Sutured Manifold Hierarchies and Finite-Depth Foliations

> Christopher Stover Florida State University

> > Topology Seminar November 4, 2014

Outline

Foliations Preliminaries Depth

Sutured Manifolds, Decompositions, and Hierarchies Sutured Manifolds Sutured Manifold Decompositions Example: Decomposing Sutured $D^2 \times S^1$ into Sutured B^3 Sutured Manifold Hierarchies Main Result

Part I

Foliations Preliminaries Depth

Sutured Manifolds, Decompositions, and Hierarchies Sutured Manifolds Sutured Manifold Decompositions Example: Decomposing Sutured $D^2 \times S^1$ into Sutured B^3 Sutured Manifold Hierarchies Main Result

Informally, a dimension-k foliation of a manifold $M = M^n$ is a decomposition of M into disjoint, connected submanifolds of dimension k < n which, on a small scale, looks like the decomposition of \mathbb{R}^n into $\mathbb{R}^k \times \mathbb{R}^{n-k}$.

Informally, a dimension-k foliation of a manifold $M = M^n$ is a decomposition of M into disjoint, connected submanifolds of dimension k < n which, on a small scale, looks like the decomposition of \mathbb{R}^n into $\mathbb{R}^k \times \mathbb{R}^{n-k}$.

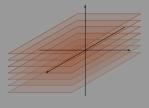


Figure 1 $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ for n = 3 and k = 2

This can be made precise as follows.

This can be made precise as follows.

Definition.

A k-dimensional foliation of a manifold $M = M^n$ is a disjoint union \mathcal{F} of connected, properly embedded dimension-k submanifolds of M which is locally homeomorphic to the direct product decomposition of \mathbb{R}^n into $\mathbb{R}^k \times \mathbb{R}^{n-k}$ and whose union equals M.

This can be made precise as follows.

Definition.

A k-dimensional foliation of a manifold $M = M^n$ is a disjoint union \mathcal{F} of connected, properly embedded dimension-k submanifolds of M which is locally homeomorphic to the direct product decomposition of \mathbb{R}^n into $\mathbb{R}^k \times \mathbb{R}^{n-k}$ and whose union equals M.

Here, k is the dimension of \mathcal{F} , n-k is its codimension, the submanifolds which comprise \mathcal{F} are called its *leaves*, and the collection of all leaves is known as the *leaf space* of \mathcal{F} .

Examples

1.
$$\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$$
 as above.

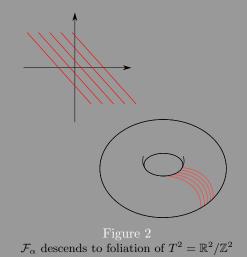
Examples

- 1. $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ as above.
- 2. One can foliate \mathbb{R}^2 by parallel lines of constant slope α for $\alpha \in [0, \infty]$.
- 3. Note that the foliation \mathcal{F}_{α} of \mathbb{R}^2 by parallel lines of slope α will be invariant (setwise) under horizontal and vertical translation.

Examples

- 1. $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$ as above.
- 2. One can foliate \mathbb{R}^2 by parallel lines of constant slope α for $\alpha \in [0, \infty]$.
- 3. Note that the foliation \mathcal{F}_{α} of \mathbb{R}^2 by parallel lines of slope α will be invariant (setwise) under horizontal and vertical translation. In particular, \mathcal{F}_{α} is invariant by the \mathbb{Z}^2 action generated by these translations and hence descends to a foliation of the torus $T^2 = \mathbb{R}^2/\mathbb{Z}^2$.

Foliations & Hierarchies



Foliations & Hierarchies		
Foliations		
$ ightarrow_{ m Depth}$		

One consideration often made in the study of foliations is regarding the depth of the foliation and/or its leaves.

Let $M = M^3$ be compact and orientable and let \mathcal{F} be a codimension-1 foliation on M. The *depth* of a leaf L of \mathcal{F} is defined inductively as follows:

1. A leaf L of \mathcal{F} is depth zero if L is compact.

- 1. A leaf L of \mathcal{F} is depth zero if L is compact.
- 2. Having defined depth $j \leq k$, a leaf L of \mathcal{F} is said to be at depth k + 1 provided that

- 1. A leaf L of \mathcal{F} is depth zero if L is compact.
- 2. Having defined depth $j \leq k$, a leaf L of \mathcal{F} is said to be at $depth \ k+1$ provided that (i) $\overline{L} L$ is a union of depth $j \leq k$ leaves,

- 1. A leaf L of \mathcal{F} is depth zero if L is compact.
- 2. Having defined depth $j \leq k$, a leaf L of \mathcal{F} is said to be at $depth \ k+1$ provided that (i) $\overline{L} L$ is a union of depth $j \leq k$ leaves, and (ii) $\overline{L} L$ contains at least one leaf of depth k.

