
INSTITUTE OF PHYSICS PUBLISHING REPORTS ON PROGRESS IN PHYSICS

Rep. Prog. Phys. 64 (2001) 1427–1472 PII: S0034-4885(01)14006-6

Models of permeation in ion channels

Serdar Kuyucak1, Olaf Sparre Andersen2 and Shin-Ho Chung1

1 Department of Theoretical Physics, Research School of Physical Sciences, Australian
National University, Canberra, ACT 0200, Australia
2 Department of Physiology and Biophysics, Weill Medical College of Cornell University,
1300 York Avenue, New York, NY 10021-4896, USA

E-mail: serdar.kuyucak@anu.edu.au, sparre@pop.med.cornell.edu and
shin-ho.chung@anu.edu.au

Received 25 July 2001, in final form 24 September 2001
Published 25 October 2001
Online at stacks.iop.org/RoPP/64/1427

Abstract

Ion channels are formed by specific proteins embedded in the cell membrane and provide
pathways for fast and controlled flow of selected ions down their electrochemical gradient.
This activity generates action potentials in nerves, muscles and other excitable cells, and
forms the basis of all movement, sensation and thought processes in living beings. While
the functional properties of ion channels are well known from physiological studies, lack of
structural knowledge has hindered development of realistic theoretical models necessary for
understanding and interpretation of these properties. Recent determination of the molecular
structures of potassium and mechanosensitive channels from x-ray crystallography has finally
broken this impasse, heralding a new age in ion channel studies where study of structure–
function relationships takes a central stage. In this paper, we present a critical review of
various approaches to modelling of ion transport in membrane channels, including continuum
theories, Brownian dynamics, and classical and ab initio molecular dynamics. Strengths and
weaknesses of each approach are discussed and illustrated with applications to some specific
ion channels.
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1. Introduction

For survival, living organisms require protection from the vagaries of chaos reigning in the
outside world. At the fundamental level of single cells, this essential function is provided
by the plasma membranes — mosaics composed of lipid bilayers that form a 40–80 Å thick
skin around cells. Cell membranes function as selective barriers, which allow living cells to
maintain an intracellular electrolyte composition that is different from that of the extracellular
solution. The barrier function is maintained by the lipid bilayer, as the bilayer hydrophobic
core has a low dielectric constant (2) compared to water (80), such that the transfer energy for
moving ions from the aqueous solution into the bilayer core is prohibitively large. The transfer
energy can be decomposed into two contributions: the ion’s self-energy, due to the induced
charges at the dielectric boundary between the bilayer and the aqueous solutions; and the ion’s
interaction energy with other charges in the system. In a bilayer the former contribution is
dominant and, to a first approximation, the transfer energy can be estimated from the Born
charging energy—the ion’s self-energy for transfer from bulk water into a bulk hydrocarbon–
which is 65 kT for an ion of radius 2 Å (Parsegian 1969). The ion concentration in the bilayer
core therefore is effectively zero, which accounts for the bilayer’s impermeability to small
inorganic ions and other polar molecules. Membrane proteins, which catalyse the selective
transfer of material and information across the plasma membrane, are remarkably effective in
moving ions across biological membranes, as evident by the fact that the specific resistance
of many cell membranes is about 103 cm2, which is 106 times less than the bilayer’s specific
resistance (Andersen 1989a). One special class of membrane proteins, the ion channels, can
affect the movement of 106 to 108 ions s–1 (for a given channel, the rate varies as a function
of ion type and concentration, as well as the potential difference across the membrane).

The high turnover rates of ion channels, which were first described for channels
incorporated into synthetic lipid bilayers (Bean et al 1968, Hladky and Haydon, 1970) and
later for nicotinic acetylcholine-gated channels in biological membranes (Neher and Sakmann
1976), were rationalized by postulating the existence of water-filled pores through which
ions could move by electrodiffusion from one aqueous phase to the other (for the historical
development of the ion channel concept, see Hille 1992). Membrane-spanning proteins form
the walls of these pores, and the water-filled pore together with the surrounding protein
constitute the ion channels. These channels enable passive diffusion of selected ions by
reducing the magnitude of their self-energy through favourable interactions, which forms the
basis for selective ion permeation. The reality of biological ion channels was demonstrated by
the observation of water-filled channels in electron diffraction studies of gap junction channels
(Unwin and Ennis 1984) and nicotinic acetylcholine-gated channels (Toyoshima and Unwin
1988, Unwin 1995).

Ion channels are the functionally simplest among the proteins that catalyse transmembrane
solute movement, in the sense that the ion movement occurs as an electrodiffusive barrier
crossing, in which the passage of an ion is uncorrelated with (major) conformational changes
in the channel structure. Changes in protein conformation regulate channel function, i.e.
determine whether the channel is ‘open’ and permeable for selected ions or ‘closed’ and
impermeable to all ions. The molecular details of the conformational changes that regulate
channel function are of fundamental importance, because the high turnover number means
that channel function must be tightly regulated; but we will focus only on the function of the
open channels, where the challenge is to understand how a channel’s ability to select among
different ions, and the rate of ion movement, are determined by the molecular structure of
the channel proteins. Even at this level, ion channels exhibit remarkable complexities that
need to be considered when developing realistic models of ion permeation: ion channels can
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discriminate among chemically similar ions, such as Na+ and K+; many channels bind the
selected ions so strongly that a single ion will remain bound in some energy well in the pore,
and the productive transport events depend on having multiple ions in the pore; and ions often
move in a single file in the pore, meaning that ions cannot pass one another or even water in
some cases.

Until recently, little was known about the molecular structure of the membrane proteins
in biological membranes. Consequently, most modelling efforts were directed toward
understanding the characteristics of ion movement in simple ‘hole in the wall’ type models
using methods developed to understand the physical chemistry of bulk electrolyte solutions.
An important conclusion of these models was that the limited dimensions of the pore could give
rise to unexpected behaviours, such as flux saturation (Levitt 1986). For more realistic models,
the channels formed by the antibiotic peptide gramicidin A (GA) have long been important,
as they were the first channels for which an atomic resolution structure was proposed (Urry
1971) and experimentally determined (Arseniev et al 1986, Ketchem et al 1997, Townsley
et al 2001), and their permeability properties have been studied extensively by many workers
(Neher et al 1978, Urban et al 1980, Andersen 1983, Becker et al 1992). In fact, even though
atomic resolution structures now are available for a number of channels, most importantly
the bacterial potassium channel KcsA (Doyle et al 1998), the GA channel remains the only
valence-selective channel for which there exists an atomic resolution structure of the conducting
channel. Not surprisingly, therefore, GA channels have been important for developing models
of ion permeation.

As new analytical methods have been developed and the available computational power
increased, models of ion permeation have become increasingly sophisticated, and it is
now possible to address many aspects of ion permeation using molecular dynamics (MD)
simulations. These methods were originally implemented for GA channels (Roux and Karplus
1994). As atomic resolution structure of channels formed by integral membrane proteins
became available (Weiss et al 1991, Doyle et al 1998, Chang et al 1998), this stimulated a
flurry of activity in developing more detailed models of ‘real’ ion channels. This activity has
also increasingly attracted the attention of physicists and chemists.

Having set the goalpost as elucidation of the structure–function relationships in ion
channels, the next question is how one should go about it. The system in question is highly
inhomogeneous, consisting of thousands of atoms in protein, lipid and water interacting among
themselves and with ions via the long-range Coulomb forces. A brute force approach starting
from the fundamental equations is clearly bound to fail for such a complex system even if one
has access to the most powerful computers in the world. The physicists’ approach to model
building, that is simplifying the system to bare essentials with guidance from experimental
data, offers a more amenable alternative for modelling of ion channels. As biology evolves
from a descriptive to a quantitative science, methodologies used in physics and chemistry
are gradually adapted to study the functional properties of biomolecular systems. In this
respect, ion channels with their rich physiological background offer one of the best targets for
development and testing of suitable techniques in this emerging field.

The purpose of this article is to give an overview of permeation models currently under
development. The emphasis is on models that directly relate channel structure to its function, as
those are of the greatest interest to physicists and chemists. Another large class of permeation
models, the discrete state kinetic models (also called rate theory models) continue to be used
by experimentalists in practical analysis of experimental results (Andersen 1989b); but they
will not be discussed in any detail here. After a brief survey of structural and functional
properties, we discuss electrostatics in a channel environment, which is the main determinant
of ion dynamics. A critical review of various approaches to ion permeation in channels follows
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in section 3. This section forms the essence of the review focusing on issues of consistency,
relevance and feasibility. Application of these permeation models to some ion channels of
biological interest is discussed in section 4.

1.1. Structural motives

Ion channels are formed by bundles of special proteins embedded in the membrane. There
are two important structural determinants of channel-mediated ion permeation: the shape
of the water-filled pore through which the ions move, which is defined by the geometry of
the protein/water boundary; and the distribution of charges in the protein wall. The former
determines the ions’ self-energy and the latter, the ions’ interaction energy with the channel
protein. Here we give a general survey of these two features, relegating specific case studies
to section 4.

The shape of a channel is influenced by two conflicting requirements. In order to conduct
the maximum number of ions in a very short time, it needs to have large cross section. Yet for
survival of cells, it needs to conduct ions selectively, and recognition requires a narrow profile,
especially if the ions in question carry the same charge as is often the case. The compromise
nature has reached is to have a relatively short and narrow segment that performs the function
of selectivity filter and wider regions in the rest of the channel (figure 1). While the precise
shape of a channel varies according to its type, these two characteristic regions appear to be a
general feature of all biological channels. Synthetic channels do not have to satisfy the above
requirements, and therefore can have more regular structures. For example, the GA channel
has an approximately cylindrical shape with a radius of 2 Å, which is exceptionally narrow
considering its lack of selectivity among monovalent cations.

Charge residues in the protein wall directly interact with the permeating ions, therefore
their location and magnitude are of primary importance for modelling purposes. Favourable
interactions can increase the concentration of certain ions in the channel and thereby enhance
their conductance manyfold, while suppressing the conductance of other ions with different
charge and/or size. We give an example from the KcsA potassium channel to illustrate this
point: its internal volume is about 2000 Å3, so that ignoring the ion–protein interactions, it
would be occupied by an ion 20% of the time in a 0.15 M KCl solution. In fact, the x-ray
picture shows that the KcsA channel holds three cations thanks to the high density of negative
charges on its walls (Doyle et al 1998). Even in the GA channel which is apparently neutral,
monovalent cations conduct while anions are rejected, presumably a direct result of the charge
distribution in the peptide. Clearly, a fairly accurate knowledge of significant charge residues
in the channel protein is essential for modelling efforts to be fruitful.

1.2. Functional properties

Ion channels serve their physiological functions by enabling the controlled (i.e. gated)
movement of selected ions across biological membranes. We expand on these characteristics
below. A more detailed exposition can be found in Hille (1992).

Conductance. When open, ion channels conduct current at the picoampere level (net ion fluxes
on the order of 107 ion s–1), and channel activity is ‘visible’ as discrete, step-like changes in the
current through the membrane. Until the mid-1970s, the measurement of such small currents in
cell membranes was problematic due to noise. The situation changed dramatically when Neher
and Sakmann invented the patch-clamp method (Neher and Sakmann 1976), which later was
improved to become the giga-seal patch-clamp method in current use (cf Hamill et al 1981).
Since then, current-voltage (I–V) curves have been determined for numerous ion channels. In
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Figure 1. Cross section of a schematic ion channel embedded in membrane (modelled after the
KasA potassium channel).

the physiological range of membrane potentials (–100 mV < V < 50 mV), many I–V curves are
linear and the single-channel conductance (G) remains one of the most prevalent descriptors
of channel function. I–V curves measured under symmetrical conditions (same composition
of the extracellular and intracellular solutions) may exhibit non-linearities at higher potentials,
|V| > 100 mV (cf Andersen and Procopio 1980). These non-linearities reflect the energetics
of ion permeation through the pore and studies of I–V curves can provide important insights
into ion permeation (Urban et al 1980, Eisenman and Horn 1983, Becker et al 1992). It thus
becomes important to have experimental information about ion permeation at as high applied
potential as is technically feasible (up to 500 mV, Andersen 1983), as the deviations from
linearity become more apparent at higher voltages.

Another important variable in current measurements is the concentration of the permeant
ions in the baths. By measuring the single-channel current as a function of the permeant ion
concentration, at a constant voltage, one obtains conductance-concentration (G–c) curves. A
feature common to all ion channels is that conductance increases linearly with concentration
at first but then saturates with further increase. This behaviour is traditionally described by
the Michaelis–Menten function (Hille 1992)

G = Gmax/(1 + cs/c), (1)

where Gmax is the maximum conductance and cs is the saturation concentration at half-
maximum. There is a great deal of variation in the measured cs values ranging from 0.01 M for
Ca channels to about 0.3 M in GA. An intuitive explanation of saturation follows from the fact
that ions move across the channel in single file and need to overcome energy barriers. Thus,
regardless of the bath concentrations, there is a minimal transport time for each ion to cross
the channel, which translates to a maximal possible current for a given voltage. The ability of
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a model to reproduce a G–c curve is much more important than fitting I–V curves, which can
be achieved, for example, by simply adjusting the diffusion coefficient of ions. In contrast,
there is no easy way of achieving saturation in a permeation model other than describing ion
dynamics in the channel correctly. We demonstrate in section 3 how the G–c curves provide
a litmus test for various models of permeation.

In the above experiments, the baths inside and outside of a cell are assumed to have
the same concentration. A third class of physiological studies involves using asymmetric
solutions so that there is a concentration gradient across the membrane. Again, numerous
I–V curves have been obtained using asymmetric solutions. These are intrinsically more
complex curves because the combination of chemical and potential gradients already creates
a nonlinear behaviour, even before the ion–channel interactions are taken into account. In this
case, prediction of the Nernst potential (the point where the current vanishes) would provide
a relatively simple test for a model’s validity.

Selectivity. The extracellular Na+ concentration is about 10-fold higher than the intracellular
Na+ concentration, and the intracellular K+ concentration is about 30-fold higher than the
extracellular K+ concentration— and the concentrations of both Na+ and K+ are much higher
than those of Ca2+. These concentration differences are central for normal cell physiology,
as the controlled changes in membrane potential that underlie the rapid electrical signaling in
nerve, muscle and heart depend on controlled changes in the permeability to K+, Na+ and Ca2+,
which give rise to the observed potential changes. It thus is necessary for ion channels to be
able to discriminate among different cations—even K+ and Na+. It is essential for channels
that conduct Ca2+ and K+ to be impermeable (or have very little permeability) to Na+, and
vice versa. For potassium channels, selectivity is based on the size of ions (crystal radius of
Na is 0.95 Å, and of K is 1.33 Å). The molecular structure of the selectivity filter in the KcsA
channel provides a glimpse of how nature achieves this in practice (Doyle et al 1998). Because
the filter structure appears to be conserved in all potassium channels, the specific selectivity
mechanism deduced from the KcsA is likely to apply to all of them. For calcium channels,
selectivity is based on charge difference. Since the tertiary structure of calcium channels is
not known yet, one needs to rely on model studies to understand the selectivity mechanism
in this case (Corry et al 2001). Anion–cation selectivity is another common feature of ion
channels, and can be understood relatively easily in terms of the charge distribution in the
membrane proteins. Other channels also exhibit selectivity but the permeability ratios are not
as pronounced as in the above cases (Hille 1992). Understanding the selectivity sequences
among ions with the same charge and predicting their permeability ratios poses the ultimate
challenge to the permeation models.

