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Introduction to Limit Sets

Preliminaries

Definitions

Definition.
A Möbius Transformation in Rn is a bijective conformal
orientation-preserving map ϕ : Sn−1 → Sn−1.
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Preliminaries

Notation

En = n-dimensional Euclidean space

= Rn with the standard Euclidean metric

Ên = En ∪ {∞}
Bn = {x ∈ Ên : x < 1}

M(Bn) = collection of Möbius transformations of Bn

= collection of Möbius transformations of Ên that
leave Bn invariant

Remark.
Clearly, there is a natural group action M(Bn)×Bn → Bn

defined by (ϕ, x) 7→ ϕ(x).



Limit Sets

Introduction to Limit Sets

Preliminaries

Notation

En = n-dimensional Euclidean space
= Rn with the standard Euclidean metric
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Preliminaries

(More) Definitions

Definition.
An element ϕ ∈M(Bn) is:

• elliptic if it fixes a unique point of Bn and fixes no point
of Sn−1.

• parabolic if it fixes no point of Bn and fixes a unique
point of Sn−1.

• hyperbolic if it fixes no point of Bn and fixes two points
of Sn−1.

Definition.
A point a ∈ Sn−1 is a limit point of a subgroup G ≤M(Bn) if
there is a point x ∈ Bn and a sequence {gi}∞i=1 of elements of G
such that gix→ a as i→∞.
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Preliminaries

(Even More) Definitions

Definition.
The limit set L(G) of a subgroup G ≤M(Bn) is the collection
of all limit points of G.

Remark.
This is a specific notion of the more general term limit set
appearing in the study of dynamical systems and defined to be
“the state of a dynamical system after an infinite amount of
time.”
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A (More General) Example

Example: Apollonian Gasket

Figure 1
The Apollonian gasket is the limit of an iterated process
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Introduction to Limit Sets

Basic Results about Limit Points/Sets

Background Results for M(Bn) Sans Proof

Theorem 1.
If a ∈ Sn−1 is fixed by either a parabolic or hyperbolic element
of a subgroup G ≤M(Bn), then a is a limit point of G.

Theorem 2.
Let G be a subgroup of M(Bn). Then L(G) is empty if and only
if G has a finite orbit in both Bn and Bn.

• Such a group G is said to be “elementary of elliptic
type”—elementary because of Bn and ...of elliptic type
because of Bn.

• G has finite orbit in Bn if for some x ∈ Bn, the cardinality
of the set {gx : g ∈ G} is finite.
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Basic Results about Limit Points/Sets

Background Results for M(Bn) Sans Proof

Theorem 3.
Any subgroup G ≤M(Bn) for which L(G) is finite is
elementary (i.e., it has a finite orbit in Bn) and necessarily has
at most two limit points.
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Introduction to lim

The lim Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the
action of a group of Möbius transformations.

Remark.

• Here, we’re in the case of n = 2.

• M(C) ∼= PSL(2,C)

• A Kleinian Group is a discrete subgroup of PSL(2,C).
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action of a group of Möbius transformations.

Remark.

• Here, we’re in the case of n = 2.

• M(C) ∼= PSL(2,C)

• A Kleinian Group is a discrete subgroup of PSL(2,C).



Limit Sets

Curt McMullen & lim

Introduction to lim

The lim Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the
action of a group of Möbius transformations.
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action of a group of Möbius transformations.

Remark.

• Here, we’re in the case of n = 2.

• M(C) ∼= PSL(2,C)

• A Kleinian Group is a discrete subgroup of PSL(2,C).



Limit Sets

Curt McMullen & lim

Introduction to lim

The lim Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the
action of a group of Möbius transformations.
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Some Technical Stuff

How It Works—Short Version

Required Input

• Circles c1, . . . , ci known to
be in the limit set

Technical Input

• Threshold variables

• Output style options

Optional Input

• Circles r1, . . . , rk in which
to define reflections for cα

• Matrices m1,m2, . . . ,mj ,
t1, . . . , t` ∈ PSL(2,C) to be
applied to the cα and to
the coordinate system,
respectively

• Circles u1, . . . , un in which
to define reflections of the
coordinate system
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Some Technical Stuff

How It Works—Short Version

Behind the Scenes

• Lim applies the group

G = 〈m1, . . . ,mj , r1, . . . , rk〉
to the collection C = {cα}.

