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1 Introduction

Like many of the topics in modern geometry, complex manifold theory can be thought to
have begun with Riemann. Indeed, Riemann’s work on what are now known as Riemann
surfaces—i.e., one-dimensional complex manifolds—dates back to the mid 19th century and
indubitably marks the beginning of what is now an active, blossoming field which has found
many applications in various areas including mathematics, physics, and other physical sci-
ences.

The purpose of this paper is to give a somewhat self-contained overview of a handful
of the generalizations and applications of complex geometry. Length considerations require
that the exposition err on the side of breadth rather than depth, and so the goal will be
to cover a variety of related topics deeply enough to yield insight but (regrettably) not
comprehensively. Ideally, the sources cited throughout will provide the diligent reader a
clear enough road map to accompany further study.

It will be assumed, initially, that the reader is familiar with some of the basics of complex
geometry, namely of complex manifolds, their properties, some of their characterizing results,
etc. Everything needed to catch up with such knowledge (and probably a bit more) can be
found in the appendices.

2 Almost-Hypercomplex & Hypercomplex Geometry

In appendix 1.3, results stemming from the existence of a single (almost-)complex structure
are discussed. A natural progression, then, is to examine the possibility of having multiple
(almost-)complex structures on the tangent space TM of a single manifold M ; this question
was also hinted at in appendix 1.3. Of course, it’s possible for many such structures to exist
without the inclusion of any additional algebraic structure on TM ; inarguably, however, the
imposing of an interconnectedness on the (almost-)complex structures by way additional al-
gebraic structure makes for a more interesting mathematical situation. This section examines
(some of) that.

2.1 Preliminaries and Basic Results

First, a definition.

Definition 2.1. Let M be a real-differentiable manifold of (real) dimension 4n, n ∈ N.

1. An almost-hypercomplex structure on M is a triple (I, J,K = IJ) of automorphisms
on TM which satisfy the algebraic relations of the imaginary units of the Hamilton
quaternions H:

I2 = J2 = K2 = − idTM , IJ = K = −IJ, IK = −J = −KI, JK = I = −KJ.

2. A hypercomplex structure on M is an almost-complex structure (I, J,K) on M for
which each of I, J , and K is integrable in the sense of definition A1.4 and/or theorem
A1.8.
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Remark. As mentioned in appendix 1.3, the Nijenhuis Tensor condition (see definition A1.7
and the last condition of theorem A1.8) is often the easiest-used test for integrability of an
almost-complex structure.

Due to the enormous overlap of the study of (almost-)hypercomplex manifolds to other
areas including algebraic geometry, differential geometry, geometric topology, etc., there are a
number of alternative ways to express definition 2.1. For example, the authors of [24] note the
existence of the three integrable almost-hypercomplex structures I, J , K on a hypercomplex
manifold M4n only after defining such a manifold in terms of the existence of a G-structure,
G = GL(n,H) with n = (dimM)/4, admitting a unique, torsion-free Obata connection and
while these definitions are the same in theory, they’re often drastically different in terms of
the background material necessary. Diligent readers interested in the machinery utilized in
[24] are encouraged to consider, e.g., appendix 2.1.

Due to the fact that dimM = 4n for any hypercomplex manifold M , the simplest and
most readily-understood cases of hypercomplex manifolds come in the case n = 1. To that
end, one has a somewhat-classical result due to Boyer [21]:

Theorem 2.2. Every compact hypercomplex 4-manifold is conformally equivalent to either

(a) a (flat) torus,

(b) a K3 surface with a hyperkähler Yau metric, or

(c) a coordinate quaternionic Hopf surface with its standard conformally flat metric.

In particular, given a compact hypercomplex 4-manifold (M4n, IM , JM , KM), there exists
a conformal transformation mapping M to one of the three spaces above, call it N , and
mapping (IM , JM , KM) to the (IN , JN , KN) structure on N .

The proof of theorem 2.2—which is both lengthy and dependent upon considerable back-
ground material—is in [21]; some particular details can be found in the appendix, particularly
in appendix 2.3. In addition to theorem 2.2, [24] also points out that every compact hyper-
complex 4-manifold is locally conformally hyperkähler, has Kodaira dimension −∞ or 0, and
has second Betti number either 0 or 22; moreover, [24] also points out that of the manifolds
listed in theorem 2.2, only the K3 surface is simply-connected. It’s probably not a surprise,
then, that the existence of a hypercomplex structure on a compact dimension-four manifold
is considered to be quite restrictive, both geometrically and topologically [24].

As it turns out, very little progress has been made towards such results for non-compact
manifolds in dimension 4 or in dimensions 4n, n > 1 [70]. The results which have been
discovered thus far are—at best—few and far between, and many have come about because
of or in relation to advances in modern physics. In fact, not only is there very little progress
towards an overall classification [70], but even providing examples of compact, irreducible
hypercomplex manifolds in dimension 8 and higher has been a challenge [27]. The goal of
the following sections will be to present (albeit briefly) some of the various results and to
attempt a somewhat comprehensive presentation of sources thereon.
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2.2 Hyperkähler & Locally Conformally Hyperkähler Manifolds

One natural extension of a hypercomplex manifold consists of the addition of a metric to its
tangent space. Assuming certain parameters are satisfied by the aforementioned metric, one
may form what’s called a hyperkähler manifold, the following definition of which is borrowed
from [39]. Recall that a manifold is said to be Kähler assuming it has three structures,—
a complex structure, a Riemannian metric, and a symplectic structure—all of which are
compatible1.

Definition 2.3. A hyperkähler manifold is a Riemannian manifold (M, g) with three co-
variant constant orthogonal automorphisms I, J , K of the tangent bundle which satisfy the
quaternionic identities I2 = J2 = K2 = IJK = −1.

Informally, the definition 2.1 can be summarized as essentially definition 2.3 without the
existence of the Riemannian metric g [70]. It’s worth noting that Hitchin’s definition 2.3
actually says a lot more than it appears to say; in particular, the covariant constancy of the
automorphisms I, J , and K imply that the three induced Kähler two-forms (see [39])

ω1(X, Y ) = g(IX, Y ) ω2(X, Y ) = g(JX, Y ) ω3(X, Y ) = g(KX,Y )

are closed [3] Although hyperkähler manifolds are interesting and well-documented areas of
study in their own right (see [39], [42], [70], for example), they also provide some additional
machinery which aids in understanding classification results for hypercomplex manifolds of
dimension greater than or equal to 8. For example, the (now somewhat-outdated) result
from [17],[24]:

Proposition 2.4. A compact 4-manifold is hyperkähler if and only if it is a K3 surface (see
theorem 2.2 above). Moreover, a compact hyperkähler manifold M4n, n > 1, is deformation
equivalent to either

(a) the Hilbert scheme of points on a K3 surface, or

(b) a generalized Kummer variety.

Notice that both of these examples are simply-connected.

The “outdated” note preceding proposition 2.4 is a reference to the 1997 paper [42] which
demonstrates that any Kähler manifold admitting an everywhere non-degenerate two-form
ω which is birationally equivalent2. Worth noting, too, is that the hyperkähler manifolds

1One way to summarize the Kählerian compatibility of structures on a Riemannian manifold (M, g) with
almost-complex structure I is to say that for each x ∈ M , the induced scalar product gx on TxM satisfies
gx(u, v) = gx(I(u), I(v)) for all u, v ∈ TxM and that the so-called “fundamental (1, 1)-form” ω(∗, ∗) =
g(I(∗), ∗) is closed with respect to exterior differentiation d [41]. Note that ω is non-degenerate by definition
and that g(∗, ∗) = ω(∗, I(∗)), implying compatibility.

2According to [53], smooth compact manifolds M and N are birationally equivalent if there exists a
sequence of smooth compact manifolds M = M0,M1, . . . ,Mn = N such that, for all j = 1, 2, . . . , n, either
Mj−1 is the result of blowup of Mj along a proper submanifold of Mj or Mj is the result of a blowup of
Mj−1 along a proper submanifold of Mj−1. to a hyperkähler is itself hyperkähler.
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are considered (see [24]) to be among the simplest examples of hypercomplex manifolds in
dimensions greater than 4.

Authors of [24] go on to say that excluding manifolds which are hyperkähler, the simples
examples of hypercomplex manifolds are those which are locally conformally hyperkähler.
Moving forward, the term hyperhermitian will be used for a hypercomplex manifold (M4n, I, J,K)
equipped with a Riemannian metric g which is Hermitian with respect to each of I, J , and
K3. Now, a definition from [71].

Definition 2.5. A hyperhermitian manifold (M, I, J,K, g) is locally conformally hyperkähler
provided that M admits a closed form θ and that (M, g,∇, θ) is a closed Weyl manifold.
Here, ∇ is the Obata connection on M (see section 2.1).

And, with this particular definition established and in-hand, the following result from
[24] may now be stated.

Proposition 2.6. All hypercomplex manifolds which are locally conformally hyperkähler
(but not hyperkähler but) are generalized Hopf manifolds admitting a natural one-dimensional
foliation F . Moreover, when the leaves of F are compact, F has a compact 3-Sasakian orb-
ifold as its space of leaves.

Remark.

1. Information on Weyl manifolds and the Obata connection can be found in appendix 2.1,
definitions B2.3 and B2.5, respectively. The terminology used in definitions B2.3 and
2.5 is largely classical; as such, one will find that both the collection of literature and
the variation of notation is expansive. For other perspectives, the reader is encouraged
to consult sources cited in [71], as well as [35], [72], and the sources cited therein.

2. Like definition 2.5, the statement of proposition 2.6 relies on a large amount of outside
material, some classical, some not. Information regarding generalized Hopf manifolds
can be found in appendix 2.1, specifically definition B2.4. A casual, (hopefully-)inviting
discussion about foliation-theory and its terminology lives in appendix 2.2, as does a
very brief interlude on orbifolds. Finally, note that the topic of 3-Sasakian structures
(and hence, the definition thereof) is the focus of section 2.3 below.

In the realm of locally conformally hyperkähler spaces4, much work has been done in
recent years. Indeed, many authors (see, e.g., [57], [25], [29]) have been investigating the
possibility of hypercomplex structures on such manifolds, doing so in what’s essentially two
completely separate cases. To that end, consider the following definition, borrowed here (and
adapted slightly) from [73].

3In particular, then, every hyperkähler manifold is hyperhermitian but that the converse fails for struc-
tures I, J , K which aren’t covariant constant.

4From this point forward, a space discussed with the unmodified descriptor “locally conformally hy-
perkähler” will be assumed to mean locally conformally hyperkähler and not hyperkähler.
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Definition 2.7. A hypercomplex manifold M is called homogeneous if, given any two points
of M , there exists an analytic homeomorphism of M carrying one point to the other. A space
which is not homogeneous is called inhomogeneous.

Of the above-mentioned sources, [57] is responsible for a complete classification of homo-
geneous locally conformally hyperkähler manifolds by way of proposition 2.6 combined with
a complete classification of homogeneous 3-Sasakian manifolds (see section 2.3). Contrarily,
while no complete classification of inhomogeneous locally conformally hyperkähler manifolds
exists presently, further applications of 3-Sasakian techniques by [25], [29] has exhibited a
large family of examples thereof.

At the core of the paragraph above is the overwhelming indication that the current level
of developed machinery has been exhausted. As such, it’s time to transition into the next
section, where details of and results pertaining to 3-Sasakian structures are discussed.

2.3 3-Sasakian Spaces

The purpose of this section, ultimately, is to continue the above program and to present some
of the classification results for hypercomplex manifolds in (real-)dimension greater than four.
As the conclusion of the previous section indicates, doing so without at least a brief foray
into 3-Sasakian geometry is an impossibility, and as it turns out, discussions of Sasakian
structures are essentially rooted in the area of contact geometry.

The theory of contact geometry has become extraordinarily vast over the past fifty years,
and so an even partially self-contained discussion thereof far exceeds the scope of this paper.
For this particular section, only the definitions upon which fundamental material hinges will
be mentioned; in later sections (appendix 2.2, in particular), the topic will be discussed a bit
more satisfactorily, particularly in comparison and contrast with notions in foliation theory.

To begin, let (M, g) be a Riemannian manifold and define the so-called Riemannian cone
C(M) to be the product M × R+ of M with the upper half-line R+. This Riemannian cone
has a naturally induced cone metric t2g + dt2, t ∈ R+. Suppose further that M has defined
on it a 1-form θ. In this scenario, the data (M, g, θ) is said to be a contact manifold if the
induced 2-form

t2dθ + 2tdt · θ (2.3.1)

defined on the Riemannian cone C(M) of M is symplectic (i.e., is skew-symmetric, totally
isotropic, and non-degenerate). With these definitions in hand, one can now define the
following.

Definition 2.8. A contact Riemannian manifold (M, g, θ) is Sasakian if C(M) with the cone
metric is Kähler with Kähler form (2.3.1). In this case, the metric cone C(M) is sometimes
called the Kähler cone.

As the section title indicates, specific attention will be given to manifolds (and orbifolds)
which are defined to be 3-Sasakian. What exactly does that mean? Before answering that
question directly, it’s worthwhile to express the Sasakian property à la definition 2.8 in terms
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of an actual Sasakian structure, whereby the notion 3-Sasakian will refer to a space (manifold
or orbifold) admitting three such structures. Consider the following definitions, all borrowed
from [26].

Definition 2.9. Let (M, g) be a Riemannian manifold and let ∇ denote the Levi-Civita
connection of g. Then (M, g) has a Sasakian structure if there exists a Killing vector field ξ
of unit length on M so that the tensor field Φ = ∇ξ of type (1, 1) satisfies the condition

(∇XΦ) (Y ) = η(Y )X − g(X, Y )ξ

for η satisfying (i) g(Y, ξ) = η(Y ) and (ii) (∇Xη) (Y ) = g(Y,ΦX) and for any pair of vector
fields X, Y ∈ X(M). The triple (Φ, ξ, η) is called the Sasakian structure on (M, g).

Definition 2.10. Let (M, g) be a Riemannian manifold that admits three distinct Sasakian
structures {Φα, ξα, ηα}α=1,2,3 such that g(ξα, ξβ) = δαβ and [ξα, ξβ] = 2εαβγξ

γ for α, β, γ =
1, 2, 3. Then (M, g) is called a 3-Sasakian Manifold with Sasakian 3-structure (M, g, ξα).

Remarks.

1. In [62], it’s noted that Sasakian geometry is the “odd-dimensional cousin of Kähler
geometry” because (i) the spaces (manifolds or orbifolds) in question are always odd-
-dimensional—real-dimension 2 dimC C(M)− 1 for general Sasakian spaces M [62] and
real-dimension 4k + 3, k ∈ N, for 3-Sasakian spaces [26]—and (ii) Sasakian geome-
try is the natural intersection of CR, contact, and Riemannian geometries, whereas
Kähler geometry is the natural intersection of complex, symplectic, and Riemannian
geometries.

2. The world of Sasakian geometry and topology is now a vast one. In addition to [62]
and [26], the interested reader is referred to [22], [23], and the sources cited therein.

Upon having entered the realm of Sasakian geometry, one of the partial classifications
hinted at in section 2.2 can be stated. For completeness, recall proposition 2.6, originally
from [24] and mentioned in section 2.2.

Proposition 2.6. All hypercomplex manifolds which are locally conformally hyperkähler
(but not hyperkähler) are generalized Höpf manifolds admitting a natural one-dimensional
foliation F . Moreover, when the leaves of F are compact, F has a compact 3-Sasakian
orbifold as its space of leaves.

Also, before proceeding, consider the following classification result from [26] regarding
homogeneous 3-Sasakian structures.

Theorem 2.11. Let (M, g, ξα) be a 3-Sasakian manifold with a transitive action of the group
of automorphisms of the Sasakian 3-structure, i.e. let M be homogeneous and 3-Sasakian.
Then M is precisely one of the following homogeneous spaces:

Sp(n)

Sp(n− 1)
' S4n−1,

Sp(n)

Sp(n− 1)× Z2

' RP4n−1,
SU(m)

S(U(m− 2)× U(1))
,

SO(k)

SO(k − 4)× Sp(1)
,

G2

Sp(1)
,

F4

Sp(3)
,

E6

SU(6)
,

E7

Spin(12)
,

E8

E7

.

(2.3.2)
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In the above notation, n ≥ 1, Sp(0) = {1}, m ≥ 3, and k ≥ 7.

Remark. Though strictly beyond the scope of this paper, it’s worth noting that some
additional conclusions to theorem 2.11 are examined by [26]. Earlier in [26], the authors show
that such an M is a principal G-bundle over a so-called Wolf space W , G ∈ {Sp(1), SO(3)},
and as part of theorem 2.11, they conclude that the fiber F is Sp(1) if and only if M = S4n−1

and that F = SO(3) for all other listed M .

The purpose of presenting theorem 2.11 regarding classifications of 3-Sasakian homoge-
neous manifolds is to motivate two of the classification results regarding higher-dimensional
hypercomplex structures as presented in [57]. Note that (the here-repeated) proposition 2.6
is one of the key steps in going from theorem 2.11 to propositions 2.12, 2.13 below. In
particular:

Proposition 2.12. The class of complex locally conformal hyperkähler homogeneous mani-
folds coincides with that of flat principal S1-bundles over one of the 3-Sasakian homogeneous
manifolds in theorem 2.11, equation (2.3.2).

Proposition 2.13. Let M be a compact locally conformal hyperkähler homogeneous man-
ifold. Then M is one of the following:

(i) The Möbius band, i.e. the unique nontrivial princpal S1-bundle over RP4n−1.

(ii) A product (G/H) × S1, where G/H is one of the 3-Sasakian homogeneous manifolds
in theorem 2.11, equation (2.3.2).

Example 2.14. The result of proposition 2.13 above gives an explicit list of all compact
locally conformal hyperkähler homogeneous 8-manifolds:

(i) S7 × S1

(ii) RP7 × S1

(iii) {SU(3)/S(U(1)× U(1))} × S1

(iv) The Möbius band over RP7.

What’s more, note that the first exceptional example appears in real-dimension 12 in the
form of the bundle {G2 / Sp(1)} × S1. The base of this bundle is (though not obviously)
diffeomorphic to the Stiefel manifold V2(R7), a better understanding of which will (hopefully)
lie at the end of section 2.4 below.

With the presentation of propositions 2.12 and 2.13, the subclass of homogeneous locally
conformal hyperkähler manifolds—examination of which began in section 2.2 above—has
been fully classified. This is a major facet of the classification of all hypercomplex manifolds
inasmuch as this classification exists currently. Of course, the elephant in the room at this
point is that nothing has been said about locally conformal hyperkähler manifolds which
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are inhomogeneous, nor about hypercomplex manifolds which are neither hyperkähler nor
locally conformally hyperkähler. This, of course, raises a number of questions: Do such
things exist? Have they been classified? What’s known, and how can that be elaborated
using elementary techniques?

Part of the goal moving forward will be to answer—or at least, to address—these ques-
tions. The upshot is that experts in the field have spent considerable time over the last
two decades working in various areas of geometry, constructing and discovering new links
to hypercomplex structures and their properties. Despite this, however, the literature is
largely sparse and incomplete on these other two categories. The authors of [24] have done
considerable work constructing “large families of inhomogeneous hypercomplex manifolds”
constructed using various techniques (including but not limited to 3-Sasakian techniques),
though no far-sweeping classification has been derived. Moreover, the case when M is not
locally conformally hyperkähler—despite being “the most intriguing” [24]—is no less incom-
plete than the inhomogeneous case.

Suffice it to say that a considerable amount of additional machinery will be needed to
gain any worthwhile understanding of the remaining results. As a decent next logical step,
consider the Stiefel manifold.

2.4 Stiefel Manifolds

Before winding too far ahead, consider first the definition.

Definition 2.15. The Stiefel manifold Vn,k = Vk(Kn) is the manifold whose points are all
orthonormal k-tuples of vectors in Kn, K ∈ {R,C,H}. Such k-tuples are called orthonormal
k-frames.

For preciseness, note that definition 2.15 is often called the compact Stiefel manifold,
while it’s sometimes helpful to consider the non-compact Stiefel manifold consisting of all
linearly independent k-frames in Kn. The difference is relatively trivial due to the fact that
Gram-Schmidt spells out a well-defined sequential algorithm for deformation retracting the
non-compact version to its compact counterpart; historically the notation V ∗n,k is sometimes
used for the non-compact Stiefel manifold when necessary.

It’s not immediately obvious that the above definition yields a manifold. However, rewrit-
ing k-tuples as column vectors allows an arbitrary Stiefel manifold element y to be considered
as a matrix Y in the collection Mn×k(K) of (n×k)-matrices over K [1]. From this perspective,
one can rewrite Vn,k(K) as5

Vn,k(K) = {X ∈Mn×k(K) : X†X = idk}, (2.4.1)

whereby the collection Vn,k(K) has a manifold structure given by the subspace topology

5In (2.4.1), X† denotes the conjugate transpose of a matrix X and idk denotes the k× k identity matrix.
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inherited from Mn×k(K). One can show ([1], [67]) that

dimVn,k(R) = nk − 1

2
k(k + 1)

dimVn,k(C) = 2nk − k2

dimVn,k(H) = 4nk − k(2k − 1)

.

Even less obvious is the fact that such an object would be the source for interesting
geometry. This issue is more pressing to the intent of the paper, so before transitioning
into hypercomplex results, a bit of background on the Stiefel manifold will be given for
motivation.

2.4.1 Background, Preliminaries, and Some Geometry

Viewing K as R2m, m = 1
2
, 1, 2, allows one to realize the Stiefel manifold Vn,k(R2m) as a

subset of k copies of S2m−1 where here, S2m−1 is the boundary of the unit ball B2m ⊂ R2m of
vectors x ∈ R2m having Euclidean norm ‖x‖ less than or equal to 1. From this perspective,
the topology on Vn,k is the subspace topology of the k-fold product of S2m−1 and in particular,
elements of Vn,k correspond to norm-preserving linear transformations from Kk ∼= R2mk into
Kn ∼= R2mn [43].

Unsurprisingly, this perspective yields a strong geometric framework upon which to study
Stiefel manifolds which in turn has obvious connections to Lie groups and Lie theory. As
pointed out in [38], the case of K = R yields a natural projection π : O(n) � Vn,k sending
each orthogonal n×n matrix A to the k-frame consisting of the last k columns of A (that is,
to images under A of the last k standard basis vectors in Rn). Because π is surjective and
because the preimages of points y ∈ Vn,k are the cosets6 A ·O(n− k), Vn,k(R) can be viewed
as the quotient O(n)/O(n − k) which thus inherits the quotient topology7. Taking this
construction one step farther, one can prove that k � yields surjective projection SO(n) �
Vk,n and thus that Vk,n ∼= SO(n)/ SO(n − k) [38]; moreover, taking the above construction
farther still yields surjective projections G � Vn,k(K) with respect to various Lie groups G
where here,

k ≤ n, K = C =⇒ G = U(n)
k � n, K = C =⇒ G = SU(n)
k ≤ n, K = H =⇒ G = Sp(n) = U(n,H)
k � n, K = H =⇒ G = SU(n,H)

. (2.4.2)

The appropriate quotients can then be formed8.
The author of [38] further points out that one can also reach the geometry of the Stiefel

manifolds by way of fiber bundles over Grassmannians. Indeed, one can verify that the
projection maps Vn,k(K) � Gk(Kn) are actually fiber bundles by using Gram-Schmidt to

6Here, O(n− k) is embedded in O(n) as the orthogonal transformations of the first n− k coordinates of
Rn.

