Elementary Row Operations, REF, and RREF

Now that we know a little bit about matrices, we're going to learn how to use matrices to solve problems!

One of the most useful things we can do to a matrix is to "row reduce" it.
Row reduction is a process by which a matrix is simplified into an "equivalent" matrix which is easier to use overall. In order to make this procedure more canonical, we'll perform our reduction using a very precise collection of operations known as elementary row operations.

Throughout, we'll refer to the matrix

$$
M=\left(\begin{array}{cccc}
4 & 1 & -2 & 0 \\
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

for all of our examples.

Elementary Row Operations

There are three elementary row operations that we can perform on a matrix to get a new matrix which is considered "row equivalent" to it: ${ }^{1}$

1. Interchange two rows.

Example: Interchanging rows 2 and 4 (shorthand: $\mathrm{R} 2 \leftrightarrow \mathrm{R} 4$) in M yields the following:

$$
\left(\begin{array}{cccc}
4 & 1 & -2 & 0 \\
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) \xrightarrow{\mathrm{R} 2 \leftrightarrow \mathrm{R} 4}\left(\begin{array}{cccc}
4 & 1 & -2 & 0 \\
1 & 1 & -1 & -1 \\
0 & 1 & 3 & -1 \\
1 & 0 & 0 & -5
\end{array}\right)
$$

2. Multiply all entries in a row by a nonzero constant.

Example: We can multiply row 1 of M by 3 (shorthand: $\mathrm{R} 1=3 \mathrm{R} 1$) to get the following:

$$
\left(\begin{array}{cccc}
4 & 1 & -2 & 0 \\
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) \xrightarrow{\mathrm{R} 1=3 \mathrm{R} 1}\left(\begin{array}{cccc}
12 & 3 & -6 & 0 \\
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

[^0]3. Add (or subtract) a nonzero multiple of one row to another row.

Example: Let's say we wanted to add 4 times row 2 to row 3 , i.e. we leave every row the same except row 3, and we change row 3 by adding to it 4 R 2 (shorthand: $\mathrm{R} 3=\mathrm{R} 3+4 \mathrm{R} 2$).
We could do this all at once, but to split it into steps, we could:
(a) compute 4 R2, i.e. $4 \cdot\langle 1,0,0,-5\rangle=\langle 4,0,0,-20\rangle$;
(b) compute R3 plus 4R2, i.e. $\langle 0,1,3,-1\rangle+\langle 4,0,0,-20\rangle=\langle 4,1,3,-21\rangle$; and
(c) form the new matrix having the same entries as M in rows 1,2 , and 4, and having $R 3+4 R 2=\langle 4,1,3,-21\rangle$ as its third row.

Hence, the result is:

$$
\left(\begin{array}{cccc}
4 & 1 & -2 & 0 \\
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) \xrightarrow{\mathrm{R} 3=\mathrm{R} 3+4 \mathrm{R} 2}\left(\begin{array}{cccc}
4 & 1 & -2 & 0 \\
1 & 0 & 0 & -5 \\
4 & 1 & 3 & -21 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

Unsurprisingly, we can perform these three elementary row operations in succession to provide additional simplification. With a little foresight, this can yield a much simpler matrix which is row-equivalent to the matrix we started with:

Example:

$$
\begin{aligned}
\underbrace{\left(\begin{array}{cccc}
4 & 1 & -2 & 0 \\
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)}_{\mathrm{M}} \xrightarrow{\mathrm{R} 1 \leftrightarrow \mathrm{R} 2}\left(\begin{array}{cccc}
1 & 0 & 0 & -5 \\
4 & 1 & -2 & 0 \\
0 & 1 & 3 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) & \xrightarrow{\mathrm{R} 2 \leftrightarrow \mathrm{R} 3}\left(\begin{array}{cccc}
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
4 & 1 & -2 & 0 \\
1 & 1 & -1 & -1
\end{array}\right) \xrightarrow{\mathrm{R} 3=\mathrm{R} 3-4 \mathrm{R} 1}\left(\begin{array}{cccc}
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
0 & 1 & -2 & 20 \\
1 & 1 & -1 & -1
\end{array}\right) \\
& \xrightarrow{\mathrm{R} 3=\mathrm{R} 3-\mathrm{R} 2}\left(\begin{array}{cccc}
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
0 & 0 & -5 & 21 \\
1 & 1 & -1 & -1
\end{array}\right) \xrightarrow{\mathrm{R} 3=\left(-\frac{1}{5}\right) \mathrm{R} 3}\left(\begin{array}{cccc}
1 & 0 & 0 & -5 \\
0 & 1 & 3 & -1 \\
0 & 0 & 1 & -\frac{21}{5} \\
1 & 1 & -1 & -1
\end{array}\right) \xrightarrow{\longrightarrow}
\end{aligned}
$$

