Limit Sets and Their Applications

Christopher Stover Florida State University

> Topology Seminar February 25, 2014

Introduction to Limit Sets

Introduction to Limit Sets
Preliminaries

Introduction to Limit Sets
Preliminaries
A (More General) Example

Introduction to Limit Sets

Preliminaries

A (More General) Example

Basic Results about Limit Points/Sets

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM Introduction to LIM Some Technical Stuff

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM
Some Technical Stuff
Examples and Output

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM
Some Technical Stuff
Examples and Output

Applications & Future Work

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM
Some Technical Stuff
Examples and Output

Applications & Future Work
Applications to Foliation Theory

Part I

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM
Some Technical Stuff
Examples and Output

Applications & Future Work
Applications to Foliation Theory

Definitions

Definition.

A Möbius Transformation in \mathbb{R}^n is a bijective conformal orientation-preserving map $\varphi: S^{n-1} \to S^{n-1}$.

 E^n = n-dimensional Euclidean space

 E^n = n-dimensional Euclidean space = \mathbb{R}^n with the standard Euclidean metric

```
\begin{array}{lcl} E^n & = & n\text{-dimensional Euclidean space} \\ & = & \mathbb{R}^n \text{ with the standard Euclidean metric} \\ \widehat{E^n} & = & E^n \cup \{\infty\} \end{array}
```

```
\begin{array}{lll} E^n & = & n\text{-dimensional Euclidean space} \\ & = & \mathbb{R}^n \text{ with the standard Euclidean metric} \\ \widehat{E^n} & = & E^n \cup \{\infty\} \\ B^n & = & \{x \in \widehat{E^n} : x < 1\} \end{array}
```

```
\begin{array}{rcl} E^n & = & n\text{-dimensional Euclidean space} \\ & = & \mathbb{R}^n \text{ with the standard Euclidean metric} \\ \widehat{E^n} & = & E^n \cup \{\infty\} \\ B^n & = & \{x \in \widehat{E^n} : x < 1\} \\ M(B^n) & = & \text{collection of M\"obius transformations of } B^n \end{array}
```

```
E^n = n-dimensional Euclidean space

= \mathbb{R}^n with the standard Euclidean metric

\widehat{E}^n = E^n \cup \{\infty\}

B^n = \{x \in \widehat{E}^n : x < 1\}

M(B^n) = collection of Möbius transformations of \widehat{E}^n that leave B^n invariant
```

$$E^n$$
 = n -dimensional Euclidean space
= \mathbb{R}^n with the standard Euclidean metric
 \widehat{E}^n = $E^n \cup \{\infty\}$
 B^n = $\{x \in \widehat{E}^n : x < 1\}$
 $M(B^n)$ = collection of Möbius transformations of \widehat{E}^n that leave B^n invariant

Remark.

Clearly, there is a natural group action $M(B^n) \times B^n \to B^n$ defined by $(\varphi, x) \mapsto \varphi(x)$.

Definition.

An element $\varphi \in M(B^n)$ is:

• **elliptic** if it fixes a unique point of B^n and fixes no point of S^{n-1} .

Definition.

An element $\varphi \in M(B^n)$ is:

- **elliptic** if it fixes a unique point of B^n and fixes no point of S^{n-1} .
- **parabolic** if it fixes no point of B^n and fixes a unique point of S^{n-1} .

Definition.

An element $\varphi \in M(B^n)$ is:

- **elliptic** if it fixes a unique point of B^n and fixes no point of S^{n-1} .
- **parabolic** if it fixes no point of B^n and fixes a unique point of S^{n-1} .
- **hyperbolic** if it fixes no point of B^n and fixes two points of S^{n-1} .

Definition.

An element $\varphi \in M(B^n)$ is:

- **elliptic** if it fixes a unique point of B^n and fixes no point of S^{n-1} .
- **parabolic** if it fixes no point of B^n and fixes a unique point of S^{n-1} .
- **hyperbolic** if it fixes no point of B^n and fixes two points of S^{n-1} .

Definition.

A point $a \in S^{n-1}$ is a **limit point** of a subgroup $G \leq M(B^n)$ if there is a point $x \in B^n$ and a sequence $\{g_i\}_{i=1}^{\infty}$ of elements of G such that $g_i x \to a$ as $i \to \infty$.

(Even More) Definitions

Definition.

