$\begin{array}{c} V \oplus V^* \\ \circ \circ \\ \circ \circ \circ \circ \circ \\ \circ \circ \end{array}$

 $\begin{array}{c} T \oplus T' \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

An Introduction to Generalized (Complex) Geometry

Christopher Stover

Florida State University

Complex Analysis Seminar April 10, 2014

$V \oplus V^*$	$T \oplus T^*$	
00	00000	
0000	0000	
00	0000	
	000	

Big Picture

• Generalized Geometry was invented by Nigel Hitchin in 2008.

Ι	nt	r	0	
C	00	0	0	

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Big Picture

- Generalized Geometry was invented by Nigel Hitchin in 2008.
- The goal of generalized geometry is to generalize usual notions from differential geometry to settings more easily-adaptable to modern physics.

Ι	n	tr	0	
C		C	0	

Big Picture

- Generalized Geometry was invented by Nigel Hitchin in 2008.
- The goal of generalized geometry is to generalize usual notions from differential geometry to settings more easily-adaptable to modern physics.
- This is done by considering structures defined on $TM \oplus T^*M$ rather than TM, T^*M separately.

Ι	nt	r	0
C	00	0	0

Big Picture

- Generalized Geometry was invented by Nigel Hitchin in 2008.
- The goal of generalized geometry is to generalize usual notions from differential geometry to settings more easily-adaptable to modern physics.
- This is done by considering structures defined on $TM \oplus T^*M$ rather than TM, T^*M separately.
- Via this method, one can define generalized analogues of things such as complex geometry, Symplectic geometry, Calabi-Yau geometry, etc.

 U I	0
	0
0	000

$V \oplus V^*$	
00 0000	

El Fin 00

Outline

Introduction

▲ロト ▲園ト ▲目ト ▲目ト 三回 - のへで

$V \oplus V^*$	$T \oplus T^*$
00	00000
0000	0000
00	0000
	000

El Fin 00

Outline

Introduction Tools and Techniques

Outline

Introduction Tools and Techniques

Stuff about $V\oplus V^*$

 $\oplus V^*$ $T \oplus T^*$ 00000 0000 0000 0000 El Fin 00

Outline

Introduction Tools and Techniques

 $\begin{array}{l} \mbox{Stuff about } V \oplus V^* \\ \mbox{Algebraic Properties} \end{array}$

• U* 0 000 0 El Fin 00

Outline

Introduction

Tools and Techniques

 $\begin{array}{l} \mbox{Stuff about } V \oplus V^* \\ \mbox{Algebraic Properties} \\ \mbox{Transformations} \end{array}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

 $\begin{array}{c} T \oplus T \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

Outline

Introduction

Tools and Techniques

 $\begin{array}{l} \mbox{Stuff about } V \oplus V^* \\ \mbox{Algebraic Properties} \\ \mbox{Transformations} \\ \mbox{(Maximal) Isotropics} \end{array}$

′ ⊕ V* 0 000 0

El Fin 00

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Introduction Tools and Techniques Stuff about $V \oplus V^*$ Algebraic Properties

Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T\oplus T^*$

7 ⊕ V* 90 9000 90

 $\begin{array}{c} T \oplus T'' \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Introduction Tools and Techniques Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

 $\begin{array}{l} \text{Stuff about } T \oplus T^* \\ \text{Lie Algebroids} \end{array}$

El Fin 00

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Introduction

Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$ Lie Algebroids Courant Bracket

 $\begin{array}{c} 1 \oplus 1 \\ 0 0 0 0 0 \\ 0 0 0 0 \\ 0 0 0 0 \\ 0 0 0 \end{array}$

El Fin 00

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Introduction

Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$ Lie Algebroids Courant Bracket Dirac Structures

′ ⊕ V* ○ ○○○ ○

El Fin 00

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Introduction

Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$ Lie Algebroids Courant Bracket Dirac Structures Generalized Complex Structures

 $V \oplus V^*$ 000000000 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Outline

Introduction

Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$ Lie Algebroids Courant Bracket Dirac Structures Generalized Complex Structures

Conclusion

Intro	
•000	

$V \oplus V^*$	$T \oplus T^*$	El Fin
00	00000	00
0000	0000	
00	0000	
	000	

Dac

Part I

Introduction Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$ Lie Algebroids Courant Bracket Dirac Structures Generalized Complex Structures

Conclusion

Intro	
0000	

$\oplus V^*$	$T \oplus T^*$
0	00000
000	0000
0	0000
	000

El Fin 00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Getting Started

In order to make sense of generalized geometry, a new framework needs to be studied. We'll need to understand:

$V \oplus V^*$	$T \oplus T^*$	
00	00000 0000 0000 0000	
0000	0000	
00	0000	
	000	

In order to make sense of generalized geometry, a new framework needs to be studied. We'll need to understand:

• $T \oplus T^*$, where T = TM.

Intro

$V \oplus V^*$	$T \oplus T^*$
00	00000
0000	00000 0000 0000
00	0000
	000

In order to make sense of generalized geometry, a new framework needs to be studied. We'll need to understand:

• $T \oplus T^*$, where T = TM.

Intro

• Induced inner product $\langle \cdot, \cdot \rangle$ on $T \oplus T^*$.

$V \oplus V^*$	$T\oplus T^*$
00	00000
00	00000 0000 0000
00	0000
	000

In order to make sense of generalized geometry, a new framework needs to be studied. We'll need to understand:

• $T \oplus T^*$, where T = TM.

Intro

- Induced inner product $\langle \cdot, \cdot \rangle$ on $T \oplus T^*$.
- *B*-fields, aka *B*-transforms.

$V \oplus V^*$	$T \oplus T^*$	
00	00000	
0000	0000	
00	0000	
	000	

In order to make sense of generalized geometry, a new framework needs to be studied. We'll need to understand:

- $T \oplus T^*$, where T = TM.
- Induced inner product $\langle \cdot , \cdot \rangle$ on $T \oplus T^*$.
- *B*-fields, aka *B*-transforms.
- Lie Algebroids.

