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Big Picture

• Generalized Geometry was invented by Nigel Hitchin in
2008.

• The goal of generalized geometry is to generalize usual
notions from differential geometry to settings more
easily-adaptable to modern physics.

• This is done by considering structures defined on
TM ⊕ T ∗M rather than TM , T ∗M separately.

• Via this method, one can define generalized analogues of
things such as complex geometry, Symplectic geometry,
Calabi-Yau geometry, etc.
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Getting Started

In order to make sense of generalized geometry, a new
framework needs to be studied. We’ll need to understand:

• T ⊕ T ∗, where T = TM .

• Induced inner product 〈· , ·〉 on T ⊕ T ∗.
• B-fields, aka B-transforms.

• Lie Algebroids.

• Courant bracket [· , ·].
• Dirac structures.

At that point, one can define generalized almost-structures and
generalized structures using the developed machinery.
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Notation

Unless otherwise noted:

M = differentiable manifold of dimension m

V ∗ = dual of vector space V

T, T ∗ = TM , resp. T ∗M

X,Y = C∞-sections of T

= vector fields on M

ξ, η = C∞-sections of T ∗

= 1-forms on M∧p V = p-fold wedge/exterior product of elements in V

= V ∧ V ∧ · · · ∧ V︸ ︷︷ ︸
p times
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Notation (Cont’d)

ιX = the interior product ιX :
∧k V →

∧k−1 V , ξ 7→ (ιXξ),

such that (ιXξ)(X1, . . . , Xk−1) = ξ(X,X1, . . . , Xk−1)

d = exterior derivative

LX = Lie derivative associated to X

= ιXd+ dιX

eB = exponential map applied to k-form B

=

∞∑
j=0

Bk

k!
= I +B +

B2

2
+
B3

6
+ · · ·+ Bk

k!

A† = conjugate transpose of A.
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Introduction
Tools and Techniques

Stuff about V ⊕ V ∗
Algebraic Properties
Transformations
(Maximal) Isotropics
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Inner Product

• Write X + ξ, Y + η for elements of V ⊕ V ∗.

• Define two natural bilinear forms on V ⊕ V ∗:
〈X + ξ, Y + η〉+ =

1

2
(ξ(Y ) + η(X))

〈X + ξ, Y + η〉− =
1

2
(ξ(Y )− η(X))

These are non-degerate and are symmetric and
anti-symmetric, respectively.

• Denote 〈· , ·〉+ as 〈· , ·〉 and call it the inner product on
V ⊕ V ∗.

• Note that 〈· , ·〉 is indefinite; it has signature (m,m).
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Orientation-Preserving Tranformations

• Note that V ⊕ V ∗ has a canonical orientation.

• SO(V ⊕ V ∗) ∼= SO(m,m) preserves the inner product and
canonical orientation on V ⊕ V ∗.

• Define the associated Lie algebra so(V ⊕ V ∗) by

so(V ⊕ V ∗) = {T : 〈Tx, y〉+ 〈x, Ty〉 = 0∀x, y ∈ V ⊕ V ∗}.

• Splitting T into V -, V ∗-parts yields that

T =

(
A β
B −A†

)
,

A ∈ End(V ), B ∈ ∧2V ∗, β ∈ ∧2V with B† = −B, β† = −β.

• Hence, so(V ⊕ V ∗) ∼= End(V )⊕ ∧2V ∗ ⊕ ∧2V .
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canonical orientation on V ⊕ V ∗.

• Define the associated Lie algebra so(V ⊕ V ∗) by
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B −A†

)
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B-fields and β-fields

Let B : V → V ∗, β : V ∗ → V , viewed as 2-forms. There are two
important orientation-preserving transformations of T ⊕ T ∗:

Definition.
A B-field or B-transform is a transformation of the form

eB =

(
1 0
B 1

)
: X + ξ 7→ X + ξ + ιXB.