The **limit set** L(G) of a subgroup $G \leq M(B^n)$ is the collection of all limit points of G.

(Even More) Definitions

Definition.

The **limit set** L(G) of a subgroup $G \leq M(B^n)$ is the collection of all limit points of G.

Remark.

This is a specific notion of the more general term *limit set* appearing in the study of dynamical systems and defined to be "the state of a dynamical system after an infinite amount of time."

Example: Apollonian Gasket

The Apollonian gasket is the limit of an iterated process

Theorem 1.

If $a \in S^{n-1}$ is fixed by either a parabolic or hyperbolic element of a subgroup $G \leq M(B^n)$, then a is a limit point of G.

Theorem 1.

If $a \in S^{n-1}$ is fixed by either a parabolic or hyperbolic element of a subgroup $G \leq M(B^n)$, then a is a limit point of G.

Theorem 2.

Let G be a subgroup of $M(B^n)$. Then L(G) is empty if and only if G has a finite orbit in both B^n and $\overline{B^n}$.

Theorem 1.

If $a \in S^{n-1}$ is fixed by either a parabolic or hyperbolic element of a subgroup $G \leq M(B^n)$, then a is a limit point of G.

Theorem 2.

Let G be a subgroup of $M(B^n)$. Then L(G) is empty if and only if G has a finite orbit in both B^n and $\overline{B^n}$.

• Such a group G is said to be "elementary of elliptic type"—elementary because of $\overline{B^n}$ and ...of elliptic type because of B^n .

Theorem 1.

If $a \in S^{n-1}$ is fixed by either a parabolic or hyperbolic element of a subgroup $G \leq M(B^n)$, then a is a limit point of G.

Theorem 2.

Let G be a subgroup of $M(B^n)$. Then L(G) is empty if and only if G has a finite orbit in both B^n and $\overline{B^n}$.

- Such a group G is said to be "elementary of elliptic type"—elementary because of $\overline{B^n}$ and ...of elliptic type because of B^n .
- G has finite orbit in B^n if for some $x \in B^n$, the cardinality of the set $\{gx : g \in G\}$ is finite.

Theorem 3.

Any subgroup $G \leq M(B^n)$ for which L(G) is finite is elementary (i.e., it has a finite orbit in $\overline{B^n}$) and necessarily has at most two limit points.

Part II

Introduction to Limit Sets
Preliminaries
A (More General) Example
Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM
Some Technical Stuff
Examples and Output

Applications & Future Work
Applications to Foliation Theory

The LIM Program

McMullen's description in the "Read Me" file:

The LIM Program

McMullen's description in the "Read Me" file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

The LIM Program

McMullen's description in the "Read Me" file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Remark.

The LIM Program

McMullen's description in the "Read Me" file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Remark.

• Here, we're in the case of n=2.

The LIM Program

McMullen's description in the "Read Me" file:

 $Limit\ Sets\ of\ Kleinian\ Groups$

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Remark.

- Here, we're in the case of n = 2.
- $M(\mathbb{C}) \cong \mathrm{PSL}(2,\mathbb{C})$

The LIM Program

McMullen's description in the "Read Me" file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the action of a group of Möbius transformations.

Remark.

- Here, we're in the case of n=2.
- $M(\mathbb{C}) \cong \mathrm{PSL}(2,\mathbb{C})$
- A Kleinian Group is a discrete subgroup of $PSL(2, \mathbb{C})$.

Required Input

• Circles c_1, \ldots, c_i known to be in the limit set

Required Input

• Circles c_1, \ldots, c_i known to be in the limit set

Technical Input

• Threshold variables

Required Input

• Circles c_1, \ldots, c_i known to be in the limit set

Technical Input

- Threshold variables
- Output style options

Required Input

• Circles c_1, \ldots, c_i known to be in the limit set

Optional Input

• Circles r_1, \ldots, r_k in which to define reflections for c_{α}

Technical Input

- Threshold variables
- Output style options

Required Input

• Circles c_1, \ldots, c_i known to be in the limit set

Technical Input

- Threshold variables
- Output style options

Optional Input

- Circles r_1, \ldots, r_k in which to define reflections for c_{α}
- Matrices $m_1, m_2, ..., m_j$, $t_1, ..., t_\ell \in \mathrm{PSL}(2, \mathbb{C})$ to be applied to the c_α and to the coordinate system, respectively