Intro

$V \oplus V^*$	$T \oplus T^*$	
00	00000 0000 0000	
0000	0000	
00	0000	
	000	

In order to make sense of generalized geometry, a new framework needs to be studied. We'll need to understand:

- $T \oplus T^*$, where T = TM.
- Induced inner product $\langle \cdot , \cdot \rangle$ on $T \oplus T^*$.
- *B*-fields, aka *B*-transforms.
- Lie Algebroids.

Intro

• Courant bracket $[\cdot\,,\cdot].$

$V \oplus V^*$	$T \oplus T^*$	
00	00000	
0000	0000	
00	0000	
	000	

In order to make sense of generalized geometry, a new framework needs to be studied. We'll need to understand:

- $T \oplus T^*$, where T = TM.
- Induced inner product $\langle \cdot , \cdot \rangle$ on $T \oplus T^*$.
- *B*-fields, aka *B*-transforms.
- Lie Algebroids.

Intro

- Courant bracket $[\cdot\,,\cdot].$
- Dirac structures.

$V \oplus V^*$	$T \oplus T^*$	
00	00000	
0000	00000 0000 0000	
	000	

In order to make sense of generalized geometry, a new framework needs to be studied. We'll need to understand:

- $T \oplus T^*$, where T = TM.
- Induced inner product $\langle \cdot , \cdot \rangle$ on $T \oplus T^*$.
- *B*-fields, aka *B*-transforms.
- Lie Algebroids.

Intro

- Courant bracket $[\cdot\,,\cdot].$
- Dirac structures.

At that point, one can define generalized almost-structures and generalized structures using the developed machinery.

$V \oplus V^*$	$T \oplus T^*$	El Fin
00	00000	00
00	0000 0000 000	

Notation

Unless otherwise noted:

Intro 00●0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - つへぐ

$V \oplus V^*$	$T \oplus T^*$	El Fin
00 0000	00000 0000 0000	00
00	0000	

Notation

Unless otherwise noted:

Intro

M = differentiable manifold of dimension m

ntro	$V \oplus V^*$	$T \oplus T^*$	El Fin
000	00	00000	00
	0000	0000	
	00	0000	
		000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Notation

Unless otherwise noted:

Int 00

- M =differentiable manifold of dimension m
- V^* = dual of vector space V

Intro	$V \oplus V^*$	$T \oplus T^*$	El Fin
0000	00	00000	00
	0000	0000	
		000	

Notation

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Unless otherwise noted:

- M =differentiable manifold of dimension m
- V^* = dual of vector space V

$$T, T^* = TM$$
, resp. T^*M

ntro	$V \oplus V^*$	$T \oplus T^*$	El Fin
0000	00	00000	00
	0000	0000	
	00	0000	
		000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Notation

Unless otherwise noted:

In

- M =differentiable manifold of dimension m
- V^* = dual of vector space V
- $T,T^* \quad = \quad TM, \, {\rm resp.} \ T^*M$

$$X, Y = C^{\infty}$$
-sections of T

itro	$V \oplus V^*$	$T \oplus T^*$	El Fin
000	00 0000 00		00

Notation

Unless otherwise noted:

Int 00

- M =differentiable manifold of dimension m
- V^* = dual of vector space V
- $T,T^* \quad = \quad TM, \, {\rm resp.} \ T^*M$

$$X, Y = C^{\infty}$$
-sections of T

$$=$$
 vector fields on M

ro	$V \oplus V^*$	$T \oplus T^*$	El Fin
•0	00 0000 00		00

Notation

Unless otherwise noted:

Intr

- M =differentiable manifold of dimension m
- V^* = dual of vector space V
- $T,T^* \quad = \quad TM, \, {\rm resp.} \ T^*M$

$$X, Y = C^{\infty}$$
-sections of T

$$=$$
 vector fields on M

$$\xi, \eta = C^{\infty}$$
-sections of T^*

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

ro	$V \oplus V^*$	$T \oplus T^*$	El Fin
0	00 0000 00		00

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Notation

Unless otherwise noted:

Intr

- M =differentiable manifold of dimension m
- V^* = dual of vector space V
- $T,T^* \quad = \quad TM, \, {\rm resp.} \ T^*M$

$$X, Y = C^{\infty}$$
-sections of T

$$=$$
 vector fields on M

$$\xi, \eta = C^{\infty}$$
-sections of T^*

$$=$$
 1-forms on M

ro	$V \oplus V^*$	$T \oplus T^*$	El Fin
0	00 0000 00		00

Notation

Unless otherwise noted:

Inti

- M =differentiable manifold of dimension m
- V^* = dual of vector space V
- $T,T^* \quad = \quad TM, \, {\rm resp.} \ T^*M$

$$X, Y = C^{\infty}$$
-sections of T

$$=$$
 vector fields on M

$$\xi, \eta = C^{\infty}$$
-sections of T^*

$$=$$
 1-forms on M

 $\bigwedge^p V = p$ -fold wedge/exterior product of elements in V

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ro	$V \oplus V^*$	$T \oplus T^*$	El Fin
0	00 0000 00		00

Notation

Unless otherwise noted:

Intr

- M =differentiable manifold of dimension m
- V^* = dual of vector space V
- $T,T^* \quad = \quad TM, \, {\rm resp.} \ T^*M$

$$X, Y = C^{\infty}$$
-sections of T

$$=$$
 vector fields on M

$$\xi, \eta = C^{\infty}$$
-sections of T^*

=
$$1$$
-forms on M

 $\bigwedge^p V = p$ -fold wedge/exterior product of elements in V

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$= \underbrace{V \wedge V \wedge \dots \wedge V}_{p \text{ times}}$$

$V \oplus V^*$	$T \oplus T^*$	El Fin
00	00000	00
0000	0000	
00	0000	
	000	

Notation (Cont'd)

