Limit Sets and Their Applications

Christopher Stover
Florida State University

Topology Seminar
February 25, 2014
Outline

Introduction to Limit Sets
Outline

Introduction to Limit Sets
Preliminaries
Outline

Introduction to Limit Sets
 Preliminaries
 A (More General) Example
Outline

Introduction to Limit Sets
 Preliminaries
 A (More General) Example
 Basic Results about Limit Points/Sets
Outline

Introduction to Limit Sets
 Preliminaries
 A (More General) Example
 Basic Results about Limit Points/Sets

Curt McMullen & LIM
Outline

Introduction to Limit Sets
 Preliminaries
 A (More General) Example
 Basic Results about Limit Points/Sets

Curt McMullen & LIM
 Introduction to LIM
Outline

Introduction to Limit Sets
- Preliminaries
- A (More General) Example
- Basic Results about Limit Points/Sets

Curt McMullen & LIM
- Introduction to LIM
- Some Technical Stuff
Outline

Introduction to Limit Sets
 Preliminaries
 A (More General) Example
 Basic Results about Limit Points/Sets

Curt McMullen & LIM
 Introduction to LIM
 Some Technical Stuff
 Examples and Output
Outline

Introduction to Limit Sets
 Preliminaries
 A (More General) Example
 Basic Results about Limit Points/Sets

Curt McMullen & LIM
 Introduction to LIM
 Some Technical Stuff
 Examples and Output

Applications & Future Work
Outline

Introduction to Limit Sets
 Preliminaries
 A (More General) Example
 Basic Results about Limit Points/Sets

Curt McMullen & LIM
 Introduction to LIM
 Some Technical Stuff
 Examples and Output

Applications & Future Work
 Applications to Foliation Theory
Part I

Introduction to Limit Sets

Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM
Some Technical Stuff
Examples and Output

Applications & Future Work
Applications to Foliation Theory
Definitions

Definition.
A Möbius Transformation in \mathbb{R}^n is a bijective conformal orientation-preserving map $\varphi : S^{n-1} \to S^{n-1}$.
Notation

\[E^n \quad = \quad n\text{-dimensional Euclidean space} \]
Limit Sets

Introduction to Limit Sets

Preliminaries

Notation

$E^n = n$-dimensional Euclidean space

$= \mathbb{R}^n$ with the standard Euclidean metric
Notation

\[E^n = n\text{-dimensional Euclidean space} \]
\[= \mathbb{R}^n \text{ with the standard Euclidean metric} \]
\[\hat{E}^n = E^n \cup \{\infty\} \]
Notation

\[\begin{align*}
E^n &= n\text{-dimensional Euclidean space} \\
&= \mathbb{R}^n \text{ with the standard Euclidean metric} \\
\hat{E}^n &= E^n \cup \{\infty\} \\
B^n &= \{x \in \hat{E}^n : x < 1\}
\end{align*}\]
Limit Sets

Introduction to Limit Sets

Preliminaries

Notation

\[
\begin{align*}
E^n &= \text{n-dimensional Euclidean space} \\
&= \mathbb{R}^n \text{ with the standard Euclidean metric} \\
\hat{E}^n &= E^n \cup \{\infty\} \\
B^n &= \{x \in \hat{E}^n : x < 1\} \\
M(B^n) &= \text{collection of Möbius transformations of } B^n
\end{align*}
\]
Notation

\[E^n = \text{n-dimensional Euclidean space} \]
\[= \mathbb{R}^n \text{ with the standard Euclidean metric} \]
\[\widehat{E}^n = E^n \cup \{ \infty \} \]
\[B^n = \{ x \in \widehat{E}^n : x < 1 \} \]
\[M(B^n) = \text{collection of Möbius transformations of } B^n \]
\[= \text{collection of Möbius transformations of } \widehat{E}^n \text{ that leave } B^n \text{ invariant} \]
Notation

\begin{align*}
 E^n &= \text{n-dimensional Euclidean space} \\
 &= \mathbb{R}^n \text{ with the standard Euclidean metric} \\
 \hat{E}^n &= E^n \cup \{\infty\} \\
 B^n &= \{x \in \hat{E}^n : x < 1\} \\
 M(B^n) &= \text{collection of Möbius transformations of } B^n \\
 &= \text{collection of Möbius transformations of } \hat{E}^n \text{ that leave } B^n \text{ invariant}
\end{align*}

Remark.

