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Big Picture

Generalized Geometry was invented by Nigel Hitchin in
2008.

The goal of generalized geometry is to generalize usual
notions from differential geometry to settings more
easily-adaptable to modern physics.

This is done by considering structures defined on
TM & T*M rather than TM, T* M separately.

Via this method, one can define generalized analogues of
things such as complex geometry, Symplectic geometry,
Calabi-Yau geometry, etc.
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Getting Started

In order to make sense of generalized geometry, a new
framework needs to be studied. We’ll need to understand:

e T'®T* where T'=TM.

e Induced inner product (-,-) on T'® T™.
e B-fields, aka B-transforms.

Lie Algebroids.

Courant bracket [-, ].

Dirac structures.

At that point, one can define generalized almost-structures and
generalized structures using the developed machinery.
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Unless otherwise noted:

M = differentiable manifold of dimension m
V* = dual of vector space V'
1T = TM,resp. T"M
X, Y = (C°-sections of T
vector fields on M
&,n = (C°-sections of T™
1-forms on M
N’V = p-fold wedge/exterior product of elements in V'
= VAV /‘\r AV
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the interior product vx : /\k V — /\k_1 V, &= (Lx§),
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Notation (Cont’d)

the interior product vx : /\k V — /\k_1 V, &= (Lx§),
such that (L)fg)()(la"' 7)(k—l) = 6()(7;Yia"' 7)(k——1)
exterior derivative

Lie derivative associated to X

L)(d—i-dLX
exponential map applied to k-form B
(o]
BF B? B? Bk
Z 4B+ 4+ 42
Zok! L T A
]:

conjugate transpose of A.



000
Part 11
Introduction

Tools and Techniques
Stuff about V & V*

Algebraic Properties
Transformations

(Maximal) Isotropics
Stuff about 7' T

Lie Algebroids

Courant Bracket

Dirac Structures

Generalized Complex Structures
Conclusion

«O>r «Fr «

it
v
N
it
-
iy

ae



00 0000
000

Inner Product

o Write X + &, Y + n for elements of V & V*.

«O>» «Fr «=>»

4

RN Ge



vev* TOT"

Intro

0000 oe 00000
0000 0000
(e]e} 0000
000

Inner Product

o Write X 4+ &, Y 4 n for elements of V & V*.

e Define two natural bilinear forms on V @ V*:

El Fin
(e]e)



Intro Vvev* T T
0000 oe
0000

Inner Product

o Write X 4+ &, Y 4 n for elements of V & V*.

e Define two natural bilinear forms on V @ V*:

(X4EY +u)s = 5 (V) + (X))

El Fin
(e]e)



Intro Vvev* T T
0000 oe
0000

Inner Product

o Write X 4+ &, Y 4 n for elements of V & V*.

e Define two natural bilinear forms on V @ V*:

(X4EY +u)s = 5 (V) + (X))

(X4EY +m)- = 1 (€(V) ~ (X))

El Fin
(e]e)



Intro Vev* T T™

0000 oe 00000
0000 0000
o 0000

Inner Product

o Write X 4+ &, Y 4 n for elements of V & V*.

e Define two natural bilinear forms on V @ V*:
1
(X+EY +n)y = 3 (€(¥) +n(X))

1
(X+&EY +m- =5 (E(Y) —n(X))
These are non-degerate and are symmetric and
anti-symmetric, respectively.