Definition.
A β-field or β-transform is a transform of the form

eβ =

(
1 β
0 1

)
: X + ξ + ιξβ.
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B-fields and β-fields

• By definition,

eB : X + ξ 7→X + ξ + ιXB

X︸︷︷︸
T

+ ξ +BX︸ ︷︷ ︸
T ∗

In particular, the B-transform is a shearing transformation
which fixes projection onto T and shears in the “vertical”
T ∗ direction.

• Similarly,
eβ : X + ξ 7→

T︷ ︸︸ ︷
X + βξ+

T ∗︷︸︸︷
ξ ,

and so the β-transform fixes projection onto T ∗ and shears
in the “horizontal” T direction.
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Definitions

Definition.
A subspace L < V ⊕ V ∗ is isotropic when 〈X,Y 〉 = 0 for all
X,Y ∈ L.

Because 〈· , ·〉 has signature (m,m), any isotropic subspace
L < V ⊕ V ∗ has (real) dimension dimR L ≤ m.

Definition.
An isotropic subspace L < V ⊕ V ∗ is maximally isotropic if
dimR = m.



Intro V ⊕ V ∗ T ⊕ T∗ El Fin

Definitions

Definition.
A subspace L < V ⊕ V ∗ is isotropic when 〈X,Y 〉 = 0 for all
X,Y ∈ L.

Because 〈· , ·〉 has signature (m,m), any isotropic subspace
L < V ⊕ V ∗ has (real) dimension dimR L ≤ m.

Definition.
An isotropic subspace L < V ⊕ V ∗ is maximally isotropic if
dimR = m.



Intro V ⊕ V ∗ T ⊕ T∗ El Fin

Definitions

Definition.
A subspace L < V ⊕ V ∗ is isotropic when 〈X,Y 〉 = 0 for all
X,Y ∈ L.

Because 〈· , ·〉 has signature (m,m), any isotropic subspace
L < V ⊕ V ∗ has (real) dimension dimR L ≤ m.

Definition.
An isotropic subspace L < V ⊕ V ∗ is maximally isotropic if
dimR = m.



Intro V ⊕ V ∗ T ⊕ T∗ El Fin

Part III

Introduction
Tools and Techniques

Stuff about V ⊕ V ∗
Algebraic Properties
Transformations
(Maximal) Isotropics

Stuff about T ⊕ T ∗
Lie Algebroids
Courant Bracket
Dirac Structures
Generalized Complex Structures

Conclusion



Intro V ⊕ V ∗ T ⊕ T∗ El Fin

Definition

Definition.
A Lie algebroid (L, [ · , · ], a) is a vector bundle L on a smooth
manifold M with Lie bracket [ · , · ] on its module of C∞

sections and a morphism a : L→ T (called the anchor) inducing
ã : C∞(L)→ C∞(T ) such that (i) a ([X,Y ]) = [aX, aY ] and
(ii) [X, fY ] = f [X,Y ] + (a(X)f)Y for all X,Y ∈ C∞(L),
f ∈ C∞(M).
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Examples

Ex 1. (Tangent Bundles)
Let L = T with the usual Lie bracket of vector fields and
the map a = id.

Ex 2. (Foliations)
A foliation F of M is an integrable subbundle of T . It’s
also a Lie algebroid with L = F , the usual Lie bracket, and
a : F ↪→ T the usual inclusion map.
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Examples

Ex 3. (Complex Structures)
A complex structure on a smooth manifold M2n is an
integrable endomorphism J : T → T such that J2 = −1. In
particular, J has eigenvectors of ±i. Consider the subspace
L = T 1,0 < T ⊗ C defined by

T 1,0 = {v ∈ T : Jv = iv}.
This L is a complex bundle, is closed under the usual Lie
bracket, with anchor map a : L ↪→ T the usual inclusion.
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Some Structures on Lie Algebroids

Other generalized structures defined on Lie algebroids include:

• Exterior derivative dL : C∞(∧kL∗)→ C∞(∧k+1L∗).

• Interior product ιX .

• Lie derivative LLX = dLιX + ιXdL.

• Lie Algebroid connection

• Generalized foliations.