Clearly, there is a natural group action \(M(B^n) \times B^n \to B^n \) defined by \((\varphi, x) \mapsto \varphi(x)\).
(More) Definitions

Definition.
An element $\varphi \in M(B^n)$ is:

- **elliptic** if it fixes a unique point of B^n and fixes no point of S^{n-1}.
(More) Definitions

Definition.
An element $\varphi \in M(B^n)$ is:

- **elliptic** if it fixes a unique point of B^n and fixes no point of S^{n-1}.

- **parabolic** if it fixes no point of B^n and fixes a unique point of S^{n-1}.
(More) Definitions

Definition.
An element $\varphi \in M(B^n)$ is:

- **elliptic** if it fixes a unique point of B^n and fixes no point of S^{n-1}.
- **parabolic** if it fixes no point of B^n and fixes a unique point of S^{n-1}.
- **hyperbolic** if it fixes no point of B^n and fixes two points of S^{n-1}.
(More) Definitions

Definition.
An element $\varphi \in M(B^n)$ is:

- **elliptic** if it fixes a unique point of B^n and fixes no point of S^{n-1}.
- **parabolic** if it fixes no point of B^n and fixes a unique point of S^{n-1}.
- **hyperbolic** if it fixes no point of B^n and fixes two points of S^{n-1}.

Definition.
A point $a \in S^{n-1}$ is a **limit point** of a subgroup $G \leq M(B^n)$ if there is a point $x \in B^n$ and a sequence $\{g_i\}_{i=1}^{\infty}$ of elements of G such that $g_ix \to a$ as $i \to \infty$.
(Even More) Definitions

Definition.
The limit set $L(G)$ of a subgroup $G \leq M(B^n)$ is the collection of all limit points of G.
(Even More) Definitions

Definition.
The limit set $L(G)$ of a subgroup $G \leq M(B^n)$ is the collection of all limit points of G.

Remark.
This is a specific notion of the more general term limit set appearing in the study of dynamical systems and defined to be “the state of a dynamical system after an infinite amount of time.”
Example: Apollonian Gasket

Figure 1
The Apollonian gasket is the limit of an iterated process
Background Results for $M(B^n)$ Sans Proof

Theorem 1.

If $a \in S^{n-1}$ is fixed by either a parabolic or hyperbolic element of a subgroup $G \leq M(B^n)$, then a is a limit point of G.
Background Results for $M(B^n)$ Sans Proof

Theorem 1.

*If $a \in S^{n-1}$ is fixed by either a parabolic or hyperbolic element of a subgroup $G \leq M(B^n)$, then a is a limit point of G."

Theorem 2.

*Let G be a subgroup of $M(B^n)$. Then $L(G)$ is empty if and only if G has a finite orbit in both B^n and $\overline{B^n}$.**
Background Results for $M(B^n)$ Sans Proof

Theorem 1.

If $a \in S^{n-1}$ is fixed by either a parabolic or hyperbolic element of a subgroup $G \leq M(B^n)$, then a is a limit point of G.

Theorem 2.

Let G be a subgroup of $M(B^n)$. Then $L(G)$ is empty if and only if G has a finite orbit in both B^n and $\overline{B^n}$.

- Such a group G is said to be “elementary of elliptic type”—elementary because of $\overline{B^n}$ and ...of elliptic type because of B^n.
Theorem 1.
If \(a \in S^{n-1} \) is fixed by either a parabolic or hyperbolic element of a subgroup \(G \leq M(B^n) \), then \(a \) is a limit point of \(G \).

Theorem 2.
Let \(G \) be a subgroup of \(M(B^n) \). Then \(L(G) \) is empty if and only if \(G \) has a finite orbit in both \(B^n \) and \(\overline{B^n} \).

- Such a group \(G \) is said to be “elementary of elliptic type”—elementary because of \(\overline{B^n} \) and ...of elliptic type because of \(B^n \).
- \(G \) has finite orbit in \(B^n \) if for some \(x \in B^n \), the cardinality of the set \(\{gx : g \in G\} \) is finite.
Background Results for $M(B^n)$ Sans Proof

Theorem 3.
Any subgroup $G \leq M(B^n)$ for which $L(G)$ is finite is elementary (i.e., it has a finite orbit in $\overline{B^n}$) and necessarily has at most two limit points.
Part II

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM
Some Technical Stuff
Examples and Output

Applications & Future Work
Applications to Foliation Theory
The lim Program

McMullen’s description in the “Read Me” file:
The LIM Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.
The LIM Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Remark.
The LIM Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Remark.

