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e The complex number field C is the collection of all elements
of the form x + iy for x,y € R.
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e The complex number field C is the collection of all elements
of the form x + iy for x,y € R.

e C is algebraically isomorphic to R? under the map
(x,y) «— x+iy.

e One usually blurs the distinction between C and
C=cCu {o0}, the latter of which is useful for geometry.
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e
The identification of C (the plane) with C (the sphere) via stereographic
projection
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e A circle of radius r in C is the collection of all points z € C
which are r units away from some point ¢ € C (called the
center):
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e A circle of radius r in C is the collection of all points z € C
which are r units away from some point ¢ € C (called the
center):

z—¢l=r (1)
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e A circle of radius r in C is the collection of all points z € C
which are r units away from some point ¢ € C (called the
center):

|z=¢l=r (1)
e Squaring both sides of (1) and using the identity |z|2 = zZ,
the equation of a circle in C becomes:
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e A circle of radius r in C is the collection of all points z € C
which are r units away from some point ¢ € C (called the
center):

|z=¢l=r (1)

e Squaring both sides of (1) and using the identity |z|2 = zZ,
the equation of a circle in C becomes:

2Z4+Cz4+(Z+(C=1r? (2)
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e A circle of radius r in C is the collection of all points z € C
which are r units away from some point ¢ € C (called the
center):

|z=(l=r (1)
e Squaring both sides of (1) and using the identity |z|2 = zZ,
the equation of a circle in C becomes:
zE+Zz+CE+£z:r2 (2)
e Every circle in C is also a circle in C but not vice versa:
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e A circle of radius r in C is the collection of all points z € C
which are r units away from some point ¢ € C (called the
center):

|z=¢l=r (1)
e Squaring both sides of (1) and using the identity |z|2 = zZ,
the equation of a circle in C becomes:
2Z+(z+(Z+ (=1 (2)
e Every circle in C is also a circle in C but not vice versa: A
priori, circles in C may be more complicated.
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e Every circle in C is the intersection of a (non-tangent) plane
in R3 with C.
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e Every circle in C is the intersection of a (non-tangent) plane
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e Every circle in C is the intersection of a (non-tangent) plane

in R3 with @

e Writing the equation of a plane in R3 and using the
coordinate-wise definition of the stereographic projection map,
one can show that every circle in C has the form
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e Every circle in C is the intersection of a (non-tangent) plane

in R3 with @

e Writing the equation of a plane in R3 and using the
coordinate-wise definition of the stereographic projection map,
one can show that every circle in C has the form

Azz+Bz+Cz+ D=0 (3)
for A,D € R, B € C, and C = B where either:
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e Every circle in C is the intersection of a (non-tangent) plane

in R3 with @

e Writing the equation of a plane in R3 and using the
coordinate-wise definition of the stereographic projection map,
one can show that every circle in C has the form

Azz+Bz+Cz+ D=0 (3)
for A,D € R, B € C, and C = B where either: A=0
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e Every circle in C is the intersection of a (non-tangent) plane

in R3 with @

e Writing the equation of a plane in R3 and using the
coordinate-wise definition of the stereographic projection map,
one can show that every circle in C has the form

Azz+Bz+Cz+ D=0 (3)
for A,D € R, B € C, and C = B where either: A=0 or
AD < BC.
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e The figure described by the equation (3) is called a
generalized circle:
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e The figure described by the equation (3) is called a
generalized circle:

e When A = 0, the generalized circle corresponds to a straight
line in C.
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e The figure described by the equation (3) is called a
generalized circle:
e When A = 0, the generalized circle corresponds to a straight
line in C.
e When AD < BC, the generalized circle corresponds to a circle
in C
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e The figure described by the equation (3) is called a
generalized circle:
e When A = 0, the generalized circle corresponds to a straight
line in C.
e When AD < BC, the generalized circle corresponds to a circle
in C.
e Given the above, every generalized circle of the form (3) also
corresponds to a matrix
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e The figure described by the equation (3) is called a
generalized circle:
e When A = 0, the generalized circle corresponds to a straight
line in C.
e When AD < BC, the generalized circle corresponds to a circle
in C.
e Given the above, every generalized circle of the form (3) also
corresponds to a matrix

