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Prelims Foliations

Recall [Foliation]

A dimension-k foliation of a manifold M = Mn is a decomposition F of M
into disjoint properly embedded submanifolds of dimension k which is locally
homeomorphic to the decomposition Rn = Rk×Rn−k.

The submanifolds are called leaves.
k is the dimension of F ; n− k is its codimension

Figure 1
Rn = Rk×Rn−k for n = 3 and k = 2
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Prelims Foliations

Recall [Reeb Foliation]

The Reeb foliation is a very particular foliation of the solid torus V = D2×S1

which is both “good” and “bad”.

Figure 2
The Reeb foliation of V
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Prelims Foliations

Recall [Depth]

Let M = M3 be compact and orientable and let F be a codimension-1 foliation
on M. The depth of a leaf L of F is defined inductively as follows:

1 A leaf L of F is depth zero if L is compact.

2 Having defined depth j≤ k, a leaf L of F is said to be at depth k+1
provided that (i) L−L is a union of depth j≤ k leaves, and (ii) L−L
contains at least one leaf of depth k.

Definition 1.
Under the same assumptions as above, F is said to be depth k if

k = max{depth(L) : L is a leaf of F }.
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Prelims Sutures

Recall [Sutured Manifold]

A sutured manifold (M,γ) is a compact oriented 3-manifold M together with a
set γ⊂ ∂M of pairwise disjoint annuli A(γ) and tori T(γ) subject to the following
conditions:

1 Each component of A(γ) contains a homologically nontrivial (with
respect to A(γ)) oriented simple closed curve called a suture.

2 Every component of R(γ) def
= ∂M− ◦

γ is oriented, and the orientations on
R(γ) must be “coherent” with respect to s(γ).

Define R± = R±(γ) to be the components of R(γ) whose normal vectors point
out of and into M, respectively.
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Prelims Sutures

Recall [Sutured Manifold Decomposition]

Let (M,γ) be a sutured manifold and let S be a properly embedded surface in
M such that (i) no component of ∂S bounds a disc in R(γ),

(ii) no component of
S is a disc D with ∂D ⊂ R(γ), and (iii) for every component λ of S∩ γ, one of
the following holds:

1 λ is a properly embedded nonseparating arc in γ.

2 λ is a simple closed curve in an annular component A of γ which is in the
same homology class as A∩ s(γ).

3 λ is a homotopically nontrivial curve in a toral component T of γ so that,
if δ is another component of T ∩S, then λ and δ represent the same
homology class in H1(T).
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Prelims Sutures

Recall [Sutured Manifold Decomposition (Cont’d)]

Then, S defines a sutured manifold decomposition

(M,γ)
S−→ (M′,γ′)

where:

M′ = M−
◦
N(S) where N(S) denotes a product neighborhood of S in M.

S′+ and S′− denotes the components of ∂N(S)∩M′ whose normal vector
points out of and into M′, respectively.

γ ′ = (γ∩M′)∪N(S′+∩R−(γ))∪N(S′−∩R+(γ)).

R±(γ ′) = ((R±(γ)∩M′)∪S′±)−
◦
γ ′.

S± = S′±∩R±(γ ′).
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Prelims Sutures

Recall [Sutured Manifold Hierarchy]

A sutured manifold hierarchy is a sequence of sutured manifold decompositions

(M0,γ0)
S1−→ (M1,γ1)

S2−→ (M2,γ2)−→ ·· ·
Sn−→ (Mn,γn)

where (Mn,γn) = (R× I,∂R× I) and R+(γn) = R×{1} for some surface R.
Here, I = [0,1] and R is some surface.
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Main Results

Section II

1 Preliminaries
Foliations & Depth
Sutured Manifolds, Decompositions, and Hierarchies

2 Links Between Sutured Manifolds and Reebless Foliations
Gabai’s Ginormous Main Theorem of Awesome Non-Triviality and
Awesomeness
How Big is the Big Theorem?
Proof of Main Theorem: Outline
Proof of Main Theorem: Sketch of Major Construction

3 Why Should Anyone Care?

Stover (Florida State University) The Quest for Reeblessness 12.01.2014 11 / 39



Main Results Main Theorem

The Main Theorem

Theorem 1.
Suppose M is connected, and (M,γ) has a sutured manifold hierarchy

(M,γ) = (M0,γ0)
S1−→ (M1,γ1)

S2−→ (M2,γ2)−→ ·· ·
Sn−→ (Mn,γn)

so that no component of R(γi) is a torus which is compressible. Then there
exist transversely-oriented foliations F0 and F1 of M such that the following
conditions hold:
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Main Results Main Theorem

The Main Theorem

Theorem 1 (Cont’d).
1 F0 and F1 are tangent to R(γ).

2 F0 and F1 are transverse to γ.

3 If H2(M,γ) 6= 0, then every leaf of F0 and F1 nontrivially intersects a
transverse closed curve or a transverse arc with endpoints in R(γ).
However, if ∅ 6= ∂M 6= R±(γ), then this holds only for interior leaves.