7One can check that the topology here is the same as the previously-defined topology.
8One must, of course, pay special attention to left- versus right-cosets in the case of K = H.
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obtain continuously varying orthonormal bases for all n-planes P ′ in a neighborhood of some
fixed n-plane P ∈ Gk(Kn) and by identifying k-frames in these n-planes with k-frames in Kn

[38]. Upon completing (and making rigorous) this process, one thereby derives a collection
for all k = N ∪ {∞} of sequences a lá (2.4.2):

O(n) −→ Vn,k(R) −→ Gk(Rn)
U(n) −→ Vn,k(C) −→ Gk(Cn)
Sp(n) −→ Vn,k(H) −→ Gk(Hn)

. (2.4.3)

The case k =∞ is merely a technicality, though its truth is obtained by realizing Vn,∞(K),
respectively G∞(Kn), as unions

Vn,∞(K) =
⋃
k

Vn,k(K), respectively G∞(Kn) =
⋃
k

Gk(Kn).

Further geometrical and topological aspects of Stiefel manifolds can be found in various
sources, most notably [38], [43], and sources cited therein. Most of those details will do little
to advance the reader’s understanding of results central to the current paper, so most will
be omitted. The lone exceptions are the following examples—taken from [38]—which have
far-reaching consequences broad enough to justify their inclusion. In the sections that follow,
a brief detour will be taken for the sake of mentioning a novel relationship between Stiefel
manifolds and Clifford algebras before moving on to the most pertinent results.

Examples 2.16.

1. For j < k ≤ n, there are fiber bundles

Vk−j(Kn−j) −→ Vk(Kn)
p−→ Vj(Kn) (2.4.4)

where the projection p sends a k-frame onto the j-frame formed by its first j vectors.
In particular, the fiber consists of (k − j)-frames in the (n− j)-plane orthogonal to a
given j-frame. Details for constructing the associated local trivializations can be found
in [38], as well as special cases of (2.4.4) for specific values of j.

2. The bundle (2.4.4) yields well known bundles when j = 1 and k = n. Basic substitution
yield for j = 1 a bundle

Vk−1(Kn−1) −→ Vk(Kn)
p−→ V1(Kn), (2.4.5)

where V1(Kn) can be shown isomorphic to Sn−1. Moreover, k = n transforms (2.4.5)
into the following bundles corresponding to the three options for K:

K = R : O(n− 1) −→ O(n)
p−→ Sn−1

K = C : U(n− 1) −→ U(n)
p−→ S2n−1

K = H : Sp(n− 1) −→ Sp(n)
p−→ S4n−1

. (2.4.6)

In all cases of (2.4.6), the map p is evaluation of a transformation—an orthogonal,
unitary, or symplectic transformation, respectively—on a fixed unit vector. Studying
the homotopy groups associated to the groups in the bundle sequences of (2.4.6) yields
the so-called Bott Periodicity Theorem, details of which can be found in, e.g., [38].
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2.4.2 A Brief Detour for the Sake of Clifford

As shown in equation (2.4.5), Vn,k naturally fibers over Sn−1 by taking one vector—the last,
say—from each k-frame [43]. Because of this, it’s natural to define some sort of inverse
relation.

Definition 2.17. A cross-section f : Sn−1 → Vn,k is a map which associates with each

point v ∈ Sn−1 an orthonormal k-frame (v1, . . . , vk−1, v). Here, (v1, . . . , vk−1)
def
= g(v) is an

orthonormal (k − 1)-frame, and the map g : Sn−1 → Vn,k−1 is called the projection of f .x

One can regard g(v) as a (k − 1)-frame of tangents to Sn−1 at the point v, and so
cross-sections of Vn,k over Sn−1 is equivalent to a so-called (k − 1)-field, that is, a field of
orthonormal tangent (k− 1)-frames. In particular, one can show that any such (k− 1)-field
spans a field of tangent (k − 1)-planes, though as [43] points out, not every field of tangent
(k − 1)-planes can be spanned by a (k − 1)-field. The natural question one can ask, then,
is: For what values of n and k does Vn,k admit a cross-section over Sn−1? Surprisingly, the
answer lies in the study of (Euclidean) Clifford algebras.

For n = 0, 1, 2, . . ., let C`0,n denote the real Euclidean Clifford algebra of dimension 2n

generating by a collection of anticommuting basis elements e1, e2, . . . , en which all square to
e2
i = −1, i = 1, 2, . . . , n. Following this convention, the first few such Clifford algebras are

R, C, H, H⊕H, H(2), C(4), R(8), R(8)⊕ R(8), . . . , (2.4.7)

where here, given an algebra A and a positive integer q ∈ Z+, A(q) denotes the collection of
q×q matrices with elements in A. Moreover, the classification of real Clifford algebras along
with Bott periodicity shows that C`0,n

∼= C`0,q⊗RR(16p) where n = 8p+ q, q = 0, 1, 2, . . . , 7;
one can also confirm that C`0,n(16) ∼= C`0,n+8, whereby it follows that all Euclidean Clifford
algebras can be expressed in terms of matrix algebras over K ∈ {R,C,H}.

For a given value k, the goal will be to construct cross-sections of Vn,k for certain values n.
To that end, let σ(k) denote the number of integers s in the range 0 < s < k satisfying s ≡ c
mod 8, c ∈ {0, 1, 2, 4}. As shown in [43], Rn can be represented as a C`0,k−1-module whenever
n ≡ 0 mod ak where ak = 2σ(k). Given such a representation, one can orthogonalize so that
the generators e1, . . . , ek−1 of C`0,k−1 correspond to orthogonal transformations; in this case,
a cross-section f : Sn−1 → Vn,k can be given by

f : v 7→ (e1 · v, . . . , ek−1 · v, v) for v ∈ Sn−1.

Cross-sections of this type are known as Clifford cross-sections and have played significant
roles in various results Eckmann, Hurwitz, and Radon [43].

In addition to the above-stated results, Clifford cross-sections are a fundamental tool
in Adams’ proof that there exist no more than ρ(n) − 1 linearly independent vector fields
on Sn−1 where here, ρ(n) = 2c + 8d and n = (2a + 1)2c+4d, 0 ≤ c ≤ 3 [2]. For the time
being, however, this result of Adams is phrased in terms of Stiefel manifolds as follows and
is succeeded by a somewhat illustrative example.
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Theorem 2.18. The Stiefel manifold Vn,k admits a cross-section over Sn−1 if and only if
n ≡ 0 mod ak for ak as above.

The aforementioned example, given below, comes from [43]. Indeed, notice that if

(n, k) = (16, 9),

then ak = 2σ(k) = 24 = 16 and so n ≡ 0 mod ak. Assuming the result of theorem 2.18 is
correct, one would thereby expect that V16,9 admits a cross-section over S15, and not only is
this true, but the example itself can be written down explicitly.

v1 v2 v3 v4 v5 v6 v7 v8 v9

x8 −x7 −x6 −x5 −x4 −x3 −x2 −x1 x0

−x9 x6 −x7 −x4 x5 −x2 x3 x0 x1

−x10 −x5 −x4 x7 x6 x1 x0 −x3 x2

−x11 −x4 x5 −x6 x7 x0 −x1 x2 x3

−x12 x3 x2 x1 x0 −x7 −x6 −x5 x4

−x13 x2 −x3 x0 −x1 x6 −x7 x4 x5

−x14 −x1 x0 x3 −x2 −x5 x4 x7 x6

−x15 x0 x1 −x2 −x3 x4 x5 −x6 x7

−x0 −x15 −x14 −x13 −x12 −x11 −x10 −x9 x8

x1 −x14 x15 x12 −x13 x10 −x11 x8 x9

x2 x13 x12 −x15 −x14 −x9 x8 x11 x10

x3 x12 −x13 x14 −x15 x8 x9 −x10 x11

x4 −x11 −x10 −x9 x8 x15 x14 x13 x12

x5 −x10 x11 x8 x9 −x14 x15 −x12 x13

x6 x9 x8 −x11 x10 x13 −x12 −x15 x14

x7 x8 −x9 x10 x11 −x12 −x13 x14 x15

Figure 1
The first eight column vectors v1, . . . ,v8 are tangent to
S15 at the point given by the ninth column vector v9
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2.4.3 Hypercomplex Structures on Stiefel Manifolds

Many of the results addressed in the beginning of this section will come from [27], and so
of particular interest here will be the Stiefel manifolds Vn,k(C) = Vk(Cn). Unless otherwise
noted, then, Vn,k will be used in this section to denote Vn,k(C) and throughout, the detail-
oriented reader is encouraged to notice the prevalence of the k = 2 case especially. In
the latter parts of the section, results from [24] will be presented, including an adapted
quotient procedure given in [46], adapted from [40] and [36]. These results are particularly
notation-heavy and machinery-dependent, whereby it follows that a number of definitions
and intermediate results will be necessary. Here, the objective will be to err on the side of
clarity rather than brevity.

Recall from section 2.4.1 that Vn,2 = Vn,2(C) can be realized both as the quotient
U(n)/U(n− 2) (see also [27]) and as an embedded submanifold

Vn,2 ⊂ S4n−1 ⊂ Hn

as well. As it turns out, however, the most interesting results on Vn,2 from the standpoint
of hypercomplex geometry stem from a third representation—one that likens this particular
Stiefel manifold to the 3-Sasakian structures mentioned (albeit briefly) in section 2.3. This
is the avenue that will be pursued first, and the construction henceforth largely mimics that
in [27].

First, consider an arbitrary 3-Sasakian manifold (S, gS , ξα), α = 1, 2, 3, with nontrivial
group I0(S, gS) of 3-Sasakian isometries, i.e. isometries of S which leave invariant the as-
sociated tensor structures {Φα, ξα, ηα}. As shown in section 2.3, S being Sasakian implies

that the Riemannian cone M
def
= S × R+ is necessarily hyperkähler with respect to the cone

metric (see also [26]). As a result, [40] shows that any (Lie) subgroup G ⊂ I0(S, gS) gives
rise to a so-called hyperkähler moment map µ : M → g∗ ⊗ R3 where g∗ denotes the dual of
the Lie algebra g associated to G. When necessary, denote by µS the restriction µ|S and
denote by µαS , α = 1, 2, 3, the components of µS with respect to the standard basis of R3

(identified with the purely imaginary quaternions).
At this point, it would appear that we’ve been dredging through abstraction for drudgery’s

sake. As it turns out, this isn’t exactly the case. The next result links the idea of Stiefel
manifolds to the seemingly anachronistic 3-Sasakian terminology above, but in order for it
to make sense, define Kop to be H, C, or R whenever K is R, C or H, respectively, and let
k = [K : R].

Theorem 2.19. Under a suitable rescaling, the zero set N(K)
def
= µ−1

S (0) is precisely the
Stiefel manifold Vn,k(Kop) where here,

Vn,k(Kop) = {A ∈Mn×k(Kop) : A†A = Ik}

a lá (2.4.1) above. In this case, ι : N(K) ↪→ S4n−1 is a smooth compact submanifold of
dimension 4n+ 2− 3k.
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One reason theorem 2.19 is helpful is because it helps connect the Stiefel manifold to the
previous notions from 3-Sasakian geometry; another is that it allows for the introduction of
3-Sasakian moment maps. The importance of these maps is far-reaching, and as such, their
appearance in the current section is hardly finished.

Moving forward, define for p = (p1, . . . , pn) ∈ Rn arbitrary9 the manifold N (p) to be

N (p) = µ(p)−1 ∩ S4n−1 ⊂ Hn \ {0}

where here, µ denotes the specific hyperkähler moment map

µ(p)(u∗,u) = 〈u∗, ipu〉

induced from the standard moment map µ(p) on Hn, 〈 ·, ·〉 the flat Hermitian inner product
on Hn, u = (u1, . . . , un) ∈ Hn with (quaternionic) adjoint u∗. Next, let

Ξ : tn → Γ(T (Hn \ {0}))

be the map associating to each element of tn the corresponding vector field on Hn \ {0} and
define the subset t̃n of tn (see footnote [9] above) such that

t̃n = {p = (p1, . . . , pn) ∈ tn : pi 6= 0 for all i = 1, . . . , n}.

By making further impositions on the vector fields Ξ(p), a main result can be stated. First,
consider a definition.

Definition 2.20. An almost-hypercomplex structure {Iα}3
α=1 on a smooth manifold M is

said to be Sp(1)-compatible if there are a smooth action of Sp(1) and a vector field Ξ on M
such that

(i) Ξ is an infinitesimal automorphism of Iα, α = 1, 2, 3,

(ii) The vector space V spanned by {Iα}3
α=1 is the adjoint representation of Sp(1), and

(iii) For all α, β, γ = 1, 2, 3,
Iαξα = −εαβγξγ + δαβΞ

where ξα are the infinitesimal generators for the Sp(1)-action. Here, δ denotes Kro-
necker’s delta and ε denotes the Levi-Civita permutation symbol.

An Sp(1)-compatible hypercomplex structure is denoted by the triple (Iα, ξα,Ξ).

Note that a vector field Ξ which is nowhere vanishing on M combines with ξ1, ξ2, ξ3 to
span a trivial subbundle V4 of TM and that these vector fields give rise to a nested series
of foliations F1 ⊂ Fα2 ⊂ F4 generated by subbundles V1 = span{Ξ}, Vα2 = span{Ξ, ξα},
and V4, respectively. In addition, note that each p in t̃n generates associated vector fields

9Here, p is identified as an element p ∼ diag(p1, . . . , pn) of the Lie algebra tn associated to the maximal
torus Tn lying a U(n) subgroup of Sp(n) where Sp(n) is the maximal compact subgroup of GL(n,H).
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Ξ(p), ξα(p), α = 1, 2, 3, thereby generating associated subbundles Vi(p), i = 1, 2, 4, and
thence a sequence of nested multifoliate structures F1(p) ⊂ Fα2 (p) ⊂ F4(p).

Now that this added machinery is in-place, note that the vector fields Ξ(p) associ-
ated to elements p from t̃n generate a G-action on N (p), G ∈ {S1,R}, denoted G(p) ∈
{S1(p),R(p)}, respectively. In each case, there is a corresponding chain of subgroups
G1(p) < Gα

2 (p) < G4(p) given, respectively, by:

G1(p) = S1(p), Gα
2 (p) = S1(p)× S1

α, G4(p) = S1(p)× SU(2) ' U(2)(p), and

G1(p) = R(p), Gα
2 (p) = R(p)× S1

α, G4(p) = R(p)× SU(2)(p).
(2.4.8)

In (2.4.8), the superscript α denotes the structure with respect to the vector field ξα, α =
1, 2, 3. Note, too, that these nested subgroups Gi(p) yield associated foliations F1(p) ⊂
Fα2 (p) ⊂ F4(p) on N (p), and to these one can associate splittings

H(p) ⊃ Hα
2 (p) ⊃ H4(p) (2.4.9)

of TN (p), thought of has horizontal foliations thereof.
As mentioned prior to definition 2.20 above, the goal of introducing such a large collection

of machinery was to state some major results which further the classification of hypercomplex
structures. Currently, it may not seem like any progress has been made, but there’s actually
more to the present exposition than meets the eye.

Theorem 2.21. Let p ∈ t̃n and let Iα(p) denote the sections of EndV4(p) ⊕ EndH4(p)
defined by

(a) On V4(p), Iα(p)ξα = −εαβγξγ + δαβΞ and Iα(p)Ξ(p) = −ξα, and

(b) On H4(p), Iα(p) = Iα+ where here, Iα+ is the positive component of the two (equivalent)
flat hypercomplex structures on Hn given with respect to the standard quaternionic
coordinates (u1, . . . , un) by

Iα± =
∑(

∂

∂uαj
⊗ du0

j −
∂

∂u0
j

⊗ duαj ± εαβγ
∂

∂uβj
⊗ duγj

)

for all α, β, γ = 1, 2, 3.

These endomorphisms Iα(p) define an integrable Sp(1)-compatible almost-hypercomplex
structure on N (p).

And now, the kicker:

Theorem 2.22. For all p = (p1, . . . , pn) ∈ t̃n, the subspace N (p) is a manifold of real
dimension 4n− 4 which is diffeomorphic to the complex Stiefel manifold Vn,2(C) and which
is not locally conformally hyperkähler.

It follows, then, that the authors of [27] have actually proven the following:
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Theorem 2.23. Let n > 2 and p = (p1, . . . , pn) ∈ Rn be an n-tuple of non-zero real
numbers. For each such p, there is a compact hypercomplex manifold (N (p), Iα(p)) where
N (p) is diffeomorphic to Vn,2(C) and so, in particular, there exist uncountably many distinct
hypercomplex structures on Stiefel manifolds of complex 2-planes in complex n-space.

Remarks.

1. The authors of [27] note that of the uncountably many hypercomplex structures con-
structed on Vn,2(C), all are inhomogeneous except when the components pi of p are
all identical. Therefore, despite the fact that no general classification exists in the
inhomogeneous case for dimension greater than 4 (see comments in section 2.3 above),
theorem 2.23 shows that such structures are certainly not small in number. More
details on these examples and examples related thereto can be found in, e.g., [28].

2. [24] points out that while the diffeomorphism in theorem 2.22 fundamentally hinges
on the definition of t̃n (and, in particular, the fact that pi 6= 0 for all components
of p = (p1, . . . , pn), one can still produce a natural hypercomplex structure on N (p)
despite the fact that µ(p)−1 is a “singular stratified space.”

3. Authors of [24] note that Joyce’s construction (see [45]) yields homogeneous hyper-
complex structures on V2,n(C). Results from [45] will be discussed in further detail in
section ?? below.

It’s worthwhile to note that the usefulness of Stiefel manifolds in the understanding and
creation of hypercomplex structures in unclassified cases is far from exhausted by the above
results. Indeed, in [24], the authors show that the manifold V2,n(C) is fundamental to the
classification of so-called circle V -bundles over 3-Sasakian orbifolds which admit hypercom-
plex structures. In that same paper, Joyce’s method of hypercomplex quotients (see [46])
is also adapted to N (p) and yields myriad new hypercomplex structures, both when N (p)
is a manifold and otherwise (see remark 2 above). Some of these methods will be detailed
hereafter (albeit briefly) to close out this section.

2.4.4 Hypercomplex Quotients and Structures on Circle Bundles

For the remainder of the section, let S be a complete orbifold10 with a 3-Sasakian structure,
that is, with an almost contact 3-structure which is a 3-Sasakian structure with respect to
a metric g which itself is invariant under all the local uniformizing groups of the orbifold.
The first goal will be to examine a canonical almost hypercomplex structure on all circle V-
bundles H(S) which, with only somewhat more rigid assumptions, can be proved integrable.
In order for such a conversation to be worthwhile, a series of definitions is no doubt in order.

10Roughly, an orbifold is a topological space which is locally the quotient of Euclidean space by the linear
action of a finite group. Contrast this with a manifold, which is instead locally Euclidean. For more details
on orbifolds, see section 2.2.
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Definitions 2.24.

1. An orbifold S has an almost contact 3-structure if there are vector fields ξα, one-
forms ηα, and (1, 1) tensor fields Φα, α = 1, 2, 3, that are invariant under the action
of all the local uniformizing groups of the orbifold and which satisfy the conditions
(i) ηα(ξβ) = δαβ, (ii) Φαξβ = −εαβγξγ, and (iii) Φα ◦Φβ − ξα × ηβ = −εαβγΦγ − δαβ id.

2. A circle V-bundle H(S) over a 3-Sasakian orbifold S with local uniformizing systems
{U,Γ, φ} is described by11 locally trivial bundles U × S1 over the local uniformizing
neighborhoods together with a map γ 7→ hU defined by

hU(γ)(x, u) = (γ−1x, ηU(x) · u)

where γ 7→ ηU(γ)(x) is a group homomorphism from Γ into the group of the bundle
S1.

3. An integrable almost hypercomplex structure on H(S) is said to be a compatible hy-
percomplex structure or is said to be compatible with the 3-Sasakian structure on S.

4. Given a circle V-bundle H(S) over S, let ĝ be a Riemannian metric on H(S) so that
π : (H(S), ĝ)→ (S, g) is a Riemannian submersion. There exists a nowhere vanishing
section Ξ of V1—the vertical subbundle of the tangent bundle TH(S) to H(S)—for
which rescaling along the fibers of π by a factor of ĝ(Ξ,Ξ)−1 yields a hyperhermitian
metric. The pair (H(S),Ξ) is said to be a framed circle bundle on S.

Remarks.

1. It’s shown in [24] that the total space of a circle V-bundle H(S) over an orbifold S is a
smooth manifold if and only if the homomorphism ηU is a monomorphism everywhere
on S. This is worthwhile knowledge, though it’s not entirely pressing for the results
studied here.

2. Generally, the term bundle is used for a circle V-bundle unless otherwise necessary.

Before proceeding, the construction of the aforementioned canonical hypercomplex struc-
ture on H(S) will be given, mimicked almost directly from [24]. Throughout, let X̂ denote
the lift of a vector field X from S to H(S)12.

Let π : H(S) → S be the natural projection and let ĝ, TH(S), Ξ, and V1 be as in
definition (2.24.4) so that Ξ generates the S1 action on H(S). The structural properties of
S ensures that ĝ splits TH(S) as

TH(S) ' Ĥ ⊕ V1, (2.4.10)

11This definition is given with more rigor (though framed differently) in [11], [12], [48], etc.
12In particular, X̂ can be thought of as a basic vector field, i.e. as the unique such lifted vector field which

is π-related to X.
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and it follows that π∗ induces an isometry between the horizontal vector space Ĥp at a point

p ∈ H(S) and the tangent space Tπ(p)S. Moreover, the vector fields ξ̂α generate a subbundle

V̂3 of Ĥ that is isometric at every point to the bundle V3 on S. Denoting H̃ the orthogonal
complement to V̂3 in Ĥ allows (2.4.10) to be re-expressed as

TH(S) ' H̃ ⊕ V̂3 ⊕ V1, (2.4.11)

and observing the fact that the tensor fields Φα are sections of EndH ⊕ EndV3 on S, they
can be lifted to sections Φ̂α of End H̃ ⊕ End V̂3 on H(S) by defining

Φ̂αX̂ = Φ̂αX

and extending to arbitrary sections of End H̃ ⊕ End V̂3 by linearity (see footnote [12]). By

further imposing the hypotheses that ξ̂α, Φ̂α are invariant under the local uniformizing groups
of H(S), one can define endomorphisms Iα on TH(S) by

IαX = −Φ̂αX + π∗ηα(X)Ξ and IαΞ = −ξ̂α

for sections X of Ĥ (that is, so-called horizontal vector fields on H(S)). At this point, one
can easily verify that Iα, α = 1, 2, 3, defines a hypercomplex structure on H(S). The diligent
reader is encouraged to notice the similarity with the structures Iα(p) from theorem 2.21
above.