- Here, we’re in the case of $n = 2$.
The LIM Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Remark.

- Here, we’re in the case of $n = 2$.
- $M(\mathbb{C}) \cong \text{PSL}(2, \mathbb{C})$
The LIM Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Remark.

- Here, we’re in the case of $n = 2$.
- $M(\mathbb{C}) \cong \text{PSL}(2, \mathbb{C})$
- A **Kleinian Group** is a discrete subgroup of $\text{PSL}(2, \mathbb{C})$.
How It Works—Short Version

Required Input

- Circles c_1, \ldots, c_i known to be in the limit set
How It Works—Short Version

Required Input

- Circles c_1, \ldots, c_i known to be in the limit set

Technical Input

- Threshold variables
How It Works—Short Version

Required Input

- Circles c_1, \ldots, c_i known to be in the limit set

Technical Input

- Threshold variables
- Output style options
How It Works—Short Version

Required Input

• Circles c_1, \ldots, c_i known to be in the limit set

Optional Input

• Circles r_1, \ldots, r_k in which to define reflections for c_α

Technical Input

• Threshold variables
• Output style options
How It Works—Short Version

Required Input

- Circles c_1, \ldots, c_i known to be in the limit set

Optional Input

- Circles r_1, \ldots, r_k in which to define reflections for c_α

Technical Input

- Threshold variables
- Output style options

Optional Input

- Matrices m_1, m_2, \ldots, m_j, $t_1, \ldots, t_\ell \in \text{PSL}(2, \mathbb{C})$ to be applied to the c_α and to the coordinate system, respectively
How It Works—Short Version

Required Input

- Circles \(c_1, \ldots, c_i\) known to be in the limit set

Optional Input

- Circles \(r_1, \ldots, r_k\) in which to define reflections for \(c_\alpha\)

Technical Input

- Threshold variables
- Output style options

Optional Input

- Matrices \(m_1, m_2, \ldots, m_j, t_1, \ldots, t_\ell \in \text{PSL}(2, \mathbb{C})\) to be applied to the \(c_\alpha\) and to the coordinate system, respectively
- Circles \(u_1, \ldots, u_n\) in which to define reflections of the coordinate system
How It Works—Short Version

Behind the Scenes

- LIM applies the group
 \[G = \langle m_1, \ldots, m_j, r_1, \ldots, r_k \rangle \]
 to the collection \(C = \{ c_\alpha \} \).
How It Works—Short Version

Behind the Scenes

- **LIM** applies the group
 \[G = \langle m_1, \ldots, m_j, r_1, \ldots, r_k \rangle \]
 to the collection \(C = \{ c_\alpha \} \).

- It also applies the group
 \[G' = \langle t_1, \ldots, t_\ell, u_1, \ldots, u_n \rangle \]
 to the coordinate system.
How It Works—Short Version

Behind the Scenes

• LIM applies the group
 \[G = \langle m_1, \ldots, m_j, r_1, \ldots, r_k \rangle \]
 to the collection \(C = \{ c_\alpha \} \).

• It also applies the group
 \[G' = \langle t_1, \ldots, t_\ell, u_1, \ldots, u_n \rangle \]
 to the coordinate system.

• Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.
How It Works—Short Version

Behind the Scenes

- **LIM** applies the group
 \[G = \langle m_1, \ldots, m_j, r_1, \ldots, r_k \rangle \]
 to the collection \(C = \{ c_\alpha \} \).
- It also applies the group
 \[G' = \langle t_1, \ldots, t_\ell, u_1, \ldots, u_n \rangle \]
 to the coordinate system.
- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.
- The loop ends when the stacks are full or when optional user-input thresholds are reached.
How It Works—Short Version

Behind the Scenes

- \textsc{lim} applies the group
 \[G = \langle m_1, \ldots, m_j, r_1, \ldots, r_k \rangle \]
 to the collection \(C = \{ c_\alpha \} \).
- It also applies the group
 \[G' = \langle t_1, \ldots, t_\ell, u_1, \ldots, u_n \rangle \]
 to the coordinate system.
- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.
- The loop ends when the stacks are full or when optional user-input thresholds are reached.