4 There are no 2-dimensional Reeb components on Fi|γ for i = 0,1.

5 F1 is C∞ except possibly along toral components of R(γ) (if ∂M 6=∅) or
on S1 (if ∂M =∅).

6 F0 is of finite depth.
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Main Results Corollaries

How Big Is “Big”?

This theorem is remarkable for a lot of reasons, not the least of which are the
results it yields (almost) for free.
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Main Results Corollaries

How Big Is “Big”?

There are many corollaries to the main theorem, notable among which is the
existence of Reebless foliations on a number of 3-manifolds M:

M compact, irreducible, connected, with boundary ∂M a (possibly empty)
union of tori, satisfying x(z) 6= 0 for some z ∈ H2(M,∂M).

M compact, with boundary, satisfying H2(M,∂M) 6= 0, with interior
admitting a complete hyperbolic metric.

M = S3−
◦
N(L) where L is a nonsplit link in S3.

A number of then-conjectures involving knots and links also follow as corol-
laries, as do a number of fundamental results such as the higher-genus Dehn’s
lemma.
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Main Results Proof Outline

How Does One Prove Such a Thing?

The proof is colossal and requires an enormous amount of work.
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Main Results Proof Outline

Outline of Proof

(O.I) First, “pre-process” the given hierarchy to get a “better-behaved”
hierarchy (M,γ) = (M0,γ0)

T1−→ (M1,γ1)−→ ·· ·
Tk−→ (Mk,γk).

(O.II) Start with the product foliation on (Mk,γk). Inductively construct
foliations F i

0,1 on (Mi,γi), i < k, by gluing T+
i to T−i and extending

existing foliations. In general, these foliations only satisfy a subset of
the desired properties.

(O.III–V) Use other results to conclude that R±(γ) are norm-minimizing, to
construct an “even better-behaved” hierarchy for (M,γ), and to
inductively construct F i

0,1 for each level of this new hierarchy. These
foliations satisfy all desired conditions.
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Main Results Proof Sketch

The Proof

The constructions claimed in (O.II) are the main component of the proof.
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Main Results Proof Sketch

The Proof—Induction Hypotheses

(H1) Foliations F i
0,1 have been constructed on (Mi,γi) satisfying (1), (2), and

(4);

also (3) if ∂Mj 6= R±(γj) for j≥ i.

(H2) F i
1 is C∞ except possibly along toral components of ∪k

j=i+1Tj∪R(γi).

(H3) If δ is a curve on a nontoral component of R(γi) and if f : [0,α)→ [0,β)
is a representative of the germ of the holonomy map around δ for the
foliation F i

1 , then
dnf
dtn (0) =

{
1, i = 1
0, i > 1

(H4) F i
0 is of finite depth if, for all j≥ i, V ∩Tj−1 is a union of parallel

oriented simple curves for each component V of R(γj) with
Tj−1∩∂V 6=∅.

(H5) F i
0,1 has no Reeb components.
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Main Results Proof Sketch

The Proof—The Gluings

Next, the goal is to glue T+
i to T−i to obtain a manifold Q and to see what needs

to happen to the existing foliations F i
0,1 to get the desired foliations F i−1

0,1 on
Mi−1 (which contains Q).
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Main Results Proof Sketch

The Proof—The Cases

The gluings can be classified based on properties of the manifolds (Mi,γi) and
Q; there are three main cases to consider.
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Main Results Proof Sketch

The Proof—Case I

Ti
-

Ti
+

Case I is by far the easiest:

The gluing happens in such a way that the existing (pre-glued) foliations are
compatible. Define F i−1

0,1 to be equal to the foliations induced by F i
0,1 and note

that the desired properties are trivially satisfied.
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Main Results Proof Sketch

The Proof—Case II

Ti
-

Ti
+

!!!

Case II is considerably harder:

The gluing here yields a point of non-convexity where the induced foliations
are inconsistent. Substantially more work has to be done.
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Main Results Proof Sketch

The Proof—Case II (Cont’d)

Ti
+ Ti

-

Figure 3
Gluing T+

i and T−i to get Q (from Gabai’s perspective)
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Main Results Proof Sketch

The Proof—Case II (Cont’d)

Two different processes must be undertaken in order to get the desired
foliations F i−1

0,1 on Mi−1:

To get F i−1
0 , the desired technique is to spiral.

To get F i−1
1 , there are a number of subcases to consider. The main issue

at-hand, however, is the holonomy.
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Main Results Proof Sketch

The Proof—Case II (Cont’d)

To get F i−1
0 :

Let V be a component of R(γi−1) which contains ∂Ti, define δ
def
=

∂Ti∩V , and let λ ⊂ V be a simple closed curve having geometric intersection
number 1 with δ.

1 Foliate a number of intermediate spaces.

2 Use these intermediate spaces to foliate V× [−∞,∞].

3 Identify a subspace Z of V× [−∞,∞] which is diffeomorphic to
Mi−1−

◦
Q. Z has the foliation induced by V .