Gating. The very high turnover numbers of ion channels means that their activity, whether
they are open or closed, needs to be tightly controlled. The controlled changes in channel
activity that are necessary for normal cell function are denoted gating, and a host of clinical
diseases results from changes in the number of functional ion channels or in channel
gating (Lehman-Horn and Jurkat-Rott 1999). Measurements of channel densities (number
of channels/membrane area) and activation curves remain important descriptors of any ion
channel.

Channel gating is not a focus of this review, but it is important to note that ion channels
can be gated by changes in the potential difference across the membrane (voltage-dependent
channels), by binding small chemical transmitter molecules to the channel (ligand-gated
channels) and by mechanical stimulus (stretch-activated channels). In voltage-dependent
channels, several charges move across the voltage sensor of the channel (Bezanilla 2000).
In ligand-gated channels, differences in the binding energy of the ligand to the closed and
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open channel states provides the energetic basis for channel activation (e.g. Jackson 1989). In
neither case, are the molecular mechanisms resolved – except that studies on the pH-induced
activation of KcsA show that proton binding causes a widening of the intracellular entrance to
the channel (Perozo et al 1999).

1.3. Structure–function relationships

Thanks to the rapid advances summarized above, the field of ion channels has matured to a
level ripe enough for serious work in model building. The goal of a model should be to come up
with a theoretical framework that relates the available structural information to the observed
properties of ion channels. In doing this, it should also provide an understanding for the
underlying physical processes and, more importantly, be able to make predictions that could
be tested experimentally. To a physicist or a chemist, these requests may appear standard for any
model system, but they are hardly satisfied in most of the current model studies of ion channels.
The complexity of the channel system is partly the blame, though the prevailing attitude of
over-reliance on model results as an end in themselves, and neglecting to make contact with
experimental data, does not help in creating a healthy environment for progress either. This
is all the more ironic, given that ion channels provide one of the best biological system for
studying structure–function relationships. The amount of available physiological data to be
interpreted by model studies is already overwhelming. But the most exciting prospect from
the viewpoint of interaction between theory and experiment is the ability to make mutations
in the amino acid sequence of membrane proteins, thereby modulating the structure–function
relationship with respect to the reference (native) ion channel. A celebrated example is the
mutation of negatively charged glutamate residues to neutral ones in the Ca channel that led
to the identification of the selectivity filter in this channel (Yang et al 1993). Obviously, the
possibilities for random mutations are endless, and guidance from theoretical models that can
predict the effect of specific mutations would be very helpful in turning such experiments into
a valuable tool for exploration of the structure–function relationships in ion channels.

2. Electrostatics in channels

The forces acting on ions in and near the vicinity of a channel ultimately determine their
dynamic behaviour and transport properties across the channel. A microscopic calculation
of this force, even at a classical level, is made difficult because of the long-range Coulomb
interactions and large dipole moment of water molecules that dominate the model system. At
present, continuum electrostatics provides the only practical method for force calculations in
permeation models, in the sense that it allows a reliable determination of conductance of a
channel, thus enabling a direct contact with the physiological data. In this section, we discuss
methods of solving Poisson’s equation in a channel environment, effects of ionic atmosphere
and issues concerning the validity of continuum electrostatics in narrow pores.

2.1. Solution of Poisson’s equation

In continuum electrostatics, water, membrane proteins and lipid bilayer are treated as
continuous media with uniform dielectric constants, typically ε = 80 for water and ε = 2 for
protein and lipid. The boundary between water and protein is assumed to be sharply defined.
Once the positions of fixed charges in the protein and mobile ions in water are specified with
a charge density ρ, the potential ϕ and electric field E acting on the ions are determined from
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the solution of Poisson’s equation

ε0∇ · [ε(r)∇ϕ(r)] = −ρ(r), (2)

subject to the boundary conditions

ϕ1 = ϕ2, ε1∇ϕ1 · n̂ = ε2∇ϕ2 · n̂, (3)

where n̂ is the unit normal to the surface and the subscripts 1 and 2 refer to the two sides of
the boundary. While solving equation (2) may look menacing for many charged particles, in
practice one uses the superposition principle by solving the single-charge problem for each
particle and then adding all the solutions to obtain the total potential.

Methods of solution. Poisson’s equation (2) separates into over a dozen coordinate systems,
and if one can approximate the channel boundary with one of these coordinate systems, analytic
solutions can be obtained. The only system that comes close to the boundary shown in
figure 1 is that of toroidal coordinates (doughnut shape). Unfortunately, the solutions obtained
using a toroidal boundary are extremely complicated (Kuyucak et al 1998)—so much so
that conductance of the channel could not be determined from Brownian dynamics (BD)
simulations even on a supercomputer (Li et al 1998). Thus, numerical solution of Poisson’s
equation remains the only alternative, especially for realistic modelling of channel boundaries.
Below we briefly comment on the boundary-element and finite-difference methods developed
for this purpose.

In the boundary element method (Levitt 1978), the channel boundary is divided into small
segments of area si , and the polarization charge density σi on each segment is calculated from
Gauss’s law and the boundary conditions (3) as

σ = 2ε0
ε2 − ε1

ε2 + ε1
Eex · n̂, (4)

where Eex is the external field due to all the charges in the system except those in si , which
can be determined from the normal derivative of the external potential at ri

ϕex(ri ) = 1

4πε0

[∑
j �=i

σj sj

|ri − rj | +
∑
k

qk

εk|ri − rk|

]
. (5)

Here j is summed over all the segments and k over all charges. Starting with an initial charge
density of σj = 0, equations (4) and (5) are iterated until the results converge. By taking the
curvature of segments into account, this method has been made very fast and accurate recently
(Hoyles et al 1998b). Its only drawback is that it does not allow assignment of different ε
values to channel and bulk waters because ions crossing a sharp boundary encounter infinities.
Further work is needed to resolve this problem by smoothing the boundary crossing.

The finite-difference method was actually developed to solve the Poisson–Boltzmann (PB)
equation for biomolecules in an electrolyte solution (Davis and McCammon 1990, Sharp and
Honig 1990). By setting the ionic concentrations to zero, the same codes can also be used to
solve Poisson’s equation, though it has rarely been applied to ion channels in this context. In this
method, the space is discretized with rectangular boxes of volume V = h1h2h3. Equation (2)
is integrated over the volume of each box and the lhs is converted to a surface integral using
Gauss’s law. Expressing the derivatives of ϕ as finite differences and denoting the total charge
in the volume with qi , one obtains

ε0

6∑
k=1

εk
ϕ(ri + hkk̂) − ϕ(ri )

hk

V

hk
= −qi, (6)

where the k sum is over the six neighbouring grid points with k = 1, 2, 3 referring to the
positive x, y, z directions and k = 4, 5, 6, to the negative ones. Solving (6) for ϕ(ri ), one
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obtains an expression relating the potential at each grid point to its six neighbours, which is
solved using iterative relaxation techniques. In terms of accuracy and speed, this method is
not as good as the boundary element method because iterations involve an extra dimension.
Its main advantage lies in the fact that it readily allows for variations in ε values.

Applications to ion channels. The main role of Poisson’s equation in permeation models is to
supply the electric potentials and fields required to calculate the current. Although permeation
models are indispensable in making contact with physiological data, they do not necessarily
provide direct insights into the working of a channel or its permeability characteristics. Such
information is more likely to be surmised from potential energy profiles where wells point to
the binding sites in a channel and barriers are related to its saturation properties. This particular
use of potential energy profiles will be illustrated with specific examples in section 4. Here
we discuss their common features in generic ion channels.

The potential energy of an ion with charge q can be decomposed into two parts: (i) the
self-energy due to the induced charges on the dielectric boundary (also known as image or
reaction-field energy) and (ii) the Coulomb interaction with the charges on the channel protein.
The former is proportional to q2 while the latter goes as q, thus their valence dependence is
very different—the self-energy is always repulsive while the interaction part can be either
attractive or repulsive depending on the valence of q. Also, the quadratic dependence on
charge means that divalent ions have to overcome self-energy barriers that are four times
larger than for monovalent ions. The interaction energy depends on the specifics of charge
distribution, therefore not much can be said about its general features. But the self-energy is
determined solely by the channel geometry (the dielectric boundary), and it is possible to make
some general remarks.

In his seminal work, Parsegian (1969) demonstrated that an ion’s self-energy should be
important for ion permeation across membranes. In the case of ion movement through the
lipid bilayer component, the importance of the self-energy term rapidly became accepted (e.g.
Andersen 1978). In the case of channel-mediated ion movement, however, the importance
of the self-energy contribution has been less appreciated, despite the early contributions of
Levitt (1978) and Jordan (1982). The tendency to neglect the ion self-energy may stem, in
part from the success of continuum electrostatic calculations in describing the properties of
macromolecules in solutions, where the self-energy term is routinely neglected. However, this
is a very different problem than for channels because ions are exterior to the proteins, and not
surrounded by them. To put this question into a proper perspective, we present a comparison
of self-energy of an ion in two analytically solvable cases: (i) an ion at a distance r from an
infinite plane boundary representing the ‘outside problem’ and (ii) an ion on the axis of an
infinite cylinder with radius r representing the ‘inside problem’:

Us(plane) = 1

4πε0ε1

ε1 − ε2

ε1 + ε2

q2

4r
, Us(cyl.) � 1

4πε0ε1

ε1 − ε2

ε2

q2

5.8 r
. (7)

Here, the ion is assumed to be in medium 1, and in evaluating the integral in the cylinder case,
ε1 	 ε2 ≈ 2 is assumed. Using ε1 = 80, ε2 = 2, we obtain for a unit charge at r = 4 Å,
Us(plane) = 0.4kT and Us(cyl.) = 12kT . The former may be neglected compared with
the ion’s kinetic energy but the latter cannot. The large difference is a direct result of the
induced charges on the boundary: when the planar boundary is wrapped around the ion, the
total induced charge on the boundary grows by a factor of 40! We note that the self-energy
problem arises directly from the finite ion charge, and that it cannot be made to disappear by
appealing to the presence of other charges. This was shown already by Parsegian (1969), who
demonstrated that the self-energy for transferring a cation–anion pair from water into a bulk
low-dielectric constant solvent is similar to that of transferring a single ion. Repercussions of
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neglecting the self-energy in continuum theories will be discussed further below.
The self-energy calculated in an infinite cylinder is much reduced when the cylinder is

finite and has vestibules. The potential energy profiles for various channel shapes have been
constructed from numerical solution of Poisson’s equation in numerous studies: for example,
Levitt (1978), Jordan (1982, 1984), Monoi (1991), Hoyles et al (1996); see also the review by
Partenskii and Jordan (1992). The gist of such studies is that in finite cylinders the self-energy
barrier drops much faster than the 1/r expected from equation (7). For example, for a 35 Å
length cylindrical channel, compared with (7), the self-energy is reduced by a factor of 2 for
r = 2 Å, but this reduction grows to a factor of 3 for r = 4 Å and 6 for r = 8 Å. Thus the
self-energy becomes much smaller than a kT in large channels (r > 10 Å), and its neglect in
continuum theories may be justified in such situations. Variations in ε values of protein and
channel waters from the standard values of 2 and 80 have also been considered in the above
studies. Protein could have larger εp values (2–5), which would reduce the self-energy barrier,
but this is compensated by smaller εc for channel waters predicted from MD simulations, which
could increase it considerably (Partenskii and Jordan 1992). Generally, if εc < 80, the ion’s
self-energy has two contributions: the self-energy due to the polarization at the pore/protein
boundary, which decreases as c decreases; and the self-energy due to the polarization at the
boundary between the pore and the bulk water, which can be approximated by the Born energy

UB = q2

8πε0RB

(
1

εc
− 1

80

)
, (8)

where RB is the Born radius of ions determined from the enthalpy of hydration. The Born
energy increases as εc decreases, and the increase in the Born energy is larger than the decrease
in the self-energy due to polarization at the pore/protein boundary. In the limit of εc = εp, the
self-energy becomes entirely due to the Born energy. Recalling that channels were proposed
to overcome the Born energy barrier posed by cell membranes, one can see why low εc values
cannot yield a working model of permeation.

2.2. Influence of ionic atmosphere

Solution of Poisson’s equation provides static potential energy profiles with ions at fixed
positions. In an electrolyte solution, screening effects due to counter-ions exponentially
dampen the Coulomb field of an ion. Whether such screening effects have a similar influence
on the calculated static potential profiles in channels has important ramifications for continuum
theories and therefore needs to be discussed in some detail. If the modifications are substantial,
this would render the static profiles obtained from Poisson’s equation more or less useless.
This question was addressed by Levitt (1985), Jordan et al (1989) and Cai and Jordan (1990),
who applied the PB theory to schematic ion channels, and their results were affirmative with
regard to the importance of including the ionic atmosphere. Since then the PB equation has
replaced Poisson’s equation in potential calculations in numerous studies of ion channels (e.g.
Sankararamakrishnan et al (1996), Weetman et al (1997), Adcock et al (1998, 2000), Cheng
et al (1998), Rostovtseva et al (1998), Sansom et al (1998), Dieckmann et al (1999), Ranatunga
et al (1999)). This view has recently been challenged by Moy et al (2000), who showed through
comparisons with BD simulations that the PB theory breaks down in narrow pores because it
fails to take the self-energy contributions into account. After a brief review of the PB theory,
we discuss these new developments below.

Poisson–Boltzmann equation. PB theory provides a continuum description of a system in
which fixed external charges, represented by a density ρex, are surrounded by mobile ions of
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density ρel in a dielectric medium. The main assumption of the theory is that at equilibrium,
the distribution of mobile ions in the system is given by the Boltzmann factor

ρel(r) =
∑
ν

zνen0ν exp [−zνeϕ(r)/kT ] , (9)

where n0ν is the bulk (or reference) number density of ions of species ν and zνe is their charge.
Here n0 (in SI units) is related to concentration c0 (in mol l−1) by n0 = 1000NAc0 where NA is
Avogadro’s number. Substituting the charge density (9) in Poisson’s equation (2), one obtains
the PB equation for a z:z electrolyte

ε0∇ · [ε(r)∇ϕ(r)] = 2ezn0 sinh [zeϕ(r)/kT ] − ρex. (10)

In practical applications, the PB equation is solved numerically using a finite-difference
method similar to the one described for Poisson’s equation in the last section. In fact,
the equation employed in PB iterations can be simply obtained from (6) by substituting
qi → qi − 2ezn0 sinh[zeϕ(ri )/kT ]V .

There are only a few known analytical solutions of equation (10), all involving infinite
boundaries (for example, the Gouy and Chapman theory for a plane), and therefore not very
relevant for channels. A more useful example for our purposes is that of a central ion in a bulk
electrolyte, first solved by Debye and Hückel by linearizing the PB equation

∇2ϕ = κ2ϕ, κ−1 =
√

ε0εkT

2z2e2n0
. (11)

Here κ−1 is the Debye screening length and ρex = 0. Solution of (11) yields the following
screened Coulomb potential around a central ion of radiusa/2 (for example, McQuarrie (1976))

ϕ = ze e−κ(r−a)

4πε0ε(1 + κa)r
. (12)

The radial density of the screening charge P(r) is proportional to this potential

P(r) = 4πr2ρel = −4πr2ε0εκ
2ϕ = −zeκ2

1 + κa
re−κ(r−a), (13)

which is seen to peak at r = κ−1 and then decay exponentially. The volume integral of this
shielding charge for a sphere of radius r is given by

Q(r) = −ze

[
1 − 1 + κr

1 + κa
e−κ(r−a)

]
. (14)

Equation (14) shows that −Q(r)/ze increases monotonically with r , leading to a 25%
screening of the central charge at about r = κ−1, rising to 90% at r = 4κ−1. At room
temperature (T = 298 K) and in water, Debye screening length is related to concentration
as κ−1 = 3.07/(z

√
c0) Å, so that at the physiological c0 = 0.15 M, κ−1 = 7.9 Å. Thus,

near-complete screening of an ionic charge occurs at a length scale of about 30 Å, and the
volume in question (∼105 Å3) contains ten counter-ions and nine co-ions. Ion channels have
volumes typically two orders of magnitude smaller and contain only a few ions at a time. It
is difficult to visualize how the screening effects predicted by the PB calculations could take
place in reality. Yet the success of the PB theory in applications to macromolecules (Davis
and McCammon 1990, Sharp and Honig 1990) was deemed sufficient proof for its validity in
channels. Framing of the theory in terms of concentration rather than particles has doubtless
obscured this problem, delaying its identification for a long time. Only by thinking in terms
of particles and forces has it become intuitively obvious.
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Figure 2. Comparison of the net screening charge in the channel (a) and the force on a test ion (b)
in the PB and BD approaches as a function of the channel radius. The cation is held at z = 12.5 Å
from the centre of the channel. The dashed curve indicates the single-ion results obtained from
Poisson’s equation.