As pointed out in [24], the bundle H(S) possesses a number of interesting, useful, and
otherwise-desirable properties. Some of these are immediately desirable for the sake of
the results in this section; others are either tangentially so or are worthwhile because of
discussions contained in other sections, or in sources cited throughout. Unsurprisingly, an
exhaustive treatment of these results is far beyond the scope of the present, and for that
reason, the following treatment must be sufficient. Where appropriate, remarks will be made
to help bridge the gap.

Proposition 2.25. Throughout, let S be a 3-Sasakian orbifold and let H(S) be a compatible
hypercomplex circle bundle over S.

1. The fibers of H(S) are totally geodesic.

2. The subbundles V1, V̂3 from the splitting in equation (2.4.11) are integrable, whereby

it follows that the subbundle V4 = V1 ⊕ V̂3 is also integrable and thus defines a four-
dimensional foliation F4 on H(S) whose leaves are of the form S1 × S3/Γ where Γ <
SU(2) is a finite subgroup.. Moreover, F4 also splits: F4 = F1 ⊕F3.

3. The leaves of the foliation F4 are totally geodesic.

4. The vector field Zα = Ξ + iξ̂α is nowhere vanishing and holomorphic with respect to
the complex structure Iα.

5. Zα generates a holomorphic foliation, say F2, on H(S).
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6. If S is complete, the complex structures in the two-sphere of complex structures on
H(S) are all equivalent, whereby it follows that the hypercomplex structure on H(S)
defines a unique complex structure.

7. For a given bundle H(S), changing the framing from Ξ to λΞ, λ ∈ R+, does not alter
the bundle but does alter the associated hypercomplex structure. In particular, each
circle bundleH(S) over S has a real one-parameter family of inequivalent hypercomplex
structures and each such structure determines an inequivalent hypercomplex structure
on H(S).

8. H(S) has no symplectic structure and—in particular—admits no Kähler metric.

9. In the event that H(S) is smooth and that the orbifold bundle π : H(S) → S is flat,
then H(S) is locally conformally hyperkähler.

10. In the event that H(S) is hypercomplex homogeneous (that is, that the group of
hypercomplex symmetries on H(S) acts transitively), all the leaves of the U(2) action
are diffeomorphic.

In addition to the multitude of properties outlined in proposition 2.25, there’s one fun-
damental result linking the above-described hypercomplex geometry results more directly to
the Stiefel manifold V2,n(C). In particular:

Theorem 2.26. Suppose that S is as in the above proposition and suppose that H(S) is
hypercomplex homogeneous. Then H(S) is one of the following:

(i) H(S) = V2,n(C);

(ii) H(S) = V2,n(C)/Zk with 2 ≤ k ∈ Z+; or

(iii) H(S) is locally conformally hyperkähler and is one of the spaces: (G/H)×S1 with G/H
equal to S4n−1, RPn−1, SU(m)/S(U(m−2)×U(1)) for m ≥ 1, SO(k)/ SO(k−4)×Sp(1)
for k ≥ 7, G2 / Sp(1), F4 / Sp(3), E6 / SU(6), E7 / Spin(12), E8 /E7; or the unique non-
trivial principal S1-bundle over RP4n−1. All these bundles are flat.

In each of these cases, there is a real one parameter family of hypercomplex structures.

Remark. The list in item (iii) of theorem 2.26 is the same as the list in equation (2.3.2) and
is nearly identical to the list found in [57] of all complex, locally conformally hyperkähler
homogeneous manifolds. [24] points out this correspondence, stating that the list in item
(iii) above therefore corresponds to the complete classification of all such manifolds. [57]
goes on to prove that all compact locally conformally hyperkähler homogeneous manifolds
either have the form (G/H) × S1 for G/H from list item (iii), or are the unique nontrivial
principal S1-bundle over RP4n−1 (i.e., the Möbius band).
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In [24], the authors use exposition similar to the above as a logical segue into a somewhat-
thorough construction of “new” hypercomplex structures, combining the results listed above
with the so-called hypercomplex quotient procedure from [46]. This hypercomplex quotient
procedure is an immediate extension of already-known quotient algorithms for hyperkähler
(see [40]) and quaternionic Kähler manifolds (see [36]) [46]. Summarizing this procedure,
including relevant results obtained therefrom, will serve as the conclusion of this particular
section.

[46] summarizes the idea behind the algorithm which is a two-stage process. First, a
moment-map µ is defined mapping a manifold M into a vector space or vector bundle
satisfying certain properties. In this regard, one can show that the quotient of the zero set
of µ by a group F of Lie group isometries will inherit some of the structure of the original
manifold. It’s noted by [46] that, while the existence and uniqueness of the moment map can
be shown under “reasonable conditions,” these conditions can’t be proven in general and so
there exist cases in which one cannot define the reduction of a hypercomplex manifold by
a “respectable group” because no moment map exists. It’s also noted in [46] that in other
cases, there may be an exceptionally-large number of distinct reductions of a single manifold
by a fixed group. The results presented will largely stem from [24].

Throughout, let u = (u1, . . . , un) ∈ Hn, define S4n−1 to be the subset of HQn consisting
of all u for which

∑n
α=1 uαuα = 1, and denote by g the flat metric on S4n−1 induced by the

inclusion S4n−1 ↪→ Hn. Note that S4n−1 has two natural 3-Sasakian structures with respect
to g depending on whether Hn is acknowledged to be a left- or right-quaternionic vector
space, and for the sake of matching the literature (see [24]), the convention of a left-module
structure on Hn is adopted. Because of this, the convention will be to let ξβ = ξβr be (right)
3-Sasakian vector fields, whereby one notes that the subgroup Sp(n) · Sp(1) < O(n) of the
isometry group O(n) of (S4n−1, g) normalizes this particular 3-Sasakian structure. Here,

Sp(n) · Sp(1) = (Sp(n)× Sp(1)) /Z2,

and Sp(1) is the group generated by the vector fields ξβ.
As noted in the results preceding this exposition, there is a 3-Sasakian moment map

µG : S4n−1 → g∗ ⊗ R3 associated to the dual g∗ of the Lie algebra g of any subgroup
G < Sp(n). Moving forward, note that the reduction on which this focuses is a so-called
toral reduction; this means, in particular, that special attention will be paid to a maximal
torus T k ⊂ Sp(n) (for various values k) whose action on Hn is of the form uα 7→ ταuα and
can be expressed as a (k × n) diagonal matrix T of the form

T = diag

(
k∏
j=1

τ
aji
j

)
,

i = 1, . . . , n, aij ∈ Z. This gives rise to a so-called weight matrix Ω, a (k×n) integral matrix
satisfying

(Ωji) = aij, j = 1, . . . , k, i = 1, . . . , n. (2.4.12)

As above, let tk denote the Lie algebra associated to the k-torus T k for any k.
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Given the expression (2.4.12) and the definition of tk, it’s easy to see that Ω defines an
element of HomZ(tn, tk) ' tk ⊗ t∗n, a module which parameterizes the representations of T k

in Hn and in turn gives rise to a moment map µΩ =
∑

j µ
j
Ωej : S4n−1 → t∗k ⊗ R3 of the form

µjΩ(u) =
∑
α

uαia
j
αuα, (2.4.13)

{ej}kj=1 denoting the standard basis of Rk ' t∗k and ajα denoting the (re-indexed) weights

from matrix (2.4.12). Ideally, one would like to show that the quotient13 µ−1
Ω (0)/T k(Ω) is

somehow “well-behaved” and to discuss potential hypercomplex structures existing thereon.
Results quantifying what “well-behaved” means and what conditions must be imposed on Ω
to achieve the desired result are summarized here, where the notation S(Ω) is shorthand for
the quotient S(Ω) = µ−1

Ω (0)/T k(Ω).

Theorem 2.27. If all the k× k minor determinants14 ∆α1,...,αk of Ω are non-vanishing, then
S(Ω) is a 3-Sasakian orbifold. If, in addition, dk denotes the so-called kth determinantal
divisor of Ω—that is, dk is the greatest common divisor of all k × k minor determinants of
Ω—and if

gcd
(
∆α2,...,αk+1

, . . . ,∆α1,...,α̂s,...,αk+1
, . . . ,∆α1,...,αk

)
= dk

for all sequences 1 ≤ α1 < · · · < αs < · · · < αk+1 ≤ n, then S(Ω) is a smooth manifold.

Remark. An Ω for which all k× k minor determinants are non-vanishing is said to be non-
degenerate, and if the gcd condition of theorem 2.27 also holds, Ω is called admissible. The
assumption that Ω be non-degenerate will be made from hereon unless otherwise stated.

To relate the quotients S(Ω) to the above-exposited results on circle V-bundles, the goal
moving forward will be to examine the circle V-bundles H(S) = H(S(Ω)) over S(Ω) and to
construct hypercomplex structures on the total space of these bundles. This will be done
using the hypercomplex quotient method of [46].

To begin, choose a subgroup T k−1 ⊂ T k which naturally yields an exact sequence of
Z-modules of the form

0 −→ tk−1 −→ tk −→ t1 −→ 0, (2.4.14)

and tensoring (2.4.14) with the free Z-module t∗n yields an exact sequence

0 −→ tk−1 ⊗ t∗n −→ tk ⊗ t∗n −→ t1 ⊗ t∗n︸ ︷︷ ︸
' t∗n

−→ 0. (2.4.15)

Now, recall that the k × n matrix Ω is of the form (2.4.12) and corresponds to an element
from tk ⊗ t∗n, whereby it follows that any (k− 1)× n submatrix Ω1 of Ω thus corresponds to

13Here, the notation T k(Ω) is used to designate the k-torus whose Hn-action gives rise to the weight
matrix Ω. This is used in [24] due to here-unstated results regarding equivalences of weight matrices Ω and
Ω′, where the tori T k(Ω), T k(Ω′) are different and hence should be studied as such.

14Here, 1 ≤ α1 < · · · < ak ≤ n label the columns of Ω.
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an element of tk−1 ⊗ t∗n. By exactness, one can consider splitting the sequence in (2.4.15) to
yield

tk ⊗ t∗n
∼= (tk−1 ⊗ t∗n)⊕ t∗n,

which in turn allows one to write Ω as Ω =
(
p Ω1

)T
for some integral point p in t∗n. At

this point, it makes sense to talk about the moment map µp : S4n−1 → R3 associated to this
particular integral point p and to conclude the construction of the hypercomplex structure
by pursuing avenues similar to those which led to theorems 2.21, 2.22, and 2.23. As above,
let N (p) denote µ−1

p (0) with hypercomplex structure a lá theorem 2.21 and, without loss of
generality, suppose that p corresponds to the first row of Ω.

As shown above, the torus T k−1(Ω1) can be viewed as a subgroup of the group AutN (p) of
hypercomplex automorphisms of N (p). Let νΩ1 : N (p)→ tk−1⊗R3 denote the restriction to
N (p) of the projection of µΩ (see equation (2.4.13) and the discussion immediately preceding
it) onto the last k − 1 coordinates of tk. One can show that the action of T k−1(Ω1) on
ν−1

Ω1
(0) = µ−1

Ω (0) is locally free, whence it follows that the quotient space

H(p,Ω1)
def
= ν−1

Ω1
(0)/T k−1(Ω1) (2.4.16)

is also an orbifold. Moreover, because the circle group S1(p) acts on H(p,Ω1) locally freely
as well, one can say a bit more.

Theorem 2.28. The orbifold H(p,Ω1) is a circle V-bundle over the 3-Sasakian orbifold
S(Ω) and has a naturally induced hypercomplex structure which is compatible with the 3-
Sasakian structure on S(Ω) (see item (3) of definition 2.24). Furthermore, if the gcd condition
of theorem 2.27 is satisfied, then H(p,Ω1) is a hypercomplex manifold.

Proof Sketch. The idea is to apply the hypercomplex reduction procedure of [46] to the
moment map νΩ1 : N (p) → tk−1 ⊗ R3 obtained from µp as described above15. Recall that
this reduction hinges on finding a Lie group G (with associated Lie algebra g and Lie algebra
dual g∗) acting locally freely on a hypercomplex manifold (M, Iα) and then looking for a
moment map µ : M → g∗ ⊗R3 satisfying two conditions, namely that (i) I i dµi = Ij dµj for
i, j = 1, 2, 3, and that (ii) for every ξ ∈ g, Iα dµαξ (Ξ) 6= 0 for all α = 1, 2, 3 where Ξ is the
vector field on M corresponding to ξ ∈ g.

First, notice dνα, α = 1, 2, 3, is a section of tk−1 ⊗ T ∗N (p) stemming from a restriction
of a quadratic 1-form written in flat coordinates on Hn. Using results stated elsewhere (see,
e.g., [27]), one can recognize N (p) as the total space of a U(2) principal V-bundle over a
quaternionic Kähler orbifold, an observation which produces an exact sequence

0 −→ V∗(p) −→ T ∗N (p) −→ Q∗(p) −→ 0 (2.4.17)

of vector bundles onN (p) where here, V∗(p) is spanned by the connection 1-form. Exposition
in [27] shows that the hypercomplex structure {Iα(p)}α=1,2,3 on N (p) coincides on Q∗(p)

15To be technical, one must differentiate the case that all components pi of p = (p1, . . . , pn) are non-zero
from the case that some pi vanish (see [24]), though very little will be said about that in this sketch.
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with the restriction of the flat hypercomplex structure Iα+ on Hn (see theorem 2.21 to recall
the definitions of I±) associated with right quaternion multiplication.

Next, define νj to be the jth component of νΩ1 with respect to the basis of tk−1 determined
by the k − 1 rows of Ω1 and let Ξj(Ω) be the corresponding vector field on N (p) for j =
2, 3, . . . , k. Also, let η0

j (Ω) be the 1-form dual to the vector field Ξj(Ω) with respect to the

restriction g of the flat metric in Hn to N (p) ∩ ν−1
Ω1

(0). These definitions allow proof that

Iα(p) dναj = −η0
j (Ω) (2.4.18)

and that
Iα(p) dναj (Ξj(Ω)) = −g(Ξj(Ω,Ξj(Ω))). (2.4.19)

As shown in [24], (2.4.18) proves the first necessary condition while (2.4.19) is a direct
precursor to the proof of the second. Therefore, H(p,Ω1) is a hypercomplex orbifold16

which becomes a manifold in the presence of the gcd condition from theorem 2.27.

2.5 Lie Groups & Lie Algebras

Unsurprisingly, many notions from hypercomplex geometry arise naturally in contexts which
are of interest to modern physicists. For example, utilization of hypercomplex geometry
has led to a considerable amount of headway being made in the area of supersymmetry
(see, e.g., [40] for evidence). Sometimes this relationship has also worked in reverse, which
is precisely what happened in 1988 when a group of physicists studying supersymmetric
σ-models on group manifolds unearthed a variety of hypercomplex geometric ideas lurk-
ing, then-undiscovered, among the study of Lie theory [65]. Since then, these ideas have
been rediscovered and furthered by a variety of authors, so much so that some very precise
classification-style results exist concerning Lie groups and algebras which possess hypercom-
plex structures. The purpose of this section is to elaborate on some of these results, drawing
mainly from [13] and [45].

2.5.1 Some Results on Lie Groups

A significant classification result for Lie groups G admitting hypercomplex structures can be
found in [45], though the results themselves may seem rather arbitrary without the exposition
given therein. Therefore, before jumping into the results themselves, consider the following
example as a bit of motivation.

Given a hypercomplex manifold M with twistor space17 Z, G a Lie group, and P a prin-
cipal G-bundle over M , let P̃ denote the lift of P to Z and let P̃ c denote the complexification
of P̃ with fibers the complexified group Gc induced by G. Let Φ denote the natural bundle

16For the sake of completeness, note that this sketch has only addressed that pi 6= 0 for all i. When some
pi vanish, one can essentially consider the smooth locus N0(p) of N (p) (ignoring its singular locus) and use
the sketch given to construct a hypercomplex structure on N0, though the resulting space is but a singular
stratified space and hence loses the orbifold structure.

17Twistor spaces are discussed briefly in appendix 2.3 below.
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action of G on P , noting that Φ is transitive on the fibers, and let Ψ : G→ Aut(M) denote
the natural action of G on M . The lift to P of the map Ψ (call it Ψ by abuse of notation)
preserves the principal bundle structure and commutes with Φ, facts which can be used to
prove two fundamental results18: (i) The manifold N = P/Ψ(G) has a natural hypercomplex
structure provided that Ψ(G) acts freely on P , and (ii) For the map ∆ : G→ Aut(P ) map-
ping g 7→ Φ(g)Ψ(g), the manifold N = P/∆(G) also has a hypercomplex structure provided
that ∆(G) acts freely on P .

Why is this exposition relevant? In the event that M = CP2 with G = U(1) and P a
principal U(1)-bundle over CP2, one can prove that N ∼= SU(3)! In particular, then, there’s
at least one well-known Lie group having a hypercomplex structure. What’s more, the
extended versions of the two results mentioned in the above paragraph indicate that SU(3)
actually has possesses a family of homogeneous hypercomplex structures, indicating an even
deeper degree of geometry on SU(3). This raises the question: Is this example unique or are
there others? That, in part, is the question that the latter half of [45] sets out to answer.

In the 1950s, [61] shows that every compact Lie group G of even dimension has a com-
plex structure (see appendices 1.1 and 1.3) with respect to which left translation defines
a holomorphic map. Samelson’s proof hinges on splitting the complexified Lie algebra g̃
corresponding to the Lie algebra g of G into so-called root subspaces

g̃ = h̃ +
∑
α∈∆

gα, (2.5.1)

h the Lie algebra associated to a maximal torus H of G, ∆ a finite subset of nonzero elements
of h̃∗ called roots, and gα the one-dimensional subspace of g defined by

gα = {x ∈ g : [h, x] = α(h)x ∀h ∈ h}.

After putting this machinery in place, the proof concludes by isolating a positive root system
P ⊆ ∆ satisfying P ∩ (−P ) = ∅ and P ∪ (−P ) = ∆, and using the set W of (1, 0)-forms in

h̃ corresponding to a complex structure I ′ on h to define a collection m,

m = W +
∑
α∈P

gα,

which turns out to be precisely the Lie algebra associated to a group M which makes
G ∼= G̃/M a complex manifold. The complex structure on g can be written explicitly since
g̃ = g + m (as real vector spaces), thus implying that g = g̃/m as a quotient of complex
vector spaces upon which m is exactly the (1, 0)-forms. The idea moving forward will be to
mimic these details in the hypercomplex case.

To begin, consider the following result analogous to the splitting in (2.5.1) above.

18These are proven for the statements which replace “hypercomplex” with “quaternionic,” though this
result can be proven also.
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Lemma 2.29. Let G be a compact Lie group with Lie algebra g. Then g can be decomposed
as

g = b +
n∑
k=1

dk +
n∑
k=1

fk, (2.5.2)

where b is Abelian, dk is a subalgebra of g isomorphic to su(2), b +
∑

k dk contains the Lie
algebra of a maximal torus of G, and f1, . . . , fn are (possibly empty) vector subspaces of g
such that, for each k = 1, 2, . . . , n, fk satisfies (i) [d`, fk] = {0} whenever ` < k, and (ii) fk is
closed under the Lie bracket with dk, and the Lie bracket action of dk on fk is isomorphic to
the sum of m copies of the action of su(2) on C2 by left multiplication for some integer m.

The proof of lemma 2.29 relies on a great deal of machinery regarding the structure of
Lie algebras, and while the result itself is of fundamental importance moving forward, the
proof is neither necessary for the paper as a whole nor particularly enlightening. For that
reason, it’s worthwhile to forgo proof for the sake of moving forward. The upshot, however,
is that virtually no other machinery will be needed to prove the main result, captured in the
theorem that follows. Note that the proof of this theorem is given, particularly because it
allows for the hypercomplex structures in question to be explicitly stated.

Theorem 2.30. Let G be a compact Lie group. Then there exists an integer k with
0 ≤ k ≤ max(3, rankG) such that U(1)k × G admits a homogeneous hypercomplex struc-
ture.

Proof. Let G be a compact Lie group and have associated Lie algebra g By lemma 2.29,
g admits a splitting of the form (2.5.1) whose constituent pieces satisfy certain conditions;
next, define k and m as follows:

• If dim b ≤ n, n from (2.5.1), define k = n− dim b and let m = 0.

• If dim b > n, choose k ∈ {0, 1, 2, 3} such that dim b + k = n + 4m for some positive
integer m ∈ Z+.

Now, noting that the Lie algebra of U(1)k ×G is ku(1) + g, it suffices to define a hypercom-
plex structure on this Lie algebra; this step will yield an almost-hypercomplex structure on
the group (by left translation), whereby the characterization in [61] can be used to prove
integrability on the structure of the group.

Identify ku(1) + g←→ Hm +Rn as real vector spaces (henceforth writing “=” instead of
“←→”), noting that such an identification yields a total of (n + 4m)2 “free parameters19.”
Let {ei}ni=1 denote the standard basis for Rn, and for each k, choose an isomorphism20

φk : su(2)→ dk. Note that su(2) can be written as 〈i1, i2, i3〉 where the ik satisfy

[i1, i2] = 2i3 [i2, i3] = 2i1 [i3, i1] = 2i2,

19The result of this fact is that producing one hypercomplex structure on ku(1) + g automatically yields
infinitely many (nonisomorphic) such structures on Uk(1)×G.

20According to Samelson [61]: ”There are 3n parameters of freedom in doing this, but the different ways
will lead to hypercomplex structures isomorphic up to conjugacy.”
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and using these relations, complex structures Ik, k = 1, 2, 3, can be defined component-wise
on g as follows:

(a) Let I1, I2, and I3 act as “imaginary unit quaternion multiplication” on Hm as per
usual.

(b) Let the actions of I1, I2, and I3 on Rn +
∑

j dj be given by

Iα(ej) = φj(iα), Iα(φj(iα)) = −ej, Iα(φj(iβ)) = φj(iγ), Iα(φj(iγ)) = −φj(iβ)

whenever (α β γ) is an even permutation of (1 2 3).

(c) Let the actions of I1, I2, and I3 on fj be given by Iα(v) = [v, φj(iα)] for each v ∈ fj.

It suffices to prove I1, I2, and I3 are complex structures on ku(1) + g, that I3 = I1I2, and
that the almost complex structures induced on U(1)k × G generated by left translation are
integrable.

