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Big Picture

Goals of the Talk
Today, I want to talk to you about

1. Bijective conformal mappings of the Riemann sphere;

2. Iterating these mappings infinitely many times;

3. Evidence that the result of this iteration is lots of pretty
pictures.

The main mechanism for the latter will be Curt McMullen’s soft-
ware Lim.
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• Conformal Mappings, Linear Fractional Transformations,

and the Matrix Groups PGL(2,C), PSL(2,C)
Limit Points and Limit Sets

• Definitions & Preliminaries
• Example—Apollonian Gasket

Curt McMullen’s Lim
• Introduction to lim
• Some Technical Stuff
• Examples and Output

Example 1: Hex † Example 2: Maskit’s Teichmüller Embedding
Example 3: Schottky Group † Example 4: Hyperbolic Tiling
Example 5: Lattice

• Conclusions



Part I
Preliminaries

• Basic Complex Analysis
• Circles in C & Ĉ
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Review of Basic Complex Analysis

• The complex number field C is the collection of all elements
of the form x + iy for x , y ∈ R.

• C is algebraically isomorphic to R2 under the map
(x , y)←→ x + iy .

• One usually blurs the distinction between C and
Ĉ = C ∪ {∞}, the latter of which is useful for geometry.

Limit Sets — C.Stover, FSU, 2015-03-25
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Figure 1
The identification of C (the plane) with Ĉ (the sphere) via stereographic

projection
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Review of Less-Basic Complex Analysis

• A circle of radius r in C is the collection of all points z ∈ C
which are r units away from some point ζ ∈ C (called the
center):

|z − ζ| = r (1)

• Squaring both sides of (1) and using the identity |z |2 = zz ,
the equation of a circle in C becomes:

zz + ζz + ζz + ζζ = r2 (2)

• Every circle in C is also a circle in Ĉ but not vice versa: A
priori, circles in Ĉ may be more complicated.
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priori, circles in Ĉ may be more complicated.

Limit Sets — C.Stover, FSU, 2015-03-25



Review of Less-Basic Complex Analysis

• A circle of radius r in C is the collection of all points z ∈ C
which are r units away from some point ζ ∈ C (called the
center):

|z − ζ| = r (1)

• Squaring both sides of (1) and using the identity |z |2 = zz ,
the equation of a circle in C becomes:

zz + ζz + ζz + ζζ = r2 (2)

• Every circle in C is also a circle in Ĉ but not vice versa: A
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Review of Less-Basic Complex Analysis

• Every circle in Ĉ is the intersection of a (non-tangent) plane
in R3 with Ĉ.

• Writing the equation of a plane in R3 and using the
coordinate-wise definition of the stereographic projection map,
one can show that every circle in Ĉ has the form

Azz + Bz + Cz + D = 0 (3)

for A,D ∈ R, B ∈ C, and C = B where either: A = 0 or
AD < BC .
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• Every circle in Ĉ is the intersection of a (non-tangent) plane
in R3 with Ĉ.
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Review of Less-Basic Complex Analysis

• The figure described by the equation (3) is called a
generalized circle:

• When A = 0, the generalized circle corresponds to a straight
line in C.

• When AD < BC , the generalized circle corresponds to a circle
in C.

• Given the above, every generalized circle of the form (3) also
corresponds to a matrix

A =

(
A B
C D

)
.

This fact will be important later when discussing the
particulars of Lim.
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Linear Fractional Transformations

Definition—Linear Fractional Transformation
A linear fractional transformation is a map f : Ĉ → Ĉ of the
form

f (z) =
Az + B

Cz + D
. (4)

Here, A,B,C ,D ∈ C and AD − BC 6= 0.

• Every linear fractional transformation is conformal (though
they may be orientation-reversing). Moreover, every bijective
conformal mapping Ĉ→ Ĉ is a linear fractional
transformation.

• Every linear fractional transformation maps generalized circles
to generalized circles.
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Linear Fractional Transformations

• To every linear fractional transformation (4), one can
associate a 2× 2 complex matrix

F =

(
A B
C D

)
whose determinant detF = AD − BC is nonzero

, i.e.,
F ∈ GL(2,C).

• The same transformation f may be represented by different
matrices:

Az + B

Cz + D
=

2Az + 2B

2Cz + 2D
=

50Az + 50B

50Cz + 50D
= · · · .

• “Making these the same” in GL(2,C) means identifying all
multiples of the 2× 2 identity matrix, i.e., restricting
attention to PGL(2,C) = PSL(2,C).
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Linear Fractional Transformations

So:

I want to talk to you about iterating conformal maps Ĉ←→ Ĉ.

m

Every such mapping is a linear fractional transformation.

m

Every such transformation is a matrix in PGL(2,C) = PSL(2,C).

m

I really want to talk to you about iterating matrix multiplication
for certain collections (subgroups) of matrices.
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Definitions

Definition—Limit Point
A point ζ ∈ Ĉ is called a limit point of group G = {gα} if there
exists a point z ∈ Ĉ and a sequence of elements {gi}∞i=1 in G so
that giz → ζ as i →∞.

Definition—Limit Set
The limit set L(G ) of a group G is the collection of all points ζ
which are limit points of G .
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Example—Apollonian Gasket

This particular Apollonian gasket is
the “∞th step” in an iterative process
where each subsequent step is ob-
tained by multiplying the circles from
the previous step by a collection of
matrices and their inverses:

A =

(√
2 i

−i
√

2

)
B =
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2 1

1
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The Take-Away

What Does the Apollonian Gasket Tell Us?

It tells us that all those math words from before let us create
pretty pictures!...

...sometimes...