• The so-called “Schouten bracket.”
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Definition

Definition.
The Courant bracket is the skew symmetric bracket on smooth
sections of T ⊕ T ∗ given by

[X + ξ, Y + η] = [X,Y ] + LXη − LY ξ −
1

2
d (ιXη − ιY ξ) .

Remark.
1. If ξ, η = 0, then the Courant bracket is simply the Lie bracket.

Also, π = πT : T ⊕ T ∗ → T satisfies [π(A), π(B)] = π[A,B] for all
A,B ∈ C∞(T ⊕ T ∗).

2. If X,Y = 0, Courant bracket vanishes.
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Relation to Lie Algebroids

• The first remark shows that π satisfies the first “anchor
property” of Lie algebroids.

• Even so, (T ⊕ T ∗, [ · , · ], π) fails to be a Lie algebroid.

• This is because [ · , · ] fails to satisfy the Jacobi identity.

• This failure can be made formal by introducing the
Jac( · , · , · ) and Nij( · , · , · ) morphisms, and one can show
that the Courant bracket satisfies

[A, fB] = f [A,B] + (π(A)f)B−〈A,B〉df
for all A,B ∈ T ⊕ T ∗, f ∈ C∞(M). Hence, it fails the
second “anchor property.”
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Symmetries of the Courant Bracket

Motivation

The only symmetries of T preserving the usual Lie bracket are
diffeomorphisms. We want the situation for T ⊕ T ∗.

Facts (Sans Proof)

• Both the Courant bracket and the inner product on T ⊕ T ∗
are invariant under diffeomorphism.

• The B-field eB is an automorphism preserving the Courant
bracket if and only if dB = 0.

• In fact, the collection AutC(T ⊕ T ∗) of automorphisms on
T ⊕ T ∗ preserving this Courant bracket is exactly

AutC(T ⊕ T ∗) = Diff(M) o Ω2
closed(M).
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Definition

Definitions.

1. A real, maximal isotropic subbundle L < T ⊕ T ∗ is an
almost-Dirac structure.

2. If L is also closed under the Courant bracket (i.e., is
involutive), then L is integrable and is said to be a Diract
structure.
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Examples

Ex 1. (Symplectic Geometry)
T is maximal, isotropic, and involutive with respect to the
Courant bracket. Therefore, T is a Dirac structure.
Moreover, applying a non-degenerate closed 2-form
ω ∈ Ω2

closed(M) to T yields another Dirac structure.

Ex 2. (Foliated Geometry)
For ∆ < T a smooth distribution of constant rank,
∆⊕Ann(∆) < T ⊕ T ∗ is almost-Dirac. To be Dirac, ∆
must be integrable, which occurs if and only if M has a
foliation induced by ∆.
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Examples

Ex 3. Let J ∈ End(T ) be an almost-complex structure with
T 0,1 < T ⊗ C the (−i)-eigenspace. Form the maximal
isotropic subspace

LJ = T 0,1 ⊕Ann(T 0,1)

= T 0,1 ⊕
(
T 1,0

)∗
< (T ⊕ T ∗)⊗ C,

which can be proven to be involuted if and only if J is
integrable. Hence, complex structures are complex Dirac
structures.
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Definition

Definition.
A generalized complex structure is an endomorphism
J ∈ End(T ⊕ T ∗) such that (i) J2 = −1,
(ii) 〈JX, Y 〉 = 〈−X, JY 〉, and (iii) T 1,0 is involutive with
respect to the Courant bracket.

Remark.
This can also be defined as an isotropic subbundle
E < (T ⊕ T ∗)⊗ C which satisfies E ⊕ E = (T ⊕ T ∗)⊗ C and
whose space of sections is closed under the Courant bracket.
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Examples (Sans Justification)

Here are some examples of objects admitting generalized
complex structures.

• Complex manifolds.

• Symplectic manifolds.

• Holomorphic Poisson manifolds.

• 5 classes of “exotic” nilmanifolds.
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Thank you!
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