Required Input

• Circles c_1, \ldots, c_i known to be in the limit set

Technical Input

- Threshold variables
- Output style options

Optional Input

- Circles r_1, \ldots, r_k in which to define reflections for c_{α}
- Matrices m_1, m_2, \ldots, m_j , $t_1, \ldots, t_\ell \in \operatorname{PSL}(2, \mathbb{C})$ to be applied to the c_α and to the coordinate system, respectively
- Circles u_1, \ldots, u_n in which to define reflections of the coordinate system

Behind the Scenes

• LIM applies the group $G = \langle m_1, \dots, m_j, r_1, \dots, r_k \rangle$ to the collection $C = \{c_\alpha\}$.

Behind the Scenes

- LIM applies the group $G = \langle m_1, \dots, m_j, r_1, \dots, r_k \rangle$ to the collection $C = \{c_{\alpha}\}.$
- It also applies the group $G' = \langle t_1, \dots, t_\ell, u_1, \dots, u_n \rangle$ to the coordinate system.

Behind the Scenes

- LIM applies the group $G = \langle m_1, \dots, m_j, r_1, \dots, r_k \rangle$ to the collection $C = \{c_{\alpha}\}.$
- It also applies the group $G' = \langle t_1, \dots, t_\ell, u_1, \dots, u_n \rangle$ to the coordinate system.
- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.

Behind the Scenes

- LIM applies the group $G = \langle m_1, \dots, m_j, r_1, \dots, r_k \rangle$ to the collection $C = \{c_{\alpha}\}.$
- It also applies the group $G' = \langle t_1, \dots, t_\ell, u_1, \dots, u_n \rangle$ to the coordinate system.
- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.

 The loop ends when the stacks are full or when optional user-input thresholds are reached.

Behind the Scenes

- LIM applies the group $G = \langle m_1, \dots, m_j, r_1, \dots, r_k \rangle$ to the collection $C = \{c_{\alpha}\}.$
- It also applies the group $G' = \langle t_1, \dots, t_\ell, u_1, \dots, u_n \rangle$ to the coordinate system.
- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.

 The loop ends when the stacks are full or when optional user-input thresholds are reached.

Output

• The raw output is data in .ps format.

Behind the Scenes

- LIM applies the group $G = \langle m_1, \dots, m_j, r_1, \dots, r_k \rangle$ to the collection $C = \{c_{\alpha}\}.$
- It also applies the group $G' = \langle t_1, \dots, t_\ell, u_1, \dots, u_n \rangle$ to the coordinate system.
- Iterates of these group actions are stored in stacks, parsed, sorted, and finalized.

 The loop ends when the stacks are full or when optional user-input thresholds are reached.

Output

- The raw output is data in .ps format.
- This can be converted to visual representations in .pdf format.

$\underline{hex.run}$

Graph on sphere; omit to graph in plane

Output file name
Two different threshold variables

Figure 2 hex.ps without -s

Figure 3 hex.ps with -s

Example.run

```
./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m 1 1 0 1 0 -1 1 -1
m 1 -1 0 -1 0 1 1 1
m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025
eof
```

Example.run

```
./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m 1 1 0 1 0 -1 1 -1
m 1 -1 0 -1 0 1 1 1
m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025
eof
```

Remark.

Example.run

```
./lim -s -d 60 -e 0.0001 <<eof > Example.ps
c 0. 0. 1
m 1 1 0 1 0 -1 1 -1
m 1 -1 0 -1 0 1 1 1
m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025
eof
```

Remark.

According to McMullen: "This is a picture of the limit set of a Kleinian group on the boundary of Maskit's embedding of the Teichmuller space of a once-punctured torus."

