Visualizing the Limiting Behavior of Iterated Conformal Mappings

Christopher Stover
March 25, 2015

Department of Mathematics
Florida State University
Tallahassee, FL

Big Picture

Big Picture

Goals of the Talk
Today, I want to talk to you about

Big Picture

Goals of the Talk

Today, I want to talk to you about

1. Bijective conformal mappings of the Riemann sphere;

Big Picture

Goals of the Talk

Today, I want to talk to you about

1. Bijective conformal mappings of the Riemann sphere;
2. Iterating these mappings infinitely many times;

Big Picture

Goals of the Talk

Today, I want to talk to you about

1. Bijective conformal mappings of the Riemann sphere;
2. Iterating these mappings infinitely many times;
3. Evidence that the result of this iteration is lots of pretty pictures.

Big Picture

Goals of the Talk

Today, I want to talk to you about

1. Bijective conformal mappings of the Riemann sphere;
2. Iterating these mappings infinitely many times;
3. Evidence that the result of this iteration is lots of pretty pictures.
The main mechanism for the latter will be Curt McMullen's software Lim.

Outline

Preliminaries

- Basic Complex Analysis
- Circles in \mathbb{C} \& $\widehat{\mathbb{C}}$
- Conformal Mappings, Linear Fractional Transformations, and the Matrix Groups PGL(2, $\mathbb{C}), \operatorname{PSL}(2, \mathbb{C})$

Outline

Preliminaries

- Basic Complex Analysis
- Circles in $\mathbb{C} \& \widehat{\mathbb{C}}$
- Conformal Mappings, Linear Fractional Transformations, and the Matrix Groups PGL(2, $\mathbb{C}), \operatorname{PSL}(2, \mathbb{C})$
Limit Points and Limit Sets
- Definitions \& Preliminaries
- Example-Apollonian Gasket

Outline

Preliminaries

- Basic Complex Analysis
- Circles in $\mathbb{C} \& \widehat{\mathbb{C}}$
- Conformal Mappings, Linear Fractional Transformations, and the Matrix Groups PGL(2, $\mathbb{C}), \operatorname{PSL}(2, \mathbb{C})$
Limit Points and Limit Sets
- Definitions \& Preliminaries
- Example-Apollonian Gasket

Curt McMullen's Lim

- Introduction to LIM
- Some Technical Stuff
- Examples and Output

Example 1: Hex † Example 2: Maskit's Teichmüller Embedding
Example 3: Schottky Group \dagger Example 4: Hyperbolic Tiling Example 5: Lattice

- Conclusions

Part I

Preliminaries

- Basic Complex Analysis
- Circles in $\mathbb{C} \& \widehat{\mathbb{C}}$
- Conformal Mappings, Linear Fractional Transformations, and the Matrix Groups PGL(2, $\mathbb{C}), \operatorname{PSL}(2, \mathbb{C})$
Limit Points and Limit Sets
- Definitions \& Preliminaries
- Example-Apollonian Gasket

Curt McMullen's Lim

- Introduction to LIM
- Some Technical Stuff
- Examples and Output

Example 1: Hex † Example 2: Maskit's Teichmüller Embedding Example 3: Schottky Group \dagger Example 4: Hyperbolic Tiling Example 5: Lattice

- Conclusions

Review of Basic Complex Analysis

- The complex number field \mathbb{C} is the collection of all elements of the form $x+i y$ for $x, y \in \mathbb{R}$.

Review of Basic Complex Analysis

- The complex number field \mathbb{C} is the collection of all elements of the form $x+i y$ for $x, y \in \mathbb{R}$.
- \mathbb{C} is algebraically isomorphic to \mathbb{R}^{2} under the map $(x, y) \longleftrightarrow x+i y$.

Review of Basic Complex Analysis

- The complex number field \mathbb{C} is the collection of all elements of the form $x+i y$ for $x, y \in \mathbb{R}$.
- \mathbb{C} is algebraically isomorphic to \mathbb{R}^{2} under the map $(x, y) \longleftrightarrow x+i y$.
- One usually blurs the distinction between \mathbb{C} and $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}$, the latter of which is useful for geometry.