Output

- The raw output is data in .ps format.
How It Works—Short Version

Behind the Scenes

- **LIM** applies the group $G = \langle m_1, \ldots, m_j, r_1, \ldots, r_k \rangle$ to the collection $C = \{c_\alpha\}$.
- It also applies the group $G' = \langle t_1, \ldots, t_\ell, u_1, \ldots, u_n \rangle$ to the coordinate system.
- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.
- The loop ends when the stacks are full or when optional user-input thresholds are reached.

Output

- The raw output is data in .ps format.
- This can be converted to visual representations in .pdf format.
Example 1

hex.run

```
./lim -d 8 -s -h 3 <<eof > hex.ps

c 0.866025403784438 0.0 -0.5

c 0.25 0.433012701892219 -0.166666666666

c -0.25 0.433012701892219 -0.833333333333

r 0.866025403784438 0.0 -0.5

r 0.25 0.433012701892219 -0.166666666666

r -0.25 0.433012701892219 -0.833333333333

eof
```

Graph on sphere; omit to graph in plane

Output file name

Two different threshold variables
Example 1

Figure 2
hex.ps without -s

Figure 3
hex.ps with -s
Example 2

Example.run

./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m 1 1 0 1 0 -1 1 -1
m 1 -1 0 -1 0 1 1 1
m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025
eof

Remark. According to McMullen: "This is a picture of the limit set of a Kleinian group on the boundary of Maskit's embedding of the Teichmüller space of a once-punctured torus."
Example 2

Example.run

./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m 1 1 0 1 0 -1 1 -1
m 1 -1 0 -1 0 1 1 1
m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025
eof

Remark.

A different threshold variable
Example 2

Example.run

```bash
./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m 1 1 0 1 0 -1 1 -1
m 1 -1 0 -1 0 1 1 1
m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025
eof
```

Remark.

According to McMullen: “This is a picture of the limit set of a Kleinian group on the boundary of Maskit’s embedding of the Teichmüller space of a once-punctured torus.”

A different threshold variable
Example 2

Figure 4

Example.ps
Example 3

Schottky.run

```bash
./lim -d 10 -e .001 <<eof > schottky2.ps
r 0 1 .7
r 0.866025 -.5 .8
r -0.866025 -.5 .8
c 0 1 .7
c 0.866025 -.5 .8
c -0.866025 -.5 .8
eof
```
Example 3

Figure 5
In the plane

Figure 6
On the sphere
Example 4

ngon4.run

```bash
./lim -a 1000 -b -d 100 -e 0.001
-c 0 0 1 -w -1.1 -1.1 1.1 1.1
<<eof > ngon4.ps
r 1.553773974030037 0 1.189207115002721
c 1.553773974030037 0 1.189207115002721
r 0 1.553773974030037 1.189207115002721
c 0 1.553773974030037 1.189207115002721
r -1.553773974030037 0 1.189207115002721
c -1.553773974030037 0 1.189207115002721
r 0 -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721

eof
```

Remark. According to McMullen: "Tiling of H for torus with orbifold point of order 2.

Optional style parameter

A different threshold variable
Example 4

ngon4.run

```
./lim -a 1000 -b -d 100 -e 0.001
-c 0 0 1 -w -1.1 -1.1 1.1 1.1
<<eof > ngon4.ps
r 1.553773974030037 0 1.189207115002721
c 1.553773974030037 0 1.189207115002721
r 0 1.553773974030037 1.189207115002721
c 0 1.553773974030037 1.189207115002721
r -1.553773974030037 0 1.189207115002721
c -1.553773974030037 0 1.189207115002721
r 0 -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721
eof
```

Remark.

Optional style parameter

A different threshold variable
Example 4

`ngon4.run`

```plaintext
./lim -a 1000 -b -d 100 -e 0.001 -c 0 0 1 -w -1.1 -1.1 1.1 1.1 <<eof > ngon4.ps
r 1.553773974030037 0 1.189207115002721
c 1.553773974030037 0 1.189207115002721
r 0 1.553773974030037 1.189207115002721
c 0 1.553773974030037 1.189207115002721
r -1.553773974030037 0 1.189207115002721
c -1.553773974030037 0 1.189207115002721
r 0 -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721
eof
```

Remark.

According to McMullen: “Tiling of H for torus with orbifold point of order 2.”