For the remainder of the proof, let A = {1, 2, 3}. Note that the collection {Iα}α∈A consists
of complex structures satisfying I1I2 = I3 on each of Hm, Rn+

∑
j dj by way of parts (a) and

(b), respectively. Moreover, the second condition given in lemma 2.29 allows one to view
the action of the Iα on fj as being equivalent to the isomorphism resulting from the action
of dj on fj by conjugation. Because this action is isomorphic to the natural action of the
purely imaginary quaternions on H` for some `, the collection {Iα}α∈A consists of complex
structures satisfying I1I2 = I3 on the component of (c) as well, whereby it follows that
{Iα}α∈A is a hypercomplex structure on ku(1) + g. The result will be concluded provided
that I1, I2, and I3 generate homogeneous integrable complex structures on U(1)k×G by left
translation (proven using the results from [61]).

For α ∈ A, define t by

t = Hm + Rn + 〈φ1(ia), . . . , φn(iα)〉. (2.5.3)

In particular, t is the Lie algebra associated to a maximal torus T ⊂ U(1)×G. Define now
a subset V ⊂ kũ(1) + g̃ consisting of all (1, 0)-forms of Iα in kũ(1) + g̃ where ·̃ denotes the
complexification. The remainder of the proof uses methods similar to those in Samelson’s
proof in [61] involving a positive system of roots for kũ(1) + g̃ relative to t, whereby his,
Samelson’s, result will show that Iα is an integrable complex structure on U(1)k ×G for all
α ∈ A. This will complete the proof.

To begin, note that the subset V can be clearly described by examining the (1, 0)-forms
on each component of (a), (b), and (c) from above21. For (a), note that the (1, 0)-forms are
the usual such forms on Hm; for (b), the (1, 0)-forms of Rn +

∑
j dj are

〈e1 + iφ1(α), . . . , en + iφn(iα), φ1(iβ) + iφ1(iγ), . . . , φn(iβ) + iφn(iγ)〉
21Verification of parts (b) and (c) of the claim that follows relies on structure theory from [61] and is

briefly touched on in [45].
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where again, (α β γ) is any even permutation of (1 2 3); for (c), the (1, 0)-forms of f̃j are
given by the subset

V ∩ f̃j =
∑

B∈∆j :B 6=Aj
B(iφj(iα))>0

of all root subspaces of bj−1 corresponding to rootsB other thanAj which satisfyB(iφj(iα)) >
0.

At this point, the machinery needed for the remainder of the argument is completely in
place: The roots of b̃j are the roots of g which give zero when evaluated by φ1(iα), . . . , φj(iα)
as these are the roots which centralize d1, . . . , dj. In particular, one can define a subset
P ⊂ ∆, ∆ the set of all roots, to be

P = {A ∈ ∆ :A(φ1(iα)) = · · · = A(φj−1(iα)) = 0,

A(iφj(iα)) > 0 for some j ∈ {1, 2, . . . , n}}.

One can show that this P is a positive root system, and can verify that

V = V ∩ t̃ +
∑
A∈P

gA,

i.e. that V (i.e. the collection of (1, 0)-forms of Iα) is the sum of (1, 0)-forms of some complex
structure on t together with a positive system of roots. In the language of [61], this proves
that the left translation of Iα is a homogeneous complex structure on U(1)k × G which is
necessarily integrable. Hence, the result.

One of the most intriguing parts of Joyce’s paper [45] is that, in addition to theorem
2.30, a number of other considerable results involving hypercomplex (and later, quaternionic)
structures on Lie groups and Lie algebras are also given. One instance of this can be found
near the end of the paper, where yet another analogue of a complex geometry result is
proven. For the sake of completeness, that result is stated below sans proof, after which
some examples showing the power of these theoretical ideas are used to round out the section.
First, consider the following definitions, where unless otherwise stated, K denotes a simply-
connected compact semisimple Lie group, G a compact Lie group with associated Lie algebra
g, H a maximal torus in G with associated Lie algebra h, and where one can find a subalgebra
of the complexification g̃ isomorphic to su(2) generated by g±A for some highest root A.

Definitions 2.31.

1. A C-subgroup of K is a closed and connected subgroup whose semisimple part coincides
with the semisimple part of the centralizer of a toral subgroup of K.

2. A D-subgroup of G is the centralizer in G of any su(2) embedded in g that comes from
a highest root A.

3. An E-subgroup of G is any subgroup E < G for which there exists a chain of subgroup
inclusions G = G0 ⊃ G1 ⊃ · · · ⊃ Gj = E such that Gi+1 is a D-subgroup of Gi. Here,
j is called the length of E and can be shown to be well-defined.
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Next, consider the following result of Wang, given here as a proposition.

Proposition 2.32. Let X be a C-subgroup of a simply connected compact semisimple Lie
group K. If K/X is even-dimensional, then K/X has a homogeneous complex structure.

And finally, Joyce’s adaptation to the realm of hypercomplex geometry:

Theorem 2.33. Let G be a compact Lie group, let E be an E-subgroup of G of length j, let
F be the semisimple part of E, and let X be any closed subgroup of G for which F ⊆ X ⊆ E.
Then there exists an integer k with 0 ≤ k ≤ max(3, j) such that U(1)k × G/X admits a
homogeneous hypercomplex structure and thus one that is preserved by left translations in
U(1)k ×G.

For the last major result of this part, consider the following examples of theorems 2.30
and 2.33, respectively.

Examples 2.34.

1. First, it will be shown that U(1)×SO(6) admits a hypercomplex structure a lá theorem
2.30. To make this structure align with what’s needed to use the theorem, let G =
SO(6), let H ⊂ U(3) ⊂ SO(6) be the collection of all diagonal matrices22, and note that
the Lie algebra h consists of all matrices in u(3) ⊂ so(6) of the form diag(iλ1, iλ2, iλ3),
λα ∈ R for α = 1, 2, 3.

Next, define a coordinate system (x1, x2, x3) on h̃∗—the vector space dual of the com-

plexification h̃ of h—such that

(x1, x2, x3) : diag(iλ1, iλ2, iλ3) 7→ 2(x1λ1 + x2λ2 + x3λ3).

Given these coordinates, one can verify that the twelve roots of SO(6) are given by
(±i,±i, 0), (0,±i,±i), and (±i, 0,±i); also, one can confirm that all these roots are
equivalent under automorphisms of G preserving H, whereby it follows that every root
is a highest root.

After some computation (needed to perform the Lie algebra decomposition used in the
proof of the theorem), one can choose an arbitrary highest root to generate d1 which
in turn allows isolation of expressions for d2, bk, and fk for k = 1, 2. Some finagling
shows that the values (n, dim b2, k, 1) = (2, 1, 1, 0) “work” for theorem 2.30, thereby
showing that U(1) × SO(6) has a hypercomplex structure whose choice has four real
parameters of freedom.

2. Here, the machinery laid out in the first example is combined with theorem 2.33 to
show that SO(6)/ SU(2) is a homogeneous hypercomplex manifold. In particular, use
the decomposition of so(6), isolate the semisimple part

f̃ = 〈diag(i,−i, 0)〉+ g(i,−i,0) + g(−i,i,0),

22One can show that the collection of all such matrices form a maximal torus in G.

28



and choose X such that F ⊆ X ⊆ E. For this example, suppose X = F . In particular,
then, X is generated by block diagonal matrices and satisfies

X = {diag(A, 1) : A ∈ SU(2)} ⊂ U(3) ⊂ SO(6).

After some work, one shows that the Lie algebra e splits into e = x + 〈diag(0, 0, i)〉
where the latter component is the Lie algebra of a torus, and so for k = 0, one gets a
homogeneous hypercomplex structure on

U(1)0 × SO(6)/ SU(2) ∼= SO(6)/ SU(2).

In addition, the freedom in making the complex structure is that of one real parameter.

2.5.2 Some Results on Lie Algebras

Due to the extensiveness of the literature concerning Lie algebras with hypercomplex struc-
tures (see section 2.5.3 below), an even somewhat-thorough analysis is beyond the scope of
this paper. For that reason, this section will be dedicated to presenting the results presented
in [13] which serve to be both enlightening and considerable simultaneously. The goal will
be to maintain relative precision and depth while not drifting too far away from the core
ideas behind this paper.

Worth noting that the work of Barberis in [13] can, in some ways, be thought of as
an extension of [45]. In particular, the self-proclaimed goal of [13] is to parameterize the
equivalence classes of invariant hypercomplex structures on 4-dimensional simply connected
real Lie groups, whereby the logical progression is to define a meaningful notion of equivalence
and to consider the machinery laid down by [45] as a first step towards completing this goal.
As is often the case, it’s most logical to begin at the beginning.

To that end, let g denote a real Lie algebra and consider a hypercomplex structure on g
as a pair J1, J2 of endomorphisms of g satisfying both the algebraic relations of the purely
imaginary quaternions and a suitable integrability condition (see, e.g., definition A1.7 in
appendix 1.1 regarding the Nijenhuis tensor). In the material that follows, let g′ = [g, g]
denote the so-called derived Lie algebra of g and let z be the center of g.

Definition 2.35. Two hypercomplex structures {Jα}α=1,2, {J ′α}α=1,2 on g are said to be
equivalent if there exists an automorphism φ ∈ Aut g such that φJα = J ′αφ for α = 1, 2.

This definition serves as the foundation for the results that come afterwards. Between the
definition and the main components of the classifications, a number of preliminary lemmas
are stated with various levels of proof. Ideally, some of the main results from [13] will be
stated here with at least sketches of proofs, and because of the heavy dependence on these
lemmas, it would be unsatisfactory to omit them entirely. As a compromise, consider the
following three-part lemma—a massive condensation of the author’s presentation in [13] but
a presentation suitable for the purposes of this paper.
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Lemma 2.36.

1. If {J1, J2} is a pair of endomorphisms on R4 which satisfy the algebraic properties
of the purely imaginary quaternions and if W ⊂ R4 is an arbitrary two-dimensional
subspace, then there exists x = (x1, x2, x3) ∈ S2 such that Jx =

∑3
α=1 xαJα preserves

W . Here, J3 = J1J2.

2. If Jα is an endomorphism of g such that J2
α = −1 and if {X1, JαX1, . . . , Xn, JαXn} is a

basis of g, then the associated Nijenhuis tensor Nα of Jα is identically zero if and only
if Nα(Xi, Xj) = 0 for all i < j.

3. If {Jα}α=1,2 is a family of endomorphisms of a real vector space V which satisfy the
algebraic properties of the purely imaginary quaternions, then V admits an inner prod-
uct such that J1 and J2 are orthogonal. Moreover, when dimV = 4, this inner product
is unique up to a constant multiple.

Now, with the statements of these results in-place, the heart of the matter—i.e., the
classification and parametrization of all equivalence classes of hypercomplex structures on 4-
dimensional real Lie algebras—can finally be addressed. The results are broken down based
on whether g is solvable or not.

Theorem 2.37. If g is not solvable, then g admits a hypercomplex structure if and only if
g ∼= R⊕ so(3) and this particular hypercomplex structure is unique up to equivalence.

Proof. (=⇒) To show that g ∼= R⊕so(3) implies a hypercomplex structure on g, it suffices to
exhibit such a structure on R⊕ so(3). To that end, let {Z,X, Y,W} be a basis for R⊕ so(3)
such that Z ∈ R and

[X, Y ] = W, [Y,W ] = X, [W,X] = Y. (2.5.4)

Now, define endomorphisms J1, J2 ∈ End(R⊕ so(3)) as follows:

J1Z = X, J1Y = W , J2
1 = −I

J2Z = Y , J2W = X, J2
2 = −I.

(2.5.5)

These endomorphisms commute, and by simple Nijenhuis computations:

N1(Z, Y ) = [J1Z, J1Y ]− J1[Z, J1Y ]− J1[J1Z, Y ]− [Z, Y ]

= [X,W ]− J1[Z,W ]− J1[X, Y ]− [Z, Y ] by (2.5.5)

= −Y − J1[Z,W ]− J1W − [Z, Y ] by (2.5.4)

= −Y − (−Y ) by (2.5.4)+(2.5.5)

= 0.
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Similarly for N2(Z,W ),

N2(Z,W ) = [J2Z, J2W ]− J2[Z, J2W ]− J2[J2Z,W ]− [Z,W ]

= [Y,X]− J2[Y,W ]

= −W − (−W ) = 0.

Therefore, by item (ii) in lemma 2.36, J1 and J2 are integrable, thus defining a hypercomplex
structure H = {J1, J2} on R⊕ so(3).

(⇐=) Conversely, suppose that g admits a hypercomplex structure {J1, J2}. Using well-
known results about Lie algebras, it follows that either g ∼= z ⊕ so(3) or g ∼= z ⊕ sl(2,R)
where here, the direct sum represents a direct sum of ideals. Choose a nonzero element Z
of z, and define

X = J1Z, Y = J2Z, W = J1J2Z. (2.5.6)

From here, one notes that {Z,X, Y,W} is necessarily a basis for g, and by writing [X, Y ] =
aZ + bX + cY + dW and by noting that N1(Z, Y ) = 0 = N2(Z,X) as follows by equation
(2.5.6), one can confirm that

J1[X, Y ] = [X,W ] and J2[X, Y ] = [Y,W ]. (2.5.7)

Using the expression for [X, Y ] in terms of a, b, c, and d along with equations (2.5.6) and
(2.5.7) yields expressions for [W,X] and [Y,W ], namely

[W,X] = bZ − aX + dY − cW and [Y,W ] = −cZ + dX + aY − bW.

Finally, expanding Jac(X, Y,W )
def
= [[X, Y ],W ] + [[Y,W ], X] + [[W,X], Y ] and applying the

above equations confirms that the coefficient of Z in Jac(X, Y,W ) is precisely a2 + b2 + c2.
Clearly, Jac(X, Y,W ) should be an expression free of Z terms, whereby it follows that a2 +
b2 + c2 = 0. In particular, a = b = c = 0, so rewriting above expressions yields that

[X, Y ] = dW, [Y,W ] = dX, [W,X] = dY.

Now, g being unsolvable implies that g is necessarily non-Abelian; in particular, d 6= 0,
whereby it follows that {X, Y,W} generates a three-dimensional Lie algebra which, by equa-
tions (2.5.6) and (2.5.7), is isomorphic to so(3). Therefore, g ∼= z⊕ so(3) ∼= R⊕ so(3).

The theorem will be proven if the uniqueness result can be shown. Indeed, showing
that any two such hypercomplex structures are equivalent can be done using elementary
considerations, the argument for which can be found in its entirety in [13]. Hence, the
result.

Remarks.

1. The simply connected Lie group with Lie algebra R⊕ so(3) is the multiplicative group
H∗ of nonzero quaternions.
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2. In the proof of theorem 2.37, a stronger statement is proven: If z 6= {0}, then
J1z⊕ J2z⊕ J3z is either isomorphic to so(3) or is Abelian. Hence, a 4-dimensional
Lie algebra g with nontrivial center admits a hypercomplex structure if and only if g
is Abelian or g ∼= R⊕ so(3).

3. The Lie algebra g0 = R ⊕ sl(2,R) mentioned in the proof of theorem 2.37 obviously
doesn’t admit a hypercomplex structure. Outside results have shown that g0 does
admit an invariant complex structure.

4. An immediate result of the last theorem is that the Lie groups R⊕SO(3), S1×S3, and
S1× SO(3) also admit hypercomplex structures. The last two are Hopf surfaces, char-
acterized by Boyer’s classification (see theorem 2.2), and because of the diffeomorphism
S1 × S3 ∼= U(2), U(2) must also admit a hypercomplex structure.

To characterize hypercomplex structures on g which is solvable, it’s necessary to consider
cases on the dimension of the derived subalgebra g′. In particular, there are results for
dim g′ = 0, 1, 2, 3.

Theorem 2.38. If dim g′ = 0, there is a one-to-one correspondence between hypercom-
plex structures on g and points in the space GL(4n,R)/GL(n,H). All such hypercomplex
structures are equivalent.

Proof. If dim g′ = 0, g is Abelian. As a result, the integrability condition of a hypercom-
plex structure on g—a structure which can be formed simply by choosing two endomor-
phisms satisfying the imaginary unit quaternion arithmetic conditions. To determine the
correspondence suggested, fix a hypercomplex structure {J0

α}α=1,2 and consider the map
T 7→ {TJ0

αT
−1}α=1,2 for all T ∈ GL(4n,R). The fact that the conjugated endomorphism

TJ0
αT
−1, α = 1, 2, is in the quotient GL(4n,R)/GL(n,H) is obvious, as is the fact that any

such endomorphism is equivalent to J0
α, α = 1, 2 (see definition 2.35 above).

Something of a diametrically opposite result is true when dim g′ = 1:

Theorem 2.39. If dim g′ = 1, then g does not admit any hypercomplex structure.

Proof. Because of the second remark above, one may assume that if g admits a hypercomplex
structure, then z = {0}. Now, let X be a nonzero element of g′, noting necessarily then that
there exists a Y ∈ g for which [Y,X] = X. Using machinery from Lie algebra theory, this
fact allows the splitting of g into

g = ker(adX) ∩ ker(adY )⊕ RX ⊕ RY.23

Choosing arbitrary elements U, V ∈ ker(adX) ∩ ker(adY ) and applying the Jacobi identity
to U, V, Y , one can show that [U, V ] = 0, whereby it follows that z = ker(adX) ∩ ker(adY ).
This obviously contradicts the assumption that z = {0}, whereby the result follows.

23For a given vector field W ∈ g, adW ∈ GL(g) denotes the adjoint action in g induced by the action
Adg : G→ G defined by Adg : h 7→ ghg−1 for all g, h ∈ G [33].
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The remaining cases are when dim g′ ∈ {2, 3}, and the proofs for those are a bit more
involved. Moving forward, let Aff(K) denote the affine motion group on K, that is, the
group of all invertible affine transformations from K to itself under the group operation of
composition, K ∈ {R,C,H}24. One well-known fact is that

Aff(K) ∼= KoGL(K)
∼= KoK∗

where K∗ denotes the dual of K. Of particular interest moving forward will be the case of
K = C, in which case the associated Lie algebra aff(C) decomposes as the direct sum of an
Abelian ideal and an Abelian subalgebra, the first structure corresponding to the normal
subgroup of translations while the second corresponds to multiplication by a scalar in C∗.
In this case, there are bases X, Y of the ideal and bases Z, W of the subalgebra so that

[X,Z] = X, [Y, Z] = Y, [X,W ] = Y, [Y,W ] = −X. (2.5.8)

These facts, though mentioned briefly in passing, will play somewhat crucial roles in the
results that follow.

Theorem 2.40. If dim g′ = 2, then (i) g admits a hypercomplex structure if and only if
g ∼= aff(C), and (ii) the equivalence classes of hypercomplex structures on g are parameterized
by the space RP2.

Proof. The key to proving the second claim is to exhibit a one-to-one correspondence between
hypercomplex structures on g and the space O(2) \ SO(3) ∼= RP2, the details of which are
spelled out in [13]. The most significant part of the proof is in the proof of the first claim
which is detailed here.

First, construct a hypercomplex structure on aff(C) as follows: Let H = {Jα}α=1,2 be
the family of endomorphisms of aff(C) defined by

J1X = −W , J1Y = Z, J2
1 = −I,

J2X = Y , J2Z = −W , J2
2 = −I.

(2.5.9)

Using part (2) of lemma 2.36, one can check the integrability of J1 and J2, while the anti-
commutativity follows immediately from the definition. Hence, aff(C) has a hypercomplex
structure.

Conversely, suppose {J1, J2} defines a hypercomplex structure on g. Given that a hyper-
complex structure yields a 2-sphere S2 of complex structure25 and using part (1) of lemma
2.36, it can be assumed without loss of generality that J2 : g′ → g′ so that g splits as

g = g′ ⊕ J1g
′.

24The notion of affine groups is much more general than the three cases given here. These are given in
particular because of the well-known fact that Aff(K) is a Lie group whenever K ∈ {R,C,H}.

25Given a hypercomplex structure {J1, J2} and a 3-tuple (x, y, z) ∈ S2 satisfying x2 + y2 + z2 = 1, one
can easily show that

Jα = xJ1 + yJ2 + zJ1J2

is yet another hypercomplex structure.
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Let {X ′, Y ′} be a basis of g′ such that Y ′ = J2X
′, whereby one easily confirms that

{X ′, Y ′, J1X
′, J1Y

′} is a basis of g. Next, note the existence of two skew-symmetric bilinear
forms α, β on g so that

[V,W ] = α(V,W )X ′ + β(V,W )Y ′ for all V, W ∈ g.

Now, g solvable implies that g′ is Abelian; this, along with the integrability condition
N1(X ′, Y ′) = 0, yields that [J1X

′, J1Y
′] = 0 and that [X ′, J1Y

′] = [Y ′, J1X
′]. Moreover,

N2(X ′, J1X
′) = 0 implies that

[X ′, J1X
′] = −[Y ′, J1Y

′].

Applying the Jacobi identity yields that α(X ′, J1X
′) = β(X ′, J1Y

′) and that α(X ′, J1Y
′) =

−β(X ′, J1X
′), which in particular gives a parametrization of the bracket in g in terms of

c
def
= α(X ′, J1X

′) and d
def
= α(X ′, J1Y

′) as follows:

[X ′, J1X
′] = cX ′ − dY ′, [Y ′, J1X

′] = dX ′ + cY ′,
[X ′, J1Y

′] = dX ′ + cY ′, [Y ′, J1Y
′] = −cX ′ + dY ′.

(2.5.10)

By dimensional considerations, if c = 0 = d, then one would reach a contradiction of the
fact that dim g′ = 2; therefore, either c 6= 0 or d 6= 0. In particular, this allows one to define
a new collection of elements in g as follows:

X = (c2 + d2)−1(dX ′ + cY ′), Y = (c2 + d2)−1(−cX ′ + dY ′),
Z = (c2 + d2)−1(cJ1X

′ + dJ1Y
′), W = (c2 + d2)−1(−dJ1X

′ + cJ1Y
′).
(2.5.11)

At this point, the proof is complete: Simple computation verifies that the elements

{X, Y, Z,W} ⊂ g

satisfy precisely the relations in (2.5.8) above, whereby it follows that g ∼= aff(C).

Remark. Though not pressing, [13] takes the added step of combing equations (2.5.9) and
(2.5.11) to present the hypercomplex structure given by J1 and J2 relative to the basis
{X, Y, Z,W}:

J1X = aZ − bW , J1Y = bZ + aW , J2
1 = −I,

J2X = Y , J2Z = −W , J2
2 = −I,

where a = 2cd(c2 + d2)−1 and b = (d2 − c2)(c2 + d2)−1 satisfy a2 + b2 = 1.