Figure 1
The identification of \mathbb{C} (the plane) with $\widehat{\mathbb{C}}$ (the sphere) via stereographic projection

Review of Less-Basic Complex Analysis

- A circle of radius r in \mathbb{C} is the collection of all points $z \in \mathbb{C}$ which are r units away from some point $\zeta \in \mathbb{C}$ (called the center):

Review of Less-Basic Complex Analysis

- A circle of radius r in \mathbb{C} is the collection of all points $z \in \mathbb{C}$ which are r units away from some point $\zeta \in \mathbb{C}$ (called the center):

$$
\begin{equation*}
|z-\zeta|=r \tag{1}
\end{equation*}
$$

Review of Less-Basic Complex Analysis

- A circle of radius r in \mathbb{C} is the collection of all points $z \in \mathbb{C}$ which are r units away from some point $\zeta \in \mathbb{C}$ (called the center):

$$
\begin{equation*}
|z-\zeta|=r \tag{1}
\end{equation*}
$$

- Squaring both sides of (1) and using the identity $|z|^{2}=z \bar{z}$, the equation of a circle in \mathbb{C} becomes:

Review of Less-Basic Complex Analysis

- A circle of radius r in \mathbb{C} is the collection of all points $z \in \mathbb{C}$ which are r units away from some point $\zeta \in \mathbb{C}$ (called the center):

$$
\begin{equation*}
|z-\zeta|=r \tag{1}
\end{equation*}
$$

- Squaring both sides of (1) and using the identity $|z|^{2}=z \bar{z}$, the equation of a circle in \mathbb{C} becomes:

$$
\begin{equation*}
z \bar{z}+\bar{\zeta} z+\zeta \bar{z}+\zeta \bar{\zeta}=r^{2} \tag{2}
\end{equation*}
$$

Review of Less-Basic Complex Analysis

- A circle of radius r in \mathbb{C} is the collection of all points $z \in \mathbb{C}$ which are r units away from some point $\zeta \in \mathbb{C}$ (called the center):

$$
\begin{equation*}
|z-\zeta|=r \tag{1}
\end{equation*}
$$

- Squaring both sides of (1) and using the identity $|z|^{2}=z \bar{z}$, the equation of a circle in \mathbb{C} becomes:

$$
\begin{equation*}
z \bar{z}+\bar{\zeta} z+\zeta \bar{z}+\zeta \bar{\zeta}=r^{2} \tag{2}
\end{equation*}
$$

- Every circle in \mathbb{C} is also a circle in $\widehat{\mathbb{C}}$ but not vice versa:

Review of Less-Basic Complex Analysis

- A circle of radius r in \mathbb{C} is the collection of all points $z \in \mathbb{C}$ which are r units away from some point $\zeta \in \mathbb{C}$ (called the center):

$$
\begin{equation*}
|z-\zeta|=r \tag{1}
\end{equation*}
$$

- Squaring both sides of (1) and using the identity $|z|^{2}=z \bar{z}$, the equation of a circle in \mathbb{C} becomes:

$$
\begin{equation*}
z \bar{z}+\bar{\zeta} z+\zeta \bar{z}+\zeta \bar{\zeta}=r^{2} \tag{2}
\end{equation*}
$$

- Every circle in \mathbb{C} is also a circle in $\widehat{\mathbb{C}}$ but not vice versa: A priori, circles in $\widehat{\mathbb{C}}$ may be more complicated.

Review of Less-Basic Complex Analysis

- Every circle in $\widehat{\mathbb{C}}$ is the intersection of a (non-tangent) plane in \mathbb{R}^{3} with $\widehat{\mathbb{C}}$.

Review of Less-Basic Complex Analysis

- Every circle in $\widehat{\mathbb{C}}$ is the intersection of a (non-tangent) plane in \mathbb{R}^{3} with $\widehat{\mathbb{C}}$.

Review of Less-Basic Complex Analysis

- Every circle in $\widehat{\mathbb{C}}$ is the intersection of a (non-tangent) plane in \mathbb{R}^{3} with $\widehat{\mathbb{C}}$.

- Writing the equation of a plane in \mathbb{R}^{3} and using the coordinate-wise definition of the stereographic projection map, one can show that every circle in $\widehat{\mathbb{C}}$ has the form

Review of Less-Basic Complex Analysis

- Every circle in $\widehat{\mathbb{C}}$ is the intersection of a (non-tangent) plane in \mathbb{R}^{3} with $\widehat{\mathbb{C}}$.

