3

Introduction to the Numerical Methods

This chapter provides an overview of the numerical platforms that we
use throughout the book. We provide some motivation for the two that
we have chosen and describe how to start using the programs.

3.1 Introduction

The models that we will use in this book are primarily differential
equations. This presents a challenge: How do we understand the mod-
els, use them to make useful predictions or provide insight into the bi-
ology without several additional years of mathematical training? Typ-
ical undergraduate sequences in calculus, linear algebra, differential
equations and scientific computing are useful for understanding the nu-
ances of models. Nonlinearities often put models outside the reach of
an undergraduate differential equations class while scientific comput-
ing or numerical methods classes often focus on the underlying meth-
ods, rather than the applications.

In this chapter, we discuss the two main computer programs/lan-
guages that we will use throughout the course. The book will inten-
tionally provide parallel numerical scripts in Python and Matlab. Both
of these are able to visualize solutions, numerically approximate so-
lutions to a range of equations, and can be used to automate tasks,
like sampling, which will be important throughout the book. So why
these two packages? Years ago students would have to learn Fortran
to be able to solve equations numerically — adding several semesters
of course work. Both of these languages are widely used and it is our
philosophy that students should have some exposure to all of these
languages and then focus on the one that is most comfortable. There
are many other languages/platforms that are in use. Languages based

27

28 Introduction to the Numerical Methods

on C-like languages including R are widely used. There are openMPI
languages that are able to call both C** and Fortran libraries such as
Julia.

This book is relatively agnostic about the language of choice. Mat-
lab is well developed and has an excellent support system. Python is
very flexible and has many workgroups that are designed for helping.
They each have some drawbacks as well. Matlab has a reputation as
a ‘slow’ language because it is interpreted. However, there are many
ways to speed things up with more experience. Python has a specific
culture that can sometimes be overly complicated and difficult to fol-
low since it is so flexible and does not have a centralized structure. R
is a relatively complex language to start with and has a steep learning
curve. All of these platforms will run into mathematical problems that
take an unreasonable amount of time to complete. There should be no
examples in this book where this will happen but keep in mind there is
no perfect language and many, many people studying how to run more
and more complicated problems. The recommendation here is to work
with codes in both Matlab and Python. Eventually, each person will
find what is most comfortable.

For those that have never done any programming it might seem
strange to use the word ‘comfortable’ — aren’t all language uncom-
fortable? This is definitely true at the beginning. After a bit of work,
there are nuances that make certain languages/programs easier for dif-
ferent people. For example, Matlab m-files do not read indentation. So
you can type commands wherever you want. Python is indent-aware
and will throw an error (i.e. break and not run) if the indents do not
match. This means that the typical Python files look neater and more
organized than a typical working m-file. At the same time, Matlab is
more self-contained and does not need any extra libraries to be read in
so an m-file written for 2018 Matlab will work on any machine with
2018 Matlab. In Python and R, libraries have to be loaded to ‘teach’
the computers Python what certain commands mean. This can occa-
sionally cause issues when sharing files.

All of these are accessible and we will start with essentially no
prior knowledge. This chapter is to provide a basic outline of how to
access the platform (Matlab or Python), how to write a program, how to
edit a program and how to run a program. We will consider a few best

Best Practices in Coding 29

practices in writing numerical codes in general and in each platform
specifically.

One important note about the codes provided in this book. For
many chapters we have opted for simpler, less efficient, ’home-built’
code rather than implementing large scale packages. There are two rea-
sons for this. First, it is much easier to get used to writing and editing
scripts with simpler examples — not to mention developing a better
understanding of the actual methods used. Second, with all packages
there is an issue of upkeep and verification. One cannot assume that
the provided code does not have bugs or errors considering companies
such as Apple, Google and Microsoft constantly develop patches to fix
codes that cost millions of person hours to develop. Similarly, codes
developed for specific projects are not always updates which means it
is possible to lose functionality permanently if you don’t know how
it was written. Some exceptions here are in the later chapters where
the implementation is beyond what is expected by readers. The book
as chosen a few, well-known, reasonably well-supported implementa-
tions; however these are by no means the only methods available. The
reader should feel free to explore decide what is the cutting-edge im-
plementation.