Intro 0000

> ι_X = the interior product $\iota_X : \bigwedge^k V \to \bigwedge^{k-1} V, \ \xi \mapsto (\iota_X \xi),$ such that $(\iota_X \xi)(X_1, \dots, X_{k-1}) = \xi(X, X_1, \dots, X_{k-1})$

$V \oplus V^*$	$T \oplus T^*$	El Fin
00	00000	00
0000	0000	
00		
	000	

Notation (Cont'd)

 $\iota_X = \text{the interior product } \iota_X : \bigwedge^k V \to \bigwedge^{k-1} V, \ \xi \mapsto (\iota_X \xi),$ such that $(\iota_X \xi)(X_1, \dots, X_{k-1}) = \xi(X, X_1, \dots, X_{k-1})$

d = exterior derivative

Intro

$V \oplus V^*$	$T \oplus T^*$	El Fin
00	00000	00
00	0000	

Notation (Cont'd)

- $\iota_X = \text{ the interior product } \iota_X : \bigwedge^k V \to \bigwedge^{k-1} V, \ \xi \mapsto (\iota_X \xi),$ such that $(\iota_X \xi)(X_1, \dots, X_{k-1}) = \xi(X, X_1, \dots, X_{k-1})$
- d = exterior derivative

Intro

 \mathcal{L}_X = Lie derivative associated to X

$V \oplus V^*$	$T \oplus T^*$	El Fin
00	00000	00
0000	0000	
00		
	000	

Notation (Cont'd)

- $\iota_X = \text{ the interior product } \iota_X : \bigwedge^k V \to \bigwedge^{k-1} V, \ \xi \mapsto (\iota_X \xi),$ such that $(\iota_X \xi)(X_1, \dots, X_{k-1}) = \xi(X, X_1, \dots, X_{k-1})$
- d = exterior derivative
- \mathcal{L}_X = Lie derivative associated to X
 - $= \iota_X d + d\iota_X$

Intro

$V \oplus V^*$	$T \oplus T^*$	El Fin
00	00000	00
0000	0000	
00	0000	
	000	

Notation (Cont'd)

- $\iota_X = \text{ the interior product } \iota_X : \bigwedge^k V \to \bigwedge^{k-1} V, \ \xi \mapsto (\iota_X \xi),$ such that $(\iota_X \xi)(X_1, \dots, X_{k-1}) = \xi(X, X_1, \dots, X_{k-1})$
- d = exterior derivative
- \mathcal{L}_X = Lie derivative associated to X
 - $= \iota_X d + d\iota_X$

Intro

 e^B = exponential map applied to k-form B

$V \oplus V^*$	$T \oplus T^*$	El Fin
00 0000	00000 0000 0000	00
0000	0000	
00		
	000	

Notation (Cont'd)

- $\iota_X = \text{ the interior product } \iota_X : \bigwedge^k V \to \bigwedge^{k-1} V, \ \xi \mapsto (\iota_X \xi),$ such that $(\iota_X \xi)(X_1, \dots, X_{k-1}) = \xi(X, X_1, \dots, X_{k-1})$
- d = exterior derivative
- \mathcal{L}_X = Lie derivative associated to X

$$= \iota_X d + d\iota_X$$

Intro

 e^B = exponential map applied to k-form B

$$= \sum_{j=0}^{\infty} \frac{B^k}{k!} = I + B + \frac{B^2}{2} + \frac{B^3}{6} + \dots + \frac{B^k}{k!}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ ��や

V	$\oplus V^*$	$T \oplus T^*$	El Fin
00))00	00000 0000 0000	00
00	2	0000	
		000	

Notation (Cont'd)

- $\iota_X = \text{ the interior product } \iota_X : \bigwedge^k V \to \bigwedge^{k-1} V, \ \xi \mapsto (\iota_X \xi),$ such that $(\iota_X \xi)(X_1, \dots, X_{k-1}) = \xi(X, X_1, \dots, X_{k-1})$
- d = exterior derivative
- \mathcal{L}_X = Lie derivative associated to X

$$= \iota_X d + d\iota_X$$

 A^{\dagger}

Intro

 e^B = exponential map applied to k-form B

$$= \sum_{j=0}^{\infty} \frac{B^k}{k!} = I + B + \frac{B^2}{2} + \frac{B^3}{6} + \dots + \frac{B^k}{k!}$$
$$= \text{ conjugate transpose of } A.$$

・ロト ・ 西 ト ・ ヨ ト ・ 日 ト ・ クタマ

El Fin 00

Sac

Part II

Introduction Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties

Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$ Lie Algebroids Courant Bracket Dirac Structures Generalized Complex Structures

Conclusion

Ι	ntro	
¢	0000	

$V \oplus V^*$	$T \oplus T^*$
0•	00000
0000	0000
00	0000
	000

El Fin 00

Inner Product

• Write $X + \xi$, $Y + \eta$ for elements of $V \oplus V^*$.

Ι	ntro	
¢	0000	

$V \oplus V^*$	$T \oplus$
0.	0000
0000	0000
00	0000
	000

El Fin 00

Inner Product

- Write $X + \xi$, $Y + \eta$ for elements of $V \oplus V^*$.
- Define two natural bilinear forms on $V\oplus V^*\colon$

Ι	1	1	t	r	0	
C)	C)	0	С)

$V \oplus V^*$	$T \oplus T^*$
0●	00000
0000	0000
00	0000
	000

- Write $X + \xi$, $Y + \eta$ for elements of $V \oplus V^*$.
- Define two natural bilinear forms on $V\oplus V^*\colon$

$$\langle X + \xi, Y + \eta \rangle_+ = \frac{1}{2} \left(\xi(Y) + \eta(X) \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Intro	
0000	

$' \oplus V^*$	$T \oplus T^*$
•	00000
000	0000
0	0000
	000

• Write $X + \xi$, $Y + \eta$ for elements of $V \oplus V^*$.