Test of PB theory in channels. The PB theory was tested in channels by comparing its
predictions for force on a test cation with those obtained from the BD simulations (Moy et al
2000). A cylindrical channel with length 35 Å and a variable radius was used with a 0.3 M
NaCl solution (κ−1 = 5.6 Å). The PB equation was solved using a finite-difference method
similar to the one used for Poisson’s equation (6). Details of the BD method is given in the next
section. The main results of this study are summarized in figure 2, which compares the net
screening charge in the channel (a) and the force on the ion (b) in the PB and BD approaches.
Because of the large self-energy barriers in narrow pores (e.g., 4kT for r = 4 Å), anions
cannot enter the channel in BD, and thus there is no shielding of the test cation (note that the
BD results overlap with those of a single ion). With increasing radius, self-energy goes down,
anions start entering the channel in increasing quantities and thereby provide some shielding,
as attested by the reduction of the force in BD from that of a single ion. In contrast, the PB
results predict a significant shielding effect regardless of the size of the channel. Discrepancy
is worst in narrow pores where screening leads to a fivefold reduction in force as compared
with BD. Near-constancy of the net screening charge is a direct consequence of neglect of the
self-energy in PB theory. Inspection of the numerical solutions shows that each grid point
contains a tiny fraction of a unit charge. The self-energy associated with such a small charge,
recalling that it is proportional to charge squared, is truly negligible. When ions are treated as
particles rather than a continuous charge distribution, they feel the full brunt of the self-energy
barrier and fail to enter the channel. In larger pores, the self-energy of ions becomes quite small
so that errors committed in PB are negligible, and the PB and BD results merge. Convergence
occurs at a radius of two Debye lengths, which gives a rule of thumb for the domain of validity
of the continuum theories in channels.

Returning to the question posed at the beginning of this section, the BD simulations clearly
show that inclusion of the ionic atmosphere has no influence on the potential energy profiles
obtained from Poisson’s equation in narrow pores (r < 5 Å). Therefore such profiles can be
safely used to make inferences about a channel’s permeation properties. Application of the
PB theory to narrow pores, on the other hand, is highly problematic due to neglect of the
self-energy. This problem needs to be addressed before the PB theory can be reliably used for
calculation of potential profiles or pKA values of ionizable charge residues in channels.
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2.3. Appraisal of continuum electrostatics in channels

Continuum electrostatics provides a valid description of macroscopic dielectric media because
averaging of fields is done over a very large number of atoms and the atomic details are washed
out. Its success in describing properties of biological macromolecules (Warshel and Åqvist
1991, Honig and Nicholls 1995) shows that it can also be used in mesoscopic systems profitably
provided that the macromolecule–solvent interface is properly modelled. Ion channels lie in
a grey area between microscopic and mesoscopic systems in that their radial dimensions
and solvent accessible volumes could be quite small. Microscopic studies of water confined
in small volumes indicate that the boundary imposes an order on the neighbouring water
molecules reducing their polarizability substantially (Zhang et al 1995, Sansom et al 1996,
1997, Green and Lu 1997, Tieleman and Berendsen 1998, Allen et al 1999a). As a result,
one expects the dielectric response in a channel to be both position and direction dependent,
and the ε values to be much suppressed as compared with the bulk. Use of a non-uniform
dielectric tensor instead of a uniform ε does not pose any technical difficulties as it can be easily
implemented in a finite-difference algorithm. What is not clear is whether such a quantity can
be reliably estimated from a microscopic method such as MD simulation. In fact, the whole
issue of microscopic validation of continuum electrostatics in channels remains an outstanding
problem that needs to be explored further.

In the face of such uncertainties, the practical response of permeation modellers has been
to use a uniform ε value in the channel. It is important to emphasize that such an effective ε
value does not represent the polarizability of channel waters in response to some external field,
which could be quite low as the MD simulations demonstrate, but in fact, has little relevance
on the dynamics of permeating ions. Rather it reflects the effectiveness of water molecules
around an ion in screening its charge. In continuum electrostatics, this screening is attributed
to the first hydration shell, and the success of the Born model in correlating experimental
solvation energies lends phenomenological support for this interpretation. Recent MD free-
energy calculations of solvent charge distribution around an ion and solvation energies have
provided further microscopic support for the primacy of the first hydration shell (Roux et al
2000). Because the electric field of an ion in its first hydration shell is much stronger than that
of any other source, one expects it to dominate the solvation dynamics regardless of whether
the ion is in bulk or in a channel environment. Thus, as long as the first hydration shell of ions
remains intact in a channel, use of continuum electrostatics with a bulk-like ε value can be
justified. This criterion is generally satisfied in ion channels, including the narrow selectivity
filter regions where protein atoms substitute for water completing the solvation shell. The
only exception found so far is the GA channel, in which water and ions move in single file
for the entire length of the pore. Using both theoretical and experimental arguments, one can
show that continuum electrostatics completely fails in this case, as discussed in more detail in
section 4.1.

3. Theories of permeation

Before moving into theories of ion permeation in channels it is worth summarizing the current
state of affairs in bulk electrolytes (Bockris and Reddy 1970). At a phenomenological level,
Ohm’s and Fick’s laws or their combination, the Nernst–Planck (NP) equation, provide an
adequate description of the conductance properties of electrolyte solutions. At this level,
diffusion coefficient or conductivity of ions are parameters that are taken from experiments.
A great deal of effort went into trying to relate these parameters to molecular properties of
electrolytes during the last century. However, not much progress has been made towards this



Models of permeation in ion channels 1441

goal, indicating the difficulty of the problem. One notable exception is Onsager’s prediction of√
c dependence of conductivity on concentration in dilute electrolytes. Otherwise, there is still

no microscopic theory that can explain, for example, the exponential increase of conductivity
with temperature. Computational approaches such as MD simulations provide insights on
the key role played by hydration shells of ions but lack the predictive power required for a
quantitative understanding. Considering the fundamental role temperature plays in statistical
mechanics, this is far from being satisfactory and certainly limits the utility of electrolyte
theories when applied to other areas. Because ion channel studies are almost always carried
out at room temperature, neither potential rewards of experimental investigation of temperature
dependence of conductance nor difficulties associated with its theoretical interpretation seem
to be well appreciated in the field (Kuyucak and Chung 1994, Chung and Kuyucak 1995).
Hopefully this situation will change once the permeation models are perfected and become
more predictive.

Given the tenuous state of theory in bulk electrolytes, there is little point in trying to
model ion permeation in channels using sophisticated methods unless they are proven to be
absolutely necessary. The only prerequisite for any proposed model is that it should describe
the ion–channel interactions sufficiently accurately. Thus, in the following, we will proceed
from the simplest continuum theories to the more involved BD and MD simulations, stressing
at each stage why the next level of complexity is required. We will not discuss the reaction
rate theory (or barrier model) approach because our emphasis is on the relationship between
channel structure and ion permeation. Even though barrier models can provide insights into
ion–ion interactions or summarize a channel’s permeability properties concisely (Urban et al
1980, Becker et al 1992, McCleskey 1999, Miller 1999), the model parameters have no direct
physical relation to the channel structure (Andersen 1989b, Levitt 1999, Nonner et al 1999). It
is not possible, for example, to relate the estimated value of a rate constant to the height of the
energy barrier the ion is traversing (Andersen 1989b, Andersen and Koeppe 1992). That said,
if it is possible to decompose the overall ion transfer through the channel into a few discrete
steps, one may be able to use continuum models to relate the rate constants to the channel
structure (e.g. Andersen 1989b)—which could simplify the task of ‘debugging’ continuum
descriptions of ion permeation.

3.1. Continuum theories

Continuum theories of permeation were proposed as more realistic alternatives to rate theories
in the mid-1980s and their application to ion channels have flourished since then (see Levitt
(1986), Cooper et al (1988), Hille (1992), Eisenberg (1996, 1999) for reviews and earlier
references; more recent references are Nonner and Eisenberg (1998), Nonner et al (1998, 1999,
2000), Kurnikova et al (1999), Cardenas et al (2000), Hollerbach et al (2000), Adcock et al
(2000)). Being the simplest permeation theories that allow incorporation of channel structure,
the NP and Poisson–Nernst–Planck (PNP) equations are the first candidates to consider in
modelling of ion channels. After giving a brief account of the formalism, we discuss the
crucial question of whether the ion–channel interactions are properly taken into account in
continuum theories of permeation.

Poisson–Nernst–Planck equations. In continuum theories, the flux Jν of each ion species is
described by the NP equation which combines the diffusion due to a concentration gradient
with that from a potential gradient

Jν = −Dν

(
∇nν +

zνenν

kT
∇ϕ

)
, (15)

where nν is the number density and Dν is the diffusion coefficient of the ions of species ν, and
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we have used the Einstein relation σ = (zen/kT )D to express the conductivity in terms of
the diffusion coefficient. In some applications, the NP equation (15) is solved with potentials
determined from the solution of the PB equation (10) or simply with an assumed profile.
Clearly this is not a self-consistent procedure, and the potential should be determined from
the solution of Poisson’s equation (2) using the charge density ρ = ∑

ν zνenν + ρex, where
the two terms represent the mobile ions and the external charges as before. In the PNP theory,
equations (2) and (15) are solved simultaneously, yielding the potential, concentration and
flux of ions in the system. Numerical solutions are obtained using a finite-difference method
as in Poisson’s or the PB equation. Poisson’s equation (6) is modified with the substitution
qi → qi + V

∑
ν zνenν(ri ), which yields an expression relating the central potential at ri to

its immediate neighbours. Similarly, the flux through the surfaces of the rectangular box at ri
is discretized using the NP equation (15) as follows:

Jk = −D

[
nk − ni

hk
+
ze

kT

1

2
(nk + ni)

φk − φi

hk

]
, (16)

where the subscript ν is suppressed for convenience and i and k refer to the grid positions ri
and ri + hkk̂. Using the steady-state condition ∇ · J = 0, one eliminates the flux dependence
in (16), obtaining an expression for the central density in terms of its immediate neighbours.
These two equations are iterated simultaneously, subject to the specified boundary conditions
(Kurnikova et al 1999, Corry et al 2000a).

Due to their nonlinear nature, the PNP equations are notoriously difficult to solve
analytically except in some very special cases: for example, the classic Goldman–Hodgkin–
Katz equation (Hille 1992), and the high-field limits (Syganow and von Kitzing 1999a, 1999b).
Here we discuss some of the basic formalism to indicate these difficulties, which will offer
some hints as to why the problems in applications of the PNP theory to channels remained
hidden for so long. As in the case of the PB equation, the strategy is to eliminate the density
dependence of ions from Poisson’s equation using (15). Because equation (15) is itself a
differential equation, this process is somewhat more complicated. When Jν = 0 in (15), the
PNP equations trivially reduce to the PB equation with the density given by the Boltzmann
factor

nν = n0νe−ψν , ψν = zνeϕ/kT , (17)

where ψν is the potential energy expressed in a dimensionless form. Using equation (17) for
nν as an integrating factor in (15), it can be recast into the form

Jν = −Dνe−ψν∇(
nνeψν

)
. (18)

Under steady-state conditions and assuming only the z component Jν is non-zero, equation (18)
reduces to 1D and can be integrated between the boundary points [0, L] to give

Jν = −Dν

nνLeψνL − nν0eψν0∫ L

0 eψν(z) dz
, (19)

where the subscripts 0 and L in nν and ψν refer to their values at the boundaries. Doing the
same integration from [0, z], and using (19) to eliminate Jν/Dν gives an expression for the ion
density in terms of the potential

nν(z) = e−ψν

[
nν0eψν0 +

(
nνLeψνL − nν0eψν0

) ∫ z

0 eψν(z) dz∫ L

0 eψν(z) dz

]
. (20)

Finally, substituting (20) in Poisson’s equation, one obtains an integro-differential equation
for the potential in PNP

ε0
d

dz

[
ε

d

dz
ϕ(z)

]
= −

∑
ν

zνee−ψν

[
nν0eψν0 +

(
nνLeψνL − nν0eψν0

) ∫ z

0 eψν(z) dz∫ L

0 eψν(z) dz

]
− ρex. (21)
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This is similar in form to the PB equation, and reduces to it when nνLeψνL = nν0eψν0 : that is,
when the electrochemical forces balance out and the system is in equilibrium. In general, there
are no known analytical solutions of equation (21). The main difficulty lies with the evaluation
of the integrals—the only known integral of

∫
ef (z) dz is for f = z, which simply gives back ez.

This corresponds to the constant electric field approximation in the Goldman–Hodgkin–Katz
theory. Using ψν(z) = ψν0 + (ψνL −ψν0)z/L in equations (19) and (20) yields the following
solutions for the flux and density:

Jν = −Dν

L

(ψνL − ψν0)(nνLeψνL − nν0eψν0)

eψνL − eψν0
, (22)

nν(z) = e−ψν(z)

[
nν0eψν0 +

(
nνLeψνL − nν0eψν0

) eψν(z) − eψν0

eψνL − eψν0

]
. (23)

The effect of the electrochemical forces on density, which is not so easy to surmise from
equation (20), can be seen more clearly from (23): the density, which varies linearly between
the boundary values when there are no electric forces (Fick’s law), exhibits an exponential
behaviour when there is a uniform field. Thus the local potential has a significant effect on the
cation and anion densities similar to the PB theory. It is important to emphasize that, despite
their popularity, these solutions are only valid for bulk solutions and have little relevance for
ion channels because the ion–channel interactions are completely ignored.

In the absence of analytical solutions, applications of the PNP theory to ion channels
have been carried out using numerical methods. The ‘black box’ approach adapted in these
applications emphasizes agreement with physiological data by fitting the model parameters
but has little to say about the actual dynamics of ions, offering virtually no insights into
the permeation process. It is difficult to surmise from the numerical solutions of the PNP
equations whether the ion–channel interactions are correctly taken into account. As in the case
of the PB theory, comparison of the PNP results with those of the BD simulations provides a
straightforward test to check the validity of the PNP approach in channels.

Test of PNP theory in channels. Both the ion concentration and flux are described by continuous
quantities in PNP corresponding to macroscopic, space–time averages of microscopic motion
of individual ions. We have seen in the equilibrium case of the PB theory that this averaging
is valid in large channels with radius greater than 2 Debye lengths and fails in narrower
pores. In a conducting situation, ions diffuse at a small fraction of their thermal velocity.
Thus diffusion of ions is an adiabatic process compared with their thermal motion, and the
instantaneous screening of an ion as predicted by the PB theory should remain intact to a
good approximation. Recalling that the problem with the PB theory is overshielding due to
the neglect of self-energy, one expects PNP to suffer from the same predicament. In fact,
the problem is worse here because there is at least some trace of self-energy for a test ion
in PB, whereas the complete smearing of the ion charges in PNP leads to a total neglect of
self-energy.