I
3.2 Best Practices in Coding

Writing codes is very much like writing in any language. You would
like the writing to be clear, concise, accurate and readable. One ex-
tra consideration is the user interaction with most of these programs.
When writing a poem, it is unusual for the author to expect that a reader
will add to it or change specific lines or words. Good coding expects
this and invites this. So we have to make sure that the files are orga-
nized without extraneous parts or things that don’t work. In the codes
developed in this book, we have made a conscious choice to include
some commands that are not the most efficient to ensure they are clear.

30 Introduction to the Numerical Methods

3.2.1 Folder structure

If you open your computer and the desktop is full of files, images, and
assorted notes, I would encourage you to start learning file structures.
In this book, there will be many different files used. Some will be used
for many applications, some will only be used for a single model. Your
life will be immeasurably easier if you learn to sort these so you can
find them easily and not accidentally delete or overwrite files you are
working on. The simplest structure, that has some redundancy, but is
ordered in a sensible manner might be a folder for the specific course.
Within that folder, you have folders for each chapter. Within each chap-
ter folder you have folders for Matlab and Python and an assignment
folder. Within each of the numerical folders you have folders for tasks
in the assignment (for example Question 1). There is a high likelihood
of redundancy with this since Question 1 might use the same script as
Question 2. However, there is much less chance that you accidentally
over-write your code answering Question 1 when you start working on
Question 2. Typically, for long-lived projects, there are specific times
when the file structure is revised. But this should be done as a com-
pletely separate task than building the files. It is our expectation that
most students using this book will not need to revise their file structure.

One disadvantage to this is that when running scripts, there is the
need to change folders. Fortunately in all of our examples, the play
button will query this and automatically change folders for you. But it
is something to be aware of when sharing codes with other people.

3.2.2 Naming Conventions

All names should be explanatory. This includes folder names, file
names, variable names, function names, and code-block names. If you
have a file in a folder called temp1l, it might be junk or it might be
the final that you never got around to moving to the correct location.
Likewise, a file called stuff.py requires a person to open it to see
what it is. It is very confusing if you open a file that is supposed to
plot a function f(x,#) and x is never used and there is some param-
eter called g that has a value that is never explained. All of these
names should be understandable with very little reader orientation.

Best Practices in Coding 31

Consider variable names like gamma for a parameter y. File names
like pred_prey_chapter_1 are easy to understand.

3.2.3 Code Structure

All codes consist of blocks that are typically identified by some com-
menting convention. In Matlab it might look like,

P D D B 2 2

All codes need a header and a body. The header explains what
the code is used for, when it was written/edited and any information

needed to read and run the code. An example header in Python looks
like,

mwww

Created on Wed Jan 13 12:14:28 2021

Data fitting routine for microbiome data.
Gives current best estimate for parameters
and is the set that SA_microbiome_exc uses

@author: cogan
wmww

Directly after the header in all our codes will clean our current
environment. Computers have a tendency to remember things unless
they are explicitly told to forget them. We advise clearing the local and
global environment and closing all open figure windows. For Matlab,
this can be done using the commands,

clear
close all

In Python, we use,

from IPython import get_ipython
get_ipython () .magic('reset -sf')

32 Introduction to the Numerical Methods

The body of a code often includes blocks that should be indi-
cated. There are lots of different ways to do this, but we typically use
blocked comments. The symbols # and % are used to start comments
in Python/R and Matlab, respectively. So a block might start with

FHE R
Visualize all wvariables

FHEFF A A AR AAFFFARFRAAAAA

in Python and R or

5555555555555 55555555%555%5%5%55%5%%
) 4 Qo
% Visualize all variables %
5555555555555 555555555%5%%
in Matlab.

3.2.4 Comments

All code should have explicit comments that describe what is going
on. These can be done in code blocks or directly after specific lines.
These comments should be brief, but self-contained and explain what
the specific line or section is doing. You definitely should avoid com-
menting every line, but anything that reminds the reader what is going
on will help remind you what is going on when you look at your codes
in 3 months!