V 000

• Define two natural bilinear forms on $V\oplus V^*\colon$

$$\langle X + \xi, Y + \eta \rangle_{+} = \frac{1}{2} \left(\xi(Y) + \eta(X) \right)$$
$$\langle X + \xi, Y + \eta \rangle_{-} = \frac{1}{2} \left(\xi(Y) - \eta(X) \right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

1	ntro	
(0000	

$V \oplus V^*$	T (
00	00
0000	00
00	00
	00

- Write $X + \xi$, $Y + \eta$ for elements of $V \oplus V^*$.
- Define two natural bilinear forms on $V\oplus V^*\colon$

$$\langle X + \xi, Y + \eta \rangle_{+} = \frac{1}{2} \left(\xi(Y) + \eta(X) \right)$$
$$\langle X + \xi, Y + \eta \rangle_{-} = \frac{1}{2} \left(\xi(Y) - \eta(X) \right)$$

These are non-degerate and are symmetric and anti-symmetric, respectively.

1	ntro	
(0000	

$V \oplus V^*$	$T \in$
0●	00
0000	00
00	00
	00

- Write $X + \xi$, $Y + \eta$ for elements of $V \oplus V^*$.
- Define two natural bilinear forms on $V\oplus V^*\colon$

$$\langle X + \xi, Y + \eta \rangle_{+} = \frac{1}{2} \left(\xi(Y) + \eta(X) \right)$$
$$\langle X + \xi, Y + \eta \rangle_{-} = \frac{1}{2} \left(\xi(Y) - \eta(X) \right)$$

These are non-degerate and are symmetric and anti-symmetric, respectively.

• Denote $\langle \cdot , \cdot \rangle_+$ as $\langle \cdot , \cdot \rangle$ and call it *the inner product* on $V \oplus V^*$.

1	nt	tr	0	
¢	00	0	0	

$V \oplus V^*$	T
0●	00
0000	00
00	00
	00

- Write $X + \xi$, $Y + \eta$ for elements of $V \oplus V^*$.
- Define two natural bilinear forms on $V\oplus V^*$:

$$\langle X + \xi, Y + \eta \rangle_{+} = \frac{1}{2} \left(\xi(Y) + \eta(X) \right)$$
$$\langle X + \xi, Y + \eta \rangle_{-} = \frac{1}{2} \left(\xi(Y) - \eta(X) \right)$$

These are non-degerate and are symmetric and anti-symmetric, respectively.

- Denote $\langle \cdot , \cdot \rangle_+$ as $\langle \cdot , \cdot \rangle$ and call it *the inner product* on $V \oplus V^*$.
- Note that $\langle \cdot, \cdot \rangle$ is indefinite; it has signature (m, m).

	22	+	r.,	~
+	11		τ,	9
0				\sim
				9

$V \oplus V^*$	$T \oplus T^*$	El Fin
00 •000 00	00000 0000 0000 000	00

(日) (四) (王) (王) (王)

Dac

Part II

Introduction Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$ Lie Algebroids Courant Bracket Dirac Structures Generalized Complex Structures

Conclusion

I	ntro	
С	0000	

Orientation-Preserving Tranformations

• Note that $V \oplus V^*$ has a canonical orientation.

Ι	ntro	
¢	0000	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Orientation-Preserving Tranformations

- Note that $V \oplus V^*$ has a canonical orientation.
- $SO(V \oplus V^*) \cong SO(m, m)$ preserves the inner product and canonical orientation on $V \oplus V^*$.

Orientation-Preserving Tranformations

- Note that $V \oplus V^*$ has a canonical orientation.
- $SO(V \oplus V^*) \cong SO(m, m)$ preserves the inner product and canonical orientation on $V \oplus V^*$.
- Define the associated Lie algebra $\mathfrak{so}(V \oplus V^*)$ by $\mathfrak{so}(V \oplus V^*) = \{T : \langle Tx, y \rangle + \langle x, Ty \rangle = 0 \,\forall \, x, y \in V \oplus V^* \}.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Orientation-Preserving Tranformations

- Note that $V \oplus V^*$ has a canonical orientation.
- $SO(V \oplus V^*) \cong SO(m, m)$ preserves the inner product and canonical orientation on $V \oplus V^*$.
- Define the associated Lie algebra $\mathfrak{so}(V \oplus V^*)$ by $\mathfrak{so}(V \oplus V^*) = \{T : \langle Tx, y \rangle + \langle x, Ty \rangle = 0 \,\forall x, y \in V \oplus V^*\}.$
- Splitting T into V-, V*-parts yields that

$$T = \begin{pmatrix} A & \beta \\ B & -A^{\dagger} \end{pmatrix},$$

 $A\in \operatorname{End}(V),\,B\in\wedge^2 V^*,\,\beta\in\wedge^2 V \text{ with }B^\dagger=-B,\,\beta^\dagger=-\beta.$

・ロト ・ 日 ・ モ ト ・ モ ・ うへで

Orientation-Preserving Tranformations

- Note that $V \oplus V^*$ has a canonical orientation.
- $SO(V \oplus V^*) \cong SO(m, m)$ preserves the inner product and canonical orientation on $V \oplus V^*$.
- Define the associated Lie algebra $\mathfrak{so}(V \oplus V^*)$ by $\mathfrak{so}(V \oplus V^*) = \{T : \langle Tx, y \rangle + \langle x, Ty \rangle = 0 \,\forall x, y \in V \oplus V^*\}.$
- Splitting T into V-, V*-parts yields that

$$T = \begin{pmatrix} A & \beta \\ B & -A^{\dagger} \end{pmatrix},$$

 $A \in \operatorname{End}(V), B \in \wedge^2 V^*, \beta \in \wedge^2 V \text{ with } B^{\dagger} = -B, \beta^{\dagger} = -\beta.$

• Hence, $\mathfrak{so}(V \oplus V^*) \cong \operatorname{End}(V) \oplus \wedge^2 V^* \oplus \wedge^2 V.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

$V\oplus V^*$	$T \oplus T^*$	El Fin
00 0000 00	00000 0000 0000 000	00

B-fields and $\beta\text{-fields}$

Let $B: V \to V^*$, $\beta: V^* \to V$, viewed as 2-forms. There are two important orientation-preserving transformations of $T \oplus T^*$:

$V\oplus V^*$	$T \oplus T^*$	El Fin
00	00000 0000 0000 000	00
00	0000	

- ロ ト - 4 回 ト - 4 □

B-fields and $\beta\text{-fields}$

Let $B: V \to V^*$, $\beta: V^* \to V$, viewed as 2-forms. There are two important orientation-preserving transformations of $T \oplus T^*$:

Definition.