- Writing the equation of a plane in \mathbb{R}^{3} and using the coordinate-wise definition of the stereographic projection map, one can show that every circle in $\widehat{\mathbb{C}}$ has the form

$$
\begin{equation*}
A z \bar{z}+B z+C \bar{z}+D=0 \tag{3}
\end{equation*}
$$

for $A, D \in \mathbb{R}, B \in \mathbb{C}$, and $C=\bar{B}$ where either:

Review of Less-Basic Complex Analysis

- Every circle in $\widehat{\mathbb{C}}$ is the intersection of a (non-tangent) plane in \mathbb{R}^{3} with $\widehat{\mathbb{C}}$.

- Writing the equation of a plane in \mathbb{R}^{3} and using the coordinate-wise definition of the stereographic projection map, one can show that every circle in $\widehat{\mathbb{C}}$ has the form

$$
\begin{equation*}
A z \bar{z}+B z+C \bar{z}+D=0 \tag{3}
\end{equation*}
$$

for $A, D \in \mathbb{R}, B \in \mathbb{C}$, and $C=\bar{B}$ where either: $A=0$

Review of Less-Basic Complex Analysis

- Every circle in $\widehat{\mathbb{C}}$ is the intersection of a (non-tangent) plane in \mathbb{R}^{3} with $\widehat{\mathbb{C}}$.

- Writing the equation of a plane in \mathbb{R}^{3} and using the coordinate-wise definition of the stereographic projection map, one can show that every circle in $\widehat{\mathbb{C}}$ has the form

$$
\begin{equation*}
A z \bar{z}+B z+C \bar{z}+D=0 \tag{3}
\end{equation*}
$$

for $A, D \in \mathbb{R}, B \in \mathbb{C}$, and $C=\bar{B}$ where either: $A=0$ or $A D<B C$.

Review of Less-Basic Complex Analysis

- The figure described by the equation (3) is called a generalized circle:

Review of Less-Basic Complex Analysis

- The figure described by the equation (3) is called a generalized circle:
- When $A=0$, the generalized circle corresponds to a straight line in \mathbb{C}.

Review of Less-Basic Complex Analysis

- The figure described by the equation (3) is called a generalized circle:
- When $A=0$, the generalized circle corresponds to a straight line in \mathbb{C}.
- When $A D<B C$, the generalized circle corresponds to a circle in \mathbb{C}

Review of Less-Basic Complex Analysis

- The figure described by the equation (3) is called a generalized circle:
- When $A=0$, the generalized circle corresponds to a straight line in \mathbb{C}.
- When $A D<B C$, the generalized circle corresponds to a circle in \mathbb{C}.
- Given the above, every generalized circle of the form (3) also corresponds to a matrix

$$
\mathfrak{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) .
$$

Review of Less-Basic Complex Analysis

- The figure described by the equation (3) is called a generalized circle:
- When $A=0$, the generalized circle corresponds to a straight line in \mathbb{C}.
- When $A D<B C$, the generalized circle corresponds to a circle in \mathbb{C}.
- Given the above, every generalized circle of the form (3) also corresponds to a matrix

$$
\mathfrak{A}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) .
$$

This fact will be important later when discussing the particulars of LIM.

Linear Fractional Transformations

Definition-Linear Fractional Transformation

A
is a map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ of the
form

$$
\begin{equation*}
f(z)=\frac{A z+B}{C z+D} . \tag{4}
\end{equation*}
$$

Limit Sets - C.Stover, FSU, 2015-03-25

Linear Fractional Transformations

Definition-Linear Fractional Transformation

A
is a map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ of the
form

$$
\begin{equation*}
f(z)=\frac{A z+B}{C z+D} . \tag{4}
\end{equation*}
$$

Here, $A, B, C, D \in \mathbb{C}$ and $A D-B C \neq 0$.

Linear Fractional Transformations

Definition-Linear Fractional Transformation

A is a map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ of the form

$$
\begin{equation*}
f(z)=\frac{A z+B}{C z+D} . \tag{4}
\end{equation*}
$$

Here, $A, B, C, D \in \mathbb{C}$ and $A D-B C \neq 0$.

- Every linear fractional transformation is conformal (though they may be orientation-reversing).

Linear Fractional Transformations

Definition-Linear Fractional Transformation

A is a map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ of the form

$$
\begin{equation*}
f(z)=\frac{A z+B}{C z+D} . \tag{4}
\end{equation*}
$$

Here, $A, B, C, D \in \mathbb{C}$ and $A D-B C \neq 0$.