Optional style parameter

A different threshold variable
Example 4

Figure 7

ngon4.ps + a box because of -b
Example 5

```
lattice.run

./lim -s -d 10 <<eof > lattice.ps
  c 0 0 0.0
  c 0 0 -.5
  m 1 0 1 0 0 0 1 0
  m 1 0 0 1 0 0 1 0
  m 1 1 0 0 0 0 1 0
  u .3 .4 2
  eof
```
Figure 8
In the plane

Figure 9
On the sphere
Part III

Introduction to Limit Sets
 Preliminaries
 A (More General) Example
 Basic Results about Limit Points/Sets

Curt McMullen & LIM
 Introduction to LIM
 Some Technical Stuff
 Examples and Output

Applications & Future Work
 Applications to Foliation Theory
Introduction

For the sake of brevity, some background will be assumed. In particular, I won’t take the time to define the following (important) terms:
Introduction

For the sake of brevity, some background will be assumed. In particular, I won’t take the time to define the following (important) terms:

- Foliation / Foliated Manifold
Introduction

For the sake of brevity, some background will be assumed. In particular, I won’t take the time to define the following (important) terms:

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
Introduction

For the sake of brevity, some background will be assumed. In particular, I won’t take the time to define the following (important) terms:

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
Introduction

For the sake of brevity, some background will be assumed. In particular, I won’t take the time to define the following (important) terms:

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
- Reeb components
Introduction

For the sake of brevity, some background will be assumed. In particular, I won’t take the time to define the following (important) terms:

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
- Reeb components
- Finite-depth foliations
Introduction

For the sake of brevity, some background will be assumed. In particular, I won’t take the time to define the following (important) terms:

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
- Reeb components
- Finite-depth foliations
- Depth of a leaf within finite-depth foliations
Introduction

For the sake of brevity, some background will be assumed. In particular, I won’t take the time to define the following (important) terms:

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
- Reeb components
- Finite-depth foliations
- Depth of a leaf within finite-depth foliations
- Fibers / bundle theory
Limit Sets
- Applications & Future Work
 - Applications to Foliation Theory

Big Idea

Is it possible to modify the above results in order to get decent pictures of the limit sets of the lifts of finite-depth foliations to the universal cover of hyperbolic 3-manifolds?
Context-Specific Things

- There are several notions of *limit set* in this context.
Limit Sets

Applications & Future Work

Applications to Foliation Theory

Context-Specific Things

• There are several notions of limit set in this context.

1. On a manifold M^3 which is hyperbolic, the universal cover \tilde{M} is homeomorphic to the hyperbolic space H^3. In this case, it makes sense to talk about the limit set $L(G)$ of a group G of Möbius transformations acting on H^3 (or S^2).
There are several notions of limit set in this context.

1. On a manifold M^3 which is hyperbolic, the universal cover \tilde{M} is homeomorphic to the hyperbolic space H^3. In this case, it makes sense to talk about the limit set $L(G)$ of a group G of Möbius transformations acting on H^3 (or S^2).

2. If M^3 is a hyperbolic manifold and \mathcal{F} is a codimension-one Reebless foliation on M, the lift $\tilde{\mathcal{F}}$ is a foliation of H^3 and the leaves \mathcal{L} of \mathcal{F} are planes. In particular, \mathcal{L} is non-compact and so it makes sense to talk about the limit set of \mathcal{L} as the collection of accumulation points of \mathcal{L} in the sphere at infinity S_∞^2.
Context-Specific Things

- There are several notions of limit set in this context.

 1. On a manifold M^3 which is hyperbolic, the universal cover \tilde{M} is homeomorphic to the hyperbolic space H^3. In this case, it makes sense to talk about the limit set $L(G)$ of a group G of Möbius transformations acting on H^3 (or S^2).

 2. If M^3 is a hyperbolic manifold and \mathcal{F} is a codimension-one Reebless foliation on M, the lift $\tilde{\mathcal{F}}$ is a foliation of H^3 and the leaves \mathcal{L} of \mathcal{F} are planes. In particular, \mathcal{L} is non-compact and so it makes sense to talk about the limit set of \mathcal{L} as the collection of accumulation points of \mathcal{L} in the sphere at infinity S^2_∞.

- Both of these ideas may be relevant when talking about the limit sets of finite depth foliations.
Finite-Depth Foliations & Limit Sets of Their Lifts

- By definition, any depth-zero leaf L_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:

 1. L_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift \tilde{L}_0 is all of S^2.
 2. L_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift \tilde{L}_0 is a quasicircle C_0 of Hausdorff dimension less than 2.
Finite-Depth Foliations & Limit Sets of Their Lifts

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:

 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}}_0$ is all of S^2_∞.