Note that each of the above matrices is row-equivalent to M .
Moving forward, one of our main goals will be to perform these three elementary row operations in succession until we get to a matrix which is in Row Echelon Form (REF) and/or Reduced Row Echelon Form (RREF).

Row Echelon Form (REF)

First, the definition:
Definition: A matrix is in row echelon form (REF) if it satisfies the following three properties:

1. All nonzero rows are above any rows of all zeros.
2. Each leading (nonzero) entry of a row is in a column to the right of the leading (nonzero) entry of the row above it.
3. All entries in a column below a leading (nonzero) entry are zeros.

As a remark, note that the entries above the leading (nonzero) entries of such a matrix may or may not equal 0 . For instance, both of the following matrices are in REF:

$$
\mathrm{A}=\left(\begin{array}{cccc}
\boxed{1} & 1 & 1 & 2 \\
0 & \boxed{2} & 3 & -1 \\
0 & 0 & 0 & 0
\end{array}\right) \quad \mathrm{B}=\left(\begin{array}{cccc}
\boxed{1} & 0 & 1 & 2 \\
0 & \boxed{2} & 3 & -1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Note that an entry in a box denotes the leading nonzero entry of that particular row.

Reduced Row Echelon Form (RREF)

As it happens, neither A nor B are in reduced row echelon form (RREF), because both have some mild simplifications that can be done to them.

Definition: A matrix is in reduced row echelon form (RREF) if it satisfies the following three properties:

1. It is in REF;
2. The leading (nonzero) entry in each row is 1 .
3. Each leading 1 is the only nonzero entry in its column.

In particular, we note that A fails both (2) and (3): The leading nonzero entry in row2 (i.e. the (2,2)-entry) is 2 , and the column containing that 2 has other nonzero entries (namely, the 1 in the (1,2)-entry). However, we can put A in RREF using two elementary row operations:

$$
\mathrm{A}=\left(\begin{array}{cccc}
\boxed{1} & 1 & 1 & 2 \\
0 & \boxed{2} & 3 & -1 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\mathrm{R} 2=\left(\frac{1}{2}\right) \mathrm{R} 2}\left(\begin{array}{cccc}
\boxed{1} & 1 & 1 & 2 \\
0 & \boxed{1} & \frac{3}{2} & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\mathrm{R} 1=\mathrm{R} 1-\mathrm{R} 2} \underbrace{\left(\begin{array}{cccc}
\boxed{1} & 0 & -\frac{1}{2} & \frac{5}{2} \\
0 & \boxed{1} & \frac{3}{2} & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right)}_{\mathrm{RREF}} .
$$

For B, one elementary row operation will get it into RREF:

$$
\mathrm{B}=\left(\begin{array}{cccc}
\boxed{1} & 0 & 1 & 2 \\
0 & \boxed{2} & 3 & -1 \\
0 & 0 & 0 & 0
\end{array}\right) \xrightarrow{\mathrm{R} 2=\left(\frac{1}{2}\right) \mathrm{R} 2} \underbrace{\left(\begin{array}{cccc}
\boxed{1} & 0 & 1 & 2 \\
0 & \boxed{1} & \frac{3}{2} & -\frac{1}{2} \\
0 & 0 & 0 & 0
\end{array}\right)}_{\text {RREF }}
$$

[^0]: ${ }^{1}$ Definition: Two matrices M and N are said to be row equivalent if there is a series of elementary row operations which transforms M into N (and vice versa).

