The Quest for Reebless Foliations in Sutured 3-Manifolds

Christopher Stover

Florida State University
December 1, 2014

Outline

(1) Preliminaries

- Foliations \& Depth
- Sutured Manifolds, Decompositions, and Hierarchies
(2) Links Between Sutured Manifolds and Reebless Foliations
- Gabai's Ginormous Main Theorem of Awesome Non-Triviality and Awesomeness
- How Big is the Big Theorem?
- Proof of Main Theorem: Outline
- Proof of Main Theorem: Sketch of Major Construction
(3) Why Should Anyone Care?

Section I

(1) Preliminaries

- Foliations \& Depth
- Sutured Manifolds, Decompositions, and Hierarchies

2 Links Between Sutured Manifolds and Reebless Foliations

- Gabai's Ginormous Main Theorem of Awesome Non-Triviality and Awesomeness
- How Big is the Big Theorem?
- Proof of Main Theorem: Outline
- Proof of Main Theorem: Sketch of Major Construction
(3) Why Should Anyone Care?

Recall [Foliation]

A dimension- k foliation of a manifold $M=M^{n}$ is a decomposition \mathcal{F} of M into disjoint properly embedded submanifolds of dimension k which is locally homeomorphic to the decomposition $\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$.

Recall [Foliation]

A dimension- k foliation of a manifold $M=M^{n}$ is a decomposition \mathcal{F} of M into disjoint properly embedded submanifolds of dimension k which is locally homeomorphic to the decomposition $\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$.

- The submanifolds are called leaves.

Recall [Foliation]

A dimension- k foliation of a manifold $M=M^{n}$ is a decomposition \mathcal{F} of M into disjoint properly embedded submanifolds of dimension k which is locally homeomorphic to the decomposition $\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$.

- The submanifolds are called leaves.
- k is the dimension of \mathcal{F};

Recall [Foliation]

A dimension- k foliation of a manifold $M=M^{n}$ is a decomposition \mathcal{F} of M into disjoint properly embedded submanifolds of dimension k which is locally homeomorphic to the decomposition $\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$.

- The submanifolds are called leaves.
- k is the dimension of $\mathcal{F} ; n-k$ is its codimension

Recall [Foliation]

A dimension- k foliation of a manifold $M=M^{n}$ is a decomposition \mathcal{F} of M into disjoint properly embedded submanifolds of dimension k which is locally homeomorphic to the decomposition $\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k}$.

- The submanifolds are called leaves.
- k is the dimension of $\mathcal{F} ; n-k$ is its codimension

Figure 1

$$
\mathbb{R}^{n}=\mathbb{R}^{k} \times \mathbb{R}^{n-k} \text { for } n=3 \text { and } k=2
$$

Recall [Reeb Foliation]

The Reeb foliation is a very particular foliation of the solid torus $V=D^{2} \times S^{1}$ which is both "good" and "bad".

Recall [Reeb Foliation]

The Reeb foliation is a very particular foliation of the solid torus $V=D^{2} \times S^{1}$ which is both "good" and "bad".

Figure 2
The Reeb foliation of V

Recall [Depth]

Let $M=M^{3}$ be compact and orientable and let \mathcal{F} be a codimension- 1 foliation on M. The depth of a leaf L of \mathcal{F} is defined inductively as follows:

Recall [Depth]

Let $M=M^{3}$ be compact and orientable and let \mathcal{F} be a codimension- 1 foliation on M. The depth of a leaf L of \mathcal{F} is defined inductively as follows:
(1) A leaf L of \mathcal{F} is depth zero if L is compact.

Recall [Depth]

Let $M=M^{3}$ be compact and orientable and let \mathcal{F} be a codimension- 1 foliation on M. The depth of a leaf L of \mathcal{F} is defined inductively as follows:
(1) A leaf L of \mathcal{F} is depth zero if L is compact.
(2) Having defined depth $j \leq k$, a leaf L of \mathcal{F} is said to be at depth $k+1$ provided that

Recall [Depth]

Let $M=M^{3}$ be compact and orientable and let \mathcal{F} be a codimension- 1 foliation on M. The depth of a leaf L of \mathcal{F} is defined inductively as follows:
(1) A leaf L of \mathcal{F} is depth zero if L is compact.
(2) Having defined depth $j \leq k$, a leaf L of \mathcal{F} is said to be at depth $k+1$ provided that (i) $\bar{L}-L$ is a union of depth $j \leq k$ leaves,

Recall [Depth]

Let $M=M^{3}$ be compact and orientable and let \mathcal{F} be a codimension- 1 foliation on M. The depth of a leaf L of \mathcal{F} is defined inductively as follows:
(1) A leaf L of \mathcal{F} is depth zero if L is compact.
(2) Having defined depth $j \leq k$, a leaf L of \mathcal{F} is said to be at depth $k+1$ provided that (i) $\bar{L}-L$ is a union of depth $j \leq k$ leaves, and (ii) $\bar{L}-L$ contains at least one leaf of depth k.

Recall [Depth]

Let $M=M^{3}$ be compact and orientable and let \mathcal{F} be a codimension- 1 foliation on M. The depth of a leaf L of \mathcal{F} is defined inductively as follows:
(1) A leaf L of \mathcal{F} is depth zero if L is compact.
(2) Having defined depth $j \leq k$, a leaf L of \mathcal{F} is said to be at depth $k+1$ provided that (i) $\bar{L}-L$ is a union of depth $j \leq k$ leaves, and (ii) $\bar{L}-L$ contains at least one leaf of depth k.

Definition 1.

Under the same assumptions as above, \mathcal{F} is said to be depth k if

$$
k=\max \{\operatorname{depth}(L): L \text { is a leaf of } \mathcal{F}\}
$$

Recall [Sutured Manifold]

A sutured manifold (M, γ) is a compact oriented 3-manifold M together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$ subject to the following conditions:

Recall [Sutured Manifold]

A sutured manifold (M, γ) is a compact oriented 3-manifold M together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$ subject to the following conditions:
(1) Each component of $A(\gamma)$ contains a homologically nontrivial (with respect to $A(\gamma)$) oriented simple closed curve called a suture.