Let $M = M^3$ be compact and orientable and let \mathcal{F} be a codimension-1 foliation on M. The *depth* of a leaf L of \mathcal{F} is defined inductively as follows:

- 1. A leaf L of \mathcal{F} is depth zero if L is compact.
- 2. Having defined depth $j \leq k$, a leaf L of \mathcal{F} is said to be at $depth \ k+1$ provided that (i) $\overline{L} L$ is a union of depth $j \leq k$ leaves, and (ii) $\overline{L} L$ contains at least one leaf of depth k.

Definition.

Under the same assumptions as above, \mathcal{F} is said to be *depth* k if $k = \max\{\operatorname{depth}(L) : L \text{ is a leaf of } \mathcal{F}\}.$

One of the most commonly-encountered examples of a finite-depth foliation is the Reeb foliation of the solid torus $V^2 = D^2 \times S^1$.

One of the most commonly-encountered examples of a finite-depth foliation is the Reeb foliation of the solid torus $V^2 = D^2 \times S^1$.

Figure 3 The Reeb foliation of $V^2 = D^2 \times S^1$

Informally, the Reeb foliation of V^2 can be described as follows:

Informally, the Reeb foliation of V^2 can be described as follows:

• The boundary $\partial V^2 = T^2$ is a (compact) leaf.

Informally, the Reeb foliation of V^2 can be described as follows:

- The boundary $\partial V^2 = T^2$ is a (compact) leaf.
- All other leaves are "interior leaves," all of which are topological planes which spiral towards the boundary torus. These are non-compact.

Informally, the Reeb foliation of V^2 can be described as follows:

- The boundary $\partial V^2 = T^2$ is a (compact) leaf.
- All other leaves are "interior leaves," all of which are topological planes which spiral towards the boundary torus. These are non-compact.

In particular, the toral boundary leaf is a depth-zero leaf and the interior leaves are all depth-one. Hence, the Reeb foliation is a depth-one foliation.

One can modify an existing finite-depth foliation to get a foliation of higher-depth. For example:

One can modify an existing finite-depth foliation to get a foliation of higher-depth. For example:

Start with a depth-zero foliation in two dimensions...

... identify a neighborhood of a curve $\gamma...$

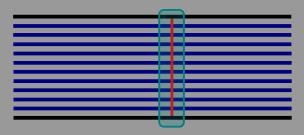
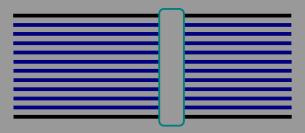
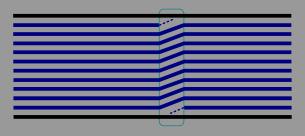


Figure 4 Neighorhood of the curve γ , which is shown in red

...delete it...

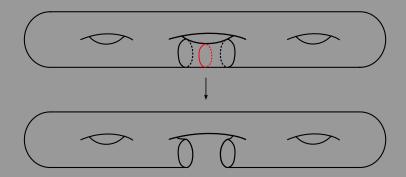


...and re-glue the interior leaves by a non-identity map while leaving the "boundary leaves" fixed, e.g.:



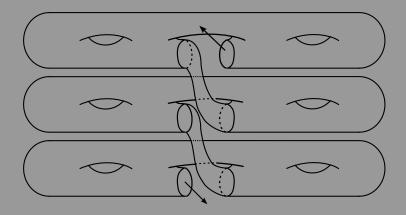
Similarly, one can construct a depth-one foliation from depth-zero leaves in three dimensions by removing a product neighborhood of some curve γ ...

Similarly, one can construct a depth-one foliation from depth-zero leaves in three dimensions by removing a product neighborhood of some curve γ ...



...and gluing the resulting leaves via a non-identity map.

...and gluing the resulting leaves via a non-identity map.



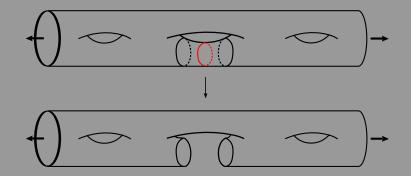
If this is done on "interior" depth-zero leaves while leaving some depth-zero "boundary leaf" fixed, the result will be a foliation with a depth-one leaf in the "interior" which has infinite genus and which limits on the fixed "boundary" depth-zero leaf.

If this is done on "interior" depth-zero leaves while leaving some depth-zero "boundary leaf" fixed, the result will be a foliation with a depth-one leaf in the "interior" which has infinite genus and which limits on the fixed "boundary" depth-zero leaf.

Figure 5 A depth-one leaf resulting from the above gluing process

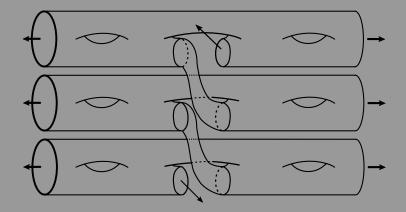
The same process can be repeated on depth-one leaves to get a depth-two leaf: First, remove a neighborhood of a curve γ ...