Barberis’ classification in [13] is completed by the result for dim g′ = 3. Though interest-
ing, the details of the proof require more outside machinery than any of the results presented
thus far. For that reason, this final case is stated without proof, though the interested reader
is encouraged to consult [13], theorem 3.4 for the full details.
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Theorem 2.41. If dim g′ = 3, the one of the following holds:

(a) g′ is Abelian, in which case g admits a hypercomplex structure if and only if g corre-
sponds to the space RH4, the 4-dimensional real hyperbolic space. Moreover, g has a
unique hypercomplex structure up to equivalence.

(b) g′ is a Heisenberg algebra26, in which case g admits a hypercomplex structure if and
only if g corresponds to the complex hyperbolic space CH2. Moreover, the equivalence
classes of hypercomplex structures on g are parametrized by the space RP2.

This is the end of the road for this section, and for the current investigation of the
work in [13]. Worth noting is that this particular paper actually has one other section
which serves to classify hyperhermitian metrics on 4-dimensional Lie groups. Due to the
lack of attention paid in this work to hyperhermitian metrics, these results are omitted. It
would be unfortunate not to mention that the author of [13] does have a number of other
publications which are more applicable to the current exposition but which themselves are
omitted for the sake of brevity (see section 2.5.3 below). For example, the author of [13] is
also a contributing author on [6], a paper classifying all Abelian complex structures on 6-
Dimensional Lie algebras; naturally this work is more fitting in the context of this discussion,
but because of the array of other topics even more fitting, it, too, has been omitted. The
diligent reader is encouraged to seek out this author’s entire body of work27 as it’s nothing
short of a treasure trove of clever insight and perspective.

2.5.3 Lie Theory: Some Closing Remarks

Nearly all of the results given above come from [13], [45], and sources therein. This is done
in part because of the need to remain brief (hence, selective) and in part because of the
preferences of the author. Worth noting, though, is that this seemingly narrow viewpoint
should in no way be interpreted as an indication of how much literature addresses the inter-
section of hypercomplex geometry and Lie theory or of how many results have been proven
in these areas. The purpose of this addendum is to both address some of these results and
to hopefully represent the vastness of what exists beyond the scope of this paper with a bit
more accuracy.

26The three-dimensional Heisenberg algebra h3 consists of square matrices of the form1 a c
0 1 b
0 0 1


where a, b, c ∈ R. This can be extended to 2n + 1 dimensional analogues h2n+1 by replacing a, b ∈ R by
a ∈ R1×n, b ∈ Rn×1, and by replacing the central “1” with the n× n identity matrix In.

27A somewhat complete list of the publications of Barberis can be found at

http://www.famaf.unc.edu.ar/~barberis/pub.htm.
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By all accounts, Joyce’s paper [45] was one of the foremost of its kind when it was
first authored. Nearly any paper on hypercomplex geometry which also discusses Lie group
theory cites either [45] or one of the foundational results upon which Joyce elaborated. Later,
[13] was published to comparably high reception, serving as one of the most fundamental
results for classifying 4-dimensional hypercomplex Lie groups based on structural properties
of their corresponding Lie algebras. Since that time, the literature has grown significantly.
For example, a great deal of work has been done with hypercomplex structures with respect
to 4-dimensional Lie groups. In [54] and [55], for example, this topic is considered from
the perspective of differential geometry including analysis of various topics such as scalar
curvature, connections, and so-called Randers metrics. An even more vast library of progress
can be found by analyzing the sources cited therein, etc.

Like the study of Lie groups, a considerable amount of literature has emerged regarding
hypercomplex structures on 4n-dimensional Lie algebras as well, many coming also from a
variety of perspectives. For example, [14] looks at hypercomplex structures on nilpotent
and solvable Lie groups while other papers such as [15] and [19] investigate the interactions
of Lie algebras which satisfy certain properties with both (hyper)complex structures and
their generalizations. This branch of study is particularly fruitful because, unsurprisingly,
the constant evolution of perspective—starting at complex geometry, going to hypercomplex
and quaternionic geometries, and now advancing to topics such as Clifford geometry—has
led to an always-expanding collection of literature. There really is no way to convey how
much knowledge is out there.

In addition to its shortcomings depth-wise, an observant reader can probably deduce that
this paper’s firm separation of Lie groups from Lie algebras is, at best, artificial. For example,
both [45] and [13] use a great deal of Lie algebra mechanics to produce their results, and
despite [13] being included in the section on Lie algebras, her paper is actually rooted in a Lie
group classification. Simply put, the interplay between these two structures is indivisible, as
is illustrated by the above exposition, and that any classification of Lie groups will essentially
require extensive examination of the closely-related properties of its associated Lie algebra.

The fact of the matter is that an entire manuscript could be devoted to the need for a more
thorough and well-designed survey of hypercomplex structures in Lie theory; the iceberg is
so tall that even its tip is barely coverable. In short, there’s no purely worthwhile way to
cover the enormity of Lie theory—even when viewed as its intersection with hypercomplex
geometry—within such a short treatise. Here, the author errs on the side of brevity, and
with the exception of a forthcoming discussion related to [19] in section 3 below, the focus
of the remainder of the paper will shift almost completely away from Lie theory altogether.

2.6 Conclusion and General Closing Remarks

The current section on almost-hypercomplex and hypercomplex structures is, by far, the most
significant part of this exposition. It was stated early on that the purpose of this section
was to give an overall survey of the current status of the classification of all hypercomplex
structures on manifolds (and associated structures), and while a somewhat vast chunk of the
landscape has been presented, the amount that hasn’t been touched on is indubitably more
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vast still.
For example, Pedersen [59] accomplishes a classification result similar to Joyce [45] [46],

listing explicit homogeneous hypercomplex structures on a variety of structures, and takes
the bar one level higher by constructing hypercomplex structures on several other spaces such
as (S3 × S1)n, the associated bundle U(M) on quaternionic manifolds M , and the so-called
Swann bundle V(M) = U(M)/Z. He then goes on to consider hypercomplex structures on
more advanced structures derived from instantons, the most notable of which is the so-called
Twisted Swann Bundle VP (M) = P × S1V(M) associated to an S1-instanton P on M . This
work is extended even farther in [60].

Then, of course, there’s the indescribable amount of literature produced by authors Boyer,
Galicki, and Mann. Some of their work is touched upon here (see [21], [22], [24], [25], [26],
[27], [28], [27], [36], etc.), but nothing said here even begins to describe the depth or breadth
of the results they’ve derived. Moreover, a glimpse at the publication list of any of those
three authors will uncover no fewer than two dozen other papers whose results couldn’t even
be mentioned here for fear of this project getting even more out of hand than it’s already
gotten. To say that their work in the field is second-to-none is hardly an understatement.

So, the point of this section is to re-emphasize, on a more global scale, the sentiments
in section 2.5.3 above: The stuff that exists out there is so vast and deep and amazing that
this paper hardly does any of it justice. The interested reader is urged, strongly, to use
this exposition as nothing more than a vessel by which to get a flavor of what’s being done.
Hoping for anything more than that is expecting far too much.

3 Some Stuff on Cliffordian Structures

Overall, the consideration of so-called Cliffordian Structures on manifolds is a relatively new
perspective. In particular, the literature seems sparse and not entirely consistent notation-
ally. For that reason, any exposition on this topic will require a considerable amount of
foundation. That’s where the exposition begins.

3.1 Preliminaries, Definitions, and Notation

Before jumping into any worthwhile conversation on Cliffordian geometry, it’s necessary to
start with some fundamentals. Perhaps the most elementary fundamental that should be
addressed is the complete lack of consistency in studying structures referred to as Cliffordian
structures. As noted in [56], several approaches to the concept of Clifford (or Cliffordian;
the terms will be used interchangeably throughout) structures on manifolds can be found
throughout the literature and, indeed, the same terminology is often used to describe entirely
different circumstances. Some such notions have been:

• Several (or, according to [56], most) authors use the phrase Clifford structures to indi-
cate a collection of global almost complex structures which satisfy the algebraic rela-
tions of the basis generators of C`0,n. These are sometimes referred to as flat Clifford
structures.
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• The phrase Clifford structures has been used in much of the literature related to the
so-called Osserman Conjecture; in this context, the term refers to a structure on a
Riemannian manifold (M, g) similar to the above-mentioned flat Cliffordian structures
with additional assumptions placed on the Riemannian curvature tensor.

• In [30], the author makes use of the phrase Clifford-Kähler manifold to describe some-
thing related to a collection of local almost complex structures obtained from a partic-
ular Clifford algebra bundle and from local orthonormal frames of the Clifford bundle.
This notion is related to what’s sometimes called an even Cliffordian structure.

• Finally, in [56], the term Clifford structure refers to a structure on a Riemannian
manifold (M, g) which has even Cliffordian structures as a special case. Similar to the
description immediately above, the idea here is to study a special Euclidean vector
bundle (E, h) over M called the Clifford bundle along with a representation of the so-
called Clifford algebra bundle C`(E, h) (see above) on the tangent bundle TM . In this
context, the notion of even Cliffordian structure corresponds to a subbundle C`0(E, h)
of the bundle mentioned above.

As if this weren’t confusing enough, there’s also the fact that some authors use terms
other than “Cliffordian” to refer to structures related to C`p,q for specific values of p and
q. For example, as mentioned above, [19] uses the term “para-hypercomplex” to refer to
geometric structures associated to C`1,1, while these same structures are referred to as “split-
quaternionic” by the authors of [8], [7], etc. Suffice it to say, there’s absolutely no uniformity
abound whatsoever, so the best possible methodology to present any sort of snapshot of
the current state of the subject at large is to do so in a somewhat piecemeal fashion with a
variety of stand-alone expositions minus the typically sought-after cohesiveness. That’ll be
the strategy adapted below.

3.2 “Flat” Cliffordian Structures and Related Topics

As mentioned above, there are a number of various notions of Cliffordian structures. Inar-
guably, however, the so-called flat Clifford structure appears to be the most immediate gen-
eralization of, e.g., hypercomplex geometry. For that reason, this particular avenue seems
like it could be the most readily-understood place to start. The majority of the informa-
tion found herein will come first from [47] and then from [16]. The section begins with
generalities.

To begin, consider a manifold Mn with an associated G-structure (see section 2.1), G a
Lie subgroup of GL(n). By a geometric structure on M , one means a G-structure on M which
satisfies some (possibly trivial) partial differential equation called an integrability condition
involving only the G-structure. Examples include the Riemannian metric (G = O(n) with
trivial integrability condition), orientation (G = GL+(n) with trivial integrability condition)
and complex and hypercomplex structures (G = GL(n,C) and G = GL(n,H), respectively,
satisfying, e.g., the vanishing Nijenhuis tensor condition). These ideas can be combined in
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order to define a structure which is closely related to the Clifford algebra C`0,n. It’s easily
verified that this construction yields the sequence given in equation (2.4.7) above.

Definition 3.1. Let B be a subset of

{j ∈ GL(2n) : j2 = −1} ⊂ GL(2n)

and let G be the subgroup of GL(2n) of the form

G = {x ∈ GL(2n) : xj = jx for all j ∈ B}.

Here, a G-structure on a manifold M2n induces an almost complex structure J on M for
every element j of B, and so one can define the geometric structure associated to B to be
the G-structure along with the integrability condition that every almost complex structure
induced by an element of B be integrable.

The connection between definition 3.1 and the usual Clifford algebra C`0,n seems imme-
diate enough. This connection is written about more succinctly in [47] given some ma-
chinery related to algebras and modules which is summarized briefly as follows: Given
B ⊂ GL(2n) as above, define A to be the subalgebra of M(2n,R) generated over R by
B so that B ⊂ {a ∈ A : a2 = −1} and so that R2n is a natural A-module; more-
over, one can conversely construct from any A-module a geometric structure associated
to B ⊂ {a ∈ A : a2 = −1} for a unital algebra A. This gives an explicit connection between
unital algebras and sets B inducing geometric structures; it also motivates a couple very
immediate examples.

Examples 3.2.

1. When A = H and B = {i, j, k}, the A-module Hn gives the hypercomplex structure in
dimension 4n.

2. (Flat) Geometric structures related to Clifford algebras C`0,n come about in this way
as well. Briefly, let V = Rn with the usual metric | · | and let T n =

⊕∞
i=0⊗iV where

⊗0V = R and where multiplication is by tensor products in the obvious way. Defining
In to be the two-sided ideal of Tn generated by elements of the form x ⊗ x + |x|2 · 1,
one can construct C`0,n as the quotient C`0,n = Tn/In.

Now, given an orthonormal basis (j1, . . . , jn) of V , it follows that the elements jk are
elements of C`0,n which satisfy j2

k = −1 and jkj` = −j`jk for k 6= ` = 1, 2, . . . , n.
Thus, setting A = C`0,n and B = {j1, . . .} shows that any A-module gives rise to a
geometric structure consisting of n anticommuting complex structures; conversely, any
such geometric structure comes from an A-module as well. Finally, note that exposition
in [9] classifying all modules over Clifford algebras in turn classifies all such geometric
structures composed of these anticommuting complex structures. Integrability comes
from the vanishing Nijenhuis tensor condition.
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A number of algebraic properties of Clifford algebras C`0,n are given in [47], [9], and
also in [16]. Because those results are largely outside the scope of the current line of study,
they’ll be mostly omitted except when they’re pertinent herein. Now, focus shifts towards
the results in [16], an article which focuses on the above-detailed Cliffordian structures as
they exist on families of manifolds and Lie algebras. The geometry utilized therein is built
from the machinery discussed above. For the sake of clarity, the terminology is explicitly
stated before continuing.

Definition 3.3. A Clifford structure on a connected differentiable manifold M is a family
{Jα}α∈I of anticommuting complex structures where I is some index set.

In particular, any manifold M possessing a Clifford structure necessarily has the structure
of a Clifford C`0,n-module on TpM for each p ∈ M . Whenever this action is faithful, M is
said to have a Clifford structure of order n or a C`0,n-structure, and such an M is sometimes
said to be a C`0,n-manifold. The quintessential examples of Clifford structures are examples
discussed elsewhere in this paper: A Clifford structure of order 1 is a complex structure and
a Clifford structure of order 2 is a hypercomplex structure. Also, in the same vein:

Definition 3.4. An automorphism of the Clifford structures on a manifold M is a diffeo-
morphism of M which is holomorphic with respect to Jα, 1 ≤ α ≤ n.

Barberis [16] goes on to construct several nontrivial examples, some of which will be
discussed below.

3.2.1 Clifford Structures on Some Lie Groups

Related to definition 3.3 above is the notion of a Clifford structure on a Lie group. In this
scenario, the following definitions are important.

Definitions 3.5.

1. A Clifford structure on a connected Lie group G is said to be invariant if, for each
x ∈ G, left translation by x is holomorphic with respect to Jα, α = 1, . . . , n.

2. A Clifford structure of order n or a Clifford C`0,n-structure on a real Lie algebra g is a
family {Jα}α∈I of endomorphisms of g satisfying for all 1 ≤ α, β ≤ n:

(a) J2
α = −1, JαJβ + JβJα = 0 for α 6= β.

(b) NJα(X, Y ) = 0 for all X, Y ∈ g where here, NJα is the Nijenhuis tensor for Jα:

NJα(X, Y ) = [JαX, JαY ]− Jα[JαX, Y ]− Jα[X, JαY ]− [X, Y ].

(c) The subalgebra of End(g) generated by {Jα}α∈I has dimension 2n.

3. A real Lie algebra g is a 2-step nilpotent Lie algebra if [[g, g], g] = 0.
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Remarks.

1. Item 2(b) in the above list is the integrability constraint on the Clifford structure.
Oftentimes, the commuting integrability condition [JX, JY ] = [X, Y ] for all X, Y ∈ g
is used in its place. This new condition is even stronger, as it implies that [JX, Y ] +
[X, JY ] = 0 and hence that NJ ≡ 0.

2. In the case of m ∈ {1, 2}, condition 2(c) is guaranteed. This goes out the window for
m ≥ 3.

Much of the focus of Clifford structures on Lie groups in [16] concern such structures on
the family of 2-step nilpotent Lie algebras defined in item 3 of definition 3.5 above. In that

case, one defines an associated space dg
def
= g⊕ g as well as a bracket on dg:

[X,Y ] = [(X1, X2), (Y1, Y2)]
def
= ([X1, Y1] + [X2, Y2], 0). (3.2.1)

Finally, let J denote the endomorphism of dg given by J(X1, X2) = (−X2, X1) and satisfying
J2 = −1. From these, a very nice result emerges.

Proposition 3.6. If g is 2-step nilpotent, then dg is 2-step nilpotent and J is integrable.
Moreover, for all n ≥ 1, dng = d(dn−1g) is 2-step nilpotent and carries a C`0,n structure.

Proof Sketch. The first two claims follow immediately from the definitions of dg and J , along
with definitions 3.5 above. The final claim follows almost immediately by induction on n.

To show the usefulness of proposition 3.6:

Example 3.7. Let g = hn be the (2n + 1)-dimensional Heisenberg Lie algebra associated
to the corresponding simply connected nilpotent Lie group Hn as discussed briefly in sec-
tion 2.5.2 above. hn has a basis of the form {Z,X1, Y1, . . . , Xn, Yn} with bracket satisfying
[Xi, Yj] = δi,jZ and [Z,Xj] = [Z, Yj] = 0, 1 ≤ i, j ≤ n. One easily verifies that dhn = R⊕h2n

and so
dkhn = R2k−1 × h2kn.

It follows from proposition 3.6 above (along with arguments similar to those in section 2.5
showing that geometric structures on Lie algebras induce structures on the corresponding
Lie groups) that the associated Lie group R2k−1 ×H2kn admits a C`0,k-structure.

3.2.2 Clifford Structures on Compact Flat Manifolds

In much the same way that certain 2-step nilpotent Lie groups/algebras possess natural Clif-
ford structures, so too do some compact connected flat Riemannian manifolds. The purpose
of the exposition below is to shed some light on that fact. Worth noting is that if (M, g)
is a compact connected flat Riemannian manifold—referred to imprecisely as a“Riemannian
manifold” from this point forward unless otherwise mentioned—then the universal covering
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space of M is a Euclidean space Rn while the fundamental group of M is a so-called Bieber-
bach group28. These properties, well-known as they may be, will be central to the discussion
that follows.

Throughout, let Lv denote translation by an arbitrary element v ∈ Rn, noting that for a
crystallographic group (see footnote 28) Γ, the collection Λ = {v : Lv ∈ Γ} is a lattice in Rn
commonly (albeit imprecisely) identified according to Λ ∼ {Lv : v ∈ Λ}. Though sloppy,
this identification has its advantages, namely that the set {Lv : v ∈ Λ} is a normal and
maximal Abelian subgroup of Γ; in particular, this fact allows one to consider the quotient
F = Λ/Γ which in turn is a finite group known as the point group of Γ. The point group
F takes on a special interpretation geometrically whenever Γ is torsion-free, namely that of
the linear holonomy group of M . Much of the discussion that follows centers on results in
holonomy theory including several new results in [16] itself. In particular, the goal moving
forward will be to prove an analogue related to C`0,n-structures of a theorem of Auslander
and Kuranishi [10] stating that any finite group arises as the holonomy group of a compact
flat manifold.

The main piece of machinery needed to conclude this result is stated with proof in [16]
as a theorem29; for this line of investigation, the sought-after result is a corollary of the
aforementioned theorem, whereby it makes sense to state said theorem as a lemma and to
present what’s most pressing here as a theorem with proof. Before doing so, however, some
terminology is in order. Throughout, let Γ be a crystallographic subgroup of I(Rn) (see
footnote 28 again) with translation lattice Γ.

Definitions 3.8.

1. A finite group F which occurs as the holonomy group of a compact flat manifold having
first Betti number zero is said to be primitive.

2. Writing Rn × Rn = R2n and noting that Λ ⊕ Λ is then a lattice of R2n, define
∆ : I(Rn)→ I(R2n) as diagonal embedding. Let 〈S〉 denote the subgroup generated by
a subset S ⊂ I(Rk) for k arbitrary. With this in place, define the double dΓ ⊂ I(R2n)
of Γ by

dΓ = 〈∆Γ, LΛ⊕Λ〉

and likewise define dM = dΓ/R2n. Here, LK denotes the collection LK = {Lv : v ∈ K}
for a subset K ⊂ Rd.

With this in place, the previously-mentioned lemma can be presented.

Lemma 3.9. If Γ is a crystallographic subgroup of I(Rn) with translation lattice Λ, holon-
omy group F , and holonomy representation τ , then dΓ is a crystallographic subgroup of
I(R2n) with translation lattice Λ ⊕ Λ, holonomy group F , and holonomy representation
τ ⊕ τ . Moreover, dΓ is torsion-free if and only if Γ is, and so the following hold:

28A Bieberbach group is a discrete cocompact group of isometries on Rn which is torsion-free. Subgroups
of the isometry group I(Rn) which are discrete and cocompact are said to be crystallographic groups.

29Theorem 3.1.
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1. If Rn carries a translation invariant C`0,n- structure which commutes with the action
of F , then dΓ/R2n carries a C`0,n+1-structure. This implies that for any Γ, d2Γ/R4n is
necessarily hyperkähler.

2. H1(dmM,Z) ' (Λ/Λ0)2n−1 ×H1(M,Z) and β1(dnM) = 2nβ1(M). Here,

Λ0 = [Γ,Λ] = 〈r(γ)λ− λ : γ ∈ Γ, λ ∈ Λ〉

for a specific transformation r(γ) ∈ O(n).

The proof of lemma 3.9 is neither intuitive nor insightful, but its result links the class
of Riemannian manifolds having Cliffordian structures to those manifolds characterized by
Auslander-Kuranishi. In particular:

Theorem 3.10. Any finite group F occurs as the holonomy group of a Clifford C`0,n-flat
manifold. Moreover, if F is primitive, then F occurs as the holonomy of a Clifford C`0,n-flat
manifold with β1 = 0.

Proof Sketch. By the original theorem of Auslander and Kuranishi [10], there exists a Bieber-
bach group Γ ⊂ I(Rn) with prescribed point group F . Lemma 3.9 implies that dmM is a
flat manifold of dimension 2mn with holonomy group F and having a Clifford structure of
order m, thus proving the first assertion. The second assertion comes from the second item
of lemma 3.9.

And now, a lá proposition 3.6 above, consider examples constructed from the results of
lemma 3.9 and theorem 3.10 above.

Examples 3.11.

1. If K denotes the Klein bottle, then K = Γ/R2 where Γ = 〈γ, Lλ : λ ∈ Λ〉 with Λ the
cannonical lattice in R2, γ = σLe2/2, and σ(x, y) = (−x, y). The translation lattice
of Γ is Λ and the holonomy group is F = Z2; moreover, γ2 = Le2 and [Γ,Λ] = 2Ze1,
whereby it follows that Λ/[Γ,Λ] ' Z⊕ Z2. Thus, setting Γm = dmΓ, Km = dmK, then
the lemma above yields that

H1(Km,Z) = Z2m × Z2m

2 .