- Every linear fractional transformation is conformal (though they may be orientation-reversing). Moreover, every bijective conformal mapping $\widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a linear fractional transformation.

Linear Fractional Transformations

Definition-Linear Fractional Transformation

A is a map $f: \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ of the form

$$
\begin{equation*}
f(z)=\frac{A z+B}{C z+D} . \tag{4}
\end{equation*}
$$

Here, $A, B, C, D \in \mathbb{C}$ and $A D-B C \neq 0$.

- Every linear fractional transformation is conformal (though they may be orientation-reversing). Moreover, every bijective conformal mapping $\widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}}$ is a linear fractional transformation.
- Every linear fractional transformation maps generalized circles to generalized circles.

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

- The same transformation f may be represented by different matrices:

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

- The same transformation f may be represented by different matrices:

$$
\frac{A z+B}{C z+D}
$$

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

- The same transformation f may be represented by different matrices:

$$
\frac{A z+B}{C z+D}=\frac{2 A z+2 B}{2 C z+2 D}
$$

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

- The same transformation f may be represented by different matrices:

$$
\frac{A z+B}{C z+D}=\frac{2 A z+2 B}{2 C z+2 D}=\frac{50 A z+50 B}{50 C z+50 D}
$$

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

- The same transformation f may be represented by different matrices:

$$
\frac{A z+B}{C z+D}=\frac{2 A z+2 B}{2 C z+2 D}=\frac{50 A z+50 B}{50 C z+50 D}=\cdots .
$$

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

- The same transformation f may be represented by different matrices:

$$
\frac{A z+B}{C z+D}=\frac{2 A z+2 B}{2 C z+2 D}=\frac{50 A z+50 B}{50 C z+50 D}=\cdots .
$$

- "Making these the same" in $\mathrm{GL}(2, \mathbb{C})$ means identifying all multiples of the 2×2 identity matrix

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

- The same transformation f may be represented by different matrices:

$$
\frac{A z+B}{C z+D}=\frac{2 A z+2 B}{2 C z+2 D}=\frac{50 A z+50 B}{50 C z+50 D}=\cdots
$$

- "Making these the same" in $\mathrm{GL}(2, \mathbb{C})$ means identifying all multiples of the 2×2 identity matrix, i.e., restricting attention to $\operatorname{PGL}(2, \mathbb{C})$

Linear Fractional Transformations

- To every linear fractional transformation (4), one can associate a 2×2 complex matrix

$$
\mathfrak{F}=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

whose determinant $\operatorname{det} \mathfrak{F}=A D-B C$ is nonzero, i.e., $\mathfrak{F} \in \mathrm{GL}(2, \mathbb{C})$.

- The same transformation f may be represented by different matrices:

$$
\frac{A z+B}{C z+D}=\frac{2 A z+2 B}{2 C z+2 D}=\frac{50 A z+50 B}{50 C z+50 D}=\cdots
$$

- "Making these the same" in $\mathrm{GL}(2, \mathbb{C})$ means identifying all multiples of the 2×2 identity matrix, i.e., restricting attention to $\operatorname{PGL}(2, \mathbb{C})=\operatorname{PSL}(2, \mathbb{C})$.

Linear Fractional Transformations

So:

Linear Fractional Transformations

So:
I want to talk to you about iterating conformal maps $\widehat{\mathbb{C}} \longleftrightarrow \widehat{\mathbb{C}}$.

Linear Fractional Transformations

So:
I want to talk to you about iterating conformal maps $\widehat{\mathbb{C}} \longleftrightarrow \widehat{\mathbb{C}}$.

Every such mapping is a linear fractional transformation.

Linear Fractional Transformations

So:
I want to talk to you about iterating conformal maps $\widehat{\mathbb{C}} \longleftrightarrow \widehat{\mathbb{C}}$.

Every such mapping is a linear fractional transformation.

$$
\mathbb{\imath}
$$

Every such transformation is a matrix in $\operatorname{PGL}(2, \mathbb{C})=\operatorname{PSL}(2, \mathbb{C})$.