A *B*-field or *B*-transform is a transformation of the form $e^{B} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} : X + \xi \mapsto X + \xi + \iota_{X}B.$

$V\oplus V^*$	$T \oplus T^*$	El Fin
	00000 0000 0000 0000	00

B-fields and $\beta\text{-fields}$

Let $B: V \to V^*$, $\beta: V^* \to V$, viewed as 2-forms. There are two important orientation-preserving transformations of $T \oplus T^*$:

Definition.

A *B*-field or *B*-transform is a transformation of the form $e^{B} = \begin{pmatrix} 1 & 0 \\ B & 1 \end{pmatrix} : X + \xi \mapsto X + \xi + \iota_{X}B.$

Definition.

A β -field or β -transform is a transform of the form

$$e^{\beta} = \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} : X + \xi + \iota_{\xi}\beta.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Ι	n	t	r	С
¢)(00	C	С

$V \oplus V^*$	$T \oplus T^*$	E
00	00000	0
00 0000	0000	
00	0000	
	000	

B-fields and $\beta\text{-fields}$

• By definition,

$$e^B: X + \xi \mapsto X + \xi + \iota_X B$$

・ロト ・日下 ・ヨト ・ヨト ・ りゃぐ

Ι	n	t	r	0	
¢)(С	0	0	

$V \oplus V^*$	$T \oplus T^*$	
00	00000	
00	0000	
00	0000	
	000	

B-fields and β -fields

• By definition,

$$e^{B}: X + \xi \mapsto X + \xi + \iota_{X}B$$
$$\underbrace{X}_{T} + \underbrace{\xi + BX}_{T^{*}}$$

Ι	1	1	t	r	0	
¢)) (0	C)

$V \oplus V^*$	$T \oplus T^*$	E
00	00000	C
0000	0000	
00	0000	
	000	

B-fields and $\beta\text{-fields}$

• By definition,

$$e^{B}: X + \xi \mapsto X + \xi + \iota_{X}B$$
$$\underbrace{X}_{T} + \underbrace{\xi + BX}_{T^{*}}$$

In particular, the *B*-transform is a shearing transformation which fixes projection onto T and shears in the "vertical" T^* direction.

Ι	1	1	t	r	0	
¢)) (0	C)

$V \oplus V^*$	$T \oplus T^*$	
00	00000	
000	0000	
00	0000	
	000	

B-fields and $\beta\text{-fields}$

• By definition,

V 000

$$e^{B}: X + \xi \mapsto X + \xi + \iota_{X}B$$
$$\underbrace{X}_{T} + \underbrace{\xi + BX}_{T^{*}}$$

In particular, the *B*-transform is a shearing transformation which fixes projection onto T and shears in the "vertical" T^* direction.

• Similarly,

$$e^{\beta}: X + \xi \mapsto \overbrace{X + \beta \xi}^{T} + \overbrace{\xi}^{T^*},$$

and so the $\beta\text{-transform}$ fixes projection onto T^* and shears in the "horizontal" T direction.

Sac

Part II

Introduction Tools and Techniques

Stuff about $V \oplus V^*$

Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$ Lie Algebroids Courant Bracket Dirac Structures Generalized Complex Structures

Conclusion

Ι	ntro
¢	0000

$V \oplus V^*$	$T \oplus T^*$	
00	00000	
0000	0000	
0.	0000	
	000	

Definitions

Definition.

A subspace $L < V \oplus V^*$ is *isotropic* when $\langle X, Y \rangle = 0$ for all $X, Y \in L$.

Ι	ntro
¢	0000

$^{\prime} \oplus V^{*}$	$T \oplus T^*$	
0	00000	
000	0000	
•	0000	
	000	

Definitions

Definition.

A subspace $L < V \oplus V^*$ is *isotropic* when $\langle X, Y \rangle = 0$ for all $X, Y \in L$.

Because $\langle \cdot, \cdot \rangle$ has signature (m, m), any isotropic subspace $L < V \oplus V^*$ has (real) dimension $\dim_{\mathbb{R}} L \leq m$.

 $V \oplus V^*$ $T \oplus T^*$ $\circ \circ$ $\circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ$ $\circ \circ \circ \circ \circ$ $\circ \bullet$ $\circ \circ \circ \circ \circ$ $\circ \bullet$ $\circ \circ \circ \circ \circ$

Definitions

Definition.

A subspace $L < V \oplus V^*$ is *isotropic* when $\langle X, Y \rangle = 0$ for all $X, Y \in L$.

Because $\langle \cdot , \cdot \rangle$ has signature (m, m), any isotropic subspace $L < V \oplus V^*$ has (real) dimension $\dim_{\mathbb{R}} L \leq m$.

Definition.

An isotropic subspace $L < V \oplus V^*$ is maximally isotropic if $\dim_{\mathbb{R}} = m$.

シック・ 川 ・山・ ・山・ ・ 中・

 $\begin{array}{c} V \oplus V^* \\ \circ \circ \\ \circ \circ \circ \circ \circ \\ \circ \circ \end{array}$

El Fin 00

Sac

Part III

Introduction Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$

Lie Algebroids

Courant Bracket Dirac Structures Generalized Complex Structures

Conclusion

 $V \oplus V^*$

El Fin 00

Definition

Definition.