A B
x=(42)
This fact will be important later when discussing the
particulars of LiM.
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e Every linear fractional transformation is conformal (though
they may be orientation-reversing).
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e Every linear fractional transformation is conformal (though
they may be orientation-reversing). Moreover, every bijective
conformal mapping C — C is a linear fractional
transformation.
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e Every linear fractional transformation is conformal (though
they may be orientation-reversing). Moreover, every bijective
conformal mapping C — C is a linear fractional
transformation.

e Every linear fractional transformation maps generalized circles
to generalized circles.
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e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

(29

whose determinant det§ = AD — BC is nonzero
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e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
= (e o)
whose determinant det§ = AD — BC is nonzero, i.e.,
F € GL(2,C).
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e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
= (e o)
whose determinant det§ = AD — BC is nonzero, i.e.,
F € GL(2,C).

e The same transformation f may be represented by different
matrices:
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e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
= (e o)
whose determinant det§ = AD — BC is nonzero, i.e.,
F € GL(2,C).

e The same transformation f may be represented by different

matrices:
Az + B

Cz+D

Limit Sets— C.Stover, FSU, 2015-03-25



e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
= (e o)
whose determinant det§ = AD — BC is nonzero, i.e.,
F € GL(2,C).

e The same transformation f may be represented by different

matrices:
Az+B 2Az+2B

Cz+D 2Cz+2D
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e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
= (e o)
whose determinant det§ = AD — BC is nonzero, i.e.,
F € GL(2,C).

e The same transformation f may be represented by different

matrices:
Az+B 2Az+2B  50Az +50B

Cz+D 2Cz+2D 50Cz+ 50D
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e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
= (e o)
whose determinant det§ = AD — BC is nonzero, i.e.,
F € GL(2,C).

e The same transformation f may be represented by different

matrices:
Az+B 2Az+2B 50Az+50B

Cz+D 2Cz+2D 50Cz+50D
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linear Fractional Transformations

e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
5= (2 o)
whose determinant det§ = AD — BC is nonzero, i.e.,
§ € GL(2,C).
e The same transformation f may be represented by different

matrices:

Az+B 2Az+2B 50Az+50B

Cz+D 2Cz+2D 50Cz+50D

e “Making these the same” in GL(2,C) means identifying all
multiples of the 2 x 2 identity matrix
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linear Fractional Transformations

e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
5= (2 o)
whose determinant det§ = AD — BC is nonzero, i.e.,
§ € GL(2,C).
e The same transformation f may be represented by different

matrices:

Az+B 2Az+2B 50Az+50B

Cz+D 2Cz+2D 50Cz+50D

e “Making these the same” in GL(2,C) means identifying all
multiples of the 2 x 2 identity matrix, i.e., restricting
attention to PGL(2,C)
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linear Fractional Transformations

e To every linear fractional transformation (4), one can
associate a 2 X 2 complex matrix

A B
= (e o)
whose determinant det§ = AD — BC is nonzero, i.e.,
§ € GL(2,C).

e The same transformation f may be represented by different

matrices:
Az+B 2Az+2B 50Az+50B

Cz+D 2Cz+2D 50Cz+50D

e “Making these the same” in GL(2,C) means identifying all
multiples of the 2 x 2 identity matrix, i.e., restricting
attention to PGL(2,C) = PSL(2,C).
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So:
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So:
| want to talk to you about iterating conformal maps C <— C.

Limit Sets— C.Stover, FSU, 2015-03-25



So:
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)

Every such mapping is a linear fractional transformation.
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So:
| want to talk to you about iterating conformal maps C <— C.

)

Every such mapping is a linear fractional transformation.

)

Every such transformation is a matrix in PGL(2,C) = PSL(2,C).
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So:

| want to talk to you about iterating conformal maps C «— C.

)

Every such mapping is a linear fractional transformation.

i)

Every such transformation is a matrix in PGL(2,C) = PSL(2,C).