Linear Fractional Transformations

So:
I want to talk to you about iterating conformal maps $\widehat{\mathbb{C}} \longleftrightarrow \widehat{\mathbb{C}}$.

$$
\mathbb{1}
$$

Every such mapping is a linear fractional transformation.

$$
\mathbb{1}
$$

Every such transformation is a matrix in $\operatorname{PGL}(2, \mathbb{C})=\operatorname{PSL}(2, \mathbb{C})$.

$$
\mathbb{I}
$$

I really want to talk to you about iterating matrix multiplication for certain collections (subgroups) of matrices.

Part II

Preliminaries

- Basic Complex Analysis
- Circles in $\mathbb{C} \& \widehat{\mathbb{C}}$
- Conformal Mappings, Linear Fractional Transformations, and the Matrix Groups PGL(2, $\mathbb{C}), \operatorname{PSL}(2, \mathbb{C})$
Limit Points and Limit Sets
- Definitions \& Preliminaries
- Example-Apollonian Gasket

Curt McMullen's Lim

- Introduction to LIM
- Some Technical Stuff
- Examples and Output

Example 1: Hex † Example 2: Maskit's Teichmüller Embedding Example 3: Schottky Group † Example 4: Hyperbolic Tiling Example 5: Lattice

- Conclusions

Definitions

Limit Sets - C.Stover, FSU, 2015-03-25

Definitions

Definition-Limit Point

A point $\zeta \in \widehat{\mathbb{C}}$ is called a limit point of group $G=\left\{g_{\alpha}\right\}$ if there exists a point $z \in \widehat{\mathbb{C}}$ and a sequence of elements $\left\{g_{i}\right\}_{i=1}^{\infty}$ in G so that $g_{i} z \rightarrow \zeta$ as $i \rightarrow \infty$.

Limit Sets—C.Stover, FSU, 2015-03-25

Definitions

Definition-Limit Point

A point $\zeta \in \widehat{\mathbb{C}}$ is called a limit point of group $G=\left\{g_{\alpha}\right\}$ if there exists a point $z \in \widehat{\mathbb{C}}$ and a sequence of elements $\left\{g_{i}\right\}_{i=1}^{\infty}$ in G so that $g_{i} z \rightarrow \zeta$ as $i \rightarrow \infty$.

Definition-Limit Set

The limit set $L(G)$ of a group G is the collection of all points ζ which are limit points of G.

Limit Sets - C.Stover, FSU, 2015-03-25

Example—Apollonian Gasket

Limit Sets—C.Stover, FSU, 2015-03-25

Example—Apollonian Gasket

Limit Sets—C.Stover, FSU, 2015-03-25

Example—Apollonian Gasket

This particular Apollonian gasket is the " $\infty^{\text {th }}$ step" in an iterative process where each subsequent step is obtained by multiplying the circles from the previous step by a collection of matrices and their inverses:

Limit Sets - C.Stover, FSU, 2015-03-25

Example—Apollonian Gasket

This particular Apollonian gasket is the " $\infty^{\text {th }}$ step" in an iterative process where each subsequent step is obtained by multiplying the circles from the previous step by a collection of matrices and their inverses:

$$
A=\left(\begin{array}{cc}
\sqrt{2} & i \\
-i & \sqrt{2}
\end{array}\right) \quad B=\left(\begin{array}{cc}
\sqrt{2} & 1 \\
1 & \sqrt{2}
\end{array}\right)
$$

Example—Apollonian Gasket

This particular Apollonian gasket is the " \propto th step" in an iterative process where each subsequent step is obtained by multiplying the circles from the previous step by a collection of matrices and their inverses:

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
\sqrt{2} & i \\
-i & \sqrt{2}
\end{array}\right) & B=\left(\begin{array}{cc}
\sqrt{2} & 1 \\
1 & \sqrt{2}
\end{array}\right) \\
A^{-1} & =\left(\begin{array}{cc}
\sqrt{2} & -i \\
i & \sqrt{2}
\end{array}\right) & B^{-1}=\left(\begin{array}{cc}
\sqrt{2} & -1 \\
-1 & \sqrt{2}
\end{array}\right)
\end{aligned}
$$

Limit Sets - C.Stover, FSU, 2015-03-25

Example—Apollonian Gasket

Limit Sets—C.Stover, FSU, 2015-03-25

The Take-Away

What Does the Apollonian Gasket Tell Us?

Limit Sets - C.Stover, FSU, 2015-03-25

The Take-Away

What Does the Apollonian Gasket Tell Us?