A Lie algebroid $(L, [\cdot, \cdot], a)$ is a vector bundle L on a smooth manifold M with Lie bracket $[\cdot, \cdot]$ on its module of C^{∞} sections and a morphism $a: L \to T$ (called the *anchor*) inducing $\tilde{a}: C^{\infty}(L) \to C^{\infty}(T)$ such that (i) a([X, Y]) = [aX, aY] and (ii) [X, fY] = f[X, Y] + (a(X)f)Y for all $X, Y \in C^{\infty}(L)$, $f \in C^{\infty}(M)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Ι	ntro	
¢	0000	

 $\begin{array}{c} T \oplus T^* \\ \bullet \bullet \bullet \bullet \bullet \\ \circ \bullet \circ \bullet \\ \circ \circ \circ \circ \\ \circ \circ \circ \bullet \\ \circ \circ \circ \bullet \end{array}$

El Fin 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Examples

Ex 1. (Tangent Bundles) Let L = T with the usual Lie bracket of vector fields and the map a = id.

Ι	ntro
¢	0000

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

Examples

- Ex 1. (Tangent Bundles) Let L = T with the usual Lie bracket of vector fields and the map a = id.
- Ex 2. (Foliations) A foliation \mathcal{F} of M is an integrable subbundle of T. It's also a Lie algebroid with $L = \mathcal{F}$, the usual Lie bracket, and $a: \mathcal{F} \hookrightarrow T$ the usual inclusion map.

 $\bigoplus V^*$

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \end{array}$

El Fin 00

Examples

Ex 3. (Complex Structures)

A complex structure on a smooth manifold M^{2n} is an integrable endomorphism $J: T \to T$ such that $J^2 = -1$. In particular, J has eigenvectors of $\pm i$. Consider the subspace $L = T^{1,0} < T \otimes \mathbb{C}$ defined by

$$T^{1,0} = \{ v \in T : Jv = iv \}.$$

This L is a complex bundle, is closed under the usual Lie bracket, with anchor map $a: L \hookrightarrow T$ the usual inclusion.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Ι	ntro	
¢	0000	

<ロト < 回 ト < 三 ト < 三 ト 三 の < で</p>

Some Structures on Lie Algebroids

Other generalized structures defined on Lie algebroids include:

itro	$V \oplus V^*$
000	00
	0000
	00

ション ふゆ ア キョン キョン マック

Some Structures on Lie Algebroids

Other generalized structures defined on Lie algebroids include:

• Exterior derivative $d_L: C^{\infty}(\wedge^k L^*) \to C^{\infty}(\wedge^{k+1}L^*).$

$V \oplus V^*$	$T \oplus T^*$ $\circ \circ \circ \circ \circ$	
00	00000	
0000	0000	
00	0000	
	000	

Other generalized structures defined on Lie algebroids include:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ⊙

- Exterior derivative $d_L: C^{\infty}(\wedge^k L^*) \to C^{\infty}(\wedge^{k+1}L^*).$
- Interior product ι_X .

$V \oplus V^*$	$\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$	
00	00000	
00	0000	
00	0000	
	000	

Other generalized structures defined on Lie algebroids include:

- Exterior derivative $d_L: C^{\infty}(\wedge^k L^*) \to C^{\infty}(\wedge^{k+1}L^*).$
- Interior product ι_X .
- Lie derivative $\mathcal{L}_X^L = d_L \iota_X + \iota_X d_L$.

$V \oplus V^*$	$T\oplus T^*$
00	
0000	0000
00	0000
	000

Other generalized structures defined on Lie algebroids include:

- Exterior derivative $d_L: C^{\infty}(\wedge^k L^*) \to C^{\infty}(\wedge^{k+1}L^*).$
- Interior product ι_X .
- Lie derivative $\mathcal{L}_X^L = d_L \iota_X + \iota_X d_L$.
- Lie Algebroid connection

$V \oplus V^*$	$T\oplus T^*$
00	0000
0000	0000
00	0000
	000

Other generalized structures defined on Lie algebroids include:

- Exterior derivative $d_L: C^{\infty}(\wedge^k L^*) \to C^{\infty}(\wedge^{k+1}L^*).$
- Interior product ι_X .
- Lie derivative $\mathcal{L}_X^L = d_L \iota_X + \iota_X d_L$.
- Lie Algebroid connection
- Generalized foliations.

$V \oplus V^*$	$T \oplus T^*$
00	00000
0000	0000
00	0000

Other generalized structures defined on Lie algebroids include:

- Exterior derivative $d_L: C^{\infty}(\wedge^k L^*) \to C^{\infty}(\wedge^{k+1}L^*).$
- Interior product ι_X .
- Lie derivative $\mathcal{L}_X^L = d_L \iota_X + \iota_X d_L$.
- Lie Algebroid connection
- Generalized foliations.
- The so-called "Schouten bracket."

 $\begin{array}{c} \mathrm{Intro} \\ \mathrm{0000} \end{array}$

 $V \oplus V^*$ 00
0000
00

El Fin 00

Sac

Part III

Introduction Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$

Lie Algebroids

Courant Bracket

Dirac Structures Generalized Complex Structures

Conclusion

 $V \oplus V^*$

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \\ \circ \bullet \circ \circ \\ \circ \circ \circ \\ \circ \circ \circ \\ \circ \circ \circ \end{array}$

El Fin 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Definition

Definition.

The *Courant bracket* is the skew symmetric bracket on smooth sections of $T \oplus T^*$ given by

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} d \left(\iota_X \eta - \iota_Y \xi \right).$$

 $V \oplus V^*$ 00
0000
00

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Definition

Definition.

The *Courant bracket* is the skew symmetric bracket on smooth sections of $T \oplus T^*$ given by

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} d \left(\iota_X \eta - \iota_Y \xi \right).$$

Remark.

1. If $\xi, \eta = 0$, then the Courant bracket is simply the Lie bracket. Also, $\pi = \pi_T : T \oplus T^* \to T$ satisfies $[\pi(A), \pi(B)] = \pi[A, B]$ for all $A, B \in C^{\infty}(T \oplus T^*)$.