- Let D_0 be the collection of depth-zero leaves, let M_1 be the closure of a component of $M - D_0$ such that $\mathcal{L}_0 \in \partial M_1$, and let \mathcal{L}_1 be a depth-one leaf in M_1. Then:

 1. Iteratively applying elements $g \in \pi_1(M_1)$ to $\widetilde{\mathcal{L}}$ yields an element in the limit set of $\widetilde{\mathcal{L}}_1$.

 2. The union of all such iterates is dense therein.
Finite-Depth Foliations & Limit Sets of Their Lifts

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:

 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}}_0$ is all of S^2_∞.

 2. \mathcal{L}_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift $\widetilde{\mathcal{L}}_0$ is a quasicircle \mathcal{C}_0 of Hausdorff dimension less than 2.
Finite-Depth Foliations & Limit Sets of Their Lifts

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:
 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\tilde{\mathcal{L}}_0$ is all of S^2_{∞}.
 2. \mathcal{L}_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift $\tilde{\mathcal{L}}_0$ is a quasicircle \mathcal{C}_0 of Hausdorff dimension less than 2.

- Let \mathcal{D}_0 be the collection of depth-zero leaves, let M_1 be the closure of a component of $\overline{M - \mathcal{D}_0}$ such that $\mathcal{L}_0 \in \partial M_1$, and let \mathcal{L}_1 be a depth-one leaf in M_1. Then:
Finite-Depth Foliations & Limit Sets of Their Lifts

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:

 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}}_0$ is all of S^2_{∞}.

 2. \mathcal{L}_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift $\widetilde{\mathcal{L}}_0$ is a quasicircle C_0 of Hausdorff dimension less than 2.

- Let \mathcal{D}_0 be the collection of depth-zero leaves, let M_1 be the closure of a component of $\overline{M - \mathcal{D}_0}$ such that $\mathcal{L}_0 \in \partial M_1$, and let \mathcal{L}_1 be a depth-one leaf in M_1. Then:

 1. Iteratively applying elements $g \in \pi_1(M_1)$ to $L(\widetilde{\mathcal{L}}_0)$ yields an element in the limit set of $\widetilde{\mathcal{L}}_1$.

Finite-Depth Foliations & Limit Sets of Their Lifts

• By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:

1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}}_0$ is all of S^2_∞.

2. \mathcal{L}_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift $\widetilde{\mathcal{L}}_0$ is a quasicircle \mathcal{C}_0 of Hausdorff dimension less than 2.

• Let \mathcal{D}_0 be the collection of depth-zero leaves, let M_1 be the closure of a component of $M - \mathcal{D}_0$ such that $\mathcal{L}_0 \in \partial M_1$, and let \mathcal{L}_1 be a depth-one leaf in M_1. Then:

1. Iteratively applying elements $g \in \pi_1(M_1)$ to $L(\widetilde{\mathcal{L}}_0)$ yields an element in the limit set of $\widetilde{\mathcal{L}}_1$.

2. The union of all such iterates is dense therein.
What’s Next?

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory of limit sets and foliations.
• Investigate ways to code quasiconformal mappings (or approximations thereof) using finitely-much data.
• Work on understanding McMullen’s \lim well enough to modify its functionality to this context.
• Win a Fields medal. :)

What’s Next?

My tentative work plan moving forward is to:

- Spend (a considerable amount of) time learning the theory of limit sets and foliations.
What’s Next?

My tentative work plan moving forward is to:

- Spend (a considerable amount of) time learning the theory of limit sets and foliations.
- Investigate ways to code quasiconformal mappings (or approximations thereof) using finitely-much data.
What’s Next?

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory of limit sets and foliations.

• Investigate ways to code quasiconformal mappings (or approximations thereof) using finitely-much data.

• Work on understanding McMullen’s LIM well enough to modify its functionality to this context.
What’s Next?

My tentative work plan moving forward is to:

- Spend (a considerable amount of) time learning the theory of limit sets and foliations.
- Investigate ways to code quasiconformal mappings (or approximations thereof) using finitely-much data.
- Work on understanding McMullen’s LIM well enough to modify its functionality to this context.
- Win a Fields medal. :)
Limit Sets

Applications & Future Work

Applications to Foliation Theory

Thank you!