Recall [Sutured Manifold]

A sutured manifold (M, γ) is a compact oriented 3-manifold M together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$ subject to the following conditions:
(1) Each component of $A(\gamma)$ contains a homologically nontrivial (with respect to $A(\gamma)$) oriented simple closed curve called a suture.
(2) Every component of $R(\gamma) \stackrel{\text { def }}{=} \partial M-\dot{\gamma}$ is oriented, and the orientations on $R(\gamma)$ must be "coherent" with respect to $s(\gamma)$.

Recall [Sutured Manifold]

A sutured manifold (M, γ) is a compact oriented 3-manifold M together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$ subject to the following conditions:
(1) Each component of $A(\gamma)$ contains a homologically nontrivial (with respect to $A(\gamma)$) oriented simple closed curve called a suture.
(2) Every component of $R(\gamma) \stackrel{\text { def }}{=} \partial M-\dot{\gamma}$ is oriented, and the orientations on $R(\gamma)$ must be "coherent" with respect to $s(\gamma)$.

Define $R_{ \pm}=R_{ \pm}(\gamma)$ to be the components of $R(\gamma)$ whose normal vectors point out of and into M, respectively.

Recall [Sutured Manifold Decomposition]

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$,

Recall [Sutured Manifold Decomposition]

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$,

Recall [Sutured Manifold Decomposition]

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$, and (iii) for every component λ of $S \cap \gamma$, one of the following holds:

Recall [Sutured Manifold Decomposition]

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$, and (iii) for every component λ of $S \cap \gamma$, one of the following holds:
(1) λ is a properly embedded nonseparating arc in γ.

Recall [Sutured Manifold Decomposition]

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$, and (iii) for every component λ of $S \cap \gamma$, one of the following holds:
(1) λ is a properly embedded nonseparating arc in γ.
${ }_{2} \lambda$ is a simple closed curve in an annular component A of γ which is in the same homology class as $A \cap s(\gamma)$.

Recall [Sutured Manifold Decomposition]

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$, and (iii) for every component λ of $S \cap \gamma$, one of the following holds:
(1) λ is a properly embedded nonseparating arc in γ.
${ }_{2} \lambda$ is a simple closed curve in an annular component A of γ which is in the same homology class as $A \cap s(\gamma)$.
3λ is a homotopically nontrivial curve in a toral component T of γ so that, if δ is another component of $T \cap S$, then λ and δ represent the same homology class in $H_{1}(T)$.

Recall [Sutured Manifold Decomposition (Cont'd)]

Then, S defines a sutured manifold decomposition

$$
(M, \gamma) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

where:

Recall [Sutured Manifold Decomposition (Cont'd)]

Then, S defines a sutured manifold decomposition

$$
(M, \gamma) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

where:

- $M^{\prime}=M-\stackrel{\circ}{N}(S)$ where $N(S)$ denotes a product neighborhood of S in M.

Recall [Sutured Manifold Decomposition (Cont'd)]

Then, S defines a sutured manifold decomposition

$$
(M, \gamma) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

where:

- $M^{\prime}=M-\stackrel{\circ}{N}(S)$ where $N(S)$ denotes a product neighborhood of S in M.
- S_{+}^{\prime} and S_{-}^{\prime} denotes the components of $\partial N(S) \cap M^{\prime}$ whose normal vector points out of and into M^{\prime}, respectively.

Recall [Sutured Manifold Decomposition (Cont'd)]

Then, S defines a sutured manifold decomposition

$$
(M, \gamma) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

where:

- $M^{\prime}=M-\stackrel{\circ}{N}(S)$ where $N(S)$ denotes a product neighborhood of S in M.
- S_{+}^{\prime} and S_{-}^{\prime} denotes the components of $\partial N(S) \cap M^{\prime}$ whose normal vector points out of and into M^{\prime}, respectively.
- $\gamma^{\prime}=\left(\gamma \cap M^{\prime}\right) \cup N\left(S_{+}^{\prime} \cap R_{-}(\gamma)\right) \cup N\left(S_{-}^{\prime} \cap R_{+}(\gamma)\right)$.

Recall [Sutured Manifold Decomposition (Cont'd)]

Then, S defines a sutured manifold decomposition

$$
(M, \gamma) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

where:

- $M^{\prime}=M-\stackrel{\circ}{N}(S)$ where $N(S)$ denotes a product neighborhood of S in M.
- S_{+}^{\prime} and S_{-}^{\prime} denotes the components of $\partial N(S) \cap M^{\prime}$ whose normal vector points out of and into M^{\prime}, respectively.
- $\gamma^{\prime}=\left(\gamma \cap M^{\prime}\right) \cup N\left(S_{+}^{\prime} \cap R_{-}(\gamma)\right) \cup N\left(S_{-}^{\prime} \cap R_{+}(\gamma)\right)$.
- $R_{ \pm}\left(\gamma^{\prime}\right)=\left(\left(R_{ \pm}(\gamma) \cap M^{\prime}\right) \cup S_{ \pm}^{\prime}\right)-\dot{\gamma}^{\prime}$.

Recall [Sutured Manifold Decomposition (Cont'd)]

Then, S defines a sutured manifold decomposition

$$
(M, \gamma) \xrightarrow{S}\left(M^{\prime}, \gamma^{\prime}\right)
$$

where:

- $M^{\prime}=M-\stackrel{\circ}{N}(S)$ where $N(S)$ denotes a product neighborhood of S in M.
- S_{+}^{\prime} and S_{-}^{\prime} denotes the components of $\partial N(S) \cap M^{\prime}$ whose normal vector points out of and into M^{\prime}, respectively.
- $\gamma^{\prime}=\left(\gamma \cap M^{\prime}\right) \cup N\left(S_{+}^{\prime} \cap R_{-}(\gamma)\right) \cup N\left(S_{-}^{\prime} \cap R_{+}(\gamma)\right)$.
- $R_{ \pm}\left(\gamma^{\prime}\right)=\left(\left(R_{ \pm}(\gamma) \cap M^{\prime}\right) \cup S_{ \pm}^{\prime}\right)-\dot{\gamma}^{\prime}$.
- $S_{ \pm}=S_{ \pm}^{\prime} \cap R_{ \pm}\left(\gamma^{\prime}\right)$.