The same process can be repeated on depth-one leaves to get a depth-two leaf: First, remove a neighborhood of a curve γ ...



...and then gluing as above...

...and then gluing as above...



The resulting depth-two leaf may resemble something like...

The resulting depth-two leaf may resemble something like...

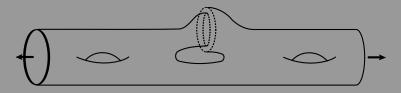


Figure 6 A depth-two leaf, as described by Candel and Conlon

Part II

Foliations Preliminaries Depth

Sutured Manifolds, Decompositions, and Hierarchies Sutured Manifolds Sutured Manifold Decompositions Example: Decomposing Sutured $D^2 \times S^1$ into Sutured B^3 Sutured Manifold Hierarchies Main Result

A sutured manifold (M, γ) is a compact oriented 3-manifold M together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$ subject to the following conditions:

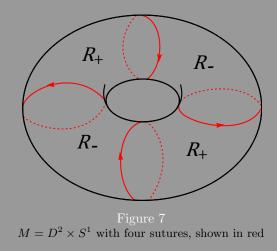
A sutured manifold (M, γ) is a compact oriented 3-manifold M together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$ subject to the following conditions:

1. Each component of $A(\gamma)$ contains a homologically nontrivial oriented simple closed curve called a *suture*.

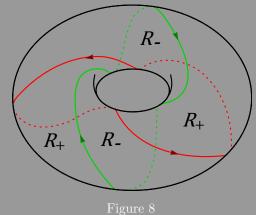
A sutured manifold (M, γ) is a compact oriented 3-manifold M together with a set $\gamma \subset \partial M$ of pairwise disjoint annuli $A(\gamma)$ and tori $T(\gamma)$ subject to the following conditions:

- 1. Each component of $A(\gamma)$ contains a homologically nontrivial oriented simple closed curve called a *suture*.
- 2. Every component of $R(\gamma) \stackrel{\text{def}}{=} \partial M \mathring{\gamma}$ is oriented, and the orientations on $R(\gamma)$ must be "coherent" with respect to $s(\gamma)$.

Examples of Sutured Manifolds



Examples of Sutured Manifolds



 $M=D^2\times S^1$ with two sutures, one red and one green

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$,

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$,

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$, and (iii) for every component λ of $S \cap \gamma$, one of the following holds:

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$, and (iii) for every component λ of $S \cap \gamma$, one of the following holds:

1. λ is a properly embedded nonseparating arc in γ .

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$, and (iii) for every component λ of $S \cap \gamma$, one of the following holds:

- 1. λ is a properly embedded nonseparating arc in γ .
- 2. λ is a simple closed curve in an annular component A of γ which is in the same homology class as $A \cap s(\gamma)$.

Let (M, γ) be a sutured manifold and let S be a properly embedded surface in M such that (i) no component of ∂S bounds a disc in $R(\gamma)$, (ii) no component of S is a disc D with $\partial D \subset R(\gamma)$, and (iii) for every component λ of $S \cap \gamma$, one of the following holds:

- 1. λ is a properly embedded nonseparating arc in γ .
- 2. λ is a simple closed curve in an annular component A of γ which is in the same homology class as $A \cap s(\gamma)$.
- 3. λ is a homotopically nontrivial curve in a toral component T of γ so that, if δ is another component of $T \cap S$, then λ and δ represent the same homology class in $H_1(T)$.

Foliations & Hierarchies - Sutured Manifolds, Decompositions, and Hierarchies - Sutured Manifold Decompositions

Definition (Cont'd)

Then, S defines a sutured manifold decomposition $(M,\gamma) \stackrel{S}{\longrightarrow} (M',\gamma')$

Then, S defines a sutured manifold decomposition $(M,\gamma) \xrightarrow{S} (M',\gamma')$

where:

• $M' = M - \mathring{N}(S)$ where N(S) denotes a product neighborhood of S in M.

Then, S defines a sutured manifold decomposition $(M,\gamma) \xrightarrow{S} (M',\gamma')$

- $M' = M \mathring{N}(S)$ where N(S) denotes a product neighborhood of S in M.
- S'_+ and S'_- denotes the components of $\partial N(S) \cap M'$ whose normal vector points out of and into M', respectively.