...and for that, we appeal to Curt McMullen!
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Part III
Preliminaries

• Basic Complex Analysis
• Circles in C & Ĉ
• Conformal Mappings, Linear Fractional Transformations,

and the Matrix Groups PGL(2,C), PSL(2,C)
Limit Points and Limit Sets

• Definitions & Preliminaries
• Example—Apollonian Gasket

Curt McMullen’s Lim
• Introduction to lim
• Some Technical Stuff
• Examples and Output

Example 1: Hex † Example 2: Maskit’s Teichmüller Embedding
Example 3: Schottky Group † Example 4: Hyperbolic Tiling
Example 5: Lattice

• Conclusions



The lim Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the
action of a group of Möbius transformations.

Definitions—Kleinian Group; Möbius Transformation

• A Kleinian Group is a discrete subgroup of PSL(2,C).

• A Möbius Transformation is just a linear fractional
transformation.
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• A Möbius Transformation is just a linear fractional
transformation.

Limit Sets — C.Stover, FSU, 2015-03-25



How It Works—Short Version

Required Input

• Circles c1, . . . , ci known to
be in the limit set

Technical Input

• Threshold variables

• Output style options

Optional Input

• Circles r1, . . . , rk in which to
define reflections for cα

• Matrices m1,m2, . . . ,mj ,
t1, . . . , t` ∈ PSL(2,C) to be
applied to the cα and to the
coordinate system, respectively

• Circles u1, . . . , un in which to
define reflections of the
coordinate system
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How It Works—Short Version

Behind the Scenes

• Lim applies the group

G = 〈m1, . . . ,mj , r1, . . . , rk〉
to the collection C = {cα}.

• It also applies the group

G ′ = 〈t1, . . . , t`, u1, . . . , un〉
to the coordinate system.

• Iterates of these group actions
are stored in stacks, parsed,
sorted, and finalized.

• The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

Output

• The raw output is data in
.ps format.

• This can be converted to
.pdf images.
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Example 1

hex.run1

./lim -d 8 -s -h 3 <<eof > hex.ps

c 0.866025403784438 0.0 -0.5

c 0.25 0.433012701892219 -0.166666666666

c -0.25 0.433012701892219 -0.833333333333

r 0.866025403784438 0.0 -0.5

r 0.25 0.433012701892219 -0.166666666666

r -0.25 0.433012701892219 -0.833333333333

eof

1Graph on sphere; omit to graph in plane
Output file name
Two different threshold variables
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Example 1

Figure 2
hex.ps without -s

Figure 3
hex.ps with -s
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Example 1

Figure 2
hex.ps without -s

Figure 3
hex.ps with -s
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Example 2

Example.run2

./lim -s -d 60 -e 0.0001 <<eof > Example.ps

c 0. 0. 1

m 1 1 0 1 0 -1 1 -1

m 1 -1 0 -1 0 1 1 1

m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025

m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025

eof

Remark
According to McMullen: “This [corresponds to] a picture of the
limit set of a Kleinian group on the boundary of Maskit’s embed-
ding of the Teichmuller space of a once-punctured torus.”

2A different threshold variable
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Example 2

Figure 4
Example.ps
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Example 3

Schottky.run

./lim -d 10 -e .001 <<eof > schottky2.ps

r 0 1 .7

r 0.866025 -.5 .8

r -0.866025 -.5 .8

c 0 1 .7

c 0.866025 -.5 .8

c -0.866025 -.5 .8

eof
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Example 3

Figure 5
In the plane

Figure 6
On the sphere
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Example 4

ngon4.run3

./lim -a 1000 -b -d 100 -e 0.001

-c 0 0 1 -w -1.1 -1.1 1.1 1.1

<<eof > ngon4.ps

r 1.553773974030037 0 1.189207115002721

c 1.553773974030037 0 1.189207115002721

r 0 1.553773974030037 1.189207115002721

c 0 1.553773974030037 1.189207115002721

r -1.553773974030037 0 1.189207115002721

c -1.553773974030037 0 1.189207115002721

r 0 -1.553773974030037 1.189207115002721

c 0 -1.553773974030037 1.189207115002721

eof

3Optional style parameter; A different threshold variable; Clipping circle;
Window parameters
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Example 4

Figure 7
ngon4.ps + a box because of -b

Remark:

According to McMullen:
“Tiling of H for torus with
orbifold point of order 2.”
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Example 5

lattice.run

./lim -s -d 10 <<eof > lattice.ps

c 0 0 0.0

c 0 0 -.5

m 1 0 1 0 0 0 1 0

m 1 0 0 1 0 0 1 0

m 1 1 0 0 0 0 1 0

u .3 .4 2

eof
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Example 5

Figure 8
In the plane

Figure 9
On the sphere
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Cue the Applause!

...so there are lots of pretty pictures!
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...But There’s Always a Caveat...

...sometimes...

Worth noticing is that all the examples shown have been carefully
constructed from real-world (mathematical) situations. In almost
every conceivable scenario, analyzing random collections of Möbius
transformations yields nothing useful whatsoever!
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The Synopsis:

• McMullen’s program is good for what it does...

• ...but getting useful information requires a considerable
amount of pre-existing mathematical knowledge.

• It’s also very hard to generalize because of this requisite
knowledgeand because of this, attempting to visualize “more
advanced” mathematical scenarios will almost certainly
require devising something new rather than modifying Lim.
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But Even So...

Pretty pictures!!!!!

Remark:
Transparency is ob-

tained by first graphing

on the sphere with -s

and then by adding

-t num where num

is a decimal value

between 0.0 and 1.0,

inclusive.
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Thank you!
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