El Fin
(e]e)



Intro Vev* T T™

0000 oe 00000
0000 0000
o 0000

Inner Product

o Write X 4+ &, Y 4 n for elements of V & V*.

e Define two natural bilinear forms on V @ V*:
1
(X+EY +n)y = 3 (€(¥) +n(X))

1
(X+&EY +m- =5 (E(Y) —n(X))
These are non-degerate and are symmetric and
anti-symmetric, respectively.

e Denote (-,-); as (-,-) and call it the inner product on
Ve v

El Fin
(e]e)



Intro Vvev* To T El Fin

0000 oe 00000 (e]e]
0000 0000
o 0000

Inner Product

o Write X 4+ &, Y 4 n for elements of V & V*.

e Define two natural bilinear forms on V @ V*:
1
(X+EY +n)y = 3 (€(¥) +n(X))

1
(X+&EY +m- =5 (E(Y) —n(X))
These are non-degerate and are symmetric and
anti-symmetric, respectively.

e Denote (-,-); as (-,-) and call it the inner product on
Ve v

e Note that (-,-) is indefinite; it has signature (m,m).
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e Note that V @ V* has a canonical orientation.

e SO(V @ V*) = SO(m,m) preserves the inner product and
canonical orientation on V & V*.

e Define the associated Lie algebra so(V & V*) by
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A€ End(V), B € A2V*, 8 € A2V with Bl — —B, gt = —4.
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Orientation-Preserving Tranformations

Note that V @ V* has a canonical orientation.

SO(V @ V*) = SO(m,m) preserves the inner product and
canonical orientation on V & V*.

Define the associated Lie algebra so(V & V*) by
so(Vae V") ={T:(Tz,y) + (z,Ty) =0Vz,y € Ve V'}
Splitting T" into V-, V*-parts yields that

_(A B
T(B —AT>’

A€ End(V), B € A2V*, 8 € A2V with Bl — —B, gt = —4.
Hence, so(V @ V*) 2 End(V) @& A2V* @ A%V,
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Let B:V - V* g:V* =V, viewed as 2-forms. There are two
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B-fields and [-fields

Let B:V - V* g:V* =V, viewed as 2-forms. There are two
important orientation-preserving transformations of T' @ T™:

Definition.
A B-field or B-transform is a transformation of the form

eB = <ll3 ?) X+ &6 X+ E+0xB.

Definition.
A B-field or S-transform is a transform of the form

e = (é f) P X A+ €4 ef.
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P X+ e X +E+.xB
X +¢&+4+BX
T T*
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¢ By definition,
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X BX
+&+

T T
In particular, the B-transform is a shearing transformation
which fixes projection onto T" and shears in the “vertical”
T* direction.



Intro Vvev* THTH

0000 (e]e} 00000
oooe 0000
o 0000

B-fields and [-fields

¢ By definition,
B X+ X+E4+1xB
X +{+BX
T T
In particular, the B-transform is a shearing transformation
which fixes projection onto T" and shears in the “vertical”
T* direction.

T T*
3 — =
e? X+E- X +BE+ €,

and so the S-transform fixes projection onto 7" and shears
in the “horizontal” T direction.

e Similarly,
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Definitions

Definition.
A subspace L < V @& V* is isotropic when (X,Y) = 0 for all
X,Y € L.

Because (-, -) has signature (m,m), any isotropic subspace
L <V & V* has (real) dimension dimg L < m.

Definition.
An isotropic subspace L < V @ V* is mazximally isotropic if
dimg = m.
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Definition
Definition.
A Lie algebroid (L,[-, -],a) is a vector bundle L on a smooth

manifold M with Lie bracket [-, -] on its module of C*°
sections and a morphism a : L — T (called the anchor) inducing
a:C®(L) — C*(T) such that (i) a ([X,Y]) = [aX,aY] and

(i) [X, fY] = fIX, Y]+ (a(X)f)Y for all X,Y € C*°(L),
feC>®(M).
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Examples

Ex 1. (Tangent Bundles)
Let L = T with the usual Lie bracket of vector fields and
the map a = id.