3.3 Getting The Programs Running

In this section we describe how to get all programs Matlab and Ana-
conda. Provide screen shots of what they look like. Define windows
etc.

3.3.1 Python

There are many ways to start using Python. You can download the
source files directly and use them from a command line — for exam-
ple from a terminal window on a Mac or in a ¢ drive on a windows

Getting The Programs Running 33

J ANACONDA NAVIGATOR

L Applications on | base (root) | channels

cccccc

nn

cccccccccccc

Figure 3.1: Screenshot of the Anaconda Navigator

computer. There are also many packages that have been developed
to combine an editor where you can write the programs along with
a graphical interface. We like the Anaconda package as it is easy to
keep updated and well documented. The main package can be found at
https://www.anaconda.com. When you download and install
this, you will be able to open the main window that has many, many
options for programs (see Figure 3.1). From here we use the Spyder
environment to write and run our Python codes (see Figure 3.2).

Spyder has a lot of buttons that help run and debug programs. These
include the green ‘play’ button that runs all the lines scripts and ‘play/-
pause’ that moves line-by-line. This also gives the path for the pro-
grams and other information that helps with navigation etc.

Anaconda also has an environment designed for interactive Jupyter
notebooks. This is a nice way to organize blocks of text and codes in
one place.

34 Introduction to the Numerical Methods

& RECQCPHNERADGH === BB IE F~° e _april_2013/mac_latexfteaching/4481_Spring_21/between_host/Python = 4
up_april_2013/mac. i 1_Spring_21/between_host/Python/SEIR.py @ X 00 7% =
SEIR.py =

x

3 X untitied0.py

3
-pyplot as pyplot
int

History
<LSPPython: ready @conda: base (Python3.7.3, Line69,Col1 UTF-8 LF RW Mem38%

Figure 3.2: Screenshot of the Spyder environment

3.3.2 Matlab

N
3.4 Initial Programs

Matlab and Python treat variables and inputs quite differently. We will
provide a starter code for each language that illustrates some of the
differences.

In all these platforms we will need to have parameters. These are
symbols that we provide specific values for. These are relatively obvi-
ous, typing alpha=1 in all these languages then specifies this value
in future commands. Some differences can be seen when running pro-
grams. Python does not display anything unless instructed to. Matlab
displays unless instructed not to with a semicolon (;) at the end of a
line.

Variables are typically represented as vectors or arrays. In Mat-
lab, everything is an array. So if alpha =1, Matlab interprets this
as a 1x1 array. Just as usual, there are dependent and independent
variables. Independent variables require definition while the dependent
variables are usually the output of specific commands. To define an in-
dependent variable ¢ that lives in the interval |a,b], we will subdivide
this interval into n points. The commands to do this for a specific num-
ber of points (say n = 100) on a specific interval (say [—7, 7])

Initial Programs 35

n=100
t=[-pi:2xpi/ (n-1): pi]

You can check the size of this by typing size (t).

In Python, there is a bit more work. Python is used for a wide vari-
ety of applications and often the arrays are not numerical. For example,
Python is perfectly happy with an array that is a list of names. To make
sure Python has access to the numerical commands we will use, we
will add two commands to the header files,

import numpy as np
from matplotlib import pyplot

To make an array for ¢ similar to Matlab, we can type,
t=np.arange (-np.pi,np.pi,1/99)

So what is this doing? the np. » indicates that * should be inter-
preted using numpy. If you just type pi, python defaults to thinking of
this as letters rather than a fundamental constant. Whereas np . pi tells
Python that we really mean the constant & = 3.1415....

If you want to make a dependent variable, it is not terribly different
than typical functional notation used in Calculus. In Matlab you could

type
f = sin(t),

for example. But if you want to multiply variables you have to keep
in mind that Matlab treats everything as an array. So multiplication
really means either dot or cross-product. If you want to use the function
f(t) = t2, you have to tell Matlab you don’t mean the inner product of
the vector ¢ with itself. This is done using a special syntax,

f=t.72,

where the .2 tells Matlab you mean to square each element of the array,
r.
Similarly in Python

f=np.sin(t),

gives sin(z).