Figure 4 Example.ps

Schottky.run

```
./lim -d 10 -e .001 <<eof > schottky2.ps
r 0 1 .7
r 0.866025 -.5 .8
r -0.866025 -.5 .8
c 0 1 .7
c 0.866025 -.5 .8
c -0.866025 -.5 .8
```


Figure 5
In the plane

Figure 6
On the sphere

ngon 4.run

```
./lim -a 1000 -b -d 100 -e 0.001
-c 0 0 1 -w -1.1 -1.1 1.1 1.1
<<eof > ngon4.ps
r 1.553773974030037 0 1.189207115002721
c 1.553773974030037 0 1.189207115002721
c 0 1.553773974030037 1.189207115002721
c 0 1.553773974030037 1.189207115002721
r -1.553773974030037 0 1.189207115002721
c -1.553773974030037 0 1.189207115002721
c 0 -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721
```

ngon 4.run

```
./lim -a 1000 -b -d 100 -e 0.001
-c 0 0 1 -w -1.1 -1.1 1.1 1.1
<<eof > ngon4.ps
r 1.553773974030037 0 1.189207115002721
c 1.553773974030037 0 1.189207115002721
r 0 1.553773974030037 1.189207115002721
r -1.553773974030037 1.189207115002721
r -1.553773974030037 0 1.189207115002721
c -1.553773974030037 0 1.189207115002721
r 0 -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721
```

Remark.

ngon4.run

```
./lim -a 1000 -b -d 100 -e 0.001
-c 0 0 1 -w -1.1 -1.1 1.1 1.1
<<eof > ngon4.ps
r 1.553773974030037 0 1.189207115002721
c 1.553773974030037 0 1.189207115002721
r 0 1.553773974030037 1.189207115002721
c 0 1.553773974030037 1.189207115002721
r -1.553773974030037 0 1.189207115002721
c -1.553773974030037 0 1.189207115002721
c -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721
```

Remark.

According to McMullen: "Tiling of H for torus with orbifold point of order 2."

Optional style parameter A different threshold variable

Figure 7
ngon4.ps + a box because of -b

lattice.run

```
./lim -s -d 10 <<eof > lattice.ps
c 0 0 0.0
c 0 0 -.5
m 1 0 1 0 0 0 1 0
m 1 0 0 1 0 0 1 0
m 1 1 0 0 0 0 1 0
u .3 .4 2
eof
```


Figure 8 In the plane

Figure 9
On the sphere

Part III

Introduction to Limit Sets
Preliminaries

Basic Results about Limit Points/Sets

Curt McMullen & LIM
Introduction to LIM
Some Technical Stuff
Examples and Output

Applications & Future Work
Applications to Foliation Theory

For the sake of brevity, some background will be assumed. In particular, I won't take the time to define the following (important) terms:

• Foliation / Foliated Manifold

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
- Reeb components

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
- Reeb components
- Finite-depth foliations

Introduction

For the sake of brevity, some background will be assumed. In particular, I won't take the time to define the following (important) terms:

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
- Reeb components
- Finite-depth foliations
- Depth of a leaf within finite-depth foliations

Introduction

For the sake of brevity, some background will be assumed. In particular, I won't take the time to define the following (important) terms:

- Foliation / Foliated Manifold
- Leaf / Leaf Space of a foliation
- Dimension / Codimension of foliation
- Reeb components
- Finite-depth foliations
- Depth of a leaf within finite-depth foliations
- Fibers / bundle theory

Big Idea

Is it possible to modify the above results in order to get decent pictures of the limit sets of the lifts of finite-depth foliations to the universal cover of hyperbolic 3-manifolds?

• There are several notions of *limit set* in this context.

- There are several notions of *limit set* in this context.
 - 1. On a manifold M^3 which is hyperbolic, the universal cover \widetilde{M} is homeomorphic to the hyperbolic space H^3 . In this case, it makes sense to talk about the limit set L(G) of a group G of Möbius transformations acting on H^3 (or S^2).

- There are several notions of *limit set* in this context.
 - 1. On a manifold M^3 which is hyperbolic, the universal cover \widetilde{M} is homeomorphic to the hyperbolic space H^3 . In this case, it makes sense to talk about the limit set L(G) of a group G of Möbius transformations acting on H^3 (or S^2).
 - 2. If M^3 is a hyperbolic manifold and \mathcal{F} is a codimension-one Reebless foliation on M, the lift $\widetilde{\mathcal{F}}$ is a foliation of H^3 and the leaves \mathcal{L} of \mathcal{F} are planes. In particular, \mathcal{L} is non-compact and so it makes sense to talk about the limit set of \mathcal{L} as the collection of accumulation points of \mathcal{L} in the sphere at infinity S^2_{∞} .