Recall [Sutured Manifold Hierarchy]

A sutured manifold hierarchy is a sequence of sutured manifold decompositions

$$
\left(M_{0}, \gamma_{0}\right) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}\right) \xrightarrow{S_{2}}\left(M_{2}, \gamma_{2}\right) \longrightarrow \cdots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}\right)
$$

where $\left(M_{n}, \gamma_{n}\right)=(R \times I, \partial R \times I)$ and $R_{+}\left(\gamma_{n}\right)=R \times\{1\}$ for some surface R. Here, $I=[0,1]$ and R is some surface.

Section II

Preliminaries

- Foliations \& Depth
- Sutured Manifolds, Decompositions, and Hierarchies
(2) Links Between Sutured Manifolds and Reebless Foliations
- Gabai's Ginormous Main Theorem of Awesome Non-Triviality and Awesomeness
■ How Big is the Big Theorem?
- Proof of Main Theorem: Outline
- Proof of Main Theorem: Sketch of Major Construction
(3) Why Should Anyone Care?

The Main Theorem

Theorem 1.

Suppose M is connected, and (M, γ) has a sutured manifold hierarchy

$$
(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{S_{1}}\left(M_{1}, \gamma_{1}\right) \xrightarrow{S_{2}}\left(M_{2}, \gamma_{2}\right) \longrightarrow \cdots \xrightarrow{S_{n}}\left(M_{n}, \gamma_{n}\right)
$$

so that no component of $R\left(\gamma_{i}\right)$ is a torus which is compressible. Then there exist transversely-oriented foliations \mathcal{F}_{0} and \mathcal{F}_{1} of M such that the following conditions hold:

The Main Theorem

Theorem 1 (Cont'd).

1 \mathcal{F}_{0} and \mathcal{F}_{1} are tangent to $R(\gamma)$.

The Main Theorem

Theorem 1 (Cont'd).

1 \mathcal{F}_{0} and \mathcal{F}_{1} are tangent to $R(\gamma)$.
$2 \mathcal{F}_{0}$ and \mathcal{F}_{1} are transverse to γ.

The Main Theorem

Theorem 1 (Cont'd).

1) \mathcal{F}_{0} and \mathcal{F}_{1} are tangent to $R(\gamma)$.
$2 \mathcal{F}_{0}$ and \mathcal{F}_{1} are transverse to γ.
3 If $H_{2}(M, \gamma) \neq 0$, then every leaf of \mathcal{F}_{0} and \mathcal{F}_{1} nontrivially intersects a transverse closed curve or a transverse arc with endpoints in $R(\gamma)$. However, if $\varnothing \neq \partial M \neq R_{ \pm}(\gamma)$, then this holds only for interior leaves.

The Main Theorem

Theorem 1 (Cont'd).

1) \mathcal{F}_{0} and \mathcal{F}_{1} are tangent to $R(\gamma)$.
$2 \mathcal{F}_{0}$ and \mathcal{F}_{1} are transverse to γ.
3 If $H_{2}(M, \gamma) \neq 0$, then every leaf of \mathcal{F}_{0} and \mathcal{F}_{1} nontrivially intersects a transverse closed curve or a transverse arc with endpoints in $R(\gamma)$. However, if $\varnothing \neq \partial M \neq R_{ \pm}(\gamma)$, then this holds only for interior leaves.
4 There are no 2-dimensional Reeb components on $\mathcal{F}_{i} \mid \gamma$ for $i=0,1$.

The Main Theorem

Theorem 1 (Cont'd).

1) \mathcal{F}_{0} and \mathcal{F}_{1} are tangent to $R(\gamma)$.
$2 \mathcal{F}_{0}$ and \mathcal{F}_{1} are transverse to γ.
3 If $H_{2}(M, \gamma) \neq 0$, then every leaf of \mathcal{F}_{0} and \mathcal{F}_{1} nontrivially intersects a transverse closed curve or a transverse arc with endpoints in $R(\gamma)$. However, if $\varnothing \neq \partial M \neq R_{ \pm}(\gamma)$, then this holds only for interior leaves.
4 There are no 2-dimensional Reeb components on $\mathcal{F}_{i} \mid \gamma$ for $i=0,1$.
$5 \mathcal{F}_{1}$ is C^{∞} except possibly along toral components of $R(\gamma)$ (if $\partial M \neq \varnothing$) or on S_{1} (if $\partial M=\varnothing$).

The Main Theorem

Theorem 1 (Cont'd).

1) \mathcal{F}_{0} and \mathcal{F}_{1} are tangent to $R(\gamma)$.
$2 \mathcal{F}_{0}$ and \mathcal{F}_{1} are transverse to γ.
3 If $H_{2}(M, \gamma) \neq 0$, then every leaf of \mathcal{F}_{0} and \mathcal{F}_{1} nontrivially intersects a transverse closed curve or a transverse arc with endpoints in $R(\gamma)$. However, if $\varnothing \neq \partial M \neq R_{ \pm}(\gamma)$, then this holds only for interior leaves.
4 There are no 2-dimensional Reeb components on $\mathcal{F}_{i} \mid \gamma$ for $i=0,1$.
$5 \mathcal{F}_{1}$ is C^{∞} except possibly along toral components of $R(\gamma)$ (if $\partial M \neq \varnothing$) or on S_{1} (if $\partial M=\varnothing$).
$6 \mathcal{F}_{0}$ is of finite depth.

How Big Is "Big"?

This theorem is remarkable for a lot of reasons, not the least of which are the results it yields (almost) for free.

How Big Is "Big"?