36 Introduction to the Numerical Methods
f=t*xx2,

gives f = t%. The % x2 is Python syntax for ‘raise to the second power’.

Another useful thing is to be able to visualize variables. We will
focus on plotting in one dimension , but keep in mind we might
want to visualize two or three dimensional functions, scatterplots,
barplots, etc. All these programs can do this and we will introduce
the syntax as we need it. The basic plotting syntax for Matlab is
plot (t, £, options). We will leave the options for now, but typ-
ing help plot in Matlab will give a nice overview of things that
can be done. Similarly in Python and R the plotting commands we
use are pyplot.plot (t, £, options) andplot (t, f), respec-
tively. Note that Python has multiple plotting libraries, but matplotlib
is the one that we use and denote it pyplot.

The final piece that is important is solving differential equations
numerically. This is an incredibly important part of mathematics and
there has been tremendous progress in this in the last 60 years. Really,
even Newton compiled approximate solutions to differential equations
so really, this topic is several hundreds of years old. We are not going
to be able to cover everything. Most of the models that we are using
are nice enough that we will not run into many issues that the standard
differential equation solvers cannot handle. But it is absolutely impor-
tant to understand that there are many assumptions that go into solv-
ing differential equations numerically. It is not difficult to find simple
equations that will break all of these methods. This is another reason
to have multiple ways to implement numerical methods since the com-
parison can provide some confidence in the output. But keep in mind,
the output from Matlab or Python can be wrong and sometimes in very
serious ways.

So how do we solve differential equations? We need a few things in
either Matlab or Python. Most of the general solvers are built to solve
equations in the form,

dy
E - f(Y7t)7
y(0) = Yyo.

So we need a place to store the right-hand-side. We need the initial

Initial Programs 37

condition. We also need to tell the programs where to stop. The stan-
dard functions in Matlab and Python will take discrete steps in time
and provide estimates for the value of y at these times. The step-sizes
are normally controlled by the internal programs used in the functions
called to solve the differential equations. This is to help take large steps
if the solution is not changing much and refine the time steps if the
function varies a lot. Sometimes this can cause issues — if the solu-
tion changes extremely quickly, the step size can get small enough that
nothing actually changes. These equations are called stiff and special
methods need to be used. Also, because the step size may change, it
may be difficult to compare solutions quantitatively since the ¢-values
may not overlap. This is usually corrected by interpolation — but there
are fancier ways.

3.4.1 Differential Equations in Python

There are many, many ways to solve differential equations in Python.
We use the package scipy that has an integration package and a very
flexible solver solve_ivp.

A basic script for solving a scalar differential equation only takes a
few lines,

wmownw

Created on Wed Dec 22 21:11:32 2021
Basic ODE Script

@author: cogan

from IPython import get_ipython
get_ipython () .magic('reset -sf')
import numpy as np

from matplotlib import pyplot

import plotting library

from scipy.integrate import solve_ivp

def Rhs(t,Y,params):
r, K = params
y =Y
return rxyx* (K-y)

38 Introduction to the Numerical Methods

ABEHEQPDNNBGH C=SEN BB F° € ookt star A el oE 4

~.rent_t _start_April ic_ODE.py @ X 00 62% =
3 SERpy X HH_base.py X Cit_restoredpy X tragedy.py X lodule_data_fi X Basic ODEpy =« b=

Yo

Tpython i

¢

Variable explorer | Help.

Console /A
es (1, 18

1€, method=RK45’, t_eval=tspan) CapIa] ?z:;g;ig:my_sn\:uo

History
< LSPPython: ready @ conda: base (Python3.7.3, Line25,Col58 UTF.8 LF RW

Mem38%

Figure 3.3: Screenshot of the Spyder environment after running the basic
differential equation solver.

