the equilibria.

2.5 Appendix: Planar Example

Many of the examples in this book are planar systems where lineariza-
tion is very well described. We will briefly cover this and show some
of the linear algebra details in this context.

Consider a planar system of equations,

dx
dt

= f (x,y),

dy
dt

= g(x,y). (2.9)

We assume that we have found a steady-state, (x̄, ȳ) so that
f (x̄, ȳ) = g(x̄, ȳ) = 0. We consider the behavior near this solution,

x(t) = x̄+ eX(t),
y(t) = ȳ+ eY (t).
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Plugging this into the differential equations, using Taylors’ theo-
rem for multivariable functions and dropping the nonlinear terms, we
find,

dx
dt

= f (x,y),

dx̄+ eX(t)
dt

= f (x̄+ eX(t), ȳ+ eY (t)),

e dX(t)
dt

= f (x̄, ȳ)+ e ∂ f (x̄, ȳ)
∂x

X + e ∂ f (x̄, ȳ)
∂y

Y,

dX(t)
dt

=
∂ f (x̄, ȳ)

∂x
X +

∂ f (x̄, ȳ)
∂y

Y,

for the x-component. Similarly,
dȳ+ eY (t)

dt
= g(x̄+ eX(t), ȳ+ eY (t)),

e dY (t)
dt

= g(x̄, ȳ)+ e ∂g(x̄, ȳ)
∂x

X + e ∂g(x̄, ȳ)
∂y

Y,

dY (t)
dt

=
∂g(x̄, ȳ)

∂x
X +

∂g(x̄, ȳ)
∂y

Y,

for the y-component.
The Jacobian matrix is,

J =

"∂ f (x̄,ȳ)
∂x

∂g(x̄,ȳ)
∂x

∂g(x̄,ȳ)
∂x

∂g(x̄,ȳ)
∂y

#
.

For short-hand, we can write this

J =


a b
c d

�
.

To find the eigenvalues of J we find the roots of the determinant of
J�l I, ����


a�l b

c d �l

����� = 0,

(a�l )(d �l )�bc = 0,
l 2 � (a+d)l +ad �bc = 0,

l 2 �TrJl +DetJ = 0.
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Where TrJ is the trace of J (the sum of the diagonals) and DetJ is
the determinant of J. Therefore, the eigenvalues of the Jacobian are,

l +± =
TrJ±

p
TrJ2 �4DetJ

2
.

The components of the Jacobian completely determine whether the
real part of the eigenvalues is positive, negative or zero.


