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Definition.
A Möbius Transformation in n-dimensional space is a
bijective conformal orientation-preserving map ϕ : Sn → Sn.

• In the case of Ĉ = C ∪ {∞}, these are the linear fractional
transformations

f(z) =
az + b

cz + d
,

a, b, c, d ∈ C nonzero.
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En = n-dimensional Euclidean space

= Rn with the standard Euclidean metric

Ên = En ∪ {∞}
Bn = {x ∈ En : ‖x‖ < 1}

M(Bn) = collection of Möbius transformations of Bn

= collection of Möbius transformations of Ên that
leave Bn invariant

Remark.
Clearly, there is a natural group action M(Bn)×Bn → Bn

defined by (ϕ, x) 7→ ϕ(x).
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Ên = En ∪ {∞}
Bn = {x ∈ En : ‖x‖ < 1}
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Ên = En ∪ {∞}
Bn = {x ∈ En : ‖x‖ < 1}
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Definition.
An element ϕ ∈M(Bn) is:

• elliptic if it fixes a unique point of Bn.

◦ ϕ(z) = eiθz, a rotation.

• parabolic if it fixes a unique point of Sn−1.

◦ ϕ(z) = z + a, a translation.

• hyperbolic if fixes two points of Sn−1.

◦ ϕ(z) = a2z for a ∈ R, a contraction/dilation.
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Definition.
A point a ∈ Sn−1 is a limit point of a subgroup G ≤M(Bn) if
there is a point x ∈ Bn and a sequence {gi}∞i=1 of elements of G
such that gix→ a as i→∞.

Definition.
The limit set L(G) of a subgroup G ≤M(Bn) is the collection
of all limit points of G.

Remark.
This is a specific notion of the more general term limit set
appearing in the study of dynamical systems and defined to be
“the state of a dynamical system after an infinite amount of
time.”
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Figure 1
The Apollonian gasket is the limit of an iterated process
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Intro to lim

The lim Program

McMullen’s description in the “Read Me” file:

Limit Sets of Kleinian Groups

The program lim draws the orbits of circles under the
action of a group of Möbius transformations.

Remark.

• Here, we’re in the case of n = 2.

• M(C) ∼= PSL(2,C)

• A Kleinian Group is a discrete subgroup of PSL(2,C).
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Some Technical Stuff

How It Works—Short Version

Required Input

• Circles c1, . . . , ci known to
be in the limit set

Technical Input

• Threshold variables

• Output style options

Optional Input

• Circles r1, . . . , rk in which
to define reflections for cα

• Matrices m1,m2, . . . ,mj ,
t1, . . . , t` ∈ PSL(2,C) to be
applied to the cα and to
the coordinate system,
respectively

• Circles u1, . . . , un in which
to define reflections of the
coordinate system
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Some Technical Stuff

How It Works—Short Version

Behind the Scenes

• Lim applies the group

G = 〈m1, . . . ,mj , r1, . . . , rk〉
to the collection C = {cα}.

• It also applies the group

G′ = 〈t1, . . . , t`, u1, . . . , un〉
to the coordinate system.

• Iterates of these group
actions are stored in
stacks, parsed, sorted, and
finalized.

• The loop ends when the
stacks are full or when
optional user-input
thresholds are reached.

Output

• The output is a collection
of data in .ps format.

• This can be converted to
visual representations in
.pdf format.
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Examples

Example 1

hex.run

./lim -d 8 -s -h 3 <<eof > hex.ps

c 0.866025403784438 0.0 -0.5

c 0.25 0.433012701892219 -0.166666666666

c -0.25 0.433012701892219 -0.833333333333

r 0.866025403784438 0.0 -0.5

r 0.25 0.433012701892219 -0.166666666666

r -0.25 0.433012701892219 -0.833333333333

eof

Graph on sphere; omit to graph in plane
Output file name
Two different threshold variables
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Examples

Example 1

Figure 2
hex.ps without -s

Figure 3
hex.ps with -s
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Examples

Example 2

Example.run

./lim -s -d 60 -e 0.0001 <<eof > Example.ps

c 0. 0. 1

m 1 1 0 1 0 -1 1 -1

m 1 -1 0 -1 0 1 1 1

m 0.955 -0.025 0.045 0.025 -1.955 0.025 0.955 -0.025

m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025

eof

Remark.
According to McMullen: “This is a picture of the limit set of a
Kleinian group on the boundary of Maskit’s embedding of the
Teichmuller space of a once-punctured torus.”

A different threshold variable
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m 0.955 -0.025 -0.045 -0.025 1.955 -0.025 0.955 -0.025

eof

Remark.

According to McMullen: “This is a picture of the limit set of a
Kleinian group on the boundary of Maskit’s embedding of the
Teichmuller space of a once-punctured torus.”

A different threshold variable
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Examples

Example 3

Schottky.run

./lim -d 10 -e .001 <<eof > schottky2.ps

r 0 1 .7

r 0.866025 -.5 .8

r -0.866025 -.5 .8

c 0 1 .7

c 0.866025 -.5 .8

c -0.866025 -.5 .8

eof
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Examples

Example 3

Figure 5
In the plane

Figure 6
On the sphere
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Examples

Example 4

ngon4.run

./lim -a 1000 -b -d 100 -e 0.001

-c 0 0 1 -w -1.1 -1.1 1.1 1.1

<<eof > ngon4.ps

r 1.553773974030037 0 1.189207115002721

c 1.553773974030037 0 1.189207115002721

r 0 1.553773974030037 1.189207115002721

c 0 1.553773974030037 1.189207115002721

r -1.553773974030037 0 1.189207115002721

c -1.553773974030037 0 1.189207115002721

r 0 -1.553773974030037 1.189207115002721

c 0 -1.553773974030037 1.189207115002721

eof

Remark.
According to McMullen: “Tiling of H for torus with orbifold point of
order 2.”