Ex 2. (Foliations)
A foliation F of M is an integrable subbundle of T'. It’s
also a Lie algebroid with I = F, the usual Lie bracket, and
a : F — T the usual inclusion map.
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Examples

Ex 3. (Complex Structures)
A complex structure on a smooth manifold M?" is an
integrable endomorphism J : T — T such that J? = —1. In
particular, J has eigenvectors of +i. Consider the subspace
L =T" < T ®C defined by

T ={veT: Jv=iv}.
This L is a complex bundle, is closed under the usual Lie
bracket, with anchor map a : L < T the usual inclusion.
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Other generalized structures defined on Lie algebroids include:
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Some Structures on Lie Algebroids

Other generalized structures defined on Lie algebroids include:

e Exterior derivative dy, : C®°(AFL*) — C®(AFHIL*).
e Interior product ¢x.

e Lie derivative Lg( =drix +txdr.

e Lie Algebroid connection

e Generalized foliations.
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Some Structures on Lie Algebroids

Other generalized structures defined on Lie algebroids include:
Exterior derivative d : C®(AFL*) — C®(AFFLLY).

Interior product ¢x.

Lie derivative Lg( =drix +txdr.

Lie Algebroid connection
Generalized foliations.
The so-called “Schouten bracket.”
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Definition.

The Courant bracket is the skew symmetric bracket on smooth
sections of T' @ T™ given by

(X4 &Y 41 = [X,Y]—i—EXn—Ey&—%d(LXn—Lyf).
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Definition

Definition.
The Courant bracket is the skew symmetric bracket on smooth

sections of T' @ T™ given by
1
(X + &Y +n]=[X, Y]+ Lxn— Ly~ §d(LX77—LY§)-
Remark.

1. If £,7 = 0, then the Courant bracket is simply the Lie bracket.
Also, m =7p : T®T* — T satisfies [r(A), n(B)] = n[A, B] for all
A,BeC®(TaT).
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Definition
Definition.

The Courant bracket is the skew symmetric bracket on smooth
sections of T' @ T™ given by
1
(X +&Y 0] = [X, Y]+ Lxn = Ly€ = 5d(exn — ).

Remark.

1. If £,7 = 0, then the Courant bracket is simply the Lie bracket.
Also, m =7p : T®T* — T satisfies [r(A), n(B)] = n[A, B] for all
A,BeC®(TaT).

2. If X, Y =0, Courant bracket vanishes.
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Relation to Lie Algebroids

e The first remark shows that 7 satisfies the first “anchor
property” of Lie algebroids.
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e Even so, (I'&T*,[-, -], ) fails to be a Lie algebroid.
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e Even so, (I'&T*,[-, -], ) fails to be a Lie algebroid.
e This is because |-, -] fails to satisfy the Jacobi identity.
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Relation to Lie Algebroids

The first remark shows that 7 satisfies the first “anchor
property” of Lie algebroids.

Even so, (T & T*,]-, -], m) fails to be a Lie algebroid.
This is because [-, -] fails to satisfy the Jacobi identity.

This failure can be made formal by introducing the
Jac(-, -, ) and Nij( -, -, - ) morphisms, and one can show
that the Courant bracket satisfies

[A, fB] = f[A, B] + (7 (A) f)B—(A, B)df
forall A, BeT @ T, fe C>®(M). Hence, it fails the
second “anchor property.”
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Motivation
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Symmetries of the Courant Bracket

Motivation

The only symmetries of T preserving the usual Lie bracket are
diffeomorphisms. We want the situation for T ¢ T™.
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diffeomorphisms. We want the situation for T ¢ T™.

Facts (Sans Proof)
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Symmetries of the Courant Bracket

Motivation

The only symmetries of T preserving the usual Lie bracket are
diffeomorphisms. We want the situation for T ¢ T™.

Facts (Sans Proof)

e Both the Courant bracket and the inner product on T"® T
are invariant under diffeomorphism.
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Symmetries of the Courant Bracket

Motivation
The only symmetries of T preserving the usual Lie bracket are
diffeomorphisms. We want the situation for T ¢ T™.
Facts (Sans Proof)
e Both the Courant bracket and the inner product on T"® T

are invariant under diffeomorphism.

e The B-field e? is an automorphism preserving the Courant
bracket if and only if dB = 0.
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Symmetries of the Courant Bracket

Motivation
The only symmetries of T preserving the usual Lie bracket are
diffeomorphisms. We want the situation for T ¢ T™.