Then, S defines a sutured manifold decomposition $(M,\gamma) \xrightarrow{S} (M',\gamma')$

- $M' = M \mathring{N}(S)$ where N(S) denotes a product neighborhood of S in M.
- S'_+ and S'_- denotes the components of $\partial N(S) \cap M'$ whose normal vector points out of and into M', respectively.
- $\gamma' = (\gamma \cap M') \cup N(S'_+ \cap R_-(\gamma)) \cup N(S'_- \cap R_+(\gamma)).$

Then, S defines a sutured manifold decomposition $(M,\gamma) \xrightarrow{S} (M',\gamma')$

- $M' = M \mathring{N}(S)$ where N(S) denotes a product neighborhood of S in M.
- S'_+ and S'_- denotes the components of $\partial N(S) \cap M'$ whose normal vector points out of and into M', respectively.
- $\gamma' = (\gamma \cap M') \cup N(S'_+ \cap R_-(\gamma)) \cup N(S'_- \cap R_+(\gamma)).$
- $R_+(\gamma') = ((R_+(\gamma) \cap M') \cup S'_+) \mathring{\gamma}'.$

Then, S defines a sutured manifold decomposition $(M,\gamma) \xrightarrow{S} (M',\gamma')$

- $M' = M \mathring{N}(S)$ where N(S) denotes a product neighborhood of S in M.
- S'_+ and S'_- denotes the components of $\partial N(S) \cap M'$ whose normal vector points out of and into M', respectively.
- $\circ \ \gamma' = (\gamma \cap M') \cup N(S'_+ \cap R_-(\gamma)) \cup N(S'_- \cap R_+(\gamma)).$
- $R_+(\gamma') = ((R_+(\gamma) \cap M') \cup S'_+) \mathring{\gamma}'.$
- $R_-(\gamma') = ((R_-(\gamma) \cap M') \cup S'_-) \mathring{\gamma}'.$

Example

Begin with $M = D^2 \times S^1$ with two sutures, one red and one green, and a properly embedded disk S, oriented as shown.

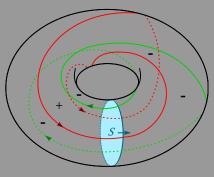
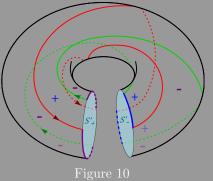


Figure 9 (M, γ) as described above

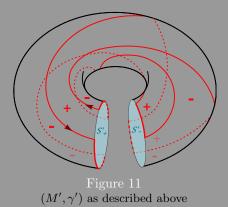
Example (Cont'd)

Next, obtain M' by removing a product neighborhood N(S) of S in M as shown below. Note the labeling of S'_+ , S'_- , and the intersections used to define γ' .



Example (Cont'd)

Defining γ' as above, one sees that the manifold M' now has only one suture, shown below in orange.



Foliations & Hierarchies └─Sutured Manifolds, Decompositions, and Hierarchies └─Example: Decomposing Sutured D² × S¹ into Sutured B³

Example (Cont'd)

And finally, note that (M', γ') deformation retracts onto the manifold $M = B^3$ with one suture at the equator.

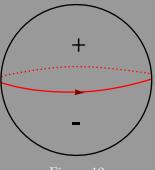


Figure 12 The final result of the decomposition

Foliations & Hierarchies └Sutured Manifolds, Decompositions, and Hierarchies └Sutured Manifold Hierarchies

Definition

A *sutured manifold hierarchy* is a sequence of sutured manifold decompositions

$$(M_0, \gamma_0) \xrightarrow{S_1} (M_1, \gamma_1) \xrightarrow{S_2} (M_2, \gamma_2) \longrightarrow \cdots \xrightarrow{S_n} (M_n, \gamma_n)$$

where $(M_n, \gamma_n) = (R \times I, \partial R \times I)$ and $R_+(\gamma_n) = R \times \{1\}$ for
some surface R . Here, $I = [0, 1]$ and R is some surface.

Ginormous Main Theorem of Awesome Non-Triviality and Awesomeness

The following is a fundamental result of David Gabai:

Ginormous Main Theorem of Awesome Non-Triviality and Awesomeness

The following is a fundamental result of David Gabai:

Theorem.

Suppose M is connected, and (M, γ) has a sutured manifold hierarchy

$$(M,\gamma) = (M_0,\gamma_0) \xrightarrow{S_1} (M_1,\gamma_1) \xrightarrow{S_2} (M_2,\gamma_2) \longrightarrow \cdots \xrightarrow{S_n} (M_n,\gamma_n)$$

so that no component of $R(\gamma_i)$ is a compressing torus. Then there exist transversely oriented foliations \mathcal{F}_0 and \mathcal{F}_1 of M which are "well-behaved" and where \mathcal{F}_0 is of finite-depth.

Foliations & Hierarchies └Sutured Manifolds, Decompositions, and Hierarchies └Main Result

To Be Continued...

To see more, come to my ATE talk on December 1!!

Foliations & Hierarchies - Sutured Manifolds, Decompositions, and Hierarchies - Main Result

Thank you!