There are many corollaries to the main theorem, notable among which is the existence of Reebless foliations on a number of 3-manifolds M :

How Big Is "Big"?

There are many corollaries to the main theorem, notable among which is the existence of Reebless foliations on a number of 3-manifolds M :

- M compact, irreducible, connected, with boundary ∂M a (possibly empty) union of tori, satisfying $x(z) \neq 0$ for some $z \in H_{2}(M, \partial M)$.

How Big Is "Big"?

There are many corollaries to the main theorem, notable among which is the existence of Reebless foliations on a number of 3-manifolds M :

- M compact, irreducible, connected, with boundary ∂M a (possibly empty) union of tori, satisfying $x(z) \neq 0$ for some $z \in H_{2}(M, \partial M)$.
- M compact, with boundary, satisfying $H_{2}(M, \partial M) \neq 0$, with interior admitting a complete hyperbolic metric.

How Big Is "Big"?

There are many corollaries to the main theorem, notable among which is the existence of Reebless foliations on a number of 3-manifolds M :

- M compact, irreducible, connected, with boundary ∂M a (possibly empty) union of tori, satisfying $x(z) \neq 0$ for some $z \in H_{2}(M, \partial M)$.
- M compact, with boundary, satisfying $H_{2}(M, \partial M) \neq 0$, with interior admitting a complete hyperbolic metric.
- $M=S^{3}-\stackrel{\circ}{N}(L)$ where L is a nonsplit link in S^{3}.

How Big Is "Big"?

There are many corollaries to the main theorem, notable among which is the existence of Reebless foliations on a number of 3-manifolds M :

- M compact, irreducible, connected, with boundary ∂M a (possibly empty) union of tori, satisfying $x(z) \neq 0$ for some $z \in H_{2}(M, \partial M)$.
- M compact, with boundary, satisfying $H_{2}(M, \partial M) \neq 0$, with interior admitting a complete hyperbolic metric.
- $M=S^{3}-\stackrel{\circ}{N}(L)$ where L is a nonsplit link in S^{3}.

A number of then-conjectures involving knots and links also follow as corollaries, as do a number of fundamental results such as the higher-genus Dehn's lemma.

How Does One Prove Such a Thing?

The proof is colossal and requires an enormous amount of work.

Outline of Proof

(O.I) First, "pre-process" the given hierarchy to get a "better-behaved" hierarchy $(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{T_{1}}\left(M_{1}, \gamma_{1}\right) \longrightarrow \cdots \xrightarrow{T_{k}}\left(M_{k}, \gamma_{k}\right)$.

Outline of Proof

(O.I) First, "pre-process" the given hierarchy to get a "better-behaved" hierarchy $(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{T_{1}}\left(M_{1}, \gamma_{1}\right) \longrightarrow \cdots \xrightarrow{T_{k}}\left(M_{k}, \gamma_{k}\right)$.
(O.II) Start with the product foliation on $\left(M_{k}, \gamma_{k}\right)$.

Outline of Proof

(O.I) First, "pre-process" the given hierarchy to get a "better-behaved" hierarchy $(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{T_{1}}\left(M_{1}, \gamma_{1}\right) \longrightarrow \cdots \xrightarrow{T_{k}}\left(M_{k}, \gamma_{k}\right)$.
(O.II) Start with the product foliation on $\left(M_{k}, \gamma_{k}\right)$. Inductively construct foliations $\mathcal{F}_{0,1}^{i}$ on $\left(M_{i}, \gamma_{i}\right), i<k$, by gluing T_{i}^{+}to T_{i}^{-}and extending existing foliations.

Outline of Proof

(O.I) First, "pre-process" the given hierarchy to get a "better-behaved" hierarchy $(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{T_{1}}\left(M_{1}, \gamma_{1}\right) \longrightarrow \cdots \xrightarrow{T_{k}}\left(M_{k}, \gamma_{k}\right)$.
(O.II) Start with the product foliation on $\left(M_{k}, \gamma_{k}\right)$. Inductively construct foliations $\mathcal{F}_{0,1}^{i}$ on $\left(M_{i}, \gamma_{i}\right), i<k$, by gluing T_{i}^{+}to T_{i}^{-}and extending existing foliations. In general, these foliations only satisfy a subset of the desired properties.

Outline of Proof

(O.I) First, "pre-process" the given hierarchy to get a "better-behaved" hierarchy $(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{T_{1}}\left(M_{1}, \gamma_{1}\right) \longrightarrow \cdots \xrightarrow{T_{k}}\left(M_{k}, \gamma_{k}\right)$.
(O.II) Start with the product foliation on $\left(M_{k}, \gamma_{k}\right)$. Inductively construct foliations $\mathcal{F}_{0,1}^{i}$ on $\left(M_{i}, \gamma_{i}\right), i<k$, by gluing T_{i}^{+}to T_{i}^{-}and extending existing foliations. In general, these foliations only satisfy a subset of the desired properties.
(O.III-V) Use other results to conclude that $R_{ \pm}(\gamma)$ are norm-minimizing,

Outline of Proof

(O.I) First, "pre-process" the given hierarchy to get a "better-behaved" hierarchy $(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{T_{1}}\left(M_{1}, \gamma_{1}\right) \longrightarrow \cdots \xrightarrow{T_{k}}\left(M_{k}, \gamma_{k}\right)$.
(O.II) Start with the product foliation on $\left(M_{k}, \gamma_{k}\right)$. Inductively construct foliations $\mathcal{F}_{0,1}^{i}$ on $\left(M_{i}, \gamma_{i}\right), i<k$, by gluing T_{i}^{+}to T_{i}^{-}and extending existing foliations. In general, these foliations only satisfy a subset of the desired properties.
(O.III-V) Use other results to conclude that $R_{ \pm}(\gamma)$ are norm-minimizing, to construct an "even better-behaved" hierarchy for (M, γ),

Outline of Proof

(O.I) First, "pre-process" the given hierarchy to get a "better-behaved" hierarchy $(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{T_{1}}\left(M_{1}, \gamma_{1}\right) \longrightarrow \cdots \xrightarrow{T_{k}}\left(M_{k}, \gamma_{k}\right)$.
(O.II) Start with the product foliation on $\left(M_{k}, \gamma_{k}\right)$. Inductively construct foliations $\mathcal{F}_{0,1}^{i}$ on $\left(M_{i}, \gamma_{i}\right), i<k$, by gluing T_{i}^{+}to T_{i}^{-}and extending existing foliations. In general, these foliations only satisfy a subset of the desired properties.
(O.III-V) Use other results to conclude that $R_{ \pm}(\gamma)$ are norm-minimizing, to construct an "even better-behaved" hierarchy for (M, γ), and to inductively construct $\mathcal{F}_{0,1}^{i}$ for each level of this new hierarchy.