These assertions were given a solid ground in detailed tests, where PNP predictions for
conductance and concentration in model channels were compared with those obtained from the
BD simulations (Corry et al 2000a). The main concern of neglect of self-energy is illustrated
in figure 3. The channel system used in calculations is the same as in figure 2. In (a), the
self-energy contribution is switched off by setting the dielectric constant of the protein to 80,
the same as for water. There is a general agreement between the two approaches at all radii. A
very different picture emerges in (b), where ε = 2 is used for the protein. In BD, conductance
nearly vanishes for the narrowest pores because ions cannot enter the channel due the self-
energy barrier. In contrast, conductance in PNP remains at the same level as in the left panel,
clearly demonstrating the neglect of self-energy in PNP. Only when the radius is larger than
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Figure 3. Comparison of conductance of Na and Cl ions predicted by PNP (solid curves) and BD
(circles fitted by dotted curves) in cylindrical channels with a varying radius. The conductance
values are normalized by dividing with the cross-sectional area. A symmetric NaCl solution of
0.3 M and an applied potential of 0.1 V are used. (a) ε for the channel protein is set to 80 so that
there is no self-energy barrier for ions. The realistic case with ε = 2 is shown in (b).

two Debye lengths does the self-energy contribution become negligible, and the PNP and BD
results converge. Similar results are obtained for concentration profiles of ions in the channel.
In BD, self-energy barrier leads to a suppression of ionic concentration in narrow channels
by more than an order of magnitude as compared with the bath values, whereas in PNP, the
channel is occupied by Na and Cl ions at the bath concentrations regardless of the pore radius
or ε value used for the protein.

The above test was deliberately carried out in a neutral channel to isolate the self-energy
contribution from other terms in the potential energy. Tests in negatively charged channels
show that convergence of cation current in PNP and BD occurs at a smaller radius, indicating
that ion-fixed charge interactions are modelled correctly and help to reduce the discrepancy. On
the other hand, the disagreement in anion current persists as before, and has to be suppressed
by artificial means (e.g. reducing the diffusion coefficient of anions relative to cations) in order
to obtain agreement with experimental data. Only in very highly charged channels, such as the
KcsA potassium, does the anion current cease to flow. However, such channels are occupied
by multiple ions, which gives rise to another problem in PNP, namely how to incorporate the
Coulomb forces among ions in a continuum model.

As a final test of PNP, we consider the conductance–concentration curves, which should
exhibit saturation as stressed in section 2.2. In all the G–c curves calculated from PNP,
conductance increases linearly with concentration with no sign of saturation, regardless of
the channel size or whether it is neutral or highly charged (Corry et al 2000a). Since the
diffusion coefficients of ions are held constant and electroneutrality is maintained in PNP, this
can happen only if both cation and anion concentrations in the channel rise in tandem with
the bath values. Indeed this has been observed to be the case in all test calculations, including
the KcsA potassium channel. Needless to say, saturation does occur in channels because
counter-ions cannot enter them, which brings us back to the self-energy problem.

It is not clear whether the self-energy problem in continuum theories can be fixed in a
rigorous way. Obviously, one has to give up self-consistency since that is part of the problem.
A second difficulty for continuum theories is how to deal with the ion–ion interactions in multi-
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ion channels, which appears to play a significant role in permeation dynamics. Until these
issues are resolved, application of PNP to ion channels will remain doubtful, no matter how
successful it may be in fitting experimental I–V curves. In the meantime, earnest modelling
of ion channels has to be carried out using permeation theories that treat the ions in the system
as discrete particles.

3.2. Brownian dynamics

The simplest permeation theory that treats ions as particles is BD, first proposed by Einstein
in 1905 to describe the motion of colloidal particles in a solution. BD simulations have
been used to study the influence of ions around globular proteins (e.g., Madura etal 1995),
and the promise of BD in modelling ion channels was emphasized in an early review by
Coopet et al (1985). But apart from a few 1D studies of model channels (Jakobsson and
Chiu 1987, Bek and Jakobsson 1994), this proposal was mostly overlooked until recently.
The main reason for this neglect appears to be the technical difficulties in extending BD
simulations to 3D, which is necessary for realistic applications. During a typical BD simulation,
Poisson’s equation needs to be solved at each time step to determine the forces acting on
ions, and this process is repeated millions of times. The computational overhead associated
with numerical solution of Poisson’s equation is fairly large, putting practical application of
BD to channels in such a straightforward manner beyond the reach of even supercomputers.
Not surprisingly, the first 3D BD simulation was carried out in a toroidal channel, which
allows analytical solution of Poisson’s equation (Li et al 1998). For a general channel
boundary, this problem was overcome by storing the precalculated values of the electric
field and potential in a system of lookup tables, and interpolating the required values from
these tables during simulations (Hoyles et al 1998a). This innovation enabled application
of 3D BD simulations to a number ion channels: e.g. acetylcholine receptor (Chung et al
1998), KcsA potassium (Chung et al 1999, 2001), L-type calcium (Corry et al 2000a, 2001)
and GA (Edwards et al 2001). There are also some 3D BD studies of the porin channel
(Schirmer and Phale 1999, Im et al 2000). However, the reaction field is ignored in these
studies so that they are free from the difficulties arising from the solution of Poisson’s
equation. Below we discuss the Langevin equation and its implementation in BD simulations
of channels.

Langevin equation. In BD simulations, the trajectory of each ion in a system of N ions is
followed using the Langevin equation (Chandrasekhar 1943)

mi

dvi

dt
= −miγivi + Ri + Fi , i = 1, . . . , N, (24)

where mi , vi and γi are the mass, velocity and the friction coefficient of the ith ion. The three
force terms on the rhs of (24) correspond to the frictional, random and the total systematic
forces acting on the ion. The frictional and random forces represent the incessant collisions of
the ion with the surrounding water molecules in an average way. Because they arise from the
same source, the two forces are not independent but intimately related through the fluctuation–
dissipation theorem (Kubo 1966)

miγi = 1

2kT

∫ ∞

−∞
〈Rik(0)Rik(t)〉 dt, k = x, y, z. (25)

Here the quantity in the integrand is the autocorrelation function of the random force and the
angular brackets denote average over an equilibrium ensemble. In order to give an intuitive
feeling about their role in ion permeation, we discuss the frictional and random forces in some
detail below.
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Table 1. Basic properties of physiologically important ions in electrolyte solutions (Hille 1992).
Here r is Pauling’s crystal radius, v̄ is the average thermal speed, γ−1 is the relaxation time constant
and 1H is the hydration energy of ions. Note that 1kT = 4.11 × 10−21 J at room temperature
T = 298 K.

m r v̄ D γ−1 1H

Ion (10−26 kg) (Å) (m s−1) (10−9 m2 s−1) (fs) (kT )

Na+ 3.8 0.95 570 1.33 12 −177
K+ 6.5 1.33 435 1.96 31 −144
Ca2+ 6.6 0.99 432 0.79 13 −671
Cl− 5.9 1.81 473 2.03 29 −139

When R = F = 0, equation (24) has the trivial solution v = v0e−γ t . Thus the friction
alone would grind the motion of an ion to a halt with a relaxation time constant of γ−1. Using
the Einstein relation D = kT /mγ , we calculate the relaxation times for some ions of interest
from their observed diffusion coefficients (see table 1). At tens of femtoseconds, the relaxation
times of ions are indeed extremely short—an ion would travel about a tenth of an ångstrom in
that time interval. This illustrates the essentially diffusive nature of ion permeation in water.
For future reference, note that the average frictional force, estimated from the table entries, is
about 1–2 nN.

The random force, by definition, has a zero mean, 〈Ri〉 = 0, has no correlations with prior
velocities, 〈vi(0)Rj (t)〉 = 0, and is Markovian, that is, there are no correlations with earlier
times or other components (here i and j run over 1, . . . , 3N )

〈Ri(0)Rj (t)〉 = 2miγikT δij δ(t). (26)

It is standard to assume a Gaussian probability distribution for the random force

w(Ri) = (2π〈R2
i 〉)−1/2 exp(−R2

i /2〈R2
i 〉), (27)

which follows from the likewise distribution of velocities (Chandrasekhar 1943), and can also
be verified directly from MD simulations (Rey et al 1992). Replacing the ensemble average
by time average, the width of the Gaussian distribution in (27) can be calculated from (26) as
〈R2

i 〉 = 2miγikT /1t , where 1t is the time step used in integration of the Langevin equation.
Using the entries from table 1 with 1t = γ−1

i , the average random force is seen to be about
1–2 nN, the same range as the frictional force.

Strictly speaking, the Markovian assumption is justified when the Brownian particle is
much heavier than the solvent molecules. This assumption is relaxed in the generalized
Langevin equation (Kubo 1966), which is obtained from equation (24) by replacing the
constant friction coefficient with a time-dependent friction kernel: that is, mγv →
m

∫ t

0 ξ(t−t ′)v(t ′) dt ′. The fluctuation–dissipation theorem (26) then becomes 〈Ri(0)Rj (t)〉 =
2mikT δij ξ(t). The generalized Langevin equation reduces to the Markovian one for ξ =
γ δ(t − t ′). This higher level of complexity appears to be required for detailed description of
equilibrium properties of electrolytes (Rey et al 1992), but so far it has not been considered in
transport problems, presumably because the ions’ motion is severely damped. We, therefore,
leave the possible effects of the generalized Langevin equation as a future problem and restrict
ourselves to a discussion of the Markovian one in this review.

In contrast to the frictional force, the random force keeps ions in constant agitation. As
it is white, it cannot cause a drift on an ion’s position on average: that is, 〈x〉, 〈y〉 and 〈z〉
remain constant when F = 0. But because of fluctuations, the mean-square displacement
of ions will not vanish. To see this effect of the random force on ions’ motion, consider the
Langevin equation (24) with F = 0. Since there is no correlation between the components of
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R, the same equation applies in each direction: e.g. ẍ = −γ ẋ + Rx/m, where dots indicate
the time derivatives. To integrate this equation (i) multiply both sides by x, (ii) substitute
xẍ = d

dt (xẋ) − ẋ2 and (iii) take the ensemble average and replace 〈ẋ2〉 = kT /m from the
equipartition theorem and 〈xRx〉 = 〈x〉〈Rx〉 = 0, yielding

d

dt
〈xẋ〉 = −γ 〈xẋ〉 + kT /m. (28)

Assuming x = 0 at t = 0, (28) can be integrated to give 〈xẋ〉 = (kT /mγ )(1 − e−γ t ). Finally,
using d

dt 〈x2〉 = 2〈xẋ〉, and integrating once more, we obtain for the mean-square displacement

〈x2〉 = (2kT /mγ )
[
t − γ−1(1 − e−γ t )

]
. (29)

Two time regimes can be identified in equation (29):

(i) t � γ−1 → 〈x2〉 = (kT /m)t2, ions move ballistically between collisions with an average
velocity of v̄x = (kT /m)1/2.

(ii) t 	 γ−1 → 〈x2〉 = (2kT /mγ )t , fluctuations in an ion’s position grows with time just
like in Fick’s law for self-diffusion, 〈x2〉 = 2Dt . Thus, in the absence of systematic
forces, the Langevin equation reproduces Fick’s law and provides an expression for the
diffusion coefficient (Einstein relation).

The above equilibrium picture of ions is disturbed once systematic forces are in operation.
First consider the simplest case of ions with charge q in a uniform electric field in the x

direction, F = qEx̂. The Langevin equation becomes ẍ = −γ ẋ +Rx/m+qE/m. Taking the
ensemble average and assuming a steady-state situation, 〈ẍ〉 = 0, one obtains 〈ẋ〉 = qE/mγ .
Substituting this average velocity in flux yields Jx = n〈ẋ〉 = (nq/mγ )E, which is Ohm’s
law with the conductivity given by σ = nq/mγ = nqD/kT . These cases demonstrate
the equivalence of BD to continuum theories in bulk electrolytes in some limiting situations.
There are no simple solutions of the Langevin equation when both potential and concentration
gradients are present in the system. Nevertheless, the general equivalence of the two approaches
in bulk solutions can be established by comparing solutions of PNP equations with BD
simulation results. The upshot is that there is not much point in using BD for simulation of bulk
electrolytes or bulk-like systems (e.g. channels where ion–channel interaction is ignored). The
continuum theories will do the same job at a fraction of the computational cost. BD becomes an
indispensable tool only when one needs to model ions’ interactions with boundaries accurately,
as in the case of ion channels.

BD algorithms for ion channels. During permeation, forces acting on ions in a channel change
rapidly with space and time. In order to model ion permeation correctly, both calculation
of F and its implementation in the Langevin equation via numerical integration must be
done accurately. We tackle the latter issue first and describe a third-order algorithm which
has general validity regardless of the time step used (van Gunsteren and Berendsen 1982).
Again, we consider (24) in the x direction (identical results follow in the other directions),
ẍ + γ ẋ = (R + F)/m. The ion and coordinate labels are suppressed here for convenience.
Using ẍ+γ ẋ = e−γ t d

dt (ẋeγ t ), this equation can be integrated from an initial time tn to t , giving

ẋ(t) eγ t − ẋ(tn) eγ tn = 1

m

∫ t

tn

[R(t ′) + F(t ′)] eγ t
′
dt ′. (30)

Here the integral over the random force follows directly from its stochastic properties.
Assumption of a constant systematic force during a time interval 1t simplifies the solution
of (30) somewhat. However, such an algorithm, second order in1t , is valid only for1t � γ−1.
This restriction is avoided by going to the third order, which requires the knowledge of the
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next order term in the Taylor expansion of the systematic force, F(t) = F(tn) + Ḟ (tn)(t − tn).
Performing the integrations in (30) with this force gives

ẋ(t) = ẋ(tn) e−γ (t−tn) +
F(tn)

mγ

(
1 − e−γ (t−tn)

)
+
Ḟ (tn)

mγ 2

(
γ (t − tn) − 1 + e−γ (t−tn)

)
+

e−γ t

m

∫ t

tn

R(t ′) eγ t
′
dt ′. (31)

The position after a time step 1t is found by integrating (31) from tn to tn+1 = tn + 1t .
Integration of all the terms in (31) are straightforward except the last one which can be done
by parts using du = e−γ t and v as the integral of Rx∫ tn+1

tn

e−γ t

∫ t

tn

Rx(t
′) eγ t

′
dt ′ = 1

γ

∫ tn+1

tn

[
1 − eγ (t−tn−1t)

]
Rx(t) dt ≡ Xn(1t), (32)

where the random variable Xn(1t) has the same stochastic properties as Rx(t) (see van
Gunsteren and Berendsen (1982) for details of its implementation in the BD algorithm). With
this result, the position at time tn+1 becomes

x(tn+1) = x(tn) +
ẋ(tn)

γ
(1 − e−τ ) +

F(tn)

mγ 2
(τ − 1 + e−τ )

+
Ḟ (tn)

mγ 3

(
1 − τ + τ 2/2 − e−τ

)
+ Xn(1t). (33)

Here τ = γ1t is a dimensionless parameter that signifies a ballistic regime when τ � 1 and
a diffusive one when τ 	 1. In these two limits, equation (33) simplifies to

x(tn+1) = x(tn) + ẋ(tn)1t +
F(tn)

m

1t2

2
+
Ḟ (tn)

m

1t3

3!
, 1t � γ−1,

x(tn+1) = x(tn) +
ẋ(tn)

γ
+
F(tn)

mγ
1t +

Ḟ (tn)

mγ 2

1t2

2
+ Xn(1t), 1t 	 γ−1.