Optional style parameter
A different threshold variable
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eof
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order 2.”
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Example 4

ngon4.run

./lim -a 1000 -b -d 100 -e 0.001

-c 0 0 1 -w -1.1 -1.1 1.1 1.1

<<eof > ngon4.ps
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c 1.553773974030037 0 1.189207115002721

r 0 1.553773974030037 1.189207115002721

c 0 1.553773974030037 1.189207115002721
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c 0 -1.553773974030037 1.189207115002721

eof

Remark.
According to McMullen: “Tiling of H for torus with orbifold point of
order 2.”

Optional style parameter
A different threshold variable
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Examples

Example 4

Figure 7
ngon4.ps + a box because of -b
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Examples

Example 5

lattice.run

./lim -s -d 10 <<eof > lattice.ps

c 0 0 0.0

c 0 0 -.5

m 1 0 1 0 0 0 1 0

m 1 0 0 1 0 0 1 0

m 1 1 0 0 0 0 1 0

u .3 .4 2

eof
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Examples

Figure 8
In the plane

Figure 9
On the sphere
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Foliation Intro

Introduction

Definition (Foliations, Loosely).

A foliation of a differentiable manifold Mn is a decomposition
of M into connected submanifolds of dimension k which stack
up locally like subsets of Rn = Rk × Rn−k.

• The k-submanifolds in the decomposition are called leaves.

• k is known as the dimension of the foliation.

• n− k is its codimension.

• There are some “compatibility conditions.”
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Examples of Foliations

Examples

Ex 1. Rn foliated by k-planes, i.e. Rn = Rk × Rn−k.

Ex 2. R2 foliated by contours of f(x, y) = (x2 − 1)ey.
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Ex 2. R2 foliated by contours of f(x, y) = (x2 − 1)ey.
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Examples of Foliations

Examples

Ex 3. R3 foliated by surfaces of revolution.
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Examples

Ex 4. Reeb foliation of D2 × S1.
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Examples of Foliations

Reeb Foliation (Cont’d)
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(Some) Aspects of Foliation Theory

Facts About Foliated 3-Manifolds

• Every closed, orientable 3-manifold admits a smooth,
transversely orientable foliation F of codimension 1.

• F lifts to a foliation F̃ of the universal cover M̃ of M .

• For a large class of foliations, there exists a hyperbolic
metric for the leaves. In particular, the lift L̃ of each leaf L
to the universal cover M̃ is H2.

• It makes sense to talk about limit sets in these cases.
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(Some) Aspects of Foliation Theory

Context-Specific Things

• There are several notions of limit set in this context.

1. On a manifold M3 which is hyperbolic, the universal cover
M̃ is homeomorphic to the hyperbolic space H3. In this
case, it makes sense to talk about the limit set L(G) of a
group G of Möbius transformations acting on H3 (or S2).

2. If M3 is a hyperbolic manifold and F is a codimension-one
Reebless foliation on M , the foliation F̃ is a foliation of H3

and the leaves L of F are planes. In particular, L is
non-compact and so it makes sense to talk about the limit
set of L as the collection of accumulation points of L in the
sphere at infinity S2

∞.

• Both of these ideas may be relevant when talking about the
limit sets of foliations.
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Moving Forward

Big Idea

Is it possible to modify the above results in order to get
decent pictures of the limit sets of the lifts of so-called
“finite-depth foliations” to the universal cover of hyper-
bolic 3-manifolds?
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Moving Forward

What’s Next?

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory
of limit sets and foliations.

• Investigate ways to code quasiconformal mappings (or
approximations thereof) using finitely-much data.

• Work on understanding McMullen’s lim well enough to
modify its functionality to this context.

• Win a Fields medal. :)



Limit Sets

Applications & Future Work

Moving Forward

What’s Next?

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory
of limit sets and foliations.

• Investigate ways to code quasiconformal mappings (or
approximations thereof) using finitely-much data.

• Work on understanding McMullen’s lim well enough to
modify its functionality to this context.

• Win a Fields medal. :)



Limit Sets

Applications & Future Work

Moving Forward

What’s Next?

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory
of limit sets and foliations.

• Investigate ways to code quasiconformal mappings (or
approximations thereof) using finitely-much data.

• Work on understanding McMullen’s lim well enough to
modify its functionality to this context.

• Win a Fields medal. :)



Limit Sets

Applications & Future Work

Moving Forward

What’s Next?

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory
of limit sets and foliations.

• Investigate ways to code quasiconformal mappings (or
approximations thereof) using finitely-much data.

• Work on understanding McMullen’s lim well enough to
modify its functionality to this context.

• Win a Fields medal. :)



Limit Sets

Applications & Future Work

Moving Forward

What’s Next?

My tentative work plan moving forward is to:

• Spend (a considerable amount of) time learning the theory
of limit sets and foliations.

• Investigate ways to code quasiconformal mappings (or
approximations thereof) using finitely-much data.

• Work on understanding McMullen’s lim well enough to
modify its functionality to this context.

• Win a Fields medal. :)
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Moving Forward

Thank you!
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