Outline of Proof

(O.I) First, "pre-process" the given hierarchy to get a "better-behaved" hierarchy $(M, \gamma)=\left(M_{0}, \gamma_{0}\right) \xrightarrow{T_{1}}\left(M_{1}, \gamma_{1}\right) \longrightarrow \cdots \xrightarrow{T_{k}}\left(M_{k}, \gamma_{k}\right)$.
(O.II) Start with the product foliation on $\left(M_{k}, \gamma_{k}\right)$. Inductively construct foliations $\mathcal{F}_{0,1}^{i}$ on $\left(M_{i}, \gamma_{i}\right), i<k$, by gluing T_{i}^{+}to T_{i}^{-}and extending existing foliations. In general, these foliations only satisfy a subset of the desired properties.
(O.III-V) Use other results to conclude that $R_{ \pm}(\gamma)$ are norm-minimizing, to construct an "even better-behaved" hierarchy for (M, γ), and to inductively construct $\mathcal{F}_{0,1}^{i}$ for each level of this new hierarchy. These foliations satisfy all desired conditions.

The Proof

The constructions claimed in (O.II) are the main component of the proof.

The Proof-Induction Hypotheses

(H1) Foliations $\mathcal{F}_{0,1}^{i}$ have been constructed on $\left(M_{i}, \gamma_{i}\right)$ satisfying (1), (2), and (4);

The Proof-Induction Hypotheses

(H1) Foliations $\mathcal{F}_{0,1}^{i}$ have been constructed on $\left(M_{i}, \gamma_{i}\right)$ satisfying (1), (2), and (4); also (3) if $\partial M_{j} \neq R_{ \pm}\left(\gamma_{j}\right)$ for $j \geq i$.

The Proof-Induction Hypotheses

(H1) Foliations $\mathcal{F}_{0,1}^{i}$ have been constructed on $\left(M_{i}, \gamma_{i}\right)$ satisfying (1), (2), and (4); also (3) if $\partial M_{j} \neq R_{ \pm}\left(\gamma_{j}\right)$ for $j \geq i$.
(H2) \mathcal{F}_{1}^{i} is C^{∞} except possibly along toral components of $\cup_{j=i+1}^{k} T_{j} \cup R\left(\gamma_{i}\right)$.

The Proof-Induction Hypotheses

(H1) Foliations $\mathcal{F}_{0,1}^{i}$ have been constructed on $\left(M_{i}, \gamma_{i}\right)$ satisfying (1), (2), and (4); also (3) if $\partial M_{j} \neq R_{ \pm}\left(\gamma_{j}\right)$ for $j \geq i$.
(H2) \mathcal{F}_{1}^{i} is C^{∞} except possibly along toral components of $\cup_{j=i+1}^{k} T_{j} \cup R\left(\gamma_{i}\right)$.
(H3) If δ is a curve on a nontoral component of $R\left(\gamma_{i}\right)$ and if $f:[0, \alpha) \rightarrow[0, \beta)$ is a representative of the germ of the holonomy map around δ for the foliation \mathcal{F}_{1}^{i}, then

$$
\frac{d^{n} f}{d t^{n}}(0)= \begin{cases}1, & i=1 \\ 0, & i>1\end{cases}
$$

The Proof-Induction Hypotheses

(H1) Foliations $\mathcal{F}_{0,1}^{i}$ have been constructed on $\left(M_{i}, \gamma_{i}\right)$ satisfying (1), (2), and (4); also (3) if $\partial M_{j} \neq R_{ \pm}\left(\gamma_{j}\right)$ for $j \geq i$.
(H2) \mathcal{F}_{1}^{i} is C^{∞} except possibly along toral components of $\cup_{j=i+1}^{k} T_{j} \cup R\left(\gamma_{i}\right)$.
(H3) If δ is a curve on a nontoral component of $R\left(\gamma_{i}\right)$ and if $f:[0, \alpha) \rightarrow[0, \beta)$ is a representative of the germ of the holonomy map around δ for the foliation \mathcal{F}_{1}^{i}, then

$$
\frac{d^{n} f}{d t^{n}}(0)= \begin{cases}1, & i=1 \\ 0, & i>1\end{cases}
$$

(H4) \mathcal{F}_{0}^{i} is of finite depth if, for all $j \geq i, V \cap T_{j-1}$ is a union of parallel oriented simple curves for each component V of $R\left(\gamma_{j}\right)$ with $T_{j-1} \cap \partial V \neq \varnothing$.

The Proof-Induction Hypotheses

(H1) Foliations $\mathcal{F}_{0,1}^{i}$ have been constructed on $\left(M_{i}, \gamma_{i}\right)$ satisfying (1), (2), and (4); also (3) if $\partial M_{j} \neq R_{ \pm}\left(\gamma_{j}\right)$ for $j \geq i$.
(H2) \mathcal{F}_{1}^{i} is C^{∞} except possibly along toral components of $\cup_{j=i+1}^{k} T_{j} \cup R\left(\gamma_{i}\right)$.
(H3) If δ is a curve on a nontoral component of $R\left(\gamma_{i}\right)$ and if $f:[0, \alpha) \rightarrow[0, \beta)$ is a representative of the germ of the holonomy map around δ for the foliation \mathcal{F}_{1}^{i}, then

$$
\frac{d^{n} f}{d t^{n}}(0)= \begin{cases}1, & i=1 \\ 0, & i>1\end{cases}
$$

(H4) \mathcal{F}_{0}^{i} is of finite depth if, for all $j \geq i, V \cap T_{j-1}$ is a union of parallel oriented simple curves for each component V of $R\left(\gamma_{j}\right)$ with $T_{j-1} \cap \partial V \neq \varnothing$.
(H5) $\mathcal{F}_{0,1}^{i}$ has no Reeb components.