It tells us that all those math words from before let us create pretty pictures!

Limit Sets - C.Stover, FSU, 2015-03-25

The Take-Away

What Does the Apollonian Gasket Tell Us?

It tells us that all those math words from before let us create pretty pictures!...
...sometimes...

Limit Sets - C.Stover, FSU, 2015-03-25

The Take-Away

What Does the Apollonian Gasket Tell Us?

It tells us that all those math words from before let us create pretty pictures!...
...sometimes...
...and for that, we appeal to Curt McMullen!

Limit Sets - C.Stover, FSU, 2015-03-25

Part III

Preliminaries

- Basic Complex Analysis
- Circles in $\mathbb{C} \& \widehat{\mathbb{C}}$
- Conformal Mappings, Linear Fractional Transformations, and the Matrix Groups PGL(2, $\mathbb{C}), \operatorname{PSL}(2, \mathbb{C})$
Limit Points and Limit Sets
- Definitions \& Preliminaries
- Example-Apollonian Gasket

Curt McMullen's Lim

- Introduction to LIM
- Some Technical Stuff
- Examples and Output

Example 1: Hex † Example 2: Maskit's Teichmüller Embedding
Example 3: Schottky Group \dagger Example 4: Hyperbolic Tiling Example 5: Lattice

- Conclusions

The LIM Program

Limit Sets - C.Stover, FSU, 2015-03-25

The LIM Program

McMullen's description in the "Read Me" file:

The LIM Program

McMullen's description in the "Read Me" file:
Limit Sets of Kleinian Groups
The program lim draws the orbits of circles under the action of a group of Möbius transformations.

The LIM Program

McMullen's description in the "Read Me" file:
Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Definitions-Kleinian Group; Möbius Transformation

The LIM Program

McMullen's description in the "Read Me" file:
Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Definitions-Kleinian Group; Möbius Transformation

- A is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{C})$.

The LIM Program

McMullen's description in the "Read Me" file:
Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Definitions-Kleinian Group; Möbius Transformation

- A
- A
transformation.
is a discrete subgroup of $\operatorname{PSL}(2, \mathbb{C})$.
is just a linear fractional

How It Works—Short Version

Required Input

- Circles c_{1}, \ldots, c_{i} known to be in the limit set

How It Works—Short Version

Required Input

- Circles c_{1}, \ldots, c_{i} known to be in the limit set

Technical Input

- Threshold variables

Limit Sets - C.Stover, FSU, 2015-03-25

How It Works-Short Version

Required Input

- Circles c_{1}, \ldots, c_{i} known to be in the limit set

Technical Input

- Threshold variables
- Output style options

Limit Sets - C.Stover, FSU, 2015-03-25

How It Works-Short Version

Required Input

- Circles c_{1}, \ldots, c_{i} known to be in the limit set

Technical Input

- Threshold variables
- Output style options

How It Works-Short Version

Required Input

- Circles c_{1}, \ldots, c_{i} known to be in the limit set

Technical Input

- Threshold variables
- Output style options

Optional Input

- Circles r_{1}, \ldots, r_{k} in which to define reflections for c_{α}
- Matrices $m_{1}, m_{2}, \ldots, m_{j}$, $t_{1}, \ldots, t_{l} \in \operatorname{PSL}(2, \mathbb{C})$ to be applied to the c_{α} and to the coordinate system, respectively

How It Works-Short Version

Required Input

- Circles c_{1}, \ldots, c_{i} known to be in the limit set

Technical Input

- Threshold variables
- Output style options

Optional Input

- Circles r_{1}, \ldots, r_{k} in which to define reflections for c_{α}
- Matrices $m_{1}, m_{2}, \ldots, m_{j}$, $t_{1}, \ldots, t_{l} \in \operatorname{PSL}(2, \mathbb{C})$ to be applied to the c_{α} and to the coordinate system, respectively
- Circles u_{1}, \ldots, u_{n} in which to define reflections of the coordinate system

How It Works—Short Version

Behind the Scenes

- LiM applies the group

$$
G=\left\langle m_{1}, \ldots, m_{j}, r_{1}, \ldots, r_{k}\right\rangle
$$

to the collection $C=\left\{c_{\alpha}\right\}$.