4 Glue Z to Q so that the foliations on each are compatible. This is done in
a way so that depthF i−1

0 = depthF i
0 +1.

Define F i−1
0 to be the resulting foliation on Mi−1.
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a way so that depthF i−1

0 = depthF i
0 +1.

Define F i−1
0 to be the resulting foliation on Mi−1.
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Main Results Proof Sketch

The Proof—Case II (Cont’d)

To get F i−1
1 :

Write F 1 for the foliation induced by F i
1 on Q, and let f be the

holonomy of F 1 along the transverse annulus A.

(C1) If f = id, then spiraling will yield a C∞ foliation F i−1
1 .

(C2) If f 6= id,:
(i) If ∂V 6=∅, the holonomy can be “pushed to the boundary” to reduce to case

(C1).
(ii) If ∂V =∅ and V = T2, things are screwed: F i−1

1 being C0 is as good as it
gets.

(iii) If ∂V =∅ and V = Sg, g > 1, then holonomy can be reduced to case (C1) by
attaching thick bands to A and appealing a result of Mather, Sergeraert,
and Thurston.
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Main Results Proof Sketch

The Proof—Case II (Cont’d)

A

S1×I×I

I×I×I

Q'

(S1×I)×1

Figure 4
Pushing holonomy to the boundary in case (C2.i)
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Main Results Proof Sketch

The Proof—Case II (Cont’d)

C1

B1

Figure 5
Attaching thick bands to A in case (C2.iii)
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Main Results Proof Sketch

The Proof—Case III

Case III is similar to Case II but is more involved still:

The gluing again yields inconsistent induced foliations. Because holonomy lies
along an arc (and hence is trivial), the goal is to smooth (similar to spiraling in
Case II).
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Main Results Proof Sketch

The Proof—Case III (Cont’d)

Figure 6
Gluing (bottom) happens after first “stretching” the pieces of γi which contain ∂T+

i ∪∂T−i (top).
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Main Results Proof Sketch

The Proof—Case III (Cont’d)

There is one big difference between Cases II and III:

In Case II, it is assumed that ∂Ti is contained in a component V of R(γi−1) and
hence that Mi−1−Q ⊂ N(V); in Case III, ∂Ti ∩ γi−1 6= ∅ and so Q ⊂ Mi−1−
N(R(γi−1)).

This means that whatever smoothing procedure is devised to handle Case III
must be done for every component V of R(γi−1) (satisfying ∂Ti∩V 6=∅).
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Main Results Proof Sketch

The Proof—Case III (Cont’d)

Because of this difference, the construction of the foliations F i−1
0,1 requires one

to examine manifolds of the form P(V) = N(V)∩Q:

Figure 7
Prototypical P(V)
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Main Results Proof Sketch

The Proof—Case III (Cont’d)

After constructing an intricate gluing procedure on P(V) for general V , the
foliations F i−1

0,1 are constructed on Mi−1.

Figure 8
A diagrammatic representation Mi−1, foliated.
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Main Results Proof Sketch

The Proof—Case III (Cont’d)

The gist of the gluing procedure on P(V):

1 Define a number of intermediate spaces.

One will be Q1, which looks like
(Mi−1,γi−1) with “ditches” drilled out. Q1 has a foliation.

2 Foliate the “ditches”.
3 Glue the “ditches” back into Q1 so that the foliations on each are

compatible.
Any smooth gluing will yield a C∞ foliation. Call this foliation F i−1

1 .
A very particular gluing is required to (sometimes) yield finite depth. Call
the resulting foliation F i−1

0 .

Note that finite depth isn’t always possible for F i−1
0 depending on how P(V)

looks; when it is possible, the gluing always yields depthF i−1
0 = depthF i

0 +1.1
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Main Results Proof Sketch

Conclusion

As a result of the procedure outlined above, there are foliations F0,1 on M
which in general satisfy only a subset of the desired properties.

To get the results as claimed, a number of outside results are used to get a
“better” initial hierarchy for (M,γ). By completing the above procedure for
this new hierarchy, there exist foliations (again called F0,1) on (M,γ) which
satisfy all conditions of the theorem.
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“better” initial hierarchy for (M,γ). By completing the above procedure for
this new hierarchy, there exist foliations (again called F0,1) on (M,γ) which
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Who Cares?!

Section I

1 Preliminaries
Foliations & Depth
Sutured Manifolds, Decompositions, and Hierarchies

2 Links Between Sutured Manifolds and Reebless Foliations
Gabai’s Ginormous Main Theorem of Awesome Non-Triviality and
Awesomeness
How Big is the Big Theorem?
Proof of Main Theorem: Outline
Proof of Main Theorem: Sketch of Major Construction

3 Why Should Anyone Care?
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Who Cares?!

Why Study...

...3-Manifolds?

...Foliations?

...Reeblessness?

...Sutured Manifolds?

...the Work of Gabai?
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Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!Thank You!
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