The Proof-The Gluings

Next, the goal is to glue T_{i}^{+}to T_{i}^{-}to obtain a manifold Q and to see what needs to happen to the existing foliations $\mathcal{F}_{0,1}^{i}$ to get the desired foliations $\mathcal{F}_{0,1}^{i-1}$ on M_{i-1} (which contains Q).

The Proof-The Cases

The gluings can be classified based on properties of the manifolds $\left(M_{i}, \gamma_{i}\right)$ and Q; there are three main cases to consider.

The Proof-Case I

The Proof-Case I

Case I is by far the easiest:

The Proof-Case I

Case I is by far the easiest:
The gluing happens in such a way that the existing (pre-glued) foliations are compatible.

The Proof-Case I

Case I is by far the easiest:
The gluing happens in such a way that the existing (pre-glued) foliations are compatible. Define $\mathcal{F}_{0,1}^{i-1}$ to be equal to the foliations induced by $\mathcal{F}_{0,1}^{i}$ and note that the desired properties are trivially satisfied.

The Proof-Case II

The Proof-Case II

T_{i}
Case II is considerably harder:

The Proof-Case II

T_{i}
Case II is considerably harder:
The gluing here yields a point of non-convexity where the induced foliations are inconsistent. Substantially more work has to be done.

The Proof-Case II (Cont'd)

Figure 3
Gluing T_{i}^{+}and T_{i}^{-}to get Q (from Gabai's perspective)

The Proof-Case II (Cont'd)

Two different processes must be undertaken in order to get the desired foliations $\mathcal{F}_{0,1}^{i-1}$ on M_{i-1} :

The Proof-Case II (Cont'd)

Two different processes must be undertaken in order to get the desired foliations $\mathcal{F}_{0,1}^{i-1}$ on M_{i-1} :

- To get \mathcal{F}_{0}^{i-1}, the desired technique is to spiral.

The Proof-Case II (Cont'd)

Two different processes must be undertaken in order to get the desired foliations $\mathcal{F}_{0,1}^{i-1}$ on M_{i-1} :

- To get \mathcal{F}_{0}^{i-1}, the desired technique is to spiral.
- To get \mathcal{F}_{1}^{i-1}, there are a number of subcases to consider.

The Proof-Case II (Cont'd)

Two different processes must be undertaken in order to get the desired foliations $\mathcal{F}_{0,1}^{i-1}$ on M_{i-1} :

- To get \mathcal{F}_{0}^{i-1}, the desired technique is to spiral.
- To get \mathcal{F}_{1}^{i-1}, there are a number of subcases to consider. The main issue at-hand, however, is the holonomy.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} :

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i},

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i}, define $\delta \stackrel{\text { def }}{=}$ $\partial T_{i} \cap V$,

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i}, define $\delta \stackrel{\text { def }}{=}$ $\partial T_{i} \cap V$, and let $\lambda \subset V$ be a simple closed curve having geometric intersection number 1 with δ.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i}, define $\delta \stackrel{\text { def }}{=}$ $\partial T_{i} \cap V$, and let $\lambda \subset V$ be a simple closed curve having geometric intersection number 1 with δ.
(1) Foliate a number of intermediate spaces.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i}, define $\delta \stackrel{\text { def }}{=}$ $\partial T_{i} \cap V$, and let $\lambda \subset V$ be a simple closed curve having geometric intersection number 1 with δ.
(1) Foliate a number of intermediate spaces.

2 Use these intermediate spaces to foliate $V \times[-\infty, \infty]$.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i}, define $\delta \stackrel{\text { def }}{=}$ $\partial T_{i} \cap V$, and let $\lambda \subset V$ be a simple closed curve having geometric intersection number 1 with δ.
(1) Foliate a number of intermediate spaces.
(2) Use these intermediate spaces to foliate $V \times[-\infty, \infty]$.
(3) Identify a subspace Z of $V \times[-\infty, \infty]$ which is diffeomorphic to $M_{i-1}-\stackrel{\circ}{Q}$.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i}, define $\delta \stackrel{\text { def }}{=}$ $\partial T_{i} \cap V$, and let $\lambda \subset V$ be a simple closed curve having geometric intersection number 1 with δ.
(1) Foliate a number of intermediate spaces.
(2) Use these intermediate spaces to foliate $V \times[-\infty, \infty]$.
(3) Identify a subspace Z of $V \times[-\infty, \infty]$ which is diffeomorphic to $M_{i-1}-\stackrel{\circ}{Q} . Z$ has the foliation induced by V.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i}, define $\delta \stackrel{\text { def }}{=}$ $\partial T_{i} \cap V$, and let $\lambda \subset V$ be a simple closed curve having geometric intersection number 1 with δ.
(1) Foliate a number of intermediate spaces.
(2) Use these intermediate spaces to foliate $V \times[-\infty, \infty]$.
(3) Identify a subspace Z of $V \times[-\infty, \infty]$ which is diffeomorphic to $M_{i-1}-\stackrel{\circ}{Q} . Z$ has the foliation induced by V.
(4) Glue Z to Q so that the foliations on each are compatible.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{0}^{i-1} : Let V be a component of $R\left(\gamma_{i-1}\right)$ which contains ∂T_{i}, define $\delta \stackrel{\text { def }}{=}$ $\partial T_{i} \cap V$, and let $\lambda \subset V$ be a simple closed curve having geometric intersection number 1 with δ.
(1) Foliate a number of intermediate spaces.
(2) Use these intermediate spaces to foliate $V \times[-\infty, \infty]$.
(3) Identify a subspace Z of $V \times[-\infty, \infty]$ which is diffeomorphic to $M_{i-1}-\stackrel{\circ}{Q} . Z$ has the foliation induced by V.
(4) Glue Z to Q so that the foliations on each are compatible. This is done in a way so that depth $\mathcal{F}_{0}^{i-1}=\operatorname{depth} \mathcal{F}_{0}^{i}+1$.
Define \mathcal{F}_{0}^{i-1} to be the resulting foliation on M_{i-1}.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{1}^{i-1} :