)

| really want to talk to you about iterating matrix multiplication
for certain collections (subgroups) of matrices.
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This particular Apollonian gasket is
the “ooth step” in an iterative process
where each subsequent step is ob-
tained by multiplying the circles from
the previous step by a collection of
matrices and their inverses:
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This particular Apollonian gasket is
the “ooth step” in an iterative process
where each subsequent step is ob-
tained by multiplying the circles from
the previous step by a collection of
matrices and their inverses:

(2 8) (7 )
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This particular Apollonian gasket is
the “ooth step” in an iterative process
where each subsequent step is ob-
tained by multiplying the circles from
the previous step by a collection of
matrices and their inverses:

(2 8) (7 )

o= F) (3
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McMullen's description in the “Read Me" file:
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McMullen's description in the “Read Me" file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the
action of a group of Mébius transformations.
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hex.run!

./1lim -4 8 -h 3 <<eof > hex.ps

c 0.866025403784438 0.0 -0.5

c 0.25 0.433012701892219 -0.166666666666

c -0.25 0.433012701892219 -0.833333333333
r 0.866025403784438 0.0 -0.5

r 0.25 0.433012701892219 -0.166666666666

r -0.25 0.433012701892219 -0.833333333333
eof

1

Output file name
Two different threshold variables

Limit Sets— C.Stover, FSU, 2015-03-25




Figure 2
hex.ps without
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e

Figure 2 Figure 3
hex.ps without hex.ps with
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Example.run?

./lim -s -d 60 -e 0.0001 <<eof > Example.ps

0. 0. 1

11010-11-1

1-10-10111

0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025

eof

BB B B o

2A different threshold variable
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Example.run?

./lim -s -d 60 -e 0.0001 <<eof > Example.ps

0. 0. 1

11010-11-1

1-10-10111

0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025

BB B B o

eof

2A different threshold variable

Limit Sets— C.Stover, FSU, 2015-03-25




Example.run?

./lim -s -d 60 -e 0.0001 <<eof > Example.ps

0. 0. 1

11010-11-1

1-10-10111

0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025

BB B B o

eof

2A different threshold variable
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Figure 4

Example.ps
Limit Sets— C.Stover, FSU, 2015-03-25




Schottky.run

./lim -d 10 -e .001 <<eof > schottky2.ps
ro01.7

r 0.866025 -.5 .8

r -0.866025 -.5 .8

cO01 .7

c 0.866025 -.5 .8

c -0.866025 -.5 .8

eof
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Figure 5 Figure 6
In the plane On the sphere
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ngon4.run®

./1lim -a 1000 -d 100 -e 0.001
-c001-w-1.1-1.11.11.1
<<eof > ngon4.ps
1.553773974030037 0 1.189207115002721
1.553773974030037 0 1.189207115002721
0 1.553773974030037 1.189207115002721
0 1.553773974030037 1.189207115002721
-1.553773974030037 0 1.189207115002721
-1.553773974030037 0 1.189207115002721
r 0 -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721

eof

oK oBR oBR

9 ;A different threshold variable; Clipping circle;

Window parameters
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Figure 7
ngond.ps + a box because of
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lattice.run

./1lim -s -d 10 <<eof > lattice.ps

c000.0

c 00 -.5
ml10100010
m1l10010010
ml11000010
u .3 .4 2

eof
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Figure 8 Figure 9
In the plane On the sphere
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...so there are lots of pretty pictures!

Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



...sometimes...
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...sometimes...

Worth noticing is that all the examples shown have been carefully
constructed from real-world (mathematical) situations.
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...sometimes...

Worth noticing is that all the examples shown have been carefully
constructed from real-world (mathematical) situations. In almost
every conceivable scenario, analyzing random collections of Mobius
transformations yields nothing useful whatsoever!

Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



Limit Sets— C.Stover, FSU, 2015-03-25



(%)
(0]
-
>3
4
S
o
iy
4
[0)
-
o

Limit Sets— C.Stover, FSU, 2015-03-25



y4
A

Limit Sets— C.Stover, FSU, 2015-03-25



Pretty pictures!!!!!
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Pretty pictures!!!!!
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Pretty pictures!!!!!
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Thank you!
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