How It Works—Short Version

Behind the Scenes

- LiM applies the group

$$
G=\left\langle m_{1}, \ldots, m_{j}, r_{1}, \ldots, r_{k}\right\rangle
$$

to the collection $C=\left\{c_{\alpha}\right\}$.

- It also applies the group

$$
G^{\prime}=\left\langle t_{1}, \ldots, t_{\ell}, u_{1}, \ldots, u_{n}\right\rangle
$$

to the coordinate system.

How It Works—Short Version

Behind the Scenes

- Lim applies the group

$$
G=\left\langle m_{1}, \ldots, m_{j}, r_{1}, \ldots, r_{k}\right\rangle
$$

to the collection $C=\left\{c_{\alpha}\right\}$.

- It also applies the group

$$
G^{\prime}=\left\langle t_{1}, \ldots, t_{\ell}, u_{1}, \ldots, u_{n}\right\rangle
$$

to the coordinate system.

- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.

How It Works—Short Version

Behind the Scenes

- Lim applies the group

$$
G=\left\langle m_{1}, \ldots, m_{j}, r_{1}, \ldots, r_{k}\right\rangle
$$

to the collection $C=\left\{c_{\alpha}\right\}$.

- The loop ends when the stacks are full or when optional user-input thresholds are reached.
- It also applies the group

$$
G^{\prime}=\left\langle t_{1}, \ldots, t_{\ell}, u_{1}, \ldots, u_{n}\right\rangle
$$

to the coordinate system.

- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.

How It Works—Short Version

Behind the Scenes

- Lim applies the group

$$
G=\left\langle m_{1}, \ldots, m_{j}, r_{1}, \ldots, r_{k}\right\rangle
$$

to the collection $C=\left\{c_{\alpha}\right\}$.

- It also applies the group

$$
G^{\prime}=\left\langle t_{1}, \ldots, t_{\ell}, u_{1}, \ldots, u_{n}\right\rangle
$$

to the coordinate system.

- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.
- The loop ends when the stacks are full or when optional user-input thresholds are reached.

Output

- The raw output is data in .ps format.

How It Works—Short Version

Behind the Scenes

- Lim applies the group

$$
G=\left\langle m_{1}, \ldots, m_{j}, r_{1}, \ldots, r_{k}\right\rangle
$$

to the collection $C=\left\{c_{\alpha}\right\}$.

- It also applies the group

$$
G^{\prime}=\left\langle t_{1}, \ldots, t_{\ell}, u_{1}, \ldots, u_{n}\right\rangle
$$

to the coordinate system.

- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.
- The loop ends when the stacks are full or when optional user-input thresholds are reached.

Output

- The raw output is data in .ps format.
- This can be converted to .pdf images.

Example 1

hex.run 1
./lim -d 8 -s -h 3 <<eof > hex.ps
c $0.8660254037844380 .0-0.5$
c $0.250 .433012701892219-0.166666666666$
c $-0.250 .433012701892219-0.833333333333$
r $0.8660254037844380 .0-0.5$
r $0.250 .433012701892219-0.166666666666$
r -0.25 0.433012701892219-0.833333333333
eof
${ }^{1}$ Graph on sphere; omit to graph in plane
Output file name
Two different threshold variables
Limit Sets-C.Stover, FSU, 2015-03-25

Example 1

Figure 2
hex.ps without

Limit Sets - C.Stover, FSU, 2015-03-25

Example 1

Figure 2
hex.ps without

Figure 3 hex.ps with -s

Example 2

Example.run ${ }^{2}$

./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m $1 \begin{array}{lllllllll} & 1 & 0 & 1 & 0 & -1 & 1 & -1\end{array}$
m 1 -1 $0-10111$
m $0.955-0.0250 .0450 .025-1.9550 .0250 .955-0.025$
m $0.955-0.025-0.045-0.0251 .955-0.0250 .955-0.025$ eof
${ }^{2} \mathrm{~A}$ different threshold variable
Limit Sets - C.Stover, FSU, 2015-03-25

Example 2

Example.run ${ }^{2}$

```
./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m 1 1 1 0 1 0 - 1 1 -1
m 1 -1 0 -1 0 1 1 1
m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025
eof
```


Remark

${ }^{2}$ A different threshold variable

Example 2

Example.run ${ }^{2}$

```
./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m 1 1 1 0 1 0 - 1 1 -1
m 1 -1 0 -1 0 1 1 1
m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025
eof
```