The Proof-Case II (Cont'd)

To get \mathcal{F}_{1}^{i-1} : Write \mathcal{F}^{1} for the foliation induced by \mathcal{F}_{1}^{i} on Q,

The Proof-Case II (Cont'd)

To get \mathcal{F}_{1}^{i-1} : Write \mathcal{F}^{1} for the foliation induced by \mathcal{F}_{1}^{i} on Q, and let f be the holonomy of \mathcal{F}^{1} along the transverse annulus A.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{1}^{i-1} : Write \mathcal{F}^{1} for the foliation induced by \mathcal{F}_{1}^{i} on Q, and let f be the holonomy of \mathcal{F}^{1} along the transverse annulus A.
(C1) If $f=\mathrm{id}$, then spiraling will yield a C^{∞} foliation \mathcal{F}_{1}^{i-1}.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{1}^{i-1} : Write \mathcal{F}^{1} for the foliation induced by \mathcal{F}_{1}^{i} on Q, and let f be the holonomy of \mathcal{F}^{1} along the transverse annulus A.
(C1) If $f=\mathrm{id}$, then spiraling will yield a C^{∞} foliation \mathcal{F}_{1}^{i-1}.
(C2) If $f \neq \mathrm{id}$, :

The Proof-Case II (Cont'd)

To get \mathcal{F}_{1}^{i-1} : Write \mathcal{F}^{1} for the foliation induced by \mathcal{F}_{1}^{i} on Q, and let f be the holonomy of \mathcal{F}^{1} along the transverse annulus A.
(C1) If $f=\mathrm{id}$, then spiraling will yield a C^{∞} foliation \mathcal{F}_{1}^{i-1}.
(C2) If $f \neq \mathrm{id}$,:
(i) If $\partial V \neq \varnothing$, the holonomy can be "pushed to the boundary" to reduce to case (C1).

The Proof-Case II (Cont'd)

To get \mathcal{F}_{1}^{i-1} : Write \mathcal{F}^{1} for the foliation induced by \mathcal{F}_{1}^{i} on Q, and let f be the holonomy of \mathcal{F}^{1} along the transverse annulus A.
(C1) If $f=\mathrm{id}$, then spiraling will yield a C^{∞} foliation \mathcal{F}_{1}^{i-1}.
(C2) If $f \neq \mathrm{id}$,:
(i) If $\partial V \neq \varnothing$, the holonomy can be "pushed to the boundary" to reduce to case (C1).
(ii) If $\partial V=\varnothing$ and $V=T^{2}$, things are screwed: \mathcal{F}_{1}^{i-1} being C^{0} is as good as it gets.

The Proof-Case II (Cont'd)

To get \mathcal{F}_{1}^{i-1} : Write \mathcal{F}^{1} for the foliation induced by \mathcal{F}_{1}^{i} on Q, and let f be the holonomy of \mathcal{F}^{1} along the transverse annulus A.
(C1) If $f=\mathrm{id}$, then spiraling will yield a C^{∞} foliation \mathcal{F}_{1}^{i-1}.
(C2) If $f \neq \mathrm{id}$, :
(i) If $\partial V \neq \varnothing$, the holonomy can be "pushed to the boundary" to reduce to case (C1).
(ii) If $\partial V=\varnothing$ and $V=T^{2}$, things are screwed: \mathcal{F}_{1}^{i-1} being C^{0} is as good as it gets.
(iii) If $\partial V=\varnothing$ and $V=S_{g}, g>1$, then holonomy can be reduced to case (C1) by attaching thick bands to A and appealing a result of Mather, Sergeraert, and Thurston.

The Proof-Case II (Cont'd)

Figure 4
Pushing holonomy to the boundary in case (C2.i)

The Proof-Case II (Cont'd)

Figure 5
Attaching thick bands to A in case (C2.iii)

The Proof-Case III

The Proof-Case III

Case III is similar to Case II but is more involved still:

The Proof-Case III

Case III is similar to Case II but is more involved still:
The gluing again yields inconsistent induced foliations. Because holonomy lies along an arc (and hence is trivial), the goal is to smooth (similar to spiraling in Case II).

The Proof-Case III (Cont'd)

Figure 6
Gluing (bottom) happens after first "stretching" the pieces of γ_{i} which contain $\partial T_{i}^{+} \cup \partial T_{i}^{-}$(top).

The Proof-Case III (Cont'd)

There is one big difference between Cases II and III:

The Proof-Case III (Cont'd)

There is one big difference between Cases II and III:
In Case II, it is assumed that ∂T_{i} is contained in a component V of $R\left(\gamma_{i-1}\right)$ and hence that $M_{i-1}-Q \subset N(V)$;

The Proof-Case III (Cont'd)

There is one big difference between Cases II and III:
In Case II, it is assumed that ∂T_{i} is contained in a component V of $R\left(\gamma_{i-1}\right)$ and hence that $M_{i-1}-Q \subset N(V)$; in Case III, $\partial T_{i} \cap \gamma_{i-1} \neq \varnothing$ and so $Q \subset M_{i-1}-$ $N\left(R\left(\gamma_{i-1}\right)\right)$.