 $V \oplus V^*$ 00 0000 00

Definition

Definition.

The *Courant bracket* is the skew symmetric bracket on smooth sections of $T \oplus T^*$ given by

$$[X + \xi, Y + \eta] = [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} d \left(\iota_X \eta - \iota_Y \xi \right).$$

Remark.

- 1. If $\xi, \eta = 0$, then the Courant bracket is simply the Lie bracket. Also, $\pi = \pi_T : T \oplus T^* \to T$ satisfies $[\pi(A), \pi(B)] = \pi[A, B]$ for all $A, B \in C^{\infty}(T \oplus T^*)$.
- 2. If X, Y = 0, Courant bracket vanishes.

Ι	ntro	
C	0000	

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Relation to Lie Algebroids

• The first remark shows that π satisfies the first "anchor property" of Lie algebroids.

Ι	ntro)
C	000)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Relation to Lie Algebroids

- The first remark shows that π satisfies the first "anchor property" of Lie algebroids.
- Even so, $(T \oplus T^*, [\,\cdot\,,\,\cdot\,], \pi)$ fails to be a Lie algebroid.

Ι	1	1	t	r	0	
¢)	C)	0	0	

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- The first remark shows that π satisfies the first "anchor property" of Lie algebroids.
- Even so, $(T \oplus T^*, [\cdot, \cdot], \pi)$ fails to be a Lie algebroid.
- This is because $[\,\cdot\,,\,\cdot\,]$ fails to satisfy the Jacobi identity.

T	n	t:	rc)
C				С

Relation to Lie Algebroids

- The first remark shows that π satisfies the first "anchor property" of Lie algebroids.
- Even so, $(T \oplus T^*, [\cdot, \cdot], \pi)$ fails to be a Lie algebroid.
- This is because $[\cdot, \cdot]$ fails to satisfy the Jacobi identity.
- This failure can be made formal by introducing the $Jac(\cdot, \cdot, \cdot)$ and $Nij(\cdot, \cdot, \cdot)$ morphisms, and one can show that the Courant bracket satisfies

 $[A, fB] = f[A, B] + (\pi(A)f)B - \langle A, B \rangle df$ for all $A, B \in T \oplus T^*, f \in C^{\infty}(M)$. Hence, it fails the second "anchor property."

 $\begin{array}{c}T\oplus T^*\\\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\\\circ\circ\circ\circ\\\circ\circ\circ\circ\end{array}$

El Fin 00

Symmetries of the Courant Bracket

Motivation

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \\ \circ \circ \circ \\ \circ \circ \circ \\ \circ \circ \circ \\ \circ \circ \circ \end{array}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symmetries of the Courant Bracket

Motivation

The only symmetries of T preserving the usual Lie bracket are diffeomorphisms. We want the situation for $T \oplus T^*$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symmetries of the Courant Bracket

Motivation

The only symmetries of T preserving the usual Lie bracket are diffeomorphisms. We want the situation for $T \oplus T^*$.

Facts (Sans Proof)

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \end{array}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symmetries of the Courant Bracket

Motivation

The only symmetries of T preserving the usual Lie bracket are diffeomorphisms. We want the situation for $T \oplus T^*$.

Facts (Sans Proof)

• Both the Courant bracket and the inner product on $T \oplus T^*$ are invariant under diffeomorphism.

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \end{array}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Symmetries of the Courant Bracket

Motivation

The only symmetries of T preserving the usual Lie bracket are diffeomorphisms. We want the situation for $T \oplus T^*$.

Facts (Sans Proof)

- Both the Courant bracket and the inner product on $T \oplus T^*$ are invariant under diffeomorphism.
- The *B*-field e^B is an automorphism preserving the Courant bracket if and only if dB = 0.

Symmetries of the Courant Bracket

Motivation

The only symmetries of T preserving the usual Lie bracket are diffeomorphisms. We want the situation for $T \oplus T^*$.

Facts (Sans Proof)

- Both the Courant bracket and the inner product on $T \oplus T^*$ are invariant under diffeomorphism.
- The *B*-field e^B is an automorphism preserving the Courant bracket if and only if dB = 0.
- In fact, the collection $\operatorname{Aut}_C(T \oplus T^*)$ of automorphisms on $T \oplus T^*$ preserving this Courant bracket is exactly

 $\operatorname{Aut}_C(T \oplus T^*) = \operatorname{Diff}(M) \rtimes \Omega^2_{\operatorname{closed}}(M).$

 $\begin{array}{c} \mathrm{Intro} \\ \mathrm{0000} \end{array}$

 $V \oplus V^*$ 00
0000
00

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \bullet \circ \circ \circ \circ \\ \bullet \circ \circ \circ \circ \end{array}$

El Fin 00

Sac

Part III

Introduction Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$

Lie Algebroids Courant Bracket

Dirac Structures

Generalized Complex Structures

Conclusion

 $V \oplus V^*$

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \bullet \circ \circ \\ \circ \circ \circ \end{array}$

El Fin 00

Definition

Definitions.

 $V \oplus V^*$ 00 0000 00

El Fin 00

Definition

Definitions.

1. A real, maximal isotropic subbundle $L < T \oplus T^*$ is an almost-Dirac structure.

▲ロト ▲園ト ▲ミト ▲ミト 三三 - のへで

 $\begin{array}{c} V \oplus V^* \\ \circ \circ \\ \circ \circ \circ \circ \circ \\ \circ \circ \end{array}$

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \bullet \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

イロト イロト イヨト イヨト ヨー のくで

Definition

Definitions.

- 1. A real, maximal isotropic subbundle $L < T \oplus T^*$ is an almost-Dirac structure.
- 2. If L is also closed under the Courant bracket (i.e., is *involutive*), then L is *integrable* and is said to be a *Diract structure*.