Remark

According to McMullen: "This [corresponds to] a picture of the limit set of a Kleinian group on the boundary of Maskit's embedding of the Teichmuller space of a once-punctured torus."
${ }^{2}$ A different threshold variable
Limit Sets - C.Stover, FSU, 2015-03-25

Example 2

Figure 4
Example.ps
Limit Sets - C.Stover, FSU, 2015-03-25

Example 3

Schottky.run

./lim -d 10 -e . 001 <<eof > schottky2.ps
r 01.7
r $0.866025-.5 .8$
r -0.866025-. 5 . 8
c 01.7
c $0.866025-.5$. 8
c -0.866025-. 5 . 8
eof

Example 3

Figure 5
In the plane

Figure 6
On the sphere

Example 4

ngon4.run ${ }^{3}$

```
./lim -a 1000 -b -d 100 -e 0.001
    -c 0 0 1 -w -1.1 -1.1 1.1 1.1
    <<eof > ngon4.ps
```

r 1.55377397403003701 .189207115002721
c 1.55377397403003701 .189207115002721
r 0 1.553773974030037 1.189207115002721
c 01.5537739740300371 .189207115002721
r -1.553773974030037 01.189207115002721
c -1.55377397403003701 .189207115002721
r $0-1.5537739740300371 .189207115002721$
c $0-1.5537739740300371 .189207115002721$
eof
${ }^{3}$ Optional style parameter; A different threshold variable; Clipping circle; Window parameters

Example 4

Remark:

According to McMullen: "Tiling of \mathbb{H} for torus with orbifold point of order 2."

Figure 7
ngon4.ps + a box because of
Limit Sets - C.Stover, FSU, 2015-03-25

Example 5

lattice.run

./lim -s -d 10 <<eof > lattice.ps
c 000.0
c $00-.5$
m 1001000010
m 1000100010
m 11000010
u . 3.42
eof

Example 5

Figure 8
In the plane

Figure 9 On the sphere

Cue the Applause!

Limit Sets—C.Stover, FSU, 2015-03-25

Cue the Applause!

...so there are lots of pretty pictures!

Limit Sets—C.Stover, FSU, 2015-03-25

...But There's Always a Caveat...

...But There's Always a Caveat...

...sometimes...

Limit Sets—C.Stover, FSU, 2015-03-25

...But There's Always a Caveat...

...sometimes...

Worth noticing is that all the examples shown have been carefully constructed from real-world (mathematical) situations.

...But There's Always a Caveat...

...sometimes...

Worth noticing is that all the examples shown have been carefully constructed from real-world (mathematical) situations. In almost every conceivable scenario, analyzing random collections of Möbius transformations yields nothing useful whatsoever!

The Synopsis:

Limit Sets - C.Stover, FSU, 2015-03-25

The Synopsis:

- McMullen's program is good for what it does...

The Synopsis:

- McMullen's program is good for what it does...
- ...but getting useful information requires a considerable amount of pre-existing mathematical knowledge.

Limit Sets - C.Stover, FSU, 2015-03-25

The Synopsis:

- McMullen's program is good for what it does...
- ...but getting useful information requires a considerable amount of pre-existing mathematical knowledge.
- It's also very hard to generalize because of this requisite knowledge

The Synopsis:

- McMullen's program is good for what it does...
- ...but getting useful information requires a considerable amount of pre-existing mathematical knowledge.
- It's also very hard to generalize because of this requisite knowledgeand because of this, attempting to visualize "more advanced" mathematical scenarios will almost certainly require devising something new rather than modifying LIM.

But Even So...

Limit Sets—C.Stover, FSU, 2015-03-25

But Even So...

Limit Sets - C.Stover, FSU, 2015-03-25

But Even So...

Limit Sets - C.Stover, FSU, 2015-03-25

But Even So...

Limit Sets - C.Stover, FSU, 2015-03-25

But Even So...

Limit Sets - C.Stover, FSU, 2015-03-25

But Even So...

Limit Sets - C.Stover, FSU, 2015-03-25

But Even So...

Limit Sets - C.Stover, FSU, 2015-03-25

But Even So...

\longleftarrow
 Pretty pictures!!!!!

Remark:

Transparency is obtained by first graphing on the sphere with -s and then by adding -t num_ where num_ is a decimal value between 0.0 and 1.0, inclusive.

Thank you!

