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E™ = n-dimensional Euclidean space

= R" with the standard Euclidean metric
E" = E"U{oo}
B" = {ze€ E":z< 1}

collection of Mobius transformations of B™

M(B™)
collection of Mobius transformations of E™ that
leave B™ invariant

Clearly, there is a natural group action M (B™) x B" — B"
defined by (¢, z) — ¢(z).
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An element ¢ € M (B") is:
elliptic if it fixes a unique point of B™ and fixes no point
of §7~1,
parabolic if it fixes no point of B and fixes a unique
point of S”~1.

hyperbolic if it fixes no point of B” and fixes two points
of "1,

A point a € S"~! is a limit point of a subgroup G < M(B") if
there is a point z € B™ and a sequence {g;}°, of elements of G
such that g;x — a as ¢ — oo.
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L Preliminaries

The limit set L(G) of a subgroup G < M(B"™) is the collection
of all limit points of G.

This is a specific notion of the more general term limit set
appearing in the study of dynamical systems and defined to be
“the state of a dynamical system after an infinite amount of
time.”
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Example: Apollonian Gasket

Figure 1
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L Basic Results about Limit Points/Sets

If a € S"1 is fized by either a parabolic or hyperbolic element
of a subgroup G < M(B™), then a is a limit point of G.

Let G be a subgroup of M (B™). Then L(G) is empty if and only
if G has a finite orbit in both B™ and B".
Such a group G is said to be “elementary of elliptic
type” —elementary because of B" and ...of elliptic type
because of B".

G has finite orbit in B" if for some x € B", the cardinality
of the set {gx : g € G} is finite.
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Any subgroup G < M(B") for which L(G) is finite is
elementary (i.e., it has a finite orbit in B™) and necessarily has
at most two limit points.
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McMullen’s description in the “Read Me” file:
Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the
action of a group of Mobius transformations.

Here, we'’re in the case of n = 2.
M(C) 2 PSL(2,C)
A Kleinian Group is a discrete subgroup of PSL(2, C).
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Circles ¢y, ..., ¢; known to
be in the limit set

Threshold variables
Output style options

Circles r1, ..., r, in which
to define reflections for ¢,

Matrices mq,mo, ..., m;,
t1,...,tg € PSL(2,C) to be
applied to the ¢, and to
the coordinate system,
respectively

Circles uq, ..., u, in which
to define reflections of the
coordinate system
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to the collecti = 1Cay-
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Lim applies the group

G= <m1,...,mj,r1,...,rk)
to the collection C' = {c,}.
It also applies the group

G = <t1,... ,tg,ul,...,un>
to the coordinate system.

Iterates of these group
actions are stored in
stacks, parsed, sorted, and
finalized.

The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

The raw output is data in
.ps format.

This can be converted to
visual representations in
.pdf format.
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hex.run

./lim -d 8 -s -h 3 <<eof > hex.ps

c 0.866025403784438 0.0 -0.5

c 0.25 0.433012701892219 -0.166666666666
c -0.25 0.433012701892219 -0.833333333333
r 0.866025403784438 0.0 -0.5

r 0.25 0.433012701892219 -0.166666666666
r -0.25 0.433012701892219 -0.833333333333
eof

Graph on sphere; omit to graph in plane
Output file name
Two different threshold variables
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1-10-10111
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I—Examples and Output

Example.run

./lim -s -d 60 -e 0.0001 <<eof > Example.ps

0. 0. 1

11010 -11-1

1-10-10111

0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025
0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025

eof

285 8 8 0

According to McMullen: “This is a picture of the limit set of a
Kleinian group on the boundary of Maskit’s embedding of the
Teichmuller space of a once-punctured torus.”