• It also applies the group

G′ = 〈t1, . . . , t`, u1, . . . , un〉
to the coordinate system.

• Iterates of these group
actions are stored in
stacks, parsed, sorted, and
finalized.

• The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

Output

• The raw output is data in
.ps format.

• This can be converted to
visual representations in
.pdf format.



Limit Sets

Curt McMullen & lim

Some Technical Stuff

How It Works—Short Version

Behind the Scenes

• Lim applies the group

G = 〈m1, . . . ,mj , r1, . . . , rk〉
to the collection C = {cα}.

• It also applies the group

G′ = 〈t1, . . . , t`, u1, . . . , un〉
to the coordinate system.

• Iterates of these group
actions are stored in
stacks, parsed, sorted, and
finalized.

• The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

Output

• The raw output is data in
.ps format.

• This can be converted to
visual representations in
.pdf format.



Limit Sets

Curt McMullen & lim

Some Technical Stuff

How It Works—Short Version

Behind the Scenes

• Lim applies the group

G = 〈m1, . . . ,mj , r1, . . . , rk〉
to the collection C = {cα}.

• It also applies the group

G′ = 〈t1, . . . , t`, u1, . . . , un〉
to the coordinate system.

• Iterates of these group
actions are stored in
stacks, parsed, sorted, and
finalized.

• The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

Output

• The raw output is data in
.ps format.

• This can be converted to
visual representations in
.pdf format.



Limit Sets

Curt McMullen & lim

Some Technical Stuff

How It Works—Short Version

Behind the Scenes

• Lim applies the group

G = 〈m1, . . . ,mj , r1, . . . , rk〉
to the collection C = {cα}.

• It also applies the group

G′ = 〈t1, . . . , t`, u1, . . . , un〉
to the coordinate system.

• Iterates of these group
actions are stored in
stacks, parsed, sorted, and
finalized.

• The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

Output

• The raw output is data in
.ps format.

• This can be converted to
visual representations in
.pdf format.



Limit Sets

Curt McMullen & lim

Some Technical Stuff

How It Works—Short Version

Behind the Scenes

• Lim applies the group

G = 〈m1, . . . ,mj , r1, . . . , rk〉
to the collection C = {cα}.

• It also applies the group

G′ = 〈t1, . . . , t`, u1, . . . , un〉
to the coordinate system.

• Iterates of these group
actions are stored in
stacks, parsed, sorted, and
finalized.

• The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

Output

• The raw output is data in
.ps format.

• This can be converted to
visual representations in
.pdf format.



Limit Sets

Curt McMullen & lim

Some Technical Stuff

How It Works—Short Version

Behind the Scenes

• Lim applies the group

G = 〈m1, . . . ,mj , r1, . . . , rk〉
to the collection C = {cα}.

• It also applies the group

G′ = 〈t1, . . . , t`, u1, . . . , un〉
to the coordinate system.

• Iterates of these group
actions are stored in
stacks, parsed, sorted, and
finalized.

• The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

Output

• The raw output is data in
.ps format.

• This can be converted to
visual representations in
.pdf format.



Limit Sets

Curt McMullen & lim

Examples and Output

Example 1

hex.run

./lim -d 8 -s -h 3 <<eof > hex.ps

c 0.866025403784438 0.0 -0.5

c 0.25 0.433012701892219 -0.166666666666

c -0.25 0.433012701892219 -0.833333333333

r 0.866025403784438 0.0 -0.5

r 0.25 0.433012701892219 -0.166666666666

r -0.25 0.433012701892219 -0.833333333333

eof

Graph on sphere; omit to graph in plane
Output file name
Two different threshold variables
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Examples and Output

Example 1

Figure 2
hex.ps without -s

Figure 3
hex.ps with -s
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Examples and Output

Example 2

Example.run

./lim -s -d 60 -e 0.0001 <<eof > Example.ps

c 0. 0. 1

m 1 1 0 1 0 -1 1 -1

m 1 -1 0 -1 0 1 1 1

m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025

m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025

eof

Remark.
According to McMullen: “This is a picture of the limit set of a
Kleinian group on the boundary of Maskit’s embedding of the
Teichmuller space of a once-punctured torus.”