- There are several notions of *limit set* in this context.
 - 1. On a manifold M^3 which is hyperbolic, the universal cover \widetilde{M} is homeomorphic to the hyperbolic space H^3 . In this case, it makes sense to talk about the limit set L(G) of a group G of Möbius transformations acting on H^3 (or S^2).
 - 2. If M^3 is a hyperbolic manifold and \mathcal{F} is a codimension-one Reebless foliation on M, the lift $\widetilde{\mathcal{F}}$ is a foliation of H^3 and the leaves \mathcal{L} of \mathcal{F} are planes. In particular, \mathcal{L} is non-compact and so it makes sense to talk about the limit set of \mathcal{L} as the collection of accumulation points of \mathcal{L} in the sphere at infinity S^2_{∞} .
- Both of these ideas may be relevant when talking about the limit sets of finite depth foliations.

• By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:
 - 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}_0}$ is all of S^2_{∞} .

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:
 - 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}_0}$ is all of S^2_{∞} .
 - 2. \mathcal{L}_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift $\widetilde{\mathcal{L}_0}$ is a quasicircle \mathcal{C}_0 of Hausdorff dimension less than 2.

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:
 - 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}_0}$ is all of S^2_{∞} .
 - 2. \mathcal{L}_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift $\widetilde{\mathcal{L}_0}$ is a quasicircle \mathcal{C}_0 of Hausdorff dimension less than 2.
- Let \mathcal{D}_0 be the collection of depth-zero leaves, let M_1 be the closure of a component of $\overline{M} \overline{\mathcal{D}_0}$ such that $\mathcal{L}_0 \in \partial M_1$, and let \mathcal{L}_1 be a depth-one leaf in M_1 . Then:

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:
 - 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}_0}$ is all of S^2_{∞} .
 - 2. \mathcal{L}_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift $\widetilde{\mathcal{L}_0}$ is a quasicircle \mathcal{C}_0 of Hausdorff dimension less than 2.
- Let \mathcal{D}_0 be the collection of depth-zero leaves, let M_1 be the closure of a component of $\overline{M} \overline{\mathcal{D}_0}$ such that $\mathcal{L}_0 \in \partial M_1$, and let \mathcal{L}_1 be a depth-one leaf in M_1 . Then:
 - 1. Iteratively applying elements $g \in \pi_1(M_1)$ to $L(\widetilde{\mathcal{L}_0})$ yields an element in the limit set of $\widetilde{\mathcal{L}_1}$.

- By definition, any depth-zero leaf \mathcal{L}_0 of \mathcal{F} is compact. From results of Thurston, Bonahon, and Marden, it follows that either:
 - 1. \mathcal{L}_0 is (up to finite covers) a fiber of M over the circle. In this case, the limit set of the lift $\widetilde{\mathcal{L}_0}$ is all of S^2_{∞} .
 - 2. \mathcal{L}_0 corresponds to a quasi-Fuchsian subgroup of $\pi_1(M)$ and the limit set of the lift $\widetilde{\mathcal{L}_0}$ is a quasicircle \mathcal{C}_0 of Hausdorff dimension less than 2.
- Let \mathcal{D}_0 be the collection of depth-zero leaves, let M_1 be the closure of a component of $\overline{M} \overline{\mathcal{D}_0}$ such that $\mathcal{L}_0 \in \partial M_1$, and let \mathcal{L}_1 be a depth-one leaf in M_1 . Then:
 - 1. Iteratively applying elements $g \in \pi_1(M_1)$ to $L(\widetilde{\mathcal{L}_0})$ yields an element in the limit set of $\widetilde{\mathcal{L}_1}$.
 - 2. The union of all such iterates is dense therein.

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory of limit sets and foliations.

- Spend (a considerable amount of) time learning the theory of limit sets and foliations.
- Investigate ways to code quasiconformal mappings (or approximations thereof) using finitely-much data.

- Spend (a considerable amount of) time learning the theory of limit sets and foliations.
- Investigate ways to code quasiconformal mappings (or approximations thereof) using finitely-much data.
- Work on understanding McMullen's LIM well enough to modify its functionality to this context.

- Spend (a considerable amount of) time learning the theory of limit sets and foliations.
- Investigate ways to code quasiconformal mappings (or approximations thereof) using finitely-much data.
- Work on understanding McMullen's LIM well enough to modify its functionality to this context.
- Win a Fields medal. :)

Limit Sets

└─Applications & Future Work

└─Applications to Foliation Theory

Thank you!