One can also prove a general Betti number formula of the form

βk(Km) =
2m−1∑
j=0

(
2m

k − 2j

)(
2m

2j

)
,

(
l

m

)
def
= 0 when m < 0.

2. A second example begins with a far more exotic manifold. Let H denote the so-
called Hantzsche-Wendt manifold, defined qualitatively30 to be the only flat closed

30Its quantitative definition is a bit more difficult [44]: It’s the orbit space

H = R3/〈x, y, z : xy2x−1y2 = yx2y−1x2 = 1, z = xy〉

where x = (1
2e1, X), y = ( 1

2 (e2 − e3), Y ), and z = ( 1
2 (e1 − e2 + e3), Z) for X = diag[1,−1, 1],

Y = diag[−1, 1,−1], and Z = diag[−1,−1,−1]. In particular, H is the quotient of R3 by a subgroup of
the group Aff(R3) of affine motions of 3-space.
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3-manifold (out of 6) whose holonomy isn’t cyclic. Setting Hm = dmH, one can show
(though it’s completely unclear how) that Λ/[Γ,Λ] ' Z3

2 and that H1(H,Z) ' Z2
4. In

particular, lemma 3.9 shows that Hm is a compact flat manifold of dimension 2m · 3
with H1(Hm,Z) ∼= Z2

4 × Z
3(2m−1)
2 , holonomy group Z2

2, admitting a Clifford structure
of order m.

What’s more, K2 and H2 are hyperkähler manifolds of dimensions 8 and 12, respectively,
with holonomy groups Z2 and Z2

2, respectively.

The remainder of [16] focuses on Cliffordian structures on what’re known as solvable
extensions of so-called H-type groups. In that section31, the authors construct explicitly
these Clifford structures using a number of Lie algebra techniques and a significant amount
of machinery from differential geometry. Because even the basis of that material is beyond
the scope of this paper, the author has chosen to omit coverage of the remainder of [16], thus
marking the end of the coverage on this particular brand of Cliffordian structures. Moving
forward, other so-called Clifford structures will be considered (at best) topically with details
(at best) sparsely distributed as necessary.

3.3 Clifford Structures on Riemannian Manifolds

One of the most thorough treatments of this brand of Clifford geometry comes from [56], and
so a majority of what follows comes from exposition within that article. Before even stating
the core definitions from [56], a bit of background is necessary; for that, ideas borrowed from
[37] are presented first.

A vector bundle ξ is called an algebra bundle if both each fiber Fx and the typical fiber F
are (perhaps non-associative) algebras and if ξ admits a coordinate representation {(Uα, ψα)}
such that each map

ψα,x : F
∼=−→ Fx

is an isomorphism of algebras. In the event that the fibers Fx, F have the structure of Clifford
algebras C`p,q and the maps ψα,x respect this algebraic structure, the bundle ξ is said to be
a Clifford algebra bundle.

This construction can be framed in a way more naturally-associated to Riemannian ge-
ometry by considering an arbitrary Riemannian vector bundle32 π : E → X. Here, the fiber

Ex = π−1(x) corresponding to each x ∈ X admits a quadratic form gx
def
= ‖ · ‖2 = 〈 · , · 〉

which can then be used to construct a pointwise Clifford algebra C`(Ex, gx) for each x ∈ X,
structures which can then be glued smoothly to form an overall Clifford bundle33 C`(E)→ X
where C`(E) =

∐
x C`(Ex, gx). Of course, the inclusion of the adjective “Riemannian” re-

ally means unneeded specificity: Indeed, one can consider for any smooth vector bundle
π : E → X a smooth map 〈 · , · 〉 : E ⊕ E → F whose restriction to each fiber Ex ⊕ Ex is an

31Section 4.
32Every real vector bundle admits a Riemannian metric [76].
33Sometimes, C`(E) is written C`(E, g) where here, g is the glued-together form g =

∐
x∈X gx. The g will

generally be omitted unless referencing it is particularly useful.
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inner product on Ex. When the inner product is real, it’s bilinear, symmetric, and positive
definite, and the pair (E, 〈 · , · 〉) is said to be a Euclidean vector bundle; in the complex
case, 〈 · , · 〉|Ex⊕Ex is positive definite and sesquilinear and the pair (E, 〈 · , · 〉) is called a
Hermitian vector bundle. The Hermitian case will be mostly absent from the conversation
moving forward.

Now that this machinery is in-place, consider the following definitions for M = (M, g) a
Riemannian manifold of dimension n.

Definitions 3.12.

1. A rank r Clifford structure on M is an oriented rank r Euclidean bundle (E, h) over
M together with a non-vanishing algebra bundle morphism ϕ : C`(E, h)→ End(TM)
called the Clifford morphism which maps E into the bundle of skew-symetric endomor-
phisms End−(TM).

2. A Clifford structure (M, g,E, h) is called parallel if the subbundle ϕ(E) of End−(TM)
is parallel with respect to the Levi-Civita connection ∇ = ∇g of (M, g).

3. For n ≥ 2, a rank r even Clifford structure on (M, g) is an oriented rank r Euclidean
bundle (E, h) over M toether with an algebra bundle morphism ϕ : C`0(E, h) →
End(TM) called (again) the Clifford morphism which maps Λ2E into the bundle
End−(TM) of skew-symmetric endomorphisms.

4. An even Clifford structure (M, g,E, h) is called parallel if there exists a metric connec-
tion ∇E on (E, h) such that ϕ is connection preserving, i.e. so that

ϕ(∇E
Xσ) = ∇g

Xϕ(σ)

for every tangent vector X ∈ TM and for every section σ of C`0(E, h).

A number of the structures discussed elsewhere in the present exposition are Clifford
structures of a certain rank r. For example, there is a one-to-one correspondence between
rank 1 Clifford structures and almost Hermitian structures whereby a rank 1 Clifford struc-
ture is parallel if and only if the corresponding almost Hermitian structure is Kähler. In
addition, every hyperkähler manifold (Mn, g, I, J,K) carries parallel rank 2 Clifford struc-
tures given by the subbundle of End−(TM) generated by I and J . It seems obvious, then,
that a classification of n-dimensional Riemannian manifolds admitting some kind of Clifford
structure is something of a generalization of a lot of the discussion that’s happened hereto-
fore. Hashing out the particulars of such a classification will be the goal for the remainder
of the section.

First, consider the following remarks. By and large, these concern structures presented
in definition 3.12 and issues related thereto, and will be worthwhile things to have in mind
moving forward.
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Remarks.

1. The C`0(E, h) in the third item of definition 3.12 is in reference to the splitting of
an arbitrary Clifford algebra C`p,q into even and odd parts, denoted C`0

p,q and C`1
p,q,

respectively. In particular, the Clifford bundle C`(E, g)→ X splits:

C`(E, g)0 ⊕ C`(E, g)1 −→ X.

2. Item 3 of definition 3.12 above utilizes the fact that Λ2E can be viewed as a subbundle
of C`0(E, h) by way of by identifying e ∧ f with e · f + h(e, f) for every e, f ∈ E.

3. Two even Clifford structures (E1, h1, ϕ1) and (E2, h2, ϕ2) are isomorphic if there exists
an algebra bundle isomorphism λ : C`0(E1, h1)→ C`0(E2, h2) such that ϕ2 ◦ λ = ϕ1.

4. Since the definition of even Clifford structures in item 3 of 3.12 above only involves the
exterior power Λ2E, the bundle E itself is not part of an even Clifford structure. What’s
more, there exist isomorphic even Clifford structures with non-isomorphic bundles E.

5. The authors of [56] make it a point to emphasize that (even) Clifford structures are
equivalent to reductions of the orthonormal frame bundle of M . Details are spelled
out in that article but are omitted from this discussion.

6. For r even, the notion of an even Clifford structure of rank r admits a slight extension
to the case where E a so-called projective bundle, that is, a locally defined vector
bundle associated to some G-principal bundle via a projective representation ρ : G→
PSO(r). Because the extension of the standard representation of SO(r) from Rr to
Λ2Rr factors through PSO(r), the second exterior power of any projective vector bundle
is a well-defined vector bundle34. The corresponding structure is often referred to as
the projective even Clifford structure.

Now that these issues have been addressed, it makes sense to begin presenting some
actual classification results. A good starting place for that endeavor is the following technical
lemma.

Lemma 3.13. Let (E, h) be a rank r even Clifford structure and let {e1, . . . , er} be a local

h-orthonormal frame on E. The local endomorphisms Jij
def
= ϕ(eiej) ∈ End(TM) are skew-

symmetric for i 6= j and satisfy:
Jii = − id for all 1 ≤ i ≤ r,
Jij = −Jji and J2

ij = − id for all i 6= j
Jij ◦ Jik = Jjk for all i, j, k mutually distinct,
Jij ◦ Jk` = Jk` ◦ Jij for all i, j, k, ` mutually distinct.

In addition, for r 6= 4, one has that

〈Jij, Jk`〉 = 0 unless i = j, k = `, or i = k 6= j = `, or i = ` 6= k = j.

34On the other hand, the projective vector bundle is not, in general, a vector bundle.
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The proof of this lemma comes almost entirely from the multiplicative properties of
Clifford algebra bases and so the details are skipped for succinctness. Yet another corollary
of the structure of Clifford algebras is that every rank r Clifford structure E induces an even
Clifford structure of the same rank. This follows by the fact that any local orthonormal
frame {e1, . . . , en} of E satisfies ϕ(ei ∧ ej) = ϕ(ei) ◦ϕ(ej) whenever i 6= j, thus showing that
ϕ(ei∧ ej) is indeed skew-symmetric. One can now easily verify part 3 of definition 3.12. The
authors of [56] show that the converse holds if the rank of the bundle E is congruent to 3
modulo 4, but this is much harder to see and is much less useful overall.

What is useful overall is to examine aspects of this topic which will aid the overall goal of
classification. The examples of Clifford structures of low rank discussed above are beneficial
in that regard due to the fact that they help provide some intuition; this intuition is further
developed in [56] by reframing these examples into the language of even Clifford structures35.
In order to convert this intuition into explicit results, the following definition is needed.

Definition 3.14. A parallel even Clifford structure (M,E,∇E) is called flat if the connection
∇E is a flat connection.

The first facet of the classification comes with respect to flat even Clifford structures of
high rank.

Theorem 3.15. A complete simply connected Riemmanian manifold (Mn, g) carrying a
flat even Clifford structure E of rank r ≥ 5 is flat and hence is isometric with a C`0

0,r

representation space.

Outline of the Proof. Let Jij = ϕ(eiej). The case of M irreducible follows from (i) the
Ricci flatness of M stemming from M being hyperkähler with respect to J12, J31, and J23,
and (ii) Berger’s classification of holonomy (see appendix 2.1 below). The general case
follows by contradiction by applying the Bianchi identity to the de Rham decomposition
M = M0 ×M1 × · · · ×Mk into irreducible non-flat components Mi, i > 0.

The classification is further advanced by the following proposition concerning non-flat
even Clifford structures of various dimensions.

Proposition 3.16. Assume that the complete simply connected Riemannian manifold (M, g)
carries a parallel non-flat even Clifford structure (E,∇E) of rank r ≥ 3. Then the following
results hold:

1. If r = 4, then (M, g) is a Riemannian product of two quaternion-Kähler manifolds (see
appendix 2.3 below).

2. If r 6= 4 and n 6= 8, then:

(a) The curvature of ∇E as a map Λ2M → End−(E) ' Λ2E is a non-zero constant
times the metric adjoint of the Clifford map ϕ.

35Examples 2.6 and 2.7.
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(b) M is Einstein (see appendix 2.1 below) with non-vanishing scalar curvature and
irreducible holonomy.

3. If r 6= 4 and n = 8, then (a) implies (b).

What’s more, for any Riemannian manifold (Mn, g) satisfying the above hypotheses, the Lie
algebra h associated to the holonomy group H (which associated to some holonomy bundle
P ) splits as a direct sum of Lie algebras of the form h = g⊕ so(r) for some Lie subalgebra
g < h.

The proof of proposition 3.16 begins with two pages of hard differential geometry focusing
on a number of properties of Riemannian curvature, connections on Riemannian manifolds,
etc., and ending with a number of highfalutin results on the structure of Lie algebras. Inter-
ested readers should examine the proposition36 in [56]. For the goal at hand, however, this
proposition should be viewed as simply a tool to aid future results.

One other tool that will be beneficial in proving the objectively more interesting re-
sults that follow is the duality between the geometric and algebraic interpretations of the
framework being examined presently. For example, a parallel rank r ≥ 3 even Clifford
structure, r 6= 4, on a simply connected Riemannian manifold (Mn, g) with holonomy group
H = Hol(M) acting on Rn is equivalent to an orthogonal representation ρ : H → SO(r)
of H on Rr together with an H-equivariant algebra morphism φ : C`0

0,r → End(Rn) which
maps so(r) ⊂ C`0

0,r into so(n) ⊂ End(Rn). This result also holds for projective even Clifford
structures by replacing all instances of orthogonal representations with projective ones, a fact
that’s particularly relevant due to the increased flexibility which comes with these projective
structures.

With this added bit of perspective, consider the following objectively-significant37 result
focusing on the classification of non-flat even Clifford manifolds of high rank.

Theorem 3.17. A Riemannian manifold (Mn, g) carrying a parallel non-flat even Clifford
structure (E,∇E) of rank r ≥ 5 is either locally symmetric or is 8-dimensional.

After yet another colossal block of intense differential geometry, the authors obtain the
conclusion demonstrated above. They then go one step farther, cross-referencing the com-
plete classification of compact locally symmetric spaces (see [18], e.g.) to conclude a complete
classification of Riemannian manifolds carrying first parallel even Clifford structures and then
parallel Clifford structures in general. The complete results are as follows.

Theorem 3.18. The list of complete simply connected Riemannian manifolds M carrying
a parallel rank r even Clifford structure is given in the tables below38. Here, q = dim(M),

36Proposition 2.10 + Corollary 2.12.
37This theorem—Theorem 2.13 of [56]—is said to be the first “important result” by the authors themselves.
38As noted by the authors of [56]: “In this table we adopt the convention that the QK condition is empty

in dimension 4. For the sake of simplicity we have omitted the non-compact duals of the symmetric spaces
in Table 2. The meticulous reader should add the spaces obtained by replacing Sp(k + 8), SU(k + 4),
SO(k+ 8), F4, E6, E7 and E8 in the last seven rows with Sp(k, 8), SU(k, 4), SO0(k, 8), F−204 , E−146 , E−57 and
E8
8 respectively.”
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qi = dim(Mi) in the case of reducible manifold products, and N0(r) is the dimension of an
irreducible C`0

0,r representation.

r M dimension of M

2 Kähler 2m, m ≥ 1

3 Hyperkähler 4q, q ≥ 1

4 Reducible hyperkähler M1 ×M2 4(q1 + q2), q1, q2 ≥ 1

Arbitrary C`0
r representation space Multiple of N0(r)

Table 1
Manifolds with flat even Clifford structure

r Type of E M Dimension of M

2 Kähler 2m, m ≥ 1

3 Quaternion-Kähler (QK) 4q, q ≥ 1

4 Projective Product of two QK manifolds 4q, q ≥ 1

5 QK 8

6 Projective if M non-spin Kähler 8

7 Spin(7) holonomy 8

8 Projective if M non-spin Riemannian 8

5 Sp(k + 2)/ Sp(k)× Sp(2) 8k, k ≥ 2

6 Projective SU(k + 4)/S(U(k)× U(4)) 8k, k ≥ 2

8 Projective if k odd SO(k + 8)/ SO(k)× SO(8) 8k, k ≥ 2

9 OP = F4/ Spin(9) 16

10 (C⊗O)P2 = E6 / Spin(10) · U(1) 32

12 (H⊗ C)P2 = E7 / Spin(12) · SU(2) 64

16 (C⊗ C)P2 = E8 / Spin(16) 128

Table 2
Manifolds with parallel non-flat even Clifford structure
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And now, the result regarding parallel rank r Clifford structures in the general case:

Theorem 3.19. A simply connected Riemannian manifold (Mn, g) carries a parallel rank r
Clifford structure if and only if one of the following (non-exclusive) cases occur:

1. r = 1 and M is Kähler.

2. r = 2 and either n = 4 and M is Kähler or n ≥ 8 and M is hyper-Kähler.

3. r = 3 and M is quaternion-Kähler.

4. r = 4, n = 8 and M is a product of two Ricci-flat Kähler surfaces.

5. r = 5, n = 8 and M is hyper-Kähler.

6. r = 6, n = 8 and M is Kähler Ricci-flat.

7. r = 7 and M is an 8-dimensional manifold with Spin(7) holonomy.

8. r is arbitrary and M is flat, isometric to a nontrivial representation of the Clifford
algebra C`0,r.

After stating the above results39, a great deal of additional work is done by the authors of
[56] proving results which are largely differential geometric. In particular, the last section of
that paper40 focuses on Riemannian submersions π : (Zk+n, gZ)→ (Mn, gM) and on bundle-
theoretic properties thereof. Despite seeming completely unrelated to the previous work,
this particular line of reasoning culminates in a number of results linking such submersions
to the admittance of a parallel (even) Cliffordian structure. The end result of the exposition
serves as a desirable conclusion for the end of the current section, though special care must
be shown to avoid getting bogged down in deep theoretical results beyond the scope of
this paper. Therefore, what follows will be an attempt at presenting the aforementioned
classification while still omitting as many unnecessary technical details as possible.

Throughout, consider a Riemannian submersion π : (Zk+n, gZ) → (Mn, gM). Let Zx =
π−1(x) be the fiber of π over x ∈ M . Well-known results show that all such fibers are
isometric to some fixed Riemannian manifold (F, gF ) and that π is a locally trivial fibration
with structure group the Lie group G = Iso(F ) of isometries of F . Next, define the G-
principal fiber bundle P over M as the set of isometries from F to the fibers of π:

P
def
= {u : F → Z : u maps F isometrically onto Zx for some x ∈M}.

Let p : P →M be the natural projection and let Px be the fiber of p over x:

Px = {u : F → Zx : u is an isometry}.
39Theorems 3.17, 3.18, and 3.19 here correspond to theorems 2.13, 2.14, and 2.15, respectively, of [56].
40Section 3.
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Let x ∈M , u ∈ p−1(x), and denote by Hu the image of the map TxM → TuP which sends

an arbitrary vector field X ∈ TxM to the associated vector field X̃ ∈ TuP . The collection

{Hu : u ∈ P} is called the horizontal distribution. Define the adjoint bundle ad(P )
def
= P×adg

of P to be the vector bundle associated to P via the adjoint representation of G on its Lie
algebra g. Then, for each x ∈M , the fiber ad(P )x of ad(P ) over x has a Lie algebra structure
in which every element α ∈ ad(P )x induces a Killing vector field α∗ on the corresponding
fiber Zx. Finally, if α = [u,A] and z = [u, f ] for some frame u ∈ Px, write α∗z = uAf and
define the collection {α∗z : u ∈ P} to be the so-called vertical distribution.

With these definitions in place, the remainder of the classification is almost ready to be
stated. In what remains, let RZ denote the Riemannian curvature tensor on a Riemannian
manifold (Z, gZ) and define for each z ∈ Z the curvature constancy at z by

Vz = {V ∈ TzZ : RZ
V,XY = gZ(X, Y )V − gZ(V, Y )X for every X, Y ∈ TzZ}.

The authors of [56] note that a number of alternative formulations of V def
=
∐

z∈Z Vz in
terms of horizontal and vertical vector fields (that is, elements of the horizontal and vertical
distributions defined above) but these aren’t particularly useful for the results that follow.
What is important is the assumption that V be the vertical distribution of some submersion
(Zn+k, gZ)→ (Mn, g), whereby the following result can be proven.

Theorem 3.20. Assume that the curvature constancy V of Z is the vertical distribution of
a Riemannian submersion (Zk+n, gZ)→ (Mn, g). Then:

(a) (M, g) carries a parallel even Clifford structure (E,∇E, ϕ) of rank r = k + 1; and

(b) The curvature of E, viewed as an endomorphism ω : Λ2(TM) → End−(E), equals
minus twice the metric adjoint of ϕ : Λ2E ' End−(E)→ End−(TM) ' Λ2(TM).

Conversely, if (M, g) satisfies these conditions, then the sphere bundle Z of E, together with
the Riemannian metric induced by the connection∇E on Z defines a Riemannian submersion
onto (M, g) whose vertical distribution belongs to the curvature constancy.

Admittedly, theorem 3.20 doesn’t seem like much. To the authors of [56], however, it was
a huge stepping stone towards the last main component of the paper. Therefore, this section
concludes with the statement of the last result sought after herein and the last theorem
proved in [56]41. Throughout, scal(M) denotes the scalar curvature of M , Sr denotes an
r-dimensional sphere, m, q, and k denote the dimensions of manifolds M , and q± denotes
the dimensions of the constituent manifolds in a product M = Q+ ×Q−.

Theorem 3.21. There exists a Riemannian submersion from a complete Riemannian mani-
fold (Zk+n, gZ) to a complete simply connected Riemannian manifold (Mn, g) whose vertical
distribution belongs to the curvature constancy if and only if (Z,M) appears to the following
list:

41Theorem 3.7.
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Z M Fiber dim(M) scal(M)

Sasakian Hodge S1 2m, m ≥ 1

Twistor space Z Quaternion-Kähler (QK) S2 4q, q ≥ 1 8q(q + 2)

Quaternion-Sasakian Product of two QK RP3 4q, q ≥ 1 16q+(q+ + 2)

manifolds q = q+ + q− +16q−(q− + 2)

Sp(k+2)
Sp(k)×Spin(4)

Sp(k + 2)/ Sp(k)× Sp(2) S4 8k, k ≥ 1 32k(k + 3)

SU(k+4)
S(U(k)×(Sp(2)·U(1)))

SU(k + 4)/S(U(k)× U(4)) RP5 8k, k ≥ 1 32k(k + 4)

SO(k+8)
SO(k)×Spin(7)

SO(k + 8)/ SO(k)× SO(8) RP7 8k, k ≥ 1 32k(k + 6)

F4 / Spin(8) F4 / Spin(9) S8 16 26 · 32

E6 / Spin(9) · U(1) E6 / Spin(10) · U(1) S9 32 29 · 3

E7 / Spin(11) · SU(2) E7 / Spin(12) · SU(2) S11 64 29 · 32

E8 / Spin(15) E8 / Spin(16) S15 128 210 · 3 · 5

Table 3
Riemannian submersions with curvature constancy

With the remainder of the paper, the goal will be to simply expose the reader to a little
bit of information in each of a few “miscellaneous notions of Clifford structures.” As such,
the presentation of deep results has essentially ceased.

3.4 Miscellaneous Notions

The remainder of this section consists of a hodgepodge of miscellaneous notions called or
related to “Clifford structures” and/or “Clifford geometry.” Each subsection will essentially
present a very small amount of information from 1 ≤ α ≤ 2 articles related to the notion
described therein.