Facts (Sans Proof)
e Both the Courant bracket and the inner product on T"® T

are invariant under diffeomorphism.

e The B-field e? is an automorphism preserving the Courant
bracket if and only if dB = 0.

e In fact, the collection Autc(T @ T%) of automorphisms on
T @ T* preserving this Courant bracket is exactly

Aute(T @ T*) = Diff (M) x Q% ..q(M).

closed
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Definition

Definitions.

1. A real, maximal isotropic subbundle L < T & T* is an
almost-Dirac structure.
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Definitions.

1. A real, maximal isotropic subbundle L < T & T* is an
almost-Dirac structure.
2. If L is also closed under the Courant bracket (i.e., is

involutive), then L is integrable and is said to be a Diract
structure.

El Fin
(e]e)



Intro VeVv* T®T* El Fin

0000 [e]e] 00000 (e]e)
0000 0000
o] [e]e] o]
000
Examples

Ex 1. (Symplectic Geometry)
T is maximal, isotropic, and involutive with respect to the
Courant bracket. Therefore, T' is a Dirac structure.
Moreover, applying a non-degenerate closed 2-form
w € Q% 4(M) to T yields another Dirac structure.

closed
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Examples

(Symplectic Geometry)

T is maximal, isotropic, and involutive with respect to the
Courant bracket. Therefore, T' is a Dirac structure.
Moreover, applying a non-degenerate closed 2-form

w € Q% 4(M) to T yields another Dirac structure.

closed

(Foliated Geometry)

For A < T a smooth distribution of constant rank,

A @ Ann(A) < T @ T* is almost-Dirac. To be Dirac, A
must be integrable, which occurs if and only if M has a
foliation induced by A.
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Ex 3. Let J € End(T') be an almost-complex structure with

T < T ® C the (—i)-eigenspace. Form the maximal
isotropic subspace

Lj=T% @ Ann(T%")
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Ex 3. Let J € End(T') be an almost-complex structure with

T < T ® C the (—i)-eigenspace. Form the maximal
isotropic subspace

Lj=T% @ Ann(T%")
— TO,l e (Tl,O)*
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Examples

Ex 3. Let J € End(T') be an almost-complex structure with

T < T ® C the (—i)-eigenspace. Form the maximal
isotropic subspace

Lj=T% @ Ann(T%")
— 70,1 ® (Tl,O)* < (T ® T*) ®C,

El Fin
(e]e)
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Examples

Ex 3. Let J € End(T") be an almost-complex structure with
T < T ® C the (—i)-eigenspace. Form the maximal
isotropic subspace

Lj=T% @ Ann(T%")
=T%" & (T")" < (T®T") ®C,
which can be proven to be involuted if and only if J is

integrable. Hence, complex structures are complex Dirac
structures.
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Definition

Definition.

A generalized complex structure is an endomorphism

J € End(T @ T*) such that (i) J? = —1,

(ii) (JX,Y) = (=X, JY), and (iii) T*? is involutive with
respect to the Courant bracket.

Remark.

This can also be defined as an isotropic subbundle

E < (T ®T*) ® C which satisfies E® E = (T & T*) ® C and
whose space of sections is closed under the Courant bracket.
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Examples (Sans Justification)

Here are some examples of objects admitting generalized
complex structures.
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Here are some examples of objects admitting generalized
complex structures.

e Complex manifolds.
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Examples (Sans Justification)

Here are some examples of objects admitting generalized
complex structures.

e Complex manifolds.
e Symplectic manifolds.

e Holomorphic Poisson manifolds.
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Examples (Sans Justification)

Here are some examples of objects admitting generalized
complex structures.

e Complex manifolds.

Symplectic manifolds.

Holomorphic Poisson manifolds.

5 classes of “exotic” nilmanifolds.
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