Ι	ntro	
¢	0000	

$\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

Examples

Ex 1. (Symplectic Geometry)

T is maximal, isotropic, and involutive with respect to the Courant bracket. Therefore, T is a Dirac structure. Moreover, applying a non-degenerate closed 2-form $\omega\in\Omega^2_{\rm closed}(M)$ to T yields another Dirac structure.

 $V \oplus V^*$ 00 0000 00

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \end{array}$

El Fin 00

Examples

Ex 1. (Symplectic Geometry)

T is maximal, isotropic, and involutive with respect to the Courant bracket. Therefore, T is a Dirac structure. Moreover, applying a non-degenerate closed 2-form $\omega \in \Omega^2_{\text{closed}}(M)$ to T yields another Dirac structure.

Ex 2. (Foliated Geometry)

For $\Delta < T$ a smooth distribution of constant rank, $\Delta \oplus \operatorname{Ann}(\Delta) < T \oplus T^*$ is almost-Dirac. To be Dirac, Δ must be integrable, which occurs if and only if M has a foliation induced by Δ .

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \circ \circ \bullet \\ \circ \circ \circ \bullet \end{array}$

El Fin 00

Examples

Ex 3. Let $J \in \text{End}(T)$ be an almost-complex structure with $T^{0,1} < T \otimes \mathbb{C}$ the (-i)-eigenspace. Form the maximal isotropic subspace

 $L_J = T^{0,1} \oplus \operatorname{Ann}(T^{0,1})$

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \\ \circ \circ \\ \circ \\$

El Fin 00

Examples

Ex 3. Let $J \in \text{End}(T)$ be an almost-complex structure with $T^{0,1} < T \otimes \mathbb{C}$ the (-i)-eigenspace. Form the maximal isotropic subspace

$$L_J = T^{0,1} \oplus \operatorname{Ann}(T^{0,1})$$

= $T^{0,1} \oplus (T^{1,0})^*$

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへの

 $V \oplus V^*$ 00 0000 00

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

Examples

Ex 3. Let $J \in \text{End}(T)$ be an almost-complex structure with $T^{0,1} < T \otimes \mathbb{C}$ the (-i)-eigenspace. Form the maximal isotropic subspace

$$L_J = T^{0,1} \oplus \operatorname{Ann}(T^{0,1})$$

= $T^{0,1} \oplus (T^{1,0})^* < (T \oplus T^*) \otimes \mathbb{C},$

 $\begin{array}{c} V \oplus V^* \\ \circ \circ \\ \circ \circ \circ \circ \circ \\ \circ \circ \end{array}$

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \end{array}$

El Fin 00

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples

Ex 3. Let $J \in \text{End}(T)$ be an almost-complex structure with $T^{0,1} < T \otimes \mathbb{C}$ the (-i)-eigenspace. Form the maximal isotropic subspace

$$L_J = T^{0,1} \oplus \operatorname{Ann}(T^{0,1})$$

= $T^{0,1} \oplus (T^{1,0})^* < (T \oplus T^*) \otimes \mathbb{C},$

which can be proven to be involuted if and only if J is integrable. Hence, complex structures are complex Dirac structures.

 $\begin{array}{c} V \oplus V^* \\ \circ \circ \\ \circ \circ \circ \circ \circ \\ \circ \circ \end{array}$

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \bullet \circ \circ \circ \\ \bullet \circ \circ \circ \end{array}$

El Fin 00

500

Part III

Introduction Tools and Techniques

Stuff about $V \oplus V^*$ Algebraic Properties Transformations (Maximal) Isotropics

Stuff about $T \oplus T^*$

Lie Algebroids Courant Bracket Dirac Structures Generalized Complex Structures

Conclusion

 $\begin{array}{c} V \oplus V^* \\ \circ \circ \\ \circ \circ \circ \circ \circ \\ \circ \circ \end{array}$

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \circ \\ \circ \bullet \circ \end{array}$

Definition

Definition.

A generalized complex structure is an endomorphism $J \in \text{End}(T \oplus T^*)$ such that (i) $J^2 = -1$, (ii) $\langle JX, Y \rangle = \langle -X, JY \rangle$, and (iii) $T^{1,0}$ is involutive with respect to the Courant bracket.

Remark.

This can also be defined as an isotropic subbundle $E < (T \oplus T^*) \otimes \mathbb{C}$ which satisfies $E \oplus \overline{E} = (T \oplus T^*) \otimes \mathbb{C}$ and whose space of sections is closed under the Courant bracket.

 $\begin{array}{c} T \oplus T^* \\ \circ \circ \circ \circ \circ \\ \circ \circ \circ \bullet \end{array}$

El Fin 00

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

Examples (Sans Justification)

V ⊕ V 00 0000 00 $\begin{array}{c}T\oplus T^*\\\circ\circ\circ\circ\circ\\\circ\circ\circ\circ\\\circ\circ\circ\circ\\\circ\circ\circ\circ\\\circ\circ\circ\bullet\end{array}$

El Fin 00

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Examples (Sans Justification)

Here are some examples of objects admitting generalized complex structures.

• Complex manifolds.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples (Sans Justification)

- Complex manifolds.
- Symplectic manifolds.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples (Sans Justification)

- Complex manifolds.
- Symplectic manifolds.
- Holomorphic Poisson manifolds.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples (Sans Justification)

- Complex manifolds.
- Symplectic manifolds.
- Holomorphic Poisson manifolds.
- 5 classes of "exotic" nilmanifolds.

$V \oplus V^*$	
00	
0000	
00	

Τ		T^*	
	00	oc	
00	00	С	
00	00	С	
00	00		

El	Fin
•0	

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

References

- Marco Gualtieri, Generalized Complex Geometry.
- Nigel Hitchin, Lectures on Generalized Geometry.
- Nigel Hitchin Generalized Calabi-Yau Manifolds.

Intro	$V \oplus V^*$	$T \oplus T^*$	El Fin
0000	00	00000 0000 0000	00
	00	0000	

Thank you!