(34)

In the ballistic limit, friction is ignored and the result is in accordance with the numerical
integration of Newton’s equation of motion as employed in MD simulations (the Verlet
algorithm, Verlet (1967)). Of more relevance here is the diffusive limit, which can be further
simplified by neglecting the smaller velocity and Ḟ (tn) terms. The resulting expression then
corresponds to the solution of the diffusive Langevin equation where the inertial term mẍ

is omitted from (24). Because of its simplicity, this form is quite popular in the literature.
However, its applicability to ion channels is limited by the condition 1t 	 γ−1, which
requires use of rather large time steps (i.e. 1t 	 30 fs). This is as opposed to the rapidly
changing forces inside a channel that demand use of much smaller time steps than 30 fs.

In practical applications, the velocity term is eliminated from x(tn+1) by adding e−τ x(tn−1)

to equation (33)

x(tn+1) = x(tn)(1 + e−τ ) − x(tn−1) e−τ +
F(tn)

mγ 2
τ(1 − e−τ )

+
Ḟ (tn)

mγ 3
τ

(
τ(1 + e−τ )/2 − 1 + e−τ

)
+ Xn(1t) + Xn(−1t) e−τ . (35)

A similar expression is obtained for the velocity by subtracting x(tn−1) from (33)

ẋ(tn) = 2γ

sinh τ

[
x(tn+1) − x(tn−1) + 2

(
F(tn)

mγ 2
− Ḟ (tn)

mγ 3

)
(sinh τ − τ) − Xn(1t) + Xn(−1t)

]
.

(36)
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Equations (35) and (36) (and similar ones for y and z) provide the basic input for the third-order
algorithm used in BD simulations. At each time step, the calculated values of F and Ḟ and the
sampled value of Xn are fed into (35) and (36) to determine the new positions and velocities of
ions in the system. This process is repeated until a statistically meaningful trajectory data set
is generated so that properties of interest such as average concentration, potential and current
can be calculated with confidence.

Calculation of forces. We next discuss systematic forces and how they can be calculated
both accurately and fast enough to enable long-time BD simulations. For convenience, we
separate the electric and short-range forces acting on ions as Fi = qiEi +Fsi . The total electric
field at the position of the ion i can be determined fairly accurately from numerical solution of
Poisson’s equation (section 2). However, as stressed earlier, the fact that this process needs to be
repeated millions of times during a typical BD simulation creates a computational bottleneck.
One way to overcome this problem is to precalculate the electric potential and field on a grid
of points and store these values in a set of tables (Hoyles et al 1998a). During simulations, the
potential and field at desired points are determined by interpolating between the table entries.
For calculational convenience, the total potential ϕi experienced by an ion i is broken into four
pieces using the superposition principle

ϕi = ϕX,i + ϕS,i +
∑
j �=i

(ϕC,ij + ϕR,ij ), (37)

where the sum over j runs over all the ions in the system, and the four terms refer to

(i) ϕX,i is the external potential due to the applied field, fixed charges in the protein, and the
surface charges induced by these on the channel boundary. Because it is independent of
ions, ϕX does not change during simulations. Poisson’s equation is solved in the absence
of ions and the results at the grid points are stored in a 3D table.

(ii) ϕS,i is the self-potential due to the charges induced by the ion i itself on the boundary.
Poisson’s equation is solved for a single ion with the applied field and fixed charges
switched off. The ion is moved through the grid points and the calculated self-potentials
are stored in a 3D table (2D if the channel boundary is axially symmetric).

(iii) ϕC,ij is the Coulomb potential due to the ion j . It is calculated directly from the Coulomb
law.

(iv) ϕR,ij is the reaction potential due to the charges induced by the ion j . This is similar to
case (ii) except that a second ion is moved through all the grid points while the first one is
held at one point. Because the solution of Poisson’s equation contains the Coulomb and
self-potentials at the position i, these need to be subtracted to obtain ϕR,ij . The results are
stored in a 6D table (5D if the boundary is axially symmetric).

An identical procedure is used to store the three components of the electric field in three
sets of tables. The accuracy of this method clearly depends on the choice of grid points. For
example, use of a rectangular grid with a uniform spacing would certainly defeat the purpose
because the electric field changes rapidly in narrow parts of a channel but less so in wider
parts and hardly at all in reservoirs. This problem is avoided by using generalized coordinates,
which allows variations in grid spacing as necessary. Tests indicate that, with this method,
forces acting on ions in channels can be calculated very accurately (Hoyles et al 1998a).

The short-range forces among ions or between an ion and protein or lipid wall are also
Coulombic in nature but arise from quantum mechanical effects. When the electronic orbitals
of two atoms overlap, a very steep repulsive force occurs due to the Pauli exclusion principle.
From the tail of electronic wavefunctions, one expects this repulsive interaction to have an
exponential form e−αr , where r is the distance between the two atoms. But power laws such
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as r−12 are preferred in practice because they are more convenient computationally and lead to
similar results. At larger separations, the induced dipole–dipole interaction leads to a weak r−6

attraction between two atoms (dispersion or van der Waals interactions). In MD simulations
of liquids, these two effects are commonly combined in a 12–6 Lennard-Jones (LJ) potential

ULJ = 4ε
[
(σ/r)12 − (σ/r)6

]
, (38)

where ε is the depth of the potential at the minimum (rmin = 21/6σ), and σ is where it vanishes.
Clearly the raw LJ interaction between two ions will be greatly modified in the presence of
solvent molecules, and cannot be employed in BD simulations in the form it is used in MD.
When the LJ potential is averaged over many atoms, the weak attractive part is typically washed
out and the strong repulsive part acquires an r−9 dependence as a result of 3D integration. More
importantly, MD simulations show that the hydration forces add further structure to the ion–ion
interaction in the form of damped oscillations (Guàrdia et al 1991a, 1991b). The potential
of mean force between two ions obtained from such MD simulations can be approximately
represented by (Moy et al 2000)

Uii(r) = u0
{
(Rc/r)

9 − exp[(R − r)/ae] cos[2π(R − r)/aw]
}
. (39)

Here u0 is the overall strength of the potential and Rc is the contact distance for anion–
cation pairs, which is pushed further apart (by 1.6 Å) for like ions. The second term in (39)
describes the damped oscillations with R ∼ Rc and ae = 1 Å. Since they are caused by water
molecules, the oscillation length is given by the water diameter aw = 2.76 Å. The values of
other parameters are determined from fits to the potentials of mean force (Corry et al 2001).
The advantage of using the ion pair potentials (39) in BD simulations is that they lead to a more
realistic distribution of ions as compared with the simple hard-core or repulsive r−9 potentials.
As will be seen in the next section, this is an important consideration in modelling of multi-ion
channels.

The main function of the ion–wall interaction is to keep the ions in the system. Due
to the repulsive image forces, ions usually stay well away from the boundaries. However,
on occasion an ion can stray outside due to a large fluctuation in the random force. This is
prevented by using an r−9 repulsive potentialUiw at the walls, where r is the distance of the ion
from the boundary. The total short-range force acting on an ion is obtained from the gradient,
Fs = −∇(Uii + Uiw).

Reservoirs and boundary conditions. To complete the simulation system, electrolyte-filled
reservoirs are attached on either side of the lipid–channel complex. This is just a book-
keeping device to facilitate tracking of the ions in the system. Otherwise the electrolyte
solution is assumed to continue beyond the reservoirs. The shape of the reservoirs is arbitrary
(for example, it could be rectangular, spherical or cylindrical), but their dimensions need to
be chosen carefully. If the reservoirs are too large, time is wasted on simulating the motion
of ions that are far away from the channel, and therefore have no influence on the permeation
dynamics. Conversely, if the reservoir size is too small, ion–channel interactions may not be
modelled accurately. Recalling from section 2.2 that an ion’s electric field is totally screened
out at about 4 Debye lengths, one can safely ignore the ions beyond that distance from the
channel mouth. Thus, for physiological concentrations (0.15 M), the optimal radius or length
for the reservoirs is ∼30 Å.

Once an optimal size is chosen for the reservoirs, handling of their boundaries should
not be a significant issue. Since the physics is in the ion–channel interactions, not in the
reservoir boundaries, it is desirable to use the simplest method possible. Unfortunately, because
this is a delicate issue in MD simulations due to the long-range Coulomb forces in vacuum
(see the textbooks on MD quoted in the next section), the same is assumed to be the case
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for BD simulations, resulting in use of unnecessarily complicated boundaries. In fact, in
BD simulations, dielectric and Debye screening ensures that one need not worry about what
happens beyond the reservoir boundaries. The simplest method is to confine the ions within the
simulation system by elastically scattering them off the reservoir boundaries. In this way one
maintains the average concentrations in the baths at the desired values at all times. In reality,
ions would move in and out of the reservoir leading to fluctuations in average concentrations,
which in turn may cause fluctuations in current. Recently, Im et al (2000) introduced a grand
canonical Monte Carlo method that takes such fluctuations in concentrations into account.
This method is useful if one is interested in understanding the fluctuations in observed channel
current, which is a rather ambitious goal for the relatively crude BD simulations. For the
more modest aim of interpreting the average value of channel current, keeping the reservoir
concentrations constant at their average values should be quite adequate. In any case, the
important quantity to consider is the number of ions in the vicinity of the channel, and this has
been shown to fluctuate according to the binomial distribution regardless of whether one fixes
the total number of ions or allows it to fluctuate according to the grand canonical distribution
(Corry et al 2001b). Another purported advantage of this method is that it allows non-integer
values for the average number of ions that arise when the reservoir concentrations and volume
are chosen arbitrarily. Of course, this is not really a problem in the simpler method since for a
given concentration, the volume can be slightly adjusted to make the number of ions integer.

A related point is how to maintain the specified concentrations in the reservoirs when a cur-
rent flows through the channel. The simplest method is to apply a stochastic boundary, namely,
when an ion crosses the channel, say from left to right, an ion of the same species is transplanted
from the right reservoir to the left, thereby completing the circuit. Disturbance of the system due
to this sudden relocation of an ion can be minimized by choosing the ion nearest to the boundary
and putting it next to the boundary on the other side. To give an example, the effect of this pro-
cedure on another ion in the channel would be a change in the force acting on it by a fraction of
pN, which is an order of magnitude smaller than the force due to a membrane potential of 0.1 V
(2 pN) and completely negligible compared with the random and frictional forces (1–2 nN).

A final topic to be considered is the implementation of the membrane potential in BD
simulations. Again, this is an elementary issue and should be straightforward to implement.
Unfortunately, it is often misunderstood in channel studies, so it is worthwhile to give a brief
account of the physics involved to clarify any confusion. When a voltage difference is applied
across the membrane via electrodes at macroscopic distances, anions and cations move in
opposite directions until the electric field in the solution vanishes. This results in an excess
cloud of anions on one side of the membrane and cations on the other. Average behaviour of
these excess charges can be approximately represented by uniformly charged planes, which
generate a uniform electric field across the membrane. Thus the easiest way to implement the
membrane potential is to simply apply a uniform electric field in the system. Note that this is
only one part of the total field and this field itself is modified by the dielectric boundary inside
the channel. The actual potential difference is determined from the solution of Poisson’s
equation or, if one insists on a more accurate measurement, from the average potentials at
the centre of the reservoirs calculated during the BD simulations. An alternative method for
applying the membrane potential is to fix their values at the reservoir boundaries. Strictly
speaking, the potentials are fixed at the electrodes far away, and the regular surfaces chosen for
boundaries will not be equipotential surfaces in reality. Nevertheless, in practice, the difference
between the two methods is negligible—when the reservoir size is chosen as prescribed above,
the potential values at the boundaries differ by at most a few per cent. A similar result is
obtained from a comparison of potentials using the method of Im et al (2000) (Corry et al
2001b). But more importantly, these differences between various methods near the boundary
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are quickly dissipated once one moves away from it, and one can hardly distinguish between
their predictions for concentration or potential in or near the channel.

Limitations of BD. The treatment of water as a continuum is both a strength and a weakness
of the BD approach. While it reduces the simulation time by many orders of magnitude as
compared with MD, thus enabling calculation of conductance, it also ignores the differences
between hydration energies of ions, which is essential for understanding the selectivity
sequences among monovalent cations. We stress that this limitation applies only when
selectivity is based on size rather than charge of ions. Otherwise, selectivity between anions
and cations or mono- and divalent ions can still be understood within the BD framework. A
second problem is the diffusion coefficient of ions in channels. The bulk values of D are well
known but it is almost certain that they will be suppressed in a narrow pore. As discussed
in section 2.3, there is the question of validity of continuum electrostatics in channels and,
assuming it is valid, the effective value of the dielectric constant one should use. Finally,
implicit in the continuum formalism is the assumption of rigid channel boundaries. Channel
proteins are certainly not static, but the crucial question is whether there are any correlations
between their motion and permeating ions. If such correlations are negligible, use of rigid
boundaries reflecting the average position of protein walls would be well justified. Finally,
because water is treated as a continuum, the relative distance between ions in a single-filing
channel is not constrained by the water molecules that separate the ions. This problem is
addressed to some degree by using the ion–ion interaction potentials determined from the MD
potential of mean force (39), which maintains the correct distance between the ions when they
are separated by a few water molecules. In cases where ion separation is larger (e.g. GA),
this effect of the water molecules needs to be taken into account explicitly. In order to address
these questions, one needs to go to the next level in hierarchy and appeal to MD simulations.

In principle, it is possible to by-pass all these problems and make BD quite rigorous by
determining the local diffusion coefficient and the average forces acting on ions from MD
simulations. After direct MD simulations, this would offer the most rigorous method for
determination of channel conductance. However, the computations involved are very heavy
(especially for multi-ion channels), and no attempt has been made in this direction so far. In the
meantime, MD simulations can be used to complement those of BD, for example, to explain
selectivity among ions with the same charge, determine appropriate values of D for ions in
channels, study validity of continuum electrostatics, and attempt to determine an effective ε
value for channel water.

3.3. Molecular dynamics

Parallel to the increase in computer power, applications of MD simulations to problems in
physics, chemistry and biology have been growing at a phenomenal rate. The availability of
several user-friendly packages specifically designed for simulation of biomolecular systems,
such as AMBER (Weiner et al 1984), CHARMM (Brooks et al 1983) and GROMOS (Hermans
et al 1984), has been instrumental in bringing the MD method to the masses in biophysics and
biochemistry. Early applications of MD to ion channels were focused on the GA channel
because of its known structure (see section 4.1 for details). From the mid-1990s on, other
synthetic channels and schematic pores were studied using MD. The appearance of the KcsA
potassium channel structure (Doyle et al 1998) finally led to an explosion in applications of
MD that continues unabated (see section 4.2 for details). There is also a negative side to
this proliferation, as uncritical usage of MD could hinder progress rather than helping it. In
this respect, there are some parallels between the use of continuum theories and MD in ion
channels—in both cases models developed for bulk solutions are applied to channels without
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establishing their validity in the new environment. In order to point out some potential problems
with such straightforward usage of the standard MD packages in channels, we first consider
the fundamental formalism at the quantum mechanical level. This is followed by a critical
evaluation of classical and ab initio MD, and a discussion of uses of MD methods in channels.
While MD simulations are conceptually simple (solving Newton’s equation of motion), there
are many technical issues related to the treatment of boundaries and extraction of physical
quantities from statistical analysis of trajectory data. These topics are discussed in great detail
in several excellent textbooks (Allen and Tildesley 1987, Rapaport 1995, Frenkel and Smit
1996), and the interested reader is referred to them. Here we go straight to the heart of the
matter: that is, the force fields employed in MD.