A different threshold variable
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Schottky.run

./lim -d 10 -e .001 <<eof > schottky2.ps
ro®1 .7

r 0.866025 -.5 .8
r -0.866025 -.5 .8
c01.7

c 0.866025 -.5 .8
c -0.866025 -.5 .8
eof
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ngons.run

./lim -a 1000 -b -d 100 -e 0.001
-c®01-w-1.1 -1.1 1.1 1.1
<<eof > ngon4.ps

r
C
r
C
r
C
r
C

1.553773974030037 0 1.189207115002721
1.553773974030037 0 1.189207115002721
0 1.553773974030037 1.189207115002721
0 1.553773974030037 1.189207115002721
-1.553773974030037 0 1.189207115002721
-1.553773974030037 0 1.189207115002721
0 -1.553773974030037 1.189207115002721
0 -1.553773974030037 1.189207115002721

eof

Optional style parameter
A different threshold variable
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ngons.run

./lim -a 1000 -b -d 100 -e 0.001
-c®01-w-1.1 -1.1 1.1 1.1
<<eof > ngon4.ps

r
C
r
C
r
C
r
C
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I—Examples and Output

ngons.run

./lim -a 1000 -b -d 100 -e 0.001
-c®01-w-1.1 -1.1 1.1 1.1

<<eof > ngon4.ps

r 1.553773974030037 0 1.189207115002721
c 1.553773974030037 0 1.189207115002721
r 0 1.553773974030037 1.189207115002721
c 0 1.553773974030037 1.189207115002721
r -1.553773974030037 0 1.189207115002721
c -1.553773974030037 0 1.189207115002721
r 0 -1.553773974030037 1.189207115002721
c 0 -1.553773974030037 1.189207115002721

eof

According to McMullen: “Tiling of H for torus with orbifold point of
order 2.”

Optional style parameter
A different threshold variable
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ngon4.ps + a box because of -b
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lattice.run

./lim -s -d 10 <<eof > lattice.ps

c000.0
c®0 -.5
ml0100010
ml10010010
mll1000010
u .3 .42

eof
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For the sake of brevity, some background will be assumed. In
particular, I won’t take the time to define the following
(important) terms:

Foliation / Foliated Manifold

Leaf / Leaf Space of a foliation

Dimension / Codimension of foliation

Reeb components

Finite-depth foliations

Depth of a leaf within finite-depth foliations
Fibers / bundle theory
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Big Idea

Is it possible to modify the above results in order to get
decent pictures of the limit sets of the lifts of finite-depth
foliations to the universal cover of hyperbolic 3-manifolds?
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There are several notions of limit set in this context.

On a manifold M 3 which is hyperbolic, the universal cover
M is homeomorphic to the hyperbolic space H?. In this
case, it makes sense to talk about the limit set L(G) of a
group G of Mébius transformations acting on H? (or S?).

If M?3 is a hyperbolic manifold and F is a codimension-one
Reebless foliation on M, the lift F is a foliation of H3 and
the leaves £ of F are planes. In particular, £ is
non-compact and so it makes sense to talk about the limit
set of L as the collection of accumulation points of £ in the
sphere at infinity SZ .

Both of these ideas may be relevant when talking about the
limit sets of finite depth foliations.
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By definition, any depth-zero leaf £y of F is compact. From
results of Thurston, Bonahon, and Marden, it follows that either:

Lo is (up to finite covers) a fiber of M over the circle. In
this case, the limit set of the lift £y is all of S%.

Lo corresponds to a quasi-Fuchsian subgroup of 7 (M) and
the limit set of the lift £y is a quasicircle Cy of Hausdorff
dimension less than 2.

Let Dy be the collection of depth-zero leaves, let My be the
closure of a component of M — Dy such that Lo € OM;, and let
L1 be a depth-one leaf in M;. Then:

TIteratively applying elements g € 71 (M) to L(/LVO) yields an
element in the limit set of L£;.

The union of all such iterates is dense therein.
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My tentative work plan moving forward is to:

Spend (a considerable amount of) time learning the theory
of limit sets and foliations.

Investigate ways to code quasiconformal mappings (or
approximations thereof) using finitely-much data.

Work on understanding McMullen’s LiM well enough to
modify its functionality to this context.

Win a Fields medal. :)
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