IC=.2 # Initial Condition

tstart=0

tstop=4

tspan = np.linspace(tstart, tstop, 100)

params=[.1,100]

y_solution = solve_ivp(lambda t,Y: Rhs(t,Y,params),
[tstart, tstop], IC, method='RK45',6t_eval=tspan)

pyplot.plot (y_solution.t,

y_solution.y[0], 'k',label="y (t)")

pyplot.ylabel ('y(t) ', fontsize=16)

pyplot.xlabel ('t', fontsize=16)

pyplot.savefig('Logistic.png')

A screenshot of the Spyder window shows the result of pushing
play is shown in Figure 3.3.

3.4.2 Differential Equations in Matlab

Numerical solutions to differential equations in Matlab have similar
requirements as in Python. We have to define the right-hand-sides, the
initial conditions and the time interval. Matlab uses a set of packages
(often referred to as the ODE-suite). There are several options includ-

Initial Programs 39

ing ODE45, ODE2 3s and others. The most general one is ODE45 and
it works for most things that we will need. There are several ways to
implement the right-hand-sides, but we will use a method similar in
structure to Python.

The only difference is that Matlab uses two different types of func-
tions. It is typical to include the functions in Python at the top of the
script. Often codes in Matlab are separated into different m-files. One
m-file describes the right-hand-side function and the other defines pa-
rameters, initial conditions and other inputs, solves the equations and
plots them. A sample code for a scalar ODE with the right-hand-side
function m-file, in Matlab is reproduced below. First the file rhs.m s
defined,

function f=rhs(t,Y,params)

%this is the content of the right-hand-side.
%It takes

%$inputs t, Y, and params and outputs f
r=params (1) ;

k=params (2) ;

y=Y;

f=rxyx (k-y);

The differential equation is solve using the m-file,
Logistic_example.m,

%basic Scalar ODE using a m—file call
clear
close all

%define parameters
params=[.2,1];

t_start = 0;

t_stop = 100;

y_0=.1;

[t,y]=o0ded5(@(t,Y) rhs(t,Y,params),
[t_start t_stopl, v_0);

40 Introduction to the Numerical Methods

plOt (t/ Y)
xlabel ('Time")
ylabel ('y (t) ")

Note that both Logistic_example.m and rhs.m have to be
in the same folder, where Matlab is currently running.

There are examples in other places where one defines an anony-
mous function that sits inthe t raj_logistic.mfile. This is similar
to how Python looks, although the functions for Python are introduced
at the top of the script and at the bottom in Matlab.

3.5 Problems
Problems 3.1 Complete all the problems in Matlab.

(a) Use Matlab to calculate 53/2) 4 (1)

(b) For loops: Using the syntax:

for i=1:.01:10
do something
end

Create an m — file that makes a vector x = [0,.12,.2%,...].

There are at least two ways to build arrays in Matlab using for
loops. One is to ‘append’ to an existing array:

o)

a=[]; % creates a memory location for a
for i= 1:.1:1

a=la, 172] % appends 1"2 to a

end

A second way is to enter values into an existing array:

Problems 41

a=[]; % creates a memory location for a

for i= 1:10

a(i) = i"2 % puts 172 into the ith location
end

Save the m-file as
array_example.m

(c) There are two ways of defining functions. You can use an m-file or
do it ‘in-line’. I like to use m-file or function calls. The syntax is

function £ = funl (x)

f = %%%

This takes inputs of x and outputs f(x) = * * .

Use this to make a function %

(d) Graphing the syntax for a basic plotis plot (x, £ (x)),
where x is a given array and f is a defined function. Use this to plot

flx)= ((:1&7(3 where x is the array built in the first problem.

(e) Differential equations The syntax for solving an ODE,

dx
Z = f(tax)a

x(0) = xo

requires a few things: a function defining f, an initial condition x
and the call for the ODE solver.

An example code starts by defining an m-file that you save as
funl.m

containing

42 Introduction to the Numerical Methods

function f=funl (t,y)
f=—txy/sqrt (2-y"2);

You also need an initial condition, say x(0) = xo = 1. Then an in-
terval to solve the equation on, say t = [0,5].