The Proof-Case III (Cont'd)

There is one big difference between Cases II and III:
In Case II, it is assumed that ∂T_{i} is contained in a component V of $R\left(\gamma_{i-1}\right)$ and hence that $M_{i-1}-Q \subset N(V)$; in Case III, $\partial T_{i} \cap \gamma_{i-1} \neq \varnothing$ and so $Q \subset M_{i-1}-$ $N\left(R\left(\gamma_{i-1}\right)\right)$.

This means that whatever smoothing procedure is devised to handle Case III must be done for every component V of $R\left(\gamma_{i-1}\right)$ (satisfying $\partial T_{i} \cap V \neq \varnothing$).

The Proof-Case III (Cont'd)

Because of this difference, the construction of the foliations $\mathcal{F}_{0,1}^{i-1}$ requires one to examine manifolds of the form $P(V)=N(V) \cap Q$:

The Proof-Case III (Cont'd)

Because of this difference, the construction of the foliations $\mathcal{F}_{0,1}^{i-1}$ requires one to examine manifolds of the form $P(V)=N(V) \cap Q$:

Figure 7
Prototypical $P(V)$

The Proof-Case III (Cont'd)

After constructing an intricate gluing procedure on $P(V)$ for general V, the foliations $\mathcal{F}_{0,1}^{i-1}$ are constructed on M_{i-1}.

The Proof-Case III (Cont'd)

After constructing an intricate gluing procedure on $P(V)$ for general V, the foliations $\mathcal{F}_{0,1}^{i-1}$ are constructed on M_{i-1}.

Figure 8
A diagrammatic representation M_{i-1}, foliated.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like (M_{i-1}, γ_{i-1}) with "ditches" drilled out.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.

2 Foliate the "ditches".

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.
2 Foliate the "ditches".
(3) Glue the "ditches" back into Q_{1} so that the foliations on each are compatible.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.
2 Foliate the "ditches".
(3) Glue the "ditches" back into Q_{1} so that the foliations on each are compatible.

- Any smooth gluing will yield a C^{∞} foliation.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.
2 Foliate the "ditches".
(3) Glue the "ditches" back into Q_{1} so that the foliations on each are compatible.

- Any smooth gluing will yield a C^{∞} foliation. Call this foliation \mathcal{F}_{1}^{i-1}.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.
2 Foliate the "ditches".
(3) Glue the "ditches" back into Q_{1} so that the foliations on each are compatible.

- Any smooth gluing will yield a C^{∞} foliation. Call this foliation \mathcal{F}_{1}^{i-1}.
- A very particular gluing is required to (sometimes) yield finite depth.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.
2 Foliate the "ditches".
(3) Glue the "ditches" back into Q_{1} so that the foliations on each are compatible.

- Any smooth gluing will yield a C^{∞} foliation. Call this foliation \mathcal{F}_{1}^{i-1}.
- A very particular gluing is required to (sometimes) yield finite depth. Call the resulting foliation \mathcal{F}_{0}^{i-1}.

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.
2 Foliate the "ditches".
(3) Glue the "ditches" back into Q_{1} so that the foliations on each are compatible.

- Any smooth gluing will yield a C^{∞} foliation. Call this foliation \mathcal{F}_{1}^{i-1}.
- A very particular gluing is required to (sometimes) yield finite depth. Call the resulting foliation \mathcal{F}_{0}^{i-1}.
Note that finite depth isn't always possible for \mathcal{F}_{0}^{i-1} depending on how $P(V)$ looks;

The Proof-Case III (Cont'd)

The gist of the gluing procedure on $P(V)$:
(1) Define a number of intermediate spaces. One will be Q_{1}, which looks like $\left(M_{i-1}, \gamma_{i-1}\right)$ with "ditches" drilled out. Q_{1} has a foliation.
2 Foliate the "ditches".
(3) Glue the "ditches" back into Q_{1} so that the foliations on each are compatible.

- Any smooth gluing will yield a C^{∞} foliation. Call this foliation \mathcal{F}_{1}^{i-1}.
- A very particular gluing is required to (sometimes) yield finite depth. Call the resulting foliation \mathcal{F}_{0}^{i-1}.
Note that finite depth isn't always possible for \mathcal{F}_{0}^{i-1} depending on how $P(V)$ looks; when it is possible, the gluing always yields depth $\mathcal{F}_{0}^{i-1}=\operatorname{depth} \mathcal{F}_{0}^{i}+1.1$

Conclusion

As a result of the procedure outlined above, there are foliations $\mathcal{F}_{0,1}$ on M which in general satisfy only a subset of the desired properties.

Conclusion

As a result of the procedure outlined above, there are foliations $\mathcal{F}_{0,1}$ on M which in general satisfy only a subset of the desired properties.

To get the results as claimed, a number of outside results are used to get a "better" initial hierarchy for (M, γ).

Conclusion

As a result of the procedure outlined above, there are foliations $\mathcal{F}_{0,1}$ on M which in general satisfy only a subset of the desired properties.

To get the results as claimed, a number of outside results are used to get a "better" initial hierarchy for (M, γ). By completing the above procedure for this new hierarchy, there exist foliations (again called $\mathcal{F}_{0,1}$) on (M, γ) which satisfy all conditions of the theorem. \square

Section I

(1) Preliminaries

- Foliations \& Depth
- Sutured Manifolds, Decompositions, and Hierarchies

2 Links Between Sutured Manifolds and Reebless Foliations

- Gabai's Ginormous Main Theorem of Awesome Non-Triviality and Awesomeness
- How Big is the Big Theorem?
- Proof of Main Theorem: Outline
- Proof of Main Theorem: Sketch of Major Construction
(3) Why Should Anyone Care?

Why Study...

- ...3-Manifolds?

Why Study...

- ...3-Manifolds?
- ...Foliations?

Why Study...

- ...3-Manifolds?
- ...Foliations?
- ...Reeblessness?

Why Study...

- ...3-Manifolds?
- ...Foliations?
- ...Reeblessness?
- ...Sutured Manifolds?

Why Study...

- ...3-Manifolds?
- ...Foliations?
- ...Reeblessness?
- ...Sutured Manifolds?
- ...the Work of Gabai?

Tha@ols You!