Basic formalism. At a fundamental level, a system of interacting atoms is described by the
many-body Schrödinger equation

(Hn + He + Une)ψ({Ri , rα}) = Eψ({Ri , rα}), (40)

where the indices i and α run over the nuclei (or ions with closed electronic shells) and the
electrons in the system, ψ is a properly antisymmetrized total wavefunction and E is the
corresponding energy eigenvalue. The first two terms in the Hamiltonian describe the nuclear
and electronic parts and the last one the Coulomb interaction between them

Hn = −
∑
i

h̄2

2Mi

∇2
i +

∑
i>j

zizj e
2

|Ri − Rj |

He = −
∑
α

h̄2

2m
∇2
α +

∑
α>β

e2

|rα − rβ |

Une = −
∑
i,α

zie
2

|Ri − rα| .

(41)

Here Mi refers to the mass of nuclei and m to that of electrons. This hopelessly complicated
equation is brought into some relief by exploiting the fact that nuclei, being much heavier than
electrons, move much more slowly, and therefore their motion can be decoupled from those
of electrons: that is, ψ({Ri , rα}) = ψn({Ri})ψe({Ri , rα}). Using this product wavefunction
in (40), the electronic part can be formally written as

(He + Une)ψe({Ri , rα}) = Ee({Ri})ψe({Ri , rα}). (42)

In the adiabatic or Born–Oppenheimer approximation, the two terms of order (m/Mi)
1/2 and

m/Mi that arise from the action of Hn on ψe are neglected, so that the nuclear part becomes

[Hn + Ee({Ri})]ψn({Ri}) = Eψn({Ri}). (43)

Apart from very simple systems, solution of equations (42) and (43) is still very formidable,
and a second approximation is invoked at this stage by treating the nuclear motion classically.
For example, the ground state of the system (zero temperature) is determined by minimizing
the potential energy surface for nuclei (or ions)

U({Ri}) =
∑
i>j

zizj e
2

|Ri − Rj | + Ee({Ri}), (44)

with respect to the coordinates {Ri}. Here Ee({Ri}) is taken from the ground-state solution
of (42). At finite temperatures, assuming that electrons remain in their ground state, one can
use the potential function (44) in Newton’s equation of motion

MiR̈i = −∇i U({Ri}), (45)
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to trace the motion of individual nuclei. Together with equations (42) and (44), equation (45)
forms the basis of ab initio MD simulations. The formalism reduces to classical MD when
the electronic degrees of freedom are ignored and a fixed functional form is assumed for the
potential in (45) from the outset.

The intermolecular potential in equation (44) is seen to consist of a classical electrostatic
and a quantum mechanical electronic part. In a perturbation analysis, the electronic interaction
between two molecules can be separated into three further terms: polarization, dispersion and
exchange repulsion. The last two terms are usually approximated using the 12–6 LJ potentials
in classical simulations as discussed in the BD section. The polarization interaction can also
be given a classical description by assigning polarizabilities to individual atoms or molecules.
However, it is often neglected in applications of MD to ion channels because most MD packages
employ nonpolarizable force fields. The importance of the polarization effects in MD studies
of ion permeation in channels is one of the central themes of this review and is discussed in
more detail below.

The adiabatic and classical approximations in the above formalism are expected to work
well for heavy atoms but not for the lighter ones, especially hydrogen. Note that implicit in
use of (42) in the calculation of Ee is the assumption that electrons remain in their ground
state at finite (∼room) temperatures. Also at finite temperatures, atomic collisions can induce
electronic transitions leading to excitations from the ground state. Such non-adiabatic effects
are expected to play an important role in dynamic situations (e.g. chemical reactions where
bonds are formed or broken), but not in equilibrium (or near equilibrium) where they are
thought to be negligible (Tuckerman et al 1996). Therefore, we will not go into refinements
of ab initio MD here. That also means excluding discussion of the interesting case of proton
permeation in channels. Because a proton is light and its transfer involves the making and
breaking of hydrogen bonds, it has to be treated quantum mechanically (Sagnella et al 1996,
Geissler et al 2001).

The usual computational bottleneck in all simulation work arises from the fact that forces
need to be re-evaluated at each time step. This problem is much worse in the case of ab
initio MD because solution of the many-body Schrödinger equation (42) is an extremely time
consuming process. Comparison of the number of water molecules that can be handled and
simulation times in ab initio MD (∼102 molecules for picoseconds) with those in classical
MD (∼105 molecules for nanoseconds) gives an indication of the magnitude of the problem.
Note that a water molecule is represented by three ions and eight electrons in the former and
by three atoms in the latter, so the severe limitation in simulation size and time in ab initio MD
is due to going from classical to quantum dynamics rather than the extra particles involved.

Classical MD. A purely classical description of a system can be obtained by replacing the ab
initio potential energy (44) with a phenomenological one, which can be expanded in many-body
terms as

U({Ri}) =
∑
i>j

U2(Ri ,Rj ) +
∑
i>j>k

U3(Ri ,Rj ,Rk) + · · · . (46)

The usual experience with many-body systems is that the two-body part dominates the total
energy, and contributions from the higher-order terms rapidly diminish with increasing order.
Thus a reasonable method to construct the many-body potential is to start with the dimer
system and determine U2 first, and then proceed with the trimer, tetramer, etc, subtracting at
each step contributions from the lower-order energies to obtain the corresponding many-body
interaction. For water, the main substance of interest in MD simulations, this approach was
initiated by Clementi and collaborators (Matsuoka et al 1976). Despite the continuing efforts
of several groups for over two decades, a water potential that successfully simulates its liquid
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Table 2. Parameters of water models commonly used in MD simulations. The last two columns
give the dipole moments µ and dielectric constants ε (from Höchtl et al (1998)). The experimental
value of µ in the gas phase is 1.86 D (Clough et al 1973).

Model rOH (Å) θHOH qH (e) ε (kT ) σ (Å) µ (D) ε

SPC 1.0 109.5◦ 0.410 0.262 3.166 2.27 65 ± 5
TIP3P 0.957 104.5◦ 0.417 0.257 3.151 2.35 97 ± 7

properties has yet to be constructed (see Wallqvist and Mountain (1999) for a review of water
models). As in many other strongly interacting systems, it is very difficult to describe the
collective or co-operative effects in water by simply summing up the many-body terms.

The alternative is to truncate the many-body potential energy (44) at the two-body level and
try to incorporate the effects of the higher-order terms in the parametrization ofU2 within a mean
field approximation. This approach has been widely adopted in practical applications and forms
the basis of all the current MD simulation packages. Since an accurate description of water is
a key ingredient in their success, we describe the water models used in these packages. The
two models that have become the industry standard are SPC (simple point charge, Berendsen
et al (1981)) and TIP3P (transferable intermolecular potential with three points, Jorgensen
et al (1983)). Both are rigid, three-site models that try to capture the tetrahedral coordination
of water molecules in liquid using the known H2O geometry with partial charges at the O and
H sites. Thus, the basic parameters are the O–H distance rOH, the H–O–H angle θHOH and
the partial charges on hydrogens qH (qO = −2qH from electroneutrality). In addition, the
dispersion and repulsive short-range interactions between the oxygen sites are represented by
a 12–6 LJ potential (38). The parameters of the two models (table 2) are quite similar as are
their overall performance in predicting water properties. Note that θHOH in SPC corresponds to
the ideal tetrahedral angle whereas θHOH (and rOH) in TIP3P are taken from the experimental
values of the water monomer. This apparently small difference in θHOH is responsible for the
50% difference in dielectric constants, which would be hard to explain on the basis of the
3% difference in the dipole moments alone. Höchtl et al (1998) have shown that θHOH is by
far the most critical determinant of ε and the tetrahedral choice in SPC actually minimizes it.
Changing the SPC angle by either −5◦ or +5◦ leads to ∼50% increase in ε values, despite a
reduction in µ in the latter case. This result should have important ramifications in the design
of new water models because the dipole moment was long thought to be the crucial parameter
in determining the dielectric constant (Sprik 1991).

Both water models have improved versions that give a better description of bulk properties
such as radial distribution functions and diffusion coefficients. SPC was extended to SPC/E
(Berendsen et al 1987) by including the polarization energy in the fitting procedure, which
yielded slightly higher charges, qH = 04238e. A four-site version of TIP3P, called TIP4P
(Jorgensen et al 1983), was constructed by moving the charge on the oxygen site by 0.15 Å along
the H–O–H bisector and increasing the charges to qH = 0.52e. Despite the improvements, the
original versions continue to be employed in biomolecular simulations because, as stressed
by Tieleman et al (1997), SPC has a better chemical potential in mixed systems and therefore
it is more suitable for such applications. This brings us back to the missing term in the
SPC and TIP3P force fields: namely, the polarization interaction. To put this issue into
a proper perspective, we note that water molecules have a relatively large polarizability
(α = 1.444 Å3), and the polarization contribution to the total energy of a water molecule,
estimated from quantum chemical calculations, is about 20% in a dimer rising to 44% in liquid
water (Engkvist et al 2000). These are significant figures and one would not expect the models
to work at all if they completely ignored polarization contribution to the energy. Indeed, the
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effects of polarization are absorbed in the other terms in SPC and TIP3P by ensuring that the
experimental energy in liquid is reproduced by the models. That is why, for example, the µ
values quoted in table 2 are substantially larger than the experimental one. This approximation
seems to work well in simulations of pure water, but problems will arise in dealing with mixed
systems, especially when it involves transport of ions from one environment to another with
very different polarization characteristics.

The solution to this dilemma is to include the polarization interaction explicitly in the force
fields. Despite the computational costs involved, there have been serious efforts in this direction
during the last decade (for reviews, see Halgren and Damm (2001), Wallqvist and Mountain
(1999)). Conceptually the simplest method is to introduce point dipole polarizabilities at the
atomic sites so that an electric field Ei at a site i induces a dipole moment δ �µi = αiEi ,
assuming an isotropic polarizability of αi (Barnes et al 1979, Rullmann and van Duijnen 1988,
Dang 1992, Dang and Chang 1997). Since the electric field arises from both the permanent
partial charges and the induced dipoles on other sites, the induced dipole moment can be written
as

δ �µi = αi

4πε0

∑
j �=i

[
qj r̂ij

r2
ij

+
1

r3
ij

(3r̂ij r̂ij · δ �µj − δ �µj)

]
, (47)

where rij = rj − ri and r̂ij denotes the unit vector. Equation (47) displays the genuinely
many-body nature of the polarization interaction—it cannot be reduced to pairwise additive
terms as in Coulomb and LJ potentials. Thus to calculate the induction forces and energies,
one needs to solve the coupled system of equations in (47) by matrix inversion or iteration
at each time step. This increases the simulation time several-fold, which may explain the
prevailing reluctance to including the polarization effects in MD studies. A computationally
less demanding method to describe polarizability is to allow fluctuations in the partial charges
in response to the environment (Sprik and Klein 1988, Rick et al 1994). However, polarization
is confined to the molecular plane in this method, so it may require supplementing with point
dipoles for molecules with isotropic polarizabilities (e.g. water).

The general conclusion from the decade-long studies of bulk water and electrolyte
solutions with polarizable models is that they provide little (if any) improvement over the
standard nonpolarizable models (Halgren and Damm 2001, Koneshan et al 2001). In part, this
reflects the success of the mean field treatment of polarization effects in the standard models.
Another reason for this somewhat disappointing result is perhaps the way that a majority
of the polarizable models are constructed by ‘grafting’ point dipoles on one of the standard
models with a minimal adjustment of partial charges. Constructing a successful water model
by ‘guessing’ the parameters is said to be an art form. It would be desirable to reduce it to
a science by determining the force field parameters directly from the ab initio calculations
(Wallqvist and Karlström 1989, Engkvist et al 2000, Guillot and Guissani 2001). This is even
more pressing in mixed systems, where there is an emerging consensus that polarization effects
should be taken into account properly.

Ab initio MD. Quantum chemical methods have long been used to determine the potential
energy surfaces in atomic and molecular systems. The main approach is to solve the
Schrödinger equation using the Hartree–Fock theory and its various improvements (Pople
1999). Because the basis set for the electronic wavefunction increases exponentially with the
number of atoms, application of these methods is limited to relatively small systems (currently
about ten atoms). A second method, called density functional theory (DFT) (Kohn 1999), has
come into prominence in recent years because it can handle much larger systems (currently
102–103 atoms). In DFT one dispenses with the electronic wavefunction and deals directly
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with the electron density distribution. As a result, size dependence becomes a power law,
much less limiting than an exponential. In a nutshell, the ground-state density of electrons is
given by

n(r) = 〈ψe|
∑
α

δ(r − rα)|ψe〉, (48)

where ψe is the electronic wavefunction introduced in equation (42) and we have used the
Dirac notation for compactness. Various expectation values in the ground-state energy (42)

Ee = 〈ψe|He + Une|ψe〉 (49)

are expressed as functionals of the density (48). For example, the interaction between the ions
and electrons becomes

〈Une〉 = 〈ψe|
∫ ∑

i,α

−zie
2

|Ri − r| δ(r − rα) dr |ψe〉,

=
∫ ∑

i

−zie
2

|Ri − r| n(r) dr. (50)

Similarly the electronic part is written as

〈He〉 = Ts[n(r)] +
e2

2

∫
n(r)n(r′)
|r − r′| dr dr′ + Exc[n(r)], (51)

where the first term is the kinetic energy of a noninteracting system and the second one is
the classical Coulomb energy. The last term represents the exchange correlations that are left
out in the second one. Unlike the other terms, there is no simple form for Exc, and practical
applications of DFT hinges on finding good approximations for Exc. For more details on DFT
and various choices available for Exc, we refer to the textbooks of Parr and Yang (1989) and
Dreizler and Gross (1991) and the review articles of Kohn et al (1996), Kohn (1999) and
Bickelhaupt and Baerends (2000).

A breakthrough in computer simulations was the innovative combination of MD with DFT
by Car and Parrinello (1985), turning ab initio MD into a powerful computational tool, free
from the arbitrary parametrizations of the force fields in classical MD. The electronic part of
the intermolecular potential (44) is determined from DFT using equations (49)–(51). Initial
applications of ab initio MD were concentrated in condensed matter physics, but spread to other
areas quite rapidly (see Parrinello (1997) and Tuckerman and Martyna (1999) for reviews). Of
particular interest for this review are the hydrogen-bonded systems, of which water is a prime
example. An initial ab initio study of liquid water with 32 molecules for 1.5 ps (Laasonen
et al 1993) was followed up using an improved density functional (Sprik et al 1996) with
64 molecules for 10 ps (Silvestrelli and Parrinello 1999). These studies have shed much light
on the electronic and bonding properties of water molecules in liquid that would be very useful
in constructing new water models. For example, the bond length and angle of a water molecule
in liquid are found to be larger than the monomer values (but not as large as employed in SPC).
A provocative result from Silvestrelli and Parrinello (1999) is the average dipole moment of
µ ≈ 3.0 D in liquid, which is substantially larger than the commonly accepted value of 2.6 D
in the literature (Coulson and Eisenberg 1966). In fact, this value was calculated for ice Ih,
but it is often misquoted for liquid water, or even sometimes as an experimental value for
liquid. Moreover, a recent re-evaluation of µ for ice Ih using the same formalism but with
more recent experimental input gave µ = 3.09 D (Batista et al 1998). These results are
significant for polarizable water models because they have often been criticized in the past for
predicting µ > 2.6, which is believed to yield a dielectric constant that is much larger than
the experimental value. Both the ab initio calculation (Silvestrelli and Parrinello 1999) and a
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recent polarizable water model with µ = 3.09 D (Guillot and Guissani 2001) give reasonable
ε values, demonstrating that the relationship between µ and ε is not as straightforward as
assumed to be (see the correlation between θHOH and ε in table 2). Another example of ab
initio MD clearing the muddled waters is the recent Compton scattering experiments in ice
Ih (Isaacs et al 1999), where the observed anisotropies in directional intensities were widely
interpreted as proof of partial covalency of the hydrogen bond (Hellemans 1999, Martin and
Derewenda 1999). If true, this would have important ramifications for the standard models
of water because they describe the hydrogen bonding in purely classical terms with Coulomb
and LJ interactions. As ab initio MD calculations demonstrate (Romero et al 2001), the
anisotropies arise, in fact, from the antibonding repulsive interaction between neighbouring
water molecules, which is already included in the 12–6 LJ potential.