Then in the command window, type

[t_out, y_out]=oded5('funl', [0 5],1);
plot (t_out, y_out)

Adjust this to vary the initial condition and interval of solution.

Problems 3.2 For Python, create a file, example . py. The header of
this should begin with

from IPython import get_ipython
get_ipython () .magic('reset -sf')
HHHAFHHH AR AR RS

import numpy as np

from matplotlib import pyplot

import plotting library

from scipy.integrate import solve_ivp

Use this file to edit all the parts of this assignment.
M)UwfwmmnomkMMeﬂya+dx

(b) For loops: Using the syntax:

for x in my_array
do something

create a .py-file that makes a vector x = [0,.1%,.2%, ..].

(c) Functions I tend to use inline functions for Python, so in the same
Python file, using the syntax,

Problems 43

(d)

(e)

def f£(x):
f=%%x%

return £

This takes inputs of x and outputs f(x) = * * .
Use this to make a function ?105#

x)
Graphing the syntax for a basic plot is

pyplot.plot (t, £)

where x is a given array and f is a defined function. Use this to plot

flx)= ??i(jg where x is the array built in the first problem.

Differential equations The syntax for solving an ODE,

dx
E = f(tax)a

x(0) = xo

requires a few things: a function defining f, an initial condition x
and the call for the ODE solver.

An example code starts by defining an py-file that you save as
funl.py

containing

def funl(t,y):
f=—txy/sqrt (2-y"2);
return f

You also need an intitial condition, say x(0) = xo = 1. Then an
interval to solve the equation on, say t = [0,5].

44 Introduction to the Numerical Methods

import numpy as np

from matplotlib import pyplot

import plotting library

from scipy.integrate import odeint

Define a function which
#calculates the derivativelindex{derivative}
def Rhs(t, Y,params):

v=Y

[a,b]=params

return axy-bx*t

Xs = np.linspace(0,5,100)

params=[-1, .2]

yv0O = 1.0 # the initial condition

ys =solve_ivp (lambda t,Y¥: Rhs(t,Y,params),
[tstart, tstop], IC,
method='RK45',t_eval=tspan)

Plot the numerical solution

pyplot.plot (xs,vys)

Adjust this to vary the initial condition and interval of solution.

3.6 Appendix: Sample Scripts
3.6.1 Python

Logistic_example.py:

mww

Created on Wed Dec 22 21:11:32 2021
Basic ODE Script

@author: cogan

from IPython import get_ipython
get_ipython () .magic('reset -sf')

Appendix: Sample Scripts

import numpy as np
from matplotlib import pyplot
import plotting library
from scipy.integrate import solve_ivp
#Define the differential equation
def rhs(t,Y,params):

r, K = params

y=Y

return [r*xy* (K-y)]
Initial Condition
IC=.2
#Intial time
tstart=0
#Final time
tstop=4
tspan = np.linspace(tstart, tstop, 100)
#Parameters
params=[.1,100]
y_solution = solve_ivp(lambda t,Y:
rhs(t,Y,params), [tstart,tstop], I[IC],
method='RK45"', t_eval=tspan)
pyplot.plot (y_solution.t,

y_solution.y[0],
'k',label="y(t)")

pyplot.ylabel ('y(t) ', fontsize=16)
pyplot.xlabel ('t', fontsize=16)
#pyplot.savefig('Logistic.png')

3.6.2 Matlab
Logistic_example.m:
%basic Scalar ODE

clear
close all

%define parameters
params=[.1,100];

45

46 Introduction to the Numerical Methods

$Define the time interval

t_start = 0;

t_stop = 4;

%$Initial Condition

IC=.2;

%$Solving the ODE

[t,y]=0oded5(@(t,Y) rhs(t,Y,params),
[t_start t_stop], IC);

$plotting the ODE

plot (t,y,LineWidth=2)

xlabel ('"Time'")

ylabel ('Y")

$Define the right-hand-side function
function f=rhs(t,Y,params)
r=params (1) ;

k=params (2) ;

y=Y;

f=r+y*x (k-y);

end

