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Continued Fractions:
What They Are, Why They’re Important, and Who Really Cares
Christopher A. Stover cstover@math.fsu.edu Florida State University, Tallahassee, Florida

INTRODUCTION
From a mathematical standpoint, there are several
seemingly-different ways to define the notion of a
continued fraction. The situation in which contin-
ued fractions are most often seen at an elementary
level occurs with regards to rational numbers.

EXAMPLE
First, consider the rational 37/14. Clearly, 37/14
can be written as 2 + 9

14 . Next, 9/14 can be rewrit-
ten as 1

14/9 = 1
1+5/9 . Similarly, 5

9 = 1
9/5 = 1

1+4/5 ,
and 4

5 = 1
5/4 = 1

1+1/4 . Note that this ad hoc
process seems to "terminate" naturally because
1
4 = 1

4+0 has a denominator which can no longer
be simplified in a "meaningful way".

Without knowing it, we’ve just computed the con-
tinued fraction representation of the number 37

14 :
37

14
= 2 +

1

14/9
= 2 +

1

1 +
5

9

= 2 +
1

1 +
1

9/5

= 2 +
1

1 +
1

1 +
4

5

= 2 +
1

1 +
1

1 +
1

5/4

= 2 +
1

1 +
1

1 +
1

1 +
1

4

. (1)

MOTIVATION
The previous example sheds some light on how one may go about constructing continued fractions for
rational numbers p/q ∈ Q but it also leaves many an unanswered question.
• How does one go about considering continued fractions of irrational numbers? Can continued frac-

tions be constructed for numbers not in R? For multi-dimensional elements like vectors and matrices?
• Are the continued fraction representations of all rational numbers finite? All real numbers?
• What does a continued fraction representation say about the object it represents?
• In what areas do specialists care about and/or apply the theory of continued fractions?

In order to answer questions like these, a more general mathematical theory is needed.

GENERAL THEORY: REAL CONTINUED FRACTIONS
An expression ξ of the form

ξ = b0 +
a1

b1 +
a2

b2 +
a3

b3 +
. . .

(2)

is a (real) continued fraction provided that am, bm ∈ Z, am 6= 0 for all m. The terms am, resp. bm are
called the partial numerators, resp. partial denominators of ξ, and collectively am and bm are called its
elements. ξ is said to be finite if it has finitely many elements and infinite otherwise. Continued fractions
are called regular if am = 1 for all m [as in (1)] and are called generalized otherwise.

As noted above, continued fractions may be infinite. To interpret an infinite fraction, it’s often helpful to
view (2) by way of the sequence of finite continued fractions ξn which, in Gauss notation [see (5)], have the
form

ξn = b0 +
n

K
m=1

am
bm

. (3)

In this way, discussing the convergence of infinite continued fractions becomes a matter of discussing
convergence of sequences: A fraction ξ represents a real number r ∈ R if either

1. ξ is finite [in which case r ∈ Q], or
2. ξ is infinite and limn→∞ ξn = r as a sequence of rational approximations.

For each n, the fraction ξn is called the nth approximant (or convergent) of ξ.

NOTATION

It’s not hard to imagine that the notation in (2) can quickly get out of hand. For-
tunately, there are a number of more concise notations. Generalized fractions ξ
as in (2) can be expressed as:

ξ = (a1, a2, ...; b0, b1, b2, ...) (4)

= b0 +
∞

K
m=1

am
bm

(5)

= b0 +
a1
b1

+
a2
b2

+
a3
b3

+ · · · . (6)

The notation (5) [and in (3) above] is called "Gauss notation" after Karl Friedrich

Gauss and the K therein stands for the German "Kettenbruch" (literally, "contin-
ued fraction"). The notation in (6) is called "Pringsheim notation" for German
mathematician Alfred Pringsheim. Applied to (1), one can write:

37

14
= [2; 1, 1, 1, 4] (7)

= 2 +
1
1

+
1
1

+
1
1

+
1
4
.

The notation (7) is a specialized version of that in (4) which is reserved especially
for regular continued fractions; the numbers therein represent the denominators
b0, b1, b2, . . ..

PROPERTIES
Continued fractions are the source of many inter-
esting number theoretic properties:
• Define B−1 = 0, A−1 = B0 = 1, and A0 = b0,

and write ξn = An/Bn for the nth convergent
of a continued fraction ξ [see (3)]. Iterated sub-
stitution shows that ξn satisfies the so-called
three-term recurrence relations

An = bnAn−1 + anAn−2

Bn = bnBn−1 + bnBn−2
(8)

for n = 1, 2, 3, . . ..
• The best rational approximations (BRA) of an

irrational number r ∈ R \ Q come from its fi-
nite approximants. For example, one can easily
verify that π = [3; 7, 15, 1, 292, . . .], and the fa-
mous Archimedean approximation π ≈ 22/7 is
precisely 22/7 = [3; 7]. Other BRA of π thus in-
clude

[3; 7, 15] =
333

106
≈ 3.1415094

[3; 7, 15, 1] =
355

113
≈ 3.14159292

[3, 7, 15, 1, 292] =
103993

33102
≈ 3.14159265.

These rational approximations play an impor-
tant role in many unexpected areas such as com-
puting optimal leap year schemes.

EXTENSIONS
Various generalizations of the above theory exist.
• A complex continued fraction is with elements
ak, bk ∈ C.

• Several notions of multidimensional fractions
exist including those for which the recurrences
(8) are k-term, k ≥ 3, and those whose elements
which are vectors in Rd, d > 1.

• Branched continued fractions have elements
which themselves are continued fractions.
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