The next step for the permeation models is the ab initio study of solvation dynamics of ions.
Such studies have been initiated recently for several ions, some with biological significance:
for example, Be2+ (Marx et al 1997), Li+ (Lyubartsev et al 2001), Na+ (White et al 2000),
K+ (Ramaniah et al 1999) and Cl− (Tobias et al 2001). In general, smaller and more highly-
charged ions have more intense electric fields in their first hydration shell, and therefore are
more likely to require explicit treatment of polarization in the force fields. This suggests a
straightforward assessment of polarizability effects by comparing the average dipole moment
of a water molecule in the first hydration shell with that in bulk. Any enhancement would
signal the breakdown of the classical models that do not allow any change in the µ values. The
ion–oxygen radial distribution functions and coordination numbers are the typical quantities
extracted from simulations and frequently used in comparisons of the ab initio and classical
MD. From the above discussion, the Be2+ ion is expected to exhibit the largest discrepancy.
Indeed, the classical models with pairwise additive potentials have long been known to fail in
reproducing the experimentally observed tetrahedral coordination of water molecules in the
first hydration shell of Be2+ (Probst et al 1989). The ab initio calculations, on the other hand,
have reproduced the tetrahedral structure, as well as predicting an enhancement in the average
µ value in the first hydration shell. Differences between the ab initio and classical MD results
diminish as one goes from Li+ to Na+ and K+, for the last one being rather negligible. It is
worth emphasizing that these comparisons are for bulk electrolytes, and do not justify use
of classical models with pair potentials in ion channels even if they agree with the ab initio
results.

Uses of MD methods in channels. The main application of MD in channels involves calculation
of free-energy profiles of ions and some other quantities related to permeation (e.g. ordering
of water molecules, diffusion coefficients). Calculation of conductance remains a remote
possibility for MD at present because the transit time of a single ion for physiological currents
(16 ns for 10 pA) is too long to generate sufficient trajectory data for statistical analysis. A
few attempts have actually been made in this direction using very high applied potentials: for
example, 0.5 V (Suenaga et al 1998) and 1.1 V (Crozier et al 2001). Given the non-linear
variation of both measured and simulated single-channel currents as a function of potential, it is
not clear how these results can be extrapolated to the physiological range of ∼0.1 V. Most of the
MD calculations have been performed using the simulation packages with the standard force
fields quoted earlier. In the light of the foregoing discussion of the MD methods, the absolute
free energies of ions are not expected to emerge correctly from such calculations, and indeed
this has been the general experience from applications to the GA channel. Inaccuracies arising
from the force field parametrizations are likely to cancel out when differences in energies
are considered. Thus, predictions of selectivity sequences from free-energy perturbation
calculations are expected to be more robust as compared with the absolute energies. Local
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properties such as diffusion coefficients should also suffer less from the arbitrariness in force
fields. As long as the standard force fields are used in studies of ion channels with the above
caveats, they will continue to provide useful information about the permeation dynamics.

There is clearly a pressing need to go beyond the standard force fields in channel studies
by constructing polarizable models specifically designed for channels using the ab initio
calculations as a guide. Previous attempts to include polarization effects in MD studies of
GA were not very satisfactory. Although Jordan and collaborators have long recognized their
significance (Lee and Jordan 1984, Jordan 1990, Duca and Jordan 1997, 1998), the water and
protein models they used were too schematic to allow computation of realistic energy profiles.
In other studies, the full channel structure with the TIP3P model was used but polarizability
was restricted to the protein only (Roux et al 1995, Woolf and Roux 1997). The results were
actually worse than those obtained with non-polarizable force fields (Roux and Karplus 1993),
which underlines the importance of self-consistency in MD simulations. As demonstrated in a
follow-up study by Duca and Jordan (1998), partial incorporation of polarizability introduces
larger errors than completely neglecting it.

4. Applications to specific channels

In view of the problems with the continuum description of ions in narrow pores, we will
restrict ourselves to theories that represent ions as discrete particles: that is, BD and MD.
Applications will focus on three channels, GA, KcsA potassium and L-type calcium, because
of their known structure (at least in part), biological significance and theoretical interest. Of
course, there are many other channels that satisfy some of these criteria. For example, structures
of porin and mechanosensitive channels are known but these are fairly large channels (even
the continuum models are expected to work reasonably well in them), and therefore not with
many interesting properties. Conversely, too little is known about the tertiary structure of
most biological channels to allow quantitative modelling (e.g. sodium, chloride, nicotinic
acetylcholine receptor, and a host of other ligand-gated channels). We refer to Hille (1992) for
a comprehensive discussion of these channels. There are also a number of synthetic channels
formed by bundles of α-helices (e.g. alamethicin, influenza M2 transmembrane helix and
leucine–serine peptides) that have been intensely studied with MD simulations in recent years
(see Tieleman et al (2001) for a detailed review).

4.1. Gramicidin A

For a long time, GA was the only ion channel with a known tertiary structure (Urry 1971), and
therefore it has been the main focus of theoretical investigations until recently (see Andersen
and Koeppe (1992), Busath (1993), Koeppe and Andersen (1996), Wallace (1998) for general
reviews and Pullman (1987), Partenskii and Jordan (1992), Roux and Karplus (1994) for
theoretical ones). In membranes, the GA peptide forms a cylindrical channel with length 25 Å
and radius 2 Å that selectively conducts monovalent cations, binds divalent cations and rejects
all anions. Its physiological properties are well known: linear I–V curves and relatively large
half-saturation concentrations point to lack of substantial barriers within the channel, and NMR
studies indicate well established binding sites near the entrances.

Modelling of the GA channel has evolved from simple electrostatic calculations with rigid
dielectric boundaries (Levitt 1978, Jordan 1982) to sophisticated all-atom MD simulations with
GA embedded in a lipid bilayer and solvated with water (Woolf and Roux 1994, 1997, Chiu
et al 1999). A crucial question that needs to be settled from the outset is whether continuum
electrostatics can still be employed when the ion–water system is confined to a single file as
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dictated by the GA geometry. Doubts have been raised in this regard earlier (Partenskii et al
1994) but a definitive demonstration of the failure of continuum electrostatics in the GA channel
has been given very recently (Edwards et al 2001)—it is shown that regardless of the effective
dielectric constant used for channel water, it is not possible to achieve a consistent description
of the experimental data on GA. For example, when εc = 80 is employed for channel water,
the potential profile for monovalent cations is nearly flat so that one could explain neither the
binding sites nor the saturation of conductance. Smaller εc values lead to progressively larger
central barriers but no wells at the entrances, so the channel ceases to conduct with still no
binding sites. Lack of binding sites is found for all types of ions, and points to a general failure
of continuum electrostatics in GA. An intuitive explanation for this failure is offered by the fact
that the dipole moments of water in the channel are found to be well aligned with the central
axis in MD simulations whereas polarizability of water drops as 1/r2 with distance from the
ion in continuum electrostatics. As the current BD methods rely on continuum electrostatics
for the calculation of forces, this leaves MD as the method of choice for studying the structure–
function relations in the GA channel. Of course, once reliable potentials of mean force for
ions in the GA channel are determined from MD simulations, these can be employed in BD
to study its conductance properties. In the meantime one can use inverse methods to find the
potential of mean force that reproduces the available data when employed in BD simulations.
Such an approach has yielded an 8kT well at the entrances and a 5kT central barrier (with
respect to the well) with a diffusion coefficient of 0.05 times the bulk value for potassium ions
(Edwards et al 2001).

As already mentioned with regard to the polarization effects, there are two main groups
that have made substantial contributions to MD studies of the GA channel. The focus of
Jordan’s group has been to understand the properties of GA using schematic models, hence
agreement with experiment is less emphasized, while Roux and collaborators have attempted
to reproduce these properties using realistic models. Their main findings are contrasted with
experiments below.

(i) Free-energy profiles. The calculated barrier heights are too high to allow ion permeation
through the GA channel at the observed rates. For example, for Na+ ion, Jordan (1987)
obtains a translocation barrier of ∼40kT and Roux and Karplus (1993), ∼14kT . Binding
site locations at the channel entrance are generally reproduced by these profiles but again
the absolute well depths do not appear to be consistent with the experiments.

(ii) Ion selectivity. Because the GA peptide has no net charge, its cation selectivity has been
attributed to intricate ion–peptide–water interactions in MD studies (Dorman et al 1996,
Roux 1996). A recent examination of the charge distribution in the peptide shows that
their Coulomb interaction with ions alone leads to a sufficiently high barrier for anions
(relative to cations) to exclude them from the channel (Edwards et al 2001). The selectivity
sequences among monovalent cations, calculated from the free energy differences, are in
agreement with the experimental sequence Cs+ > K+ > Na+ > Li+: that is, the larger
ions with smaller hydration energies conduct better as in bulk electrolytes (Sancho et al
1995, Roux et al 1995).

(iii) Coordination of ions. A common prediction of all MD simulations is that the backbone
of the GA peptide is rather flexible with the carbonyl oxygens swinging up to 20◦–40◦ so
that four carbonyls and two water molecules provide a bulk-like solvation environment
for a cation in the GA channel. In complete contrast, the recent high-resolution NMR
studies of cation transport in the GA channel (Tian et al 1996, Tian and Cross 1999)
find that the GA peptide remains rather rigid upon cation binding and the ion is solvated
by just two carbonyl oxygens and two water molecules. Notwithstanding the difficulties
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associated with inferring detailed structural information from solid-state NMR studies
(cf. the discussion following Cross(1999)), one would normally expect such a serious
discrepancy between theory and experiment to lead to a great deal of activity on both
sides towards a quick resolution of the problem. Peculiarly, the experimental results have
been mostly ignored by the MD community, despite their ramifications in modelling of GA
and other channels with very narrow pore regions. The disagreement in ion coordination is
significant because the missing solvation energy in the case of a rigid channel has to come
from another source. One possible scenario is that the water molecules in the channel
have, in fact, a more ordered structure than predicted by the current MD models of GA.
Such an order could be induced by polarization interactions that would lower the energy
of the ion–water column in the channel substantially.

Taken together, the above results identify a number of problems with the force fields
currently used in MD simulations, and invite a consistent inclusion of polarization effects in
future studies of GA. These problems are not unique for GA, but they could be easily identified
in this case because the system allows for detailed comparison of the models with experiments.
As would be expected, the appearance of the KcsA structure changed the focus of permeation
models. In a way this is unfortunate because while the details of ion movement through GA
channels are different from those formed by membrane proteins, the GA channels still remain
the only system that allow for the necessary ‘calibration’ of the model calculations using
experimental results. So, even though the incentive to pursue detailed studies on GA channels
has become less, the amount of experimental results that is available for GA channels—which
is much larger than for any other ion channel—means that they will retain their important role
in the future development of ion permeation models. After all, it is difficult to know whether
a model for the KcsA channel works simply because of the many ‘free’ parameters employed,
or whether it reflects some deeper insights. That uncertainty is much less for GA channels, so
models that have not been calibrated against GA channels will be less believable than those
that have been.

4.2. KcsA potassium

The determination of the crystal structure of the KcsA potassium channel (Doyle et al 1998) is
one of the most significant events in the history of ion channels that will have a lasting impact
in the field (according to one measure, it has already been cited close to a thousand times). The
revealed structure has ended decades of speculation by providing a vision for how biological
ion channels could achieve a large conductance while maintaining their exquisite selectivity for
particular ions. While KcsA is a bacterial potassium channel, quite different from those found
in animals in many details (e.g. gating), two of its main features are expected to be preserved in
all potassium channels: namely, the narrow selectivity filter with a 1.5 Å radius that holds two
K+ ions and a water-filled cavity that follows it (see the schematic above the plots in figure 4).
The role of the filter is obvious and the cavity helps in reducing the self-energy barrier of ions
(Roux and MacKinnon 1999). The significance of the KcsA structure actually transcends the
potassium channels because it provides a general template for modelling all other biological
channels. Not surprisingly, this has fired the imagination of many theorists from other fields
and the interest in modelling of ion channels has been growing steadily. Below we review
applications of the BD and MD methods to the KcsA channel (see also Sansom et al (2000)).

BD studies. The first BD study of KcsA was carried out using a simplified pore shape similar
to a champagne glass and representing the charge residues on carbonyl groups in the selectivity
filter and in the inner and outer mouths with dipoles (Chung et al 1999). This was followed by a



1462 S Kuyucak et al

-50

-25

0

-50

-25

0

Z ( Å )

-40 -20 0 2 0

E
ne

rg
y 

( 
kT

 )

-30

-20

-10

0

(a)

(b)

(c)

Figure 4. Potential energy profiles of a K+ ion
traversing the KcsA channel under an applied field
of 107 V m−1 when there are 0 (a), 1 (b) and 2 (c)
resident ions in the channel. The dielectric constants
used in the solution of Poisson’s equation are 60 for
channel water and 2 for the protein. The electric field
is in the z direction driving ions from inside the cell
(left) to outside (right). The upward arrows indicate the
location of the resident ions when the test ion is at the
centre of the channel (z = 0 Å). The schematic above
the plots shows the positions of the ions in case (c).

more sophisticated study that included all the experimentally determined channel protein in the
model structure (Chung et al 2001). As the crystal structure of KcsA corresponds to its closed
state, open-state configurations were constructed via MD simulations. The refinement has led
to a better description of some properties (for example, positions of the K+ ions in the channel
were in better agreement with the experimentally observed sites) but otherwise corroborated
the permeation mechanism found in the earlier study. We give an intuitive illustration of this
mechanism using the multi-ion potential profiles obtained by minimizing the energies of ions
resident in the channel while another ion is brought into the channel in small steps (figure 4).
As seen in (a), there is a very deep well (67kT ) for a single K+ ion that will permanently bind
it to the selectivity filter. The potential profile of a second ion (b) in the presence of the first
one is again attractive though the well depth is reduced by about half. A third K+ ion is still
attracted to the channel from the intracellular side but now it faces a barrier of several kT high.
Once it goes over this barrier through thermal fluctuations, it moves rapidly under the potential
gradient towards the selectivity filter and destabilizes the equilibrium of the two resident ions
there. From this point on, the three ions move more or less in tandem to the right until the
right-most one is expelled from the channel, leaving again two K+ ions in the filter.

This qualitative account of the permeation process in KcsA has been made quantitative by
trajectory analysis of the BD simulations (Chung et al 1999, 2001). For example, the average
concentration of ions in the channel, the average time an ion spends in various parts of the
pore and its mean velocity provide complementary information about the ion dynamics. In the
presence of a driving field, two ions are found in the filter and one near the inner mouth (see
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figure 4(c)). Ions spend the most time in accessing the channel and climbing over the central
barrier, the remaining time being negligible in comparison. As the first process depends on the
concentration and the second does not, this provides a natural explanation for the saturation
of current with increasing concentration. Similarly, analysis of the mean velocities shows
that ions move at a fraction of their drift velocity in bulk while climbing the barrier but, once
over, they move an order of magnitude faster. This explains the observed insensitivity of
calculated current to diffusion coefficient of ions employed in BD simulations—a welcome
result considering the uncertainties in the estimated values of diffusion coefficients from MD
(see below).