A different threshold variable
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Examples and Output

Example 2

Figure 4
Example.ps
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Examples and Output

Example 3

Schottky.run

./lim -d 10 -e .001 <<eof > schottky2.ps

r 0 1 .7

r 0.866025 -.5 .8

r -0.866025 -.5 .8

c 0 1 .7

c 0.866025 -.5 .8

c -0.866025 -.5 .8

eof
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Examples and Output

Example 3

Figure 5
In the plane

Figure 6
On the sphere
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Examples and Output

Example 4

ngon4.run

./lim -a 1000 -b -d 100 -e 0.001

-c 0 0 1 -w -1.1 -1.1 1.1 1.1

<<eof > ngon4.ps

r 1.553773974030037 0 1.189207115002721

c 1.553773974030037 0 1.189207115002721

r 0 1.553773974030037 1.189207115002721

c 0 1.553773974030037 1.189207115002721

r -1.553773974030037 0 1.189207115002721

c -1.553773974030037 0 1.189207115002721

r 0 -1.553773974030037 1.189207115002721

c 0 -1.553773974030037 1.189207115002721

eof

Remark.
According to McMullen: “Tiling of H for torus with orbifold point of
order 2.”

Optional style parameter
A different threshold variable
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Figure 7
ngon4.ps + a box because of -b
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Example 5

lattice.run

./lim -s -d 10 <<eof > lattice.ps

c 0 0 0.0

c 0 0 -.5

m 1 0 1 0 0 0 1 0

m 1 0 0 1 0 0 1 0

m 1 1 0 0 0 0 1 0

u .3 .4 2

eof
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Figure 8
In the plane

Figure 9
On the sphere
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Introduction

For the sake of brevity, some background will be assumed. In
particular, I won’t take the time to define the following
(important) terms:

• Foliation / Foliated Manifold

• Leaf / Leaf Space of a foliation

• Dimension / Codimension of foliation

• Reeb components

• Finite-depth foliations

• Depth of a leaf within finite-depth foliations

• Fibers / bundle theory
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Big Idea

Is it possible to modify the above results in order to get
decent pictures of the limit sets of the lifts of finite-depth
foliations to the universal cover of hyperbolic 3-manifolds?
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Context-Specific Things

• There are several notions of limit set in this context.

1. On a manifold M3 which is hyperbolic, the universal cover
M̃ is homeomorphic to the hyperbolic space H3. In this
case, it makes sense to talk about the limit set L(G) of a
group G of Möbius transformations acting on H3 (or S2).

2. If M3 is a hyperbolic manifold and F is a codimension-one
Reebless foliation on M , the lift F̃ is a foliation of H3 and
the leaves L of F are planes. In particular, L is
non-compact and so it makes sense to talk about the limit
set of L as the collection of accumulation points of L in the
sphere at infinity S2

∞.

• Both of these ideas may be relevant when talking about the
limit sets of finite depth foliations.
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Finite-Depth Foliations & Limit Sets of Their Lifts

• By definition, any depth-zero leaf L0 of F is compact. From
results of Thurston, Bonahon, and Marden, it follows that either:

1. L0 is (up to finite covers) a fiber of M over the circle. In

this case, the limit set of the lift L̃0 is all of S2
∞.

2. L0 corresponds to a quasi-Fuchsian subgroup of π1(M) and

the limit set of the lift L̃0 is a quasicircle C0 of Hausdorff
dimension less than 2.

• Let D0 be the collection of depth-zero leaves, let M1 be the
closure of a component of M −D0 such that L0 ∈ ∂M1, and let
L1 be a depth-one leaf in M1. Then:

1. Iteratively applying elements g ∈ π1(M1) to L(L̃0) yields an

element in the limit set of L̃1.

2. The union of all such iterates is dense therein.
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What’s Next?

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory
of limit sets and foliations.

• Investigate ways to code quasiconformal mappings (or
approximations thereof) using finitely-much data.

• Work on understanding McMullen’s lim well enough to
modify its functionality to this context.

• Win a Fields medal. :)
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Thank you!
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