3.4.1 Clifford-Kähler

Much of the present exposition will come from the articles [30] and [31]. Throughout, the

goal will be to focus on geometric structures related to the algebra O def
= C`0,3. Recall

from the previous discussion on Bott periodicity (see (2.4.7) above) that O ∼= H ⊕ H is an
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8-dimensional algebra consisting of three generators {e1, e2, e3} subject to the relations:

e0ei = eie0 = ei i = 0, 1, . . . , 7

e2
i = −e0, e

2
7 = e0 i = 1, 2, . . . , 6

eiej + ejei = 0 i 6= j, i, j = 1, 2, . . . , 6, i+ j 6= 7,

eiej = ejei i = 0, 1, . . . , 7, i 6= j, i+ j = 7

e1e2 = e4, e1e3 = e5, e2e3 = e6, e1e6 = e7.

At this point, one can say that a smooth 8n-dimensional real manifold M equipped
with the action of O on its tangent bundle is an almost-Cliffordian manifold; alternatively,
an almost-Cliffordian manifold M8n is a smooth 8n-dimensional real manifold M equipped
with a rank-6 subbundle Q ⊂ End(TM) which is locally spanned by almost hypercomplex
structures {Jα}α=1,...,6. Using the second notion, one can easily extend the almost-Cliffordian
structure to a Cliffordian structure whenever there is a torsionless connection ∇ on TM
which preserves Q in the sense that ∇Xσ ∈ Γ(Q) for all vector fields X and smooth sections
σ ∈ Γ(Q). This is equivalent to imposing an integrability condition on the O-action from
the first notation.

Now, a Clifford-Kähler manifold is a Riemannian manifold (M8n, g) whose holonomy
group Hol(g) is isomorphic to a subgroup Op(n) ·Op(1) ⊂ SO(8n) where here, Op(n) is the
group consisting of all matrices A ∈ Mn×n(O) so that 〈Ap,Aq〉 = 〈p, q〉 for all p, q ∈ On.
Here, 〈p, q〉 denotes the quasi-inner product of the form

〈p, q〉 =
1

2

n∑
i=1

(piqi + qipi)

for all p, q ∈ On and a denotes the conjugate of the element a0e0 + · · · a7e7 ∈ O which has
the form

a = a0e0 − a1e1 − . . .− a6e6 + a7e7.

In the current context, similar to what was mentioned in section 3.3 above, an almost-
Cliffordian structure on M is equivalent to a reduction of the structural group of the principal
bundle of M to—in this case—Op(n) ·Op(1). Note, too, that the identification of On ' R8n

gives two very immediate examples of Clifford manifolds, namely (i) R8n with J1, J2, J3 as
defined in the example42 of [31], and (ii) The tangent bundle of any quaternionic-like manifold
endowed with a linear connection. Both of these results echo sentiments discussed above.

Also echoing the sentiments above are the various geometrical structures one can define
related to this particular brand of Clifford structure. For example, one can define an almost
Clifford connection on the almost-Cliffordian manifold (M,V ) to be a linear connection ∇
on M which preserves parallel transport to the vector bundle V . In particular, this means
that for any cross-section Φ of the bundle V , ∇XΦ is also a cross-section of V for X an
arbitrary vector field. A result43 give a full characterization of linear connections ∇ which

42Example 3.1.
43Proposition 4.1 in [31].

53



are almost Clifford connections in terms of the covariant derivatives of the local canonical
base and 1-forms defined on the domains of Jα.

There are several other key geometric tidbits described throughout [30] and [31]. For
example, by defining a generalized Nijenhuis tensor (see definition A1.7 in appendix 1.3
below) for any pair A,B of endomorphisms defined on any pair X, Y of vector fields to have
the form

N(A,B)(X, Y ) = N(AX,BY )− AN(BX, Y )−BN(X,AY ) +N(BX,AY )−BN(AX, Y )

− AN(X,BY ) + (AB +BA)[X, Y ]

and by analyzing Nab = N(Ja, Jb) for various pairs (a, b), [30] is able to systematically
characterize vanishing behavior in pairs of tensor fields Nab. Though not entirely fruitful
in its own right, this analysis allows characterization of symmetric affine almost-Cliffordian
connections ∇ in terms of vanishing Nijenhuis tensors Nab for various pairs (a, b). Many of
these results mimic earlier results.

On the other hand, [31] considers a so-called almost Cliffordian Hermitian manifold to be
a Riemannian manifold (M8n, g) for which the almost hypercomplex structures {Jα}α=1,...,6

satisfy
g(JαX, JαY ) = g(X, Y ) for α = 1, . . . , 6 and for all X, Y ∈ X(M).

From here, one can re-define the notion44 of Clifford-Kähler to be describe a manifold for
which ∇Ω = 0 = ∇Λ for ∇ the connection induced by g and for specifically defined 4-forms,
respectively (2,2)-tensor fields Ω, respectively Λ.

Unsurprisingly, the addition of a Riemannian structure in the latter half of [31] allows an
entirely different sort of exposition. Indeed, later sections45 consider coordinate-wise formulae
for curvature tensors on Clifford-Kähler manifolds (M,V, g), thereby allowing the definitions
of Ricci tensors, etc., as well as various identities related thereto. The paper ends with a
collection of summarizing results with proof for the various structures considered throughout.
In particular, given a Clifford-Kähler manifold (M8n, V, g): (i) The Ricci tensor is parallel,
(ii) (M,V, g) is an Einstein manifold (see appendix 2.1 below), (iii) The restricted holonomy
group is a subgroup of Op(n) if and only if the Ricci tensor is identically vanishing, and
(iv) V is locally parallelizable if and only if the Ricci tensor is identically vanishing. Proofs
of these statements are scattered throughout the last section46 of [31].

3.4.2 Para-Hypercomplex Structures

I ran out of time, but my plan was to summarize some details from [19] here.

3.4.3 (Almost) Split Quaternion & Split Quaternion Kähler Structures

I ran out of time, but my plan was to summarize some details from [8] and [7] here.

44Theorem 4.2 of [31].
45Starting in section 5.
46Section 6.
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Appendix 1: Complex Geometry

1.1 General Preliminaries

Classically, the notion of a complex manifold was studied in differential geometric terms, i.e.
in terms of atlases of suitably-compatible holomorphic charts. As machinery developed, the
study changed direction so that a complex manifold M was defined in terms of an almost-
complex structure I on its tangent bundle TM where I satisfies certain “nicety” properties.
For the sake of fluidity, the latter approach is the one primarily adhered to in this paper
though, for the sake of completeness, both perspectives will be addressed and discussed.

First, consider a definition:

Definition A1.1. An almost-complex manifold is a real-differentiable manifold M whose
(real) tangent bundle TM is equipped with a vector bundle endomorphism I : TM → TM
for which

I2 = − idTM . (A1)

In general, an endomorphism I defined on a certain vector space V and satisfying (A1) is
called an almost-complex structure on V .

Definition A1.1 dates back to the 1940s to the works of Hopf and Ehresmann. There is
much literature on the topic including [41], [74], etc., where it may be noted that the term
almost-complex manifold is applied to the ordered pair (M, I) where M , I are as above. This
notation is particularly helpful when one wants to explicitly describe the endomorphism I; as
such, the ordered pair notation will be used later when considering the presence of multiple
almost-complex structures on a single manifold.

At this point, it’s logical to discuss the different notions of a complex manifold, though it’s
anyone’s preference about which way to best proceed. For the sake of fluidity, the historical
(differential geometry) definition will be presented first followed by some results in section
1.3 relating it to the modern definition.

Throughout, let D ⊂ Cn be an open subset and let O(D)47 denote the complex-valued
holomorphic functions on D, i.e. the collection of all functions f(z) = f(z1, z2, . . . , zn) which
can be represented by convergent power series of the form

f(z) =
∞∑

α1,...,αn=0

aα1,...,αn(z1 − z0
1)α1 · · · (zn − z0

n)αn

near every point z0 = (z0
1 , . . . , z

0
n) ∈ D. This notation follows that found in [74], from which

the following definitions are borrowed.

Definition A1.2. An O-structure OM on a manifold M is a family F = {fα} of complex-
valued functions defined on the open sets of M satisfying two conditions, namely that

47The O notation used here and in definitions A1.2, A1.3 should remind the reader of notation commonly
used in sheaf theory, the perspective from which much of [74] is written. Equivalent definitions flavored more
differential geometrically can be found in [41] among others.
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1. For every point p ∈M , there exists an open neighborhood U of p and a homeomorphism
h : U → U ′, U ′ ⊂ Cn open, such that for any open set V ⊂ U ,

f : V → C is in OM if and only if f ◦ h−1 ∈ O(h(V )).

2. If f : U =
⋃
i Ui → C, Ui open in M for all i, then f ∈ OM if and only if f |Ui ∈ OM

for all i.

Definition A1.3. Given a manifold M with anO-structureOM , the ordered pair (M,OM) is
called a complex manifold. An open subset U ⊂M and a homeomorphism h : U → U ′ ⊂ Cn
as in part 1 of definition A1.2 is called a holomorphic coordinate system, and the functions
of OM are called holomorphic functions.

Succinctly, definition A1.2 describes an atlas of charts, the transition functions of which
are holomorphic, and—according to definition A1.3—a complex manifold is an ordered pair
(M,OM) whose constituent manifold M can be covered by an atlas of charts with holomor-
phic transition functions. Such charts are commonly called holomorphic charts and atlases
of holomorphic charts are typically called holomorphic atlases, from which definition A1.3
can be rewritten to say that a complex manifold is an ordered pair whose base manifold M
endowed with an equivalence class of holomorphic atlases.

As it stands, there are a number of equivalent (yet often very different-looking) definitions
of a complex manifold. Moreover, it’s worth noting that the use of the term “almost-complex”
in definition A1.1 is hardly coincidental, and in fact, the relation between almost-complex
manifolds and complex manifolds becomes more apparent as different definitions are utilized.
Moving forward, the goal is to discuss some of the ideas behind these other notations and
to examine the relationships between those notions and the ones discussed thus far.

1.2 Algebraic Preliminaries

The idea moving forward will be to devise enough machinery to finally link almost-complex
structures with complex structures. One way to do this is by way of differential forms, and
in order to elaborate, one must consider some algebraic tools defined on tangent bundles and
their duals. This section comes almost entirely from [41], though some exposition is based
on [49].

Throughout, assume that any manifold M has dimension dimM = n unless noted
otherwise, let TCM denote the complexified tangent space TCM = TM ⊗ C of M , and
note that the eigenvalues of the endomorphism I of an almost-complex manifold (M, I)
are λ = i and λ = −i, i =

√
−1. Next, define the i-component, respectively the −i-

component of TCM to be the kernel of I − i · id, respectively I + i · id; denote these spaces
T 1,0M = {v ∈ TCM : I(v) = i · v}, respectively T 0,1M = {v ∈ TCM : I(v) = −i · v}48.

48By abuse of notation, we write I to be the C-linear extension of the almost complex structure I to TCM .
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Clearly, T 1,0M ∩ T 0,1M = {0}, and straightforward computation confirms49

TCM = T 1,0M ⊕ T 0,1M. (A1)

Moving forward, the bundle T 1,0M , respectively T 0,1M , is called the holomorphic tangent
bundle, respectively the antiholomorphic tangent bundle, of the almost-complex manifold M .
Moreover, elements of T 1,0M , respectively of T 0,1M , will be called vector fields of type (1, 0)
(or holomorphic vector fields), respectively vector fields of type (0, 1) (or antiholomorphic
vector fields).

Next, note that the existence of an almost-complex structure I on TM necessarily induces
an almost-complex structure on the cotangent bundle T ∗M = HomR(TM,R) which has the
form I(f)(v) = f(I(v)) for all v ∈ TM . Furthermore, one notes that

(T ∗M)C = T ∗M ⊗ C = HomR(TM,R)⊗ C ∼= HomR(TM,C) = (TCM)∗,

i.e. the C-linear extension to TCM of the almost complex structure I : TM → TM induces a
C-linear extension to the complexified cotangent bundle (TCM)∗. For notational simplicity,
write T ∗CM for (TCM)∗ = (T ∗M)C. Applying to T ∗CM a decomposition analogous to (A1)
yields the existence of spaces

(T ∗M)1,0 = {α ∈ HomR(TM,C) : α(I(v)) = iα(v)} = (TM1,0)∗

(T ∗M)0,1 = {α ∈ HomR(TM,C) : α(I(v)) = −iα(v)} = (TM0,1)∗

satisfying
T ∗CM = (TM1,0)∗ ⊕ (TM0,1)∗. (A2)

Now, denote by Λk(T ∗M) the vector space of all differential k-forms on M , i.e. the
collection of all alternating covariant tensors of rank k on T ∗M . Similarly, define Λk

C(T ∗M) =
Λk(T ∗CM) to be the space of all differential k-forms on the complexified cotangent space T ∗CM
and let the exterior algebra50 of the vector spaces T ∗M and T ∗CM be the spaces

∧∗
T ∗M =

n=dimM⊕
k=0

∧k
T ∗M and

∧∗
T ∗CM =

n=dimM⊕
k=0

∧k
T ∗CM,

respectively. Let A∗M denote the collection of sections of
∧∗ T ∗CM and let A∗(M) denote the

collection of global sections of A∗M .

49Indeed, for any real vector space V with almost-complex structure I : V → V , V 1,0 ∩V 0,1 = {0} implies
that the canonical map ϕ : V 1,0 ⊕ V 0,1 → VC defined by ϕ : x⊕ y 7→ x+ iy is injective. Moreover, one can
verify that the map

ϑ : v 7→ 1

2
(v − iI(v))⊕ 1

2
(v + iI(v))

is the inverse of ϕ.
50Recall that the exterior algebra Λ(V ) over a vector space V is defined to be the quotient of the tensor

algebra T (V ) over V by the two-sided ideal I generated by all products v ⊗ v, v ∈ V .
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Finally, for an arbitrary vector space V endowed with an almost-complex structure I,
define a là equations (A1) and (A2) the decomposition∧p,q

V
def
=
∧p

V 1,0
⊗
C

∧q
V 0,1, (A3)

and note that one can derive a natural direct sum decomposition of k-forms as (p, q)-forms:∧k
T ∗CM =

⊕
p+q=k

∧p,q
T ∗CM. (A4)

Considering the collection AkM , respectively Ap,qM , of smooth sections of
∧k T ∗CM , respectively∧p,q T ∗CM , define Ak(M), respectively Ap,q(M), to be the collection of global sections thereof.

One easily verifies the existence of both a direct sum decomposition

AkM =
⊕
p+q=k

Ap,qM , (A5)

stemming from equation (A4) as well as a projection Πp,q : A∗(M) → Ap,q(M) induced by
the decomposition in (A5). Therefore, if one denotes by d : AkM → Ak+1

M the natural C-linear
extension of exterior differentiation (sending k-forms to (k + 1)-forms), one can define two
operators ∂, ∂ in terms of the projection Πp,q:

∂
def
= Πp+1,q ◦ d : Ap,qM → A

p+1,q
M and ∂

def
= Πp,q+1 ◦ d : Ap,qM → A

p,q+1
M . (A6)

The operators in (A6) send (p, q)-forms to (p+1, q)- and (p, q+1)-forms, respectively, where
p+ q = k.

Although it may not have been clear throughout, the above exposition was made to allow
a crucial piece of machinery needed to connect almost-complex structures with complex ones.
To bring things back down from the universe of abstraction, consider the following definition.

Definition A1.4. An almost-complex structure I on M is said to be integrable if M admits
local holomorphic coordinates for I around every point x ∈ M . In this case, these local
coordinates can be “patched” together to form a holomorphic atlas for M , thus giving M a
complex structure which naturally induces I.

Said differently, an almost-complex structure on I coinides with a complex structure on
M if and only if I is integrable; moreover, one can easily see that the complex structure
constructed on (M, I) via the “patching” argument in A1.4 is unique. This definition will
be expanded and utilized in the next section, where some basic results dependent upon the
algebraic machinery derived here will be collected.

1.3 Some Results

The purpose of this section is to collect a number of preliminary results on almost-complex
and complex manifolds. Except when beneficial to the overall exposition, facts will be stated
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without proof; unproven nontrivial results will be accompanied by references as appropri-
ate. When unsaid, the assumption is that (M, I) is an almost-complex manifold of some
dimension.

Proposition A1.5. Every complex manifold M is an almost-complex manifold.

Proof. Let M be a complex manifold and let (x1, y1, . . . , xµ, yµ) be the associated holomor-
phic basis for M . Next, let (∂x1, ∂y1, . . . , ∂xµ, ∂yµ) be the associated basis of TM where
here, ∂xi and ∂yj are shorthand for

∂

∂xi
, respectively

∂

∂yj
.

Define a map J : TM → TM by its action on the basis elements:

J(∂xi) = ∂yi and J(∂yi) = −∂xi. (A1)

One easily verifies that the map J is an automorphism, while the fact that J2 = − id is
abundantly clear.

Worth noting is that the map J in the proof above may seem canonical but it isn’t the
only almost-complex structure one can define given a complex manifold. Indeed, it isn’t
uncommon for the tangen bundle of such a manifold to have many automorphisms squaring
to −1. Something that isn’t in flux, however, is that the holomorphic basis elements used in
proposition A1.5 can be paired, a fact that perhaps makes intuitive sense and is verified as
follows.

Proposition A1.6. Every almost-complex manifold (M, I) is even-dimensional.

Proof. Let dimM = n and suppose that I : TM → TM is an almost-complex structure.
Necessarily, then, p(x) := det(I−x · id) is a polynomial of degree n where here, id denote the
n×n identity matrix. If n were odd, then p has a real root x0 satisfying det(I −x0 · id) = 0,
whereby it follows that there exists a vector v ∈ TM for which Iv = x0v. By definition,
though, −v = I2v = x2

0v, i.e. x2
0 = −1. Because x0 ∈ R, x2

0 6= −1 and so it must happen
that n is even.

Next, consider the following definition which, at first, seems like a detour.

Definition A1.7. For any linear map A on each tangent space of M , one defines the asso-
ciated Nijenhuis Tensor NA to be the tensor field of rank (1, 2) given by the formula

NA(X, Y ) = −A2[X, Y ] + A([AX, Y ] + [X,AY ])− [AX,AY ],

X, Y ∈ X(M). Here, X(M) is the collection of all vector fields on M and [∗, ∗] is the usual
Lie bracket.

Now, consider the following result which makes obvious how all the above-stated ideas
are interrelated.
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Theorem A1.8. An almost-complex structure I is integrable in the sense of definition A1.4
if it satisfies any (and hence all) of the following equivalent conditions:

1. For all α ∈ A∗(M), dα = ∂(α) + ∂(α).

2. On A1,0(M), Π0,2 ◦ d = 0.

3. ∂
2

= 0.

4. ∂2 = 0.

5. The Lie bracket of two (1, 0)-vector fields is again of type (1, 0).

6. NI(X, Y ) = 0 for all X, Y ∈ X(M).

The equivalence of the first two statements in definition A1.4 is proven in [41]. The
equivalence of the third and forth statements is discussed in [74] and follows from the fact
that Q∂(Qα) = ∂α, α ∈ A∗(M), where Q denotes complex conjugation. The third statement
follows directly from the first along with the fact d2 = 0:

d2 = ∂2︸︷︷︸
Type (2,0)

+ ∂∂ + ∂∂︸ ︷︷ ︸
Each of type (1,1)

+ ∂
2︸︷︷︸

Type (0,2)

= 0,

where now type-considerations yield the result (see [74]). Note that the fifth statement of
definition A1.4 is nothing more than a rewording of the second statement; moreover, it’s an
involution-type statement reminiscent of the Frobenius theorem, whereby several additional
equivalences related to foliation theory, etc., can also be derived (see, e.g., [49]). The equiv-
alence of the sixth and final statement with integrability is a classical result sketched, e.g.,
in [52].

Many times, in practice, the Nijenhuis tensor is the easiest to use condition for verifying
integrability. To conclude this section, consider the following (repetitive, though perhaps)
worthwhile observation which uses conditions from theorem A1.8 to prove something that
follows immediately from definition A1.4.

Corollary A1.9. The induced almost-complex structure on a complex manifold (M, I) is
integrable.

Proof. This is proved in detail in [74], where one shows that the canonically-induced basis
elements for TM and T ∗M satisfy the first condition of Theorem A1.8.
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Appendix 2: Various Other Preliminaries

The purpose of this appendix is to collect a variety of (mostly) definitions, (very few) results,
and (occasional bits of) miscellany that didn’t fit well throughout the main body of the
article. The presentation here will be much more list-centric with much less exposition
in-between.

2.1 Some Differential Geometry

2.1.1 G-Structures

First, recall that a frame bundle is a principal fiber bundle F (E) associated to a vector bundle
E → X so that the fibers Fx = F (E)x over a point x ∈ X is the set of all ordered bases or
frames for Ex. In particular, F (E) =

∐
x∈X Fx. In the event that the space X is a smooth

manifold, say X = M , the frame bundle of M is the one associated to the tangent bundle
TM . In this case, F = F (TM) is called the tangent frame bundle and is often denoted FM
or GL(M).

Definition B2.1. For a given structure group G, a G-structure on an n-manifold Mn is a
G-subbundle of the tangent frame bundle FM .

The notion in definition B2.1 is fundamental to the contents of this paper. For example, a
Riemannian structure corresponds to G = O(n), an almost complex structure is a GL(n,C)-
structure (requiring real dimension 2n), and an almost hypercomplex structure is a GL(n,H)-
structure (requiring real dimension 4n). What’s more, the reduction of the orthonormal
frame bundles discussed throughout sections 3.3 and 3.4.1 is a fundamental component of
G-structures defined on manifolds for various values G. This notion was discussed in a
bit more generality in section 3.2 in relation to flat Cliffordian structures and—in more
generality—in terms of Joyce’s “geometric structures” (see definition 3.1 in section 3.2 plus
exposition in [47]). Additional details of a different flavor can be found in [4] as well.

2.1.2 Einstein Manifolds

Definition B2.2. An Einstein manifold is a Riemannian manifold (M, g) whose Ricci tensor
Ric is proportional to g, i.e. Ric = kg for some constant k.

In the event that k = 0, the Einstein manifold M is said to be Ricci-flat. Though not
of particular importance throughout this article, [18] describes the importance of Einstein
manifolds by saying that they’re among the “nicest” of all Riemannian manifolds.

2.1.3 Weyl Manifolds

Much like the Einstein manifolds described above, Weyl manifolds don’t play a particularly
significant role in the current exposition. Because of their semi-regular mention throughout,
and because defining them in-text seemed anachronistic, the definition from [71] is given
here.
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Definition B2.3. Let (M, g) be a Riemannian manifold with ∇ a torsion-free connection
on M . If ∇ preserves the conformal class of g, i.e. if

∇g = g ⊗ θ

for some 1-form θ, then (M, g,∇, θ) is said to be a Weyl manifold.