The permeation mechanism delineated by the potential energy profiles and the BD
simulations sheds much light on the central paradox in the operation of ion channels (i.e.
large conductance versus selectivity), and how nature has solved this problem. The selectivity
filter is very narrow to enable it to differentiate between potassium and sodium ions, and it has
a very deep binding site. On the basis of these two factors, one would intuitively expect ions’
crossing of the filter to be the rate-limiting step in the permeation process. In fact, Coulomb
repulsion in the three-ion system causes it to be unstable, thereby making this the fastest step
in permeation. A related puzzle concerns the large variations (nearly two orders of magnitude)
observed in the conductance levels of various potassium channels. Clearly one could not
explain such a diversity had the filter been the rate limiting step, because it is presumed to be
conserved. Chung et al (2001) have found that the energy barrier in KcsA can be reduced
substantially by increasing the radius of the inner mouth of the channel by a few ångstrom.
Opening the mouth also makes the access of ions easier, thus increasing the current, but this
alone is not sufficient to explain the observed variations. The more significant effect is the
drop in the barrier height, which leads to an exponential growth in the current. Thus, the large
conductance variations in potassium channels can be explained by changes in the radius of the
intracellular mouth while keeping the selectivity filter on the opposite side intact.

The physiological properties of KcsA such as I–V and G–c curves have also been
determined from the BD simulations (Chung et al 1999, 2001). Unfortunately, the available
data in KcsA are too limited to allow detailed tests of the model calculations. Nevertheless,
the calculated conductance G and half-saturation cs values are found to be within the observed
range (e.g. Cuello et al (1998), Meuser et al (1999), Heginbotham et al (1999)). We emphasize
that use of the correct channel structure has been instrumental in obtaining results consistent
with experiments in KcsA. The sensitivity of conductance to structural details has been
demonstrated in recent BD simulations of an inward rectifier potassium channel (IRK1) that
employed a theoretically developed structure—the calculated conductance was three orders of
magnitude smaller than the experimental value (Hu et al 2000).

MD studies. Several groups have been involved in MD studies of KcsA (Guidoni et al 1999,
2000, Allen et al 1999b, 2000a, 2000b, Shrivastava and Sansom 2000, Biggin et al 2001,
Ranatunga et al 2001, Åqvist and Luzhkov 2000, Luzhkov and Åqvist 2000, 2001, Bernèche
and Roux 2000, Roux et al 2000). The main thrust of these studies has been to investigate
permeation properties of KcsA such as ion binding sites, selectivity and diffusion, focusing
especially on the filter region. An obvious reason for this is because that is where the K+

ions have been observed. But also the crystal structure corresponds to the closed state, and
our knowledge about the conformational changes that take place on the intracellular side
during opening is still rudimentary (Perozo et al 1999). KcsA channels are opened by proton
binding at the intracellular mouth, and channel opening is associated with a movement of the
transmembrane helices near the mouth region. Another precaution about the x-ray structure is
that it was determined at liquid nitrogen temperature (80 K), which may have induced subtle
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rearrangements in crystal packing (Juers and Matthews 2001). Treatment of the lipid bilayer
varied among the groups from using harmonic constraints (Allen et al 2000a, 2000b, Biggin
et al 2001, Ranatunga et al 2001) to its explicit representation by octanes (Guidoni et al 1999,
2000), non-polar atoms (Luzhkov and Åqvist 2000, 2001) and phospholipids (Bernèche and
Roux 2000, Shrivastava and Sansom 2000). Because explicit simulation of the lipid is quite
time consuming, it would be worthwhile to seek an appropriate set of constraints that mimic
the effects of embedding the KcsA protein in the lipid. As in the case of GA, nonpolarizable
force fields are employed in all MD simulations of KcsA so far. Therefore, the absolute values
of the calculated free energies has to be interpreted with caution.

There is a general agreement among the MD simulations that the KcsA protein can hold
three K+ ions in a stable conformation, two in the filter and one in the central cavity, as observed
in the x-ray structure (Doyle et al 1998). There have been only a few calculations of free-
energy profiles so far (Allen et al 1999b, 2000b) that find no significant barriers for a K+ ion in
the channel. Of course, unlike GA, KcsA is a multi-ion channel and not much can be surmised
from the single-ion profiles (see the changes in electrostatic energies in figure 4 as the channel
is loaded with ions). Calculation and interpretation of the multi-ion free-energy profiles in
KcsA remains as a future challenge. Ion selectivity of KcsA is of primary interest for MD
simulations both because of its biological significance and also because of the inability of the
BD method to differentiate between monovalent cations. Free-energy perturbation calculations
for the transformation K+ → Na+ predict relative barriers of ∼8kT for sodium permeation,
(Allen et al 2000b, Åqvist and Luzhkov 2000), sufficient to explain the observed selectivity
ratio of 104. As stressed earlier, free energy differences are less sensitive to model details,
making these results more robust. Further study of coordination of potassium and sodium ions
in the filter shows that the carbonyl oxygens provide a bulk-like solvation environment for K+

but fail to do so for Na+ (Allen et al 1999b, 2000b, Biggin et al 2001). According to the picture
emerging from these studies, the filter is quite rigid and its size is optimized for solvation of
the K+ ions (radius 1.33 Å). Therefore, the smaller Na+ ions with radius 0.95 Å are not as well
hydrated and are rejected from the channel. This ‘rigid filter’ picture has been contested by
more detailed simulations of KcsA in a lipid bilayer (Shrivastava and Sansom 2000, Bernèche
and Roux 2000), which found sizeable RMS fluctuations (∼1 Å) of the residues forming the
filter. On this basis, it was concluded that selectivity must have a more complicated origin,
arising from subtle ion–water–protein interactions. Unfortunately, this conjecture was not
backed up by any hard numbers but justified by appealing to the flexibility of the GA peptide
as observed in MD simulations. As mentioned earlier, solid-state NMR experiments indicate
a rather rigid structure for the GA channel structure. It will be very important to clarify this
rigid versus flexible filter issue by repeating the NMR experiments for the KcsA channel.

Diffusion of ions and water in KcsA have been studied by Allen et al (1999b, 2000a,
2000b) and Biggin et al (2001). Author: Please check Allen et al 1999a or 1999b?The main
finding from these studies is that the diffusion coefficient of K+ ions is suppressed down to
about 10% of the bulk value in the filter region but remains relatively high (>50% of bulk
value) in the rest of the channel. As mentioned in the discussion of BD results, permeation
dynamics in the filter region is dominated by Coulomb repulsion during a conduction event,
and despite the large suppression of the diffusion coefficient, this is actually the fastest step in
permeation. Motion of individual ions in the channel have also been discussed in MD studies
of KcsA. However, such single-event studies have little meaning statistically, and cannot be
used to draw conclusions about permeation dynamics.

An important issue that we have not touched upon is the charge states of ionizable residues
in the KcsA protein. The BD simulations show that charges on some of these residues can
have a dramatic effect on the channel conductance (Chung et al 2001). Unfortunately, the



Models of permeation in ion channels 1465

protonation states in KcsA are calculated using the PB theory (Roux et al 2000, Ranatunga
et al 2001), and in view of its demonstrated breakdown in narrow pores, such calculations are
not reliable. Until this problem is resolved satisfactorily there will be continuing doubts about
the authenticity of the calculated energies.

The appearance of the KcsA structure has also instigated MD studies of other potassium
channels through homology modelling (Capener et al 2000, Shrivastava et al 2000). These
first exploratory studies are expected to be followed up by more sophisticated ones that tackle
the gating mechanism in voltage- and ligand-gated potassium channels, one of the current
frontiers in ion channel studies.

4.3. L-type calcium

Calcium channels are as ubiquitous in excitable cells as potassium channels and share similar
properties, that is, they are extremely selective (the margin for Ca/Na is 103) and yet conduct
at the picoampere level (Tsien et al 1987). But there is also a crucial difference: selectivity is
based on charge and not size. The radius of the Ca2+ ion (0.99 Å) is only slightly larger than
that of Na+ while the pore radius is estimated to be about 2.8 Å (McCleskey and Almers 1985).
Thus, selectivity of calcium channels can be understood at the BD level without having to
appeal to MD. An intriguing feature of this selectivity against Na+ ions is that it is contingent
upon the presence of Ca2+ ions. In their absence, Na+ ions conduct at an even faster rate than
Ca2+. The physiological properties of calcium channels are well known but the corresponding
information on the structural side is rather scarce, i.e. their tertiary structures have not been
determined from crystallography yet. This puts a dampener on attempts to model calcium
channels using MD simulations because they are quite sensitive to structural details, and it
would be very difficult to get sensible results out of MD in such circumstances. Fortunately,
structural requirements for BD simulations are much less demanding—an approximate shape
of the channel and positions of the partial charges in the protein are all one needs to model its
functional properties. Such an attempt has recently been made by Corry et al (2000b, 2001),
who carried out BD simulations of a model L-type calcium channel. Their results are very
encouraging, giving hope that properties of many other channels without a known tertiary
structure could be studied using the BD method. For this reason, we include a brief account
of this BD study here.

The shape of the calcium channel used in the model study is shown in the inset of figure 5.
It is inspired by the KcsA structure but modified to take into account the available structural
and physiological data on the L-type calcium channel. Four glutamate residues are known to
play an essential role in the channel conductivity and selectivity (Yang et al 1993), and these
are represented by four negative charges in the narrow selectivity filter (indicated by squares in
the figure). The only other charge residues required to make the channel conduct are the set of
four dipoles placed on the intracellular mouth (diamonds in the figure). As in the KcsA study,
multi-ion potential profiles give an intuitive understanding of the permeation mechanism in
the calcium channel. As shown in figure 5(a), a single Ca2+ ion would be strongly bound
(binding energy 58kT ) in the selectivity filter. A second Ca2+ ion is attracted to the channel
from the extracellular (right) side, and the two ions can coexist in the filter region in a semi-
stable equilibrium, until the resident ion on the left climbs over the barrier of 5kT via thermal
fluctuations and exits the channel. A similar picture is obtained for the Na+ ions (b), except
that three of them can coexist in the filter and the final barrier to permeation is only 1kT ,
which explains why the sodium ions conduct faster. Selectivity of the calcium channel can be
understood by constructing multi-ion profiles with a mixed set of ions (figure 5(c)). When a
Na+ ion is resident in the filter, a Ca2+ ion is attracted to the filter and expels the Na+ ion from
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the channel upon entry. A similar result is obtained when there are two Na+ ions in the filter.
In the reverse case of a Ca2+ ion in the filter, though a Na+ ion is still attracted, it is unable
to push the Ca2+ ion over the large barrier of 16kT . Thus once a Ca2+ ion enters the channel,
Na+ ions cannot push it out, only another Ca2+ ion can achieve that feat. This gives a simple
explanation of the selectivity mechanism in calcium channels in terms of the electrostatic
interactions of ions, which is in conformity with the insights gathered from the rate theory
models (McCleskey 1999). Though not to the same degree as above, calcium channels also
exhibit selectivity among ions with the same valence. Explanation of this property, however,
requires MD simulations and has to wait for more structural information.

A number of physiological properties of calcium channels have been determined from
the BD simulations (Corry et al 2001). For example, the I–V and G–c curves are found
to be in good agreement with the experimental observations. We will not dwell on these
standard quantities here but rather discuss a few other exotic properties of calcium channels
that have been elucidated by these calculations. The first is the anomalous mole fraction
effect, so called because the channel current vanishes at a certain range of Ca2+ concentrations
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in the presence of a fixed 0.15 M Na+, as shown in the inset of figure 6(a). The BD results
indicate that the rapid drop and subsequent vanishing of the channel current is due to the
blocking of Na+ current by Ca2+ ions. Once the Ca2+ concentration is high enough to allow
two Ca2+ ions in the filter, the channel starts conducting again, but now Ca2+ ions instead of
Na+. While sodium ions cannot block calcium, their presence in the vestibule can nevertheless
slow down entry of a second Ca2+ ion necessary for conduction. As illustrated in figure 6(b),
the predicted reduction in the channel current with increasing Na+ concentration is in excellent
agreement with the experimental data. A final example is the effect of mutating one of the
glutamate residues to neutral glutamine on the blocking of Na+ current (figure 6(c)). The
mutation leads to a reduction in the depth of the potential well compared with the native
case so that entry of a Ca2+ ion in the channel is delayed, and the blocking occurs at a
higher Ca2+ concentration. Trends in the data (inset of (c)) are again reproduced by the
BD simulations.

5. Conclusions

The main conclusions of this review can be summarized as follows:

• Self-energy is an important part of an ion’s potential energy in channels, responsible for
many properties through creation of energy barriers. This contribution is ignored in current
continuum theories, and therefore they cannot describe the physics of narrow pores with
radii 2–5 Å correctly. We recommend that, until this self-energy problem is satisfactorily
resolved, continuum theories should not be used in modelling of ion channels.

• At present, the BD and MD methods that treat ions as discrete particles provide the best
alternatives for studying the structure–function relations in ion channels. The former
enables calculation of conductance properties while the latter can provide input for BD as
well as explaining finer details such as size-based selectivity. As practiced, both methods
have unjustified approximations and deficiencies that need to be better understood and
improved in future work. For example, use of continuum electrostatics in calculation of
forces in BD simulations needs to be better validated by appealing to MD. Similarly, the
force fields employed in MD simulations should be improved by including polarization
effects. Ab initio MD would provide a useful guide in this endeavour.

• These improvements in force fields will need to be calibrated against experimental results,
where the GA channels remain a system of choice. Partly because of the large amount
of experimental information that is available, and partly because GA simulations have
proven to be a demanding test bench—any modelling approach that passes the GA test is
likely to have wide applicability.

• Studies of potassium and calcium channels using continuum electrostatics and BD
demonstrate that the permeation mechanism involves multi-ions, and Coulomb repulsion
among the ions plays an essential role in explaining the central paradox of ion channels:
that is, the fast permeation of ions across a binding site (i.e. the selectivity filter).
Comparisons of the BD simulation results with the experimental observations are very
encouraging for future applications of this method as they indicate that basic properties
of ion channels can be understood using a simplified model in the absence of a detailed
tertiary structure. This has far-reaching implication for modelling of ion channels because
MD simulations require a detailed knowledge of the channel structure whereas only a few
channels have been resolved from crystallography so far. Thus BD offers the only practical
method for studying the structure–function relationships in biological ion channels at
present, and one would like to see more modelling efforts expended in this direction.
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Figure 6. (a) Mole fraction effect. Ca2+

(filled circles) and Na+ (open circles) current
passing through the channel normalized by the
maximum value of each is plotted against the Ca2+

concentrations while keeping the Na+ concentration
fixed at 0.15 M. Experimental results from Almers
et al (1984) are shown in the inset. (b) Attenuation
of Ca2+ current by Na+ ions. The percentage
reduction in the channel current is plotted against Na+

concentration while the Ca2+ concentration is fixed
at 0.15 M (filled circles). The open diamonds and
dotted curve show the experimental data from Polo-
Parada and Korn (1997). (c) The effect of removing
glutamate charges on channel selectivity: the Na+

current passing through the channel at different
Ca2+ concentrations with all four glutamate charges
in place (filled circles), the outermost glutamate
removed (triangles) and the innermost glutamate
removed (squares); otherwise all conditions are as
in (a). Experimental data for wild type (filled
circles) and for single glutamate to neutral glutamine
mutations of two different residues (triangles and
diamonds) are shown in the inset (Yang et al 1993).
In all cases a driving potential of −0.2 V is applied.

We hope that this review will induce readers from other fields to join in the exciting
research into ion channels and contribute to the applications and refinement of the permeation
models currently used in their description.
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