2.1.4 Generalized Hopf Manifolds

The necessity of considering generalized Hopf manifolds comes, in part, because of theorem
2.6 in section 2.2 above. The exposition here comes from [69].

Definition B2.4. A Hermitian manifold (M,J, g) is a generalzied Hopf manifold if its Kähler
form Ω satisfies dΩ = ω ∧ Ω for a parallel form ω.

Note, in particular, that every generalized Hopf manifold is locally conformally Kähler
due to the decomposition of dΩ without the imposition of the parallelism of ω. What’s more,
note that every Hopf manifold Hn ' S1 × S2n−1 is necessarily a generalized Hopf manifold.
Other formulations of this definition, as well as results thereon, can be found in [69].

2.1.5 The Obata Connection

The following definition comes from [64].

Definition B2.5. On every hypercomplex manifold (M, I, J,K), there is a unique torsion-
free connection ∇ satisfying ∇I = ∇J = ∇K = 0. This connection is called the Obata
connection.

In addition to the obvious relations to hypercomplex geometry which can be found scat-
tered throughout the present volume, [70] shows that a converse of the existence criterion
mentioned in definition B2.5 above. Indeed, given a smooth manifold M with operators
I, J,K defining a quaternionic structure on TM , then the existence of a torsion-free affine
connection ∇ preserving each of I, J , and K ensures the integrability of all three of these
structures, thus making (M, I, J,K) into a hypercomplex manifold. Additional properties of
the Obata connection including algebraic definitions, curvature arguments, and discussions
on holonomy can be found in [64].

2.1.6 Holonomy

Because pertinent holonomy-related results extend far beyond the mere definition of holon-
omy, this subsection will be considerably longer than the others in this section of the ap-
pendix. Before getting too far ahead, however, it’s important to start with the definition.
Throughout, let ∇ be a connection on a principal bundle P with structure group G.

Definition B2.6. The holonomy group of ∇ on P = (P,G) is the subgroup of all a ∈ G
such that a fixed u ∈ P can be joined to u · a by a horizontal curve.
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In particular, then, the holonomy of a connection measures the extent to which to which
the distribution of horizontal subspaces fails to be integrable [66]. This alone shows the deep-
seeded connection between holonomy and the previous topics, but again, the immensity of
the notion of holonomy on manifold theory in general means that there’s much more than
meets the eye. One of the big results, the Ambrose-Singer theorem, relates the holonomy of
a connection in a principal bundle to the curvature form of the connection. The following
theorem is original, taken from [5], and so the language used is a bit more archaic than used
elsewhere.

Theorem B2.7 (The Ambrose-Singer Theorem). Let M be a connected smooth manifold
whose fundamental group is at most countably infinite, let H be a connection on a principal
bundle π : B →M with structure group G. Further, suppose that ω is the 1-form associated
to H, that Ω is the curvature 2-form of H, that g is the Lie algebra of G, and that G(b),
respectively G0(b), denotes the holonomy group, respectively the null-holonomy group, cor-
responding to each b ∈ B. Then for any b ∈ B, the subgroup of G generated by the Lie
subalgebra L(b) is precisely G0(b). Here, L(b) is the subalgebra generated by all Ω(s, t) with
s, t running through all pairs of tangent vectors to B at all points B(b)

Admittedly, the language of theorem B2.7 is none too illustrative. Intuitively, it can
be thought that curvature is equal to the holonomy over an infinitesimal closed loop /
parallelogram. In order to see this, imagine a surface σ : I × I → M in M parameterized
by a pair of variables x and y, x, y ∈ I = [0, 1]. In this case, a vector v may be transported
along ∂σ by way of the holonomy loop

(x, 0) −→ (1, y) −→ (x, 1) −→ (0, y), (B1)

where here, v is being acted upon by a lift of the boundary ∂σ. The parallelogram outlined
(B1) can be thought of as being “shrank to zero” by traversing smaller and smaller parallel-
ograms over [0, x]× [0, y], a process by which (a) curvature explicitly enters the picture and
(b) one can think of as taking the derivative of the parallel transport maps x = y = 0. The
result is that

D

dx

D

dy
V − D

dy

D

dx
V = R

(
∂σ

∂x
,
∂σ

∂y

)
V

where R is the curvature tensor. Thus, heuristically, it follows that the curvature is the
differential of the holonomy action at the identity of the holonomy group so that R(X, Y ) is
an element of the Lie algebra of Holp(ω).

The relationship between holonomy and hypercomplex geometry hardly stops there, how-
ever. Indeed, a classical result of Berger completely classified Riemannian manifolds based
on their holonomy. The succinct version from [18] can be stated as follows:

Theorem B2.8. Let (M, g) be a Riemannian manifold and assume that Hol0, the holonomy
group restricted to curves homotopic to the identity, is irreducible. Then either Hol0 is
transitive on the unit sphere or (M, g) is a locally symmetric space of rank greater than or
equal to 2.
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Of course, theorem B2.8 is hardly explicit. Therefore, consider the following rewrite,
found also in [18].

Theorem B2.9. Let (M, g) be a Riemannian manifold of dimension n which is not locally
symmetric and whose holonomy representation Hol0 is irreducible. Then its dimension and
holonomy representation Hol0 is one of the following:

Hol0(g) dimM Type of Manifold Comments

SO(n) n Orientable Manifold

U(n) 2n Kähler Manifold Kähler

SU(n) 2n Calabi-Yau Manifold Ricci-Flat, Kähler

Sp(n) · Sp(1) 4n Quaternion-Kähler Manifold Einstein

Sp(n) 4n Hyperkähler Manifold Ricci-Flat, Kähler

G2 7 G2 Manifold Ricci-Flat

Spin(7) 8 Spin(7) Manifold Ricci-Flat

Table 4
Summary of Berger’s Classification

Special attention must be paid to the above table relative to Lie group inclusions. For
example,

Sp(n) ⊂ SU(2n) ⊂ U(2n) ⊂ SO(4n),

whence it follows that every hyperkähler manifold is Calabi-Yau, which is in turn Kähler
and hence is orientable. Moreover, note that Sp(n) ⊂ Sp(n) · Sp(1), and so characterizing
Quaternion-Kähler51 manifolds as Riemannian manifolds (M, g) for which Hol0(g) is a sub-
group of Sp(n) ·Sp(1) immediately yields that all hyperkähler manifolds are also Quaternion-
Kähler. Generally, this is undesirable and is typically remedied by requiring a manifold (M, g)
to instead satisfy Hol0(g) = Sp(n) · Sp(1) in order to be Quaternion-Kähler.

An interesting historical tidbit related to the table above is that Berger’s original clas-
sification looked quite different from what’s presented above. In particular, Berger allowed
for the possibility of Spin(9) holonomy as a subgroup of SO(16), though Riemannian man-
ifolds with such holonomy were later shown to be locally symmetric. The original list also
included non-positive-definite pseudo-Riemannian metric non-locally symmetric holonomy
in a list consisting of SO(p, q) of signature (p, q), U(p, q) and SU(p, q) of signature (2p, 2q),

51As mentioned elsewhere, the class of Quaternion-Kähler manifolds is one that hasn’t been investigated in
this particular manuscript. The fact that such manifolds are quaternion-like rather than hypercomplex has
essentially excluded it from inclusion, though some authors studied above have done some investigation. For
example, in the language of section 3.3, a Quaternion-Kähler structure is a parallel rank 3 Clifford structure
[56].
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Sp(p, q) and Sp(p, q)·Sp(1) of signature (4p, 4q), SO(n,C) of signature (n, n), SO(n,H) of sig-
nature (2n, 2n), split G2 of signature (4, 3), G2(C) of signature (7, 7), Spin(4, 3) of signature
(4, 4), Spin(7,C) of signature (7, 7), Spin(5, 4) of signature (8, 8) and Spin(9,C) of signature
(16, 16). The split and complexified Spin(9) are necessarily locally symmetric as above and
should not have been on the list, while the complexified holonomies SO(n,C), G2(C), and
Spin(7,C) may be realized from complexifying real analytic Riemannian manifolds.

Finally, note that in the above table, the case of locally symmetric manifolds is left out
entirely. As shown in [18], Riemannian manifolds with this property are often classified based
on the normalizer N(G) of their holonomy group G = Hol0(g). As such, a similar table can
be made relative to the following result from [75]:

Theorem B2.10. Let M be a Riemannian manifold, let Γ be the group of deck transfor-
mations of the universal Riemannian covering π : M → N of a complete locally symmetric
Riemannian manifold, let M = M0 ×M ′ be the decomposition of M into Euclidean and
non-Euclidean parts, respectively, and let V be the group of pure translations of M0. Then
there is a canonical isomorphism between

Γ · (V × I0(M ′))/(V × I0(M ′))

and the group Hol(N)/Hol0(N) of components of the homogeneous holonomy of N .

As a final closing remark, note that several of the authors whose works were explored
above make explicit mention of holonomy in their expositions. Obviously, Berger’s classifi-
cation is mentioned throughout. Additionally, [16] note that the quotient Γ/Λ of a crystal-
lographic group (see footnote 28 in section 3.2, e.g.) Γ by the lattice Λ ⊂ Rn corresponds
to the linear holonomy group of a flat Riemannian manifold possessing a Clifford structure
whenever Γ is torsion free. Indeed, a great amount of information about a geometric struc-
ture can be made by observing the properties of its holonomy, thus making holonomy one
of the most important concepts in these branches of geometry.

2.2 Some Topology

2.2.1 Betti Numbers

While of fundamental importance in the field of algebraic topology, the notion of Betti num-
ber isn’t crucial to any of the results given throughout. However, the authors of more than
a few articles examined above were able to improve arbitrary constructions of hypercomplex
structures to constructions whose resulting manifolds satisfy certain Betti number criteria.
Without having a working understanding of what this means, it’s impossible to understand
why the aforementioned constructions are improvements. So, consider the following defini-
tion from [38].

Definition B2.11. The nth Betti number of a topological space X is the number of Z
summands in the decomposition of the nth homology group Hn(X) into a direct sum of
cyclic groups.
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Among the sources cited herein which makes extensive usage of Betti numbers is [29],
where a construction is outlined which produces compact 3-Sasakian 7-manifolds with ar-
bitrary second Betti number. This second Betti number condition can be thought of as
allowing a bit of freedom regarding the structure which is produced. Similar topological
considerations come into play in a number of cited sources, e.g. [24], [25], [26], [27], and [28].

2.2.2 Foliations & Contact Structures

Both foliations and contact structures have presented themselves as tools used to prove other
results throughout this paper. In particular, sections 2.3 and 2.4 make use of natural foliated
structures on manifolds and orbifolds in order to derive information about hypercomplex
structures. Contact structures are also defined in section 2.3. For the sake of completeness
(in addition to the fact that repetition is often a worthwhile facet of good pedagogy), both
these terms will be defined in this section. To begin, attention is focused on foliations.

Definition B2.12 (Foliations 1). A foliation F on a manifold Mn is an equivalence relation
on M consisting of equivalence classes of connected immersed submanifolds all of the same
dimension k ≤ n, so that locally the decomposition into equivalence classes can be modeled
on the decomposition of Rn into cosets x+Rk of the standardly embedded subspace Rk ⊂ Rn.
Here, k is called the dimension of the foliation while n − k is called its codimension. The
equivalence classes that make up F are called its leaves.

The theory of foliations is one of great depth, so much so that any reasonable treatment
is out of the question here. On the other hand, due to its extensive recurrence throughout
the exposition thus far is only a glimpse into the interrelatedness between that area and the
areas studied throughout. Therefore, a number of different aspects will be touched upon
before proceeding.

For that reason, it may be worthwhile to state at least one other definition equivalent to
B2.12, which was borrowed from [32].

Definition B2.13 (Foliations 2). A foliation of dimension k on a smooth manifold Mn is
an integrable rank k subbundle F of the tangent bundle TM . Here, n− k is said to be the
codimension of F .

Due to the heavy prevalence of bundle theory throughout the paper thus far, it’s no
surprise that definition B2.13 is so pertinent. Indeed, the theory of foliations is deeply
intertwined in the theory of complex and hypercomplex geometry in a number of seemingly
unrelated ways. For example, the discussion on the Frobenius theorem at the end of appendix
1: is intimately related to the theory of foliations due to the fact that it’s precisely this
theorem of Frobenius which connects the rather loose notion of a hyperplane distribution to
the significantly more rigid notions in foliation theory by way equating integrability, complete
integrability, and involutivity.

One result discussed previously which involves relates hypercomplex geometry to foli-
ation theory is the paper [24] which states explicitly that all manifolds which are locally
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conformally hyperkähler but not hyperkähler admit a natural dimension-1 foliation F and
that, when this foliation has compact leaves, the leaf space L = M/F of F is a compact
3-Sasakian orbifold. Authors of [57] take this line of exposition even farther, noting that
by imposing the assumptions necessary to make L either a C∞ manifold or an orbifold,
the intersection between the studies of hypercomplex geometry and foliation theory can be
highlighted more still. Those authors later show that examination of a select few natural foli-
ations on locally conformally hyperkähler spaces allow classifications involving Betti number
restrictions, integrability and structure compatibility, and bundle theory related to complex
and hypercomplex Hopf surfaces [57].

On the other hand, there are a number of equally interesting results relating foliation
theory to some of the geometry discussed elsewhere which haven’t been considered thus far.
One example comes from [63] and can be summarized as follows.

Example B2.14. Let (M, g) be a 4-dimensional Riemannian manifold and let F be a
dimension-2 foliation on M . The foliation F has associated tangent and normal bundles TF
and NF = TM/TF , respectively, consisting of vector fields which are tangent, respectively
normal, to the leaves of F . What’s more, the metric g determines an embedding of the
normal bundle NF as a subbundle of TM , whereby there exists a g-orthogonal splitting

TM = TF ⊕NF .

The claim is that F induces an almost-complex structure J = JF on M . Indeed, defining
J so that it rotates the fibers of TF and NF by π/2 clockwise yields an endomorphism
which squares to minus the identity. This can be expressed more explicitly by picking an
orthonormal frame {τ1, τ2, ν1, ν2} in TM so that τi ∈ TF and νi ∈ NF for i = 1, 2, at which
point J can be defined so that Jτ1 = τ2 and Jν1 = ν2. It can be shown that the leaves of F
are J-holomorphic and that the homotopy class of JF is independent of g.

A number of other geometry-centric results concerning foliations, especially in 4-manifolds,
can be found in [63] and [20], among others.

Next, attention shifts to the previously-discussed contact structures. The basics here will
be borrowed mostly from [50].

Definition B2.15. A smooth 1-form α on a smooth manifold M2n−1 is said to be a contact
form if α ∧ (dα)n−1 6= 0 everywhere on M . A smooth hyperplane distribution D on M is
called a contact structure if, for every point x ∈M , there is a neighborhood U and a contact
form α on U such that D|U = ker(α).

As a result of the Frobenius theorem, a contact structure D on a manifold M2n−1 is
nowhere integrable; this follows from a technical lemma stated, e.g., in [50]52 which states
that a distribution D of the form D = ker(α) for a 1-form α is involutive (hence, integrable)
if and only if α ∧ dα ≡ 0.

Among the many applications of contact geometry to the material presented thus far
was the vast intersection between contact geometry and Sasakian geometry. As it happens,

52Lemma 1.3.
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however, the applications of contact geometry (both directly and via tangentially related no-
tions) to the geometries discussed herein is substantial, so much so that a genuine exposition
thereon is impossible. A number of worthwhile considerations related to contact structures
can be found throughout [50], [58], [34], and sources cited therein.

2.2.3 Orbifold Theory

The word “orbifold” comes up incredibly often in the sections above pertaining to 3-Sasakian
and Stiefel structures, whereby it stands to reason that somehow these orbifolds allow more
flexibility than their manifold counterparts. As a matter of fact, this is true, and in the
limited exposition that follows, the goal will be to illustrate some of the major characteristics
of these orbifolds.

Succinctly, an orbifold is a space locally modeled on Rn modulo finite group actions. This
notion was first made precise by Thurston, and so it would make no sense to formally define
the term using any source except [68]. To that end:

Definition B2.16. An orbifold O consists of a Hausdorff space XO, along with a covering
of XO by a collection of open sets {Uα} closed under finite intersections so that to each Ui is

associated a finite group Γi, an action of Γi on an open subset Ũi ⊂ Rn, and a homeomorphism
ϕi : Ui ∼= Ũi/Γi subject to the following compatibility conditions: Whenever Ui ⊂ Uj, there is

to be an injective homomorphism fij : Γi ↪→ Γj and an embedding ϕ̃ij : Ũi ↪→ Ũj equivariant
with respect to fij (so that for γ ∈ Γi, ϕ̃ij(γx) = fij(γ)ϕ̃ij(γ)) so that the following diagram
commutes:

Ũi Ũj

Ũi/Γi Ũj/Γi

Ui

Ũj/Γj

Uj⊂

ϕ̃ij

ϕij = ϕ̃ij/Γi

ϕi

ϕj

fij

Figure 2
Orbifold Compatibility Condition

In addition to the above definition, Thurston gives a number of examples of orbifold
structures occurring “naturally” in topology. First and foremost, every closed manifold is an
orbifold where each group Γi is trivial, i.e. Ũ = U . Similarly, manifolds with boundary can
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be given orbifold structures by treating the boundary as a “mirror” so that any point on the
boundary has a neighborhood modeled on Rn/Z2 with Z2 acting by reflection in a hyperplane.
What’s more, for any manifold M and any group Γ acting properly discontinuously on M ,
M/Γ is an orbifold. A generous amount of theory pertaining to orbifolds is presented in
this chapter53 of [68] along with a number of illustrative drawings to further emphasize the
notions described.

2.3 Some Miscellany

2.3.1 Compact Hypercomplex 4-Manifolds & Hyperkähler 4n-Manifolds

Recall two major results given early in the present paper concerning dimension-4 compact
manifolds admitting hypercomplex and hyperkähler structures. Indeed, in section 2.1, it’s
shown that any compact hypercomplex 4-manifold which isn’t conformally equivalent to a
flat torus is necessarily conformally equivalent to either a Hopf surface or a K3 surface;
what’s more, in section 2.2, it’s stated that any compact hyperkähler 4n-manifold, n > 1,
is deformation equivalent to either the Hilbert scheme of points on a K3 surface, or to a
generalized Kummer variety. Like so many of the results throughout the paper, these are
stated without proof and without clearly defining some of the terms involved. The goal here
is to remedy part of that.

Definitions B2.17.

1. A Hopf surface is the quotient manifold obtained from Cn \ {0} modulo the Z-action
of the form (z1, . . . , zn) 7→ (λkz1, . . . , λ

kzn), k ∈ Z, 0 < λ < 1.

2. A K3 surface is a complete smooth surface which is simply connected and which has
trivial canonical bundle.

3. A Hilbert scheme is a scheme which is the parameter space for the closed subschemes
of some projective space or general projective scheme.

4. A generalized Kummer variety is a quotient variety (W,φ) of a polarized abelian variety
A with respect to G(A,X) such that W , φ are defined over a field K and that W is a
projective variety. Here, A is an Abelian variety, X is a structure on A which polarizes
A, and G(A,X) is the group of automorphisms of the polarized variety A.

Remarks.

1. The first of these definitions is straightforward enough. Note that the Hopf surface is
subsumed by the generalized Hopf surface defined in appendix 2.1 above. Moreover,
a Hopf surface X = (Cn \ {0})/Γ is necessarily isomorphic to the product of spheres,
X ∼= S1 × S2n−1.

53Chapter 13.
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2. As noted in several sources (e.g., [41], [70], [71], etc.), there are a number of different
(but equivalent) ways to define K3 surfaces. Moreover, all K3 surfaces are diffeomorphic
to one another.

3. The third definition isn’t insightful at all. Unfortunately, gaining insight requires a
discussion of scheme theory and the algebraic geometry of Grothendieck that’s far
more sophisticated than what it’s worth for the purpose of this paper.

4. The remarks about the third item carry true here as well, replacing “scheme” with
“variety.” Here, the interested reader is encouraged to read [51] and its cited references
for more background.

Besides the definitions given above, the author feels it worthwhile to say something
small about the structures listed in 2.2 in section 2.1 above, particularly with regard to
demonstrating explicit hypercomplex structures on each of the spaces listed therein. Because
both the torus and the quaternionic Hopf surface exist as quotient spaces obtained from H,
right-multiplication by imaginary quaternion units i, j, k ∈ H yield hypercomplex structures
accordingly. Moreover, the fact that (i) all K3 surfaces are diffeomorphic, (ii) the sphere
S3 ⊂ R4 ∼= H is a K3 surface, and (iii) S3 has a natural hypercomplex structure {I, J,K}
(given again by right multiplication by i, j, k ∈ H) means that all K3 surfaces inherit induced
hypercomplex structures from S3.

2.3.2 A Few Words About Twistor Theory

The goal of this last appendix subsection is to consider the relationship of twistor theory with,
e.g., hyperkähler manifolds. Undoubtedly, this material exists in many pieces of literature;
for the purpose of this section, however, the presentation in [39] will suffice.

Given a manifold M , the twistor space of M is the product Z = M ×S2. Note that when
M = (M, I, J,K) has real dimension 4n and is hyperkähler, there is an S2 of integrable
complex structures of the form Iu = aI+ bJ + cK where u = (a, b, c) ∈ R3 satisfies ‖u‖ = 1.
Moreover, the existence of a natural complex structure I0 on S2 implies that the structure
I of the form

I(X, Y ) = (IuX, I0Y ),

X ∈ TmM , Y ∈ TuS
2, is an integrable almost-complex structure on the tangent space

TmM ⊕ TuS
2 to the twistor space Z, whereby it follows that Z is a complex manifold of

dimension 2n+ 1.
[39] goes on to list a number of properties related to the complex structure on Z, including

an in-depth discussion of how the twistor space Z “encodes” the hyperkähler metric on M .
Diligent readers are encouraged to follow [39] and sources cited therein for more details.
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[15] Barberis, Maŕıa L., and Isabel G. Gotti, Abelian Complex Structures on Solvable
Lie Algebras, Preprint (2002). Available online via: http://arxiv.org/pdf/math/

0202220v1.pdf.

[16] Barberis, M.L., I.G. Dotti Miatello, and R.J. Miatello, On Certain Locally Homoge-
neous Clifford Manifolds, Annals of Global Analysis and Geometry, Vol 13
(1995), pp 289–301.

[17] Beauville, Arnaud, Variétés Kähleriennes dont la première classe de Chern est nulle,
J. Differential Geom., Vol 18, No 4 (1983), pp 755–782. Available online via:
http://projecteuclid.org/euclid.jdg/1214438181.

[18] Besse, Arthur L., Einstein Manifolds, Classics in Mathematics, Springer-Verlag
Berlin Heidlberg (2008).
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