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Joint work with:
= Niranjan Ramachandran

— Cup products, the Heisenberg group, and codimension two algebraic cycles
Documenta Mathematica 21 (2016) 1313-1344

— Fiber integration of gerbes and Deligne line bundles
Homology, Homotopy and Applications, Volume 25 (2023) 21-51

= Niranjan Ramachandran & Maxime Ramzi
— Categorification of Chow Rings
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http://www.math.uiuc.edu/documenta/vol-21/35.html
https://doi.org/10.4310/HHA.2023.v25.n1.a2
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Introduction
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Categorification?

In mathematics, categorification is the process of replacing set-theoretic theorems with
category-theoretic analogues. Categorification [..] replaces sets with categories, functions
with functors, and equations with natural isomorphisms of functors satisfying additional
properties.

Wikipedia (quoting Louis Crane)

Categorification is the process of promoting an algebraic object to one with more
structure. [..] Lauda & Sussan, Notices AMS, January 2022.

Categorification, in the broad sense, refers to the realization of a mathematical object as
the Grothendieck group of certain [higher| category.
Peng Shan, Categorification and Applications, ICM 2022
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https://en.wikipedia.org/wiki/Categorification

Motivation: Divisors and line bundles

= X smooth, proper variety over a field F. (More generally, separated smooth scheme of finite type
over a field.)

= Z'(X) abelian group of algebraic cycles of codimension i on X.

o CHi(X) Chow group of algebraic cycles codimension { modulo rational equivalence.
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Motivation: Divisors and line bundles

X smooth, proper variety over a field F. (More generally, separated smooth scheme of finite type
over a field.)

Z'(X) abelian group of algebraic cycles of codimension i on X.

CHi(X) Chow group of algebraic cycles codimension { modulo rational equivalence.
For i = 1, Z!(X) = Divisors

CH'(X) —=— H'(X,0%)

A
: T”O

Z%X) —— ToRrs(0%)

D—Lp
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Divisorial correspondence

X connected, n generic point. Well-known exact sequence:

% Div

0 — 0% — 0. F(X)" — ®rexwin,Z — O

= Cycle D=3 n,x, with n, € Z, determines (map of abelian sheaves)
ap: L — Byexwsy, L, 1 D=) nex

= As sheaves of sets: ap: * — D,ex) Jx, L
= The O%-torsor Lp is the pullback

Ly —— n,F(X)"

[

%p
* GaxEX(l)./x*Z
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Divisorial correspondence

X connected, n generic point. Well-known exact sequence:

% Div

0 — 0% — 0. F(X)" — ®rexwin,Z — O

= Cycle D=3 n,x, with n, € Z, determines (map of abelian sheaves)
ap: L — Byexwsy, L, 1 D=) nex

= As sheaves of sets: ap: * — D,ex) Jx, L
= The O%-torsor Lp is the pullback

Lp —— 0 F(X)* — Zariski open cover {U;} of X
l lDiV — f; € F(X)*, ord,(f) = n, on x|,

%p
* GaxEX(l)./x*Z
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Divisorial correspondence

X connected, n generic point. Well-known exact sequence:

% Div

0 — 0% — 0. F(X)" — ®rexwin,Z — O

= Cycle D=3 n,x, with n, € Z, determines (map of abelian sheaves)
ap: L — Byexwsy, L, 1 D=) nex

= As sheaves of sets: ap: * — D,ex) Jx, L
= The O%-torsor Lp is the pullback

Lp — n.F(X)* — Zariski open cover {U;} of X
l lDiV — f; € F(X)*, ord,(f) = n, on x|,
o - On ULﬂU_/ fl'.zgl'.jf" gLJEO;(ULnUJ)

D
* GaxEX(l)./x*Z
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Divisorial correspondence

X connected, n generic point. Well-known exact sequence:

0 — Ox — n.F(X)* — Brext Jx, L — 0

= Cycle D= n x, with n, € Z, determines (map of abelian sheaves)
OCDi Z — @Xex(l)jx*z, ]. = D = Z nxX.

= As sheaves of sets: ap: * — D,ex) Jx, L
= The Ox-torsor L is the pullback

Lp —— 0 F(X)* — Zariski open cover {U;} of X
l lDiv — fi € F(X)*, ord,(f) = n, on x|

D
* > Drex)Jx, L — {g;;} are the transition functions of L.
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Higher codimension cycles?

S. Bloch, K, and algebraic cycles, 1979

= X smooth, algebraic surface over a field F.
That a point p € X can locally be defined by a pair of equations f =0, g = 0 gives

CHA(X) — H2(X, %, x)

= |n fact,

H(X, 0F) x HY(X, 0%) — H3(X, 0} @5 0F) —2> HA(X, X, x)

({gij}’{hij}) ’ > {gijvhjk}

= Lift L; ® L, ® L7 ® L5 through the central extension

1 = Xy x = St(K, x) = SL(K, x) = 1, SL(A) = lim SL,,(A)

n
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Recap

Coefficients

"You are doing K-theory."
In fact, 0% = X7 x.

Codimension 2

H*(X, %, x) : gerbes banded by %, .

In general

Codimension i cycle & -~~~ Higher stack C,
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A crash course on K-theory
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Algebraic K-theory

\ 4

Waldhausen Categories K-Theory > Spaces/Spectra
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Waldhausen categories

Waldhausen category
A Waldhausen category is a category € with:

= A zero object *
= A class of cofibrations (denoted ») containing all isomorphisms

= A class of weak equivalences (denoted =) containing all isomorphisms

Axioms:
1. x> Aforall A€ @ As>—®
. Pushouts of cofibrations exist and are cofibrations Y © S'

2

. L C~>sciB
3. Weak equivalences are closed under pushouts along cofibrations
4

. Gluing axioms
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Waldhausen categories ||

Examples

= Fin_: Finite pointed sets
= 7 Mod%: Finitely generated projective modules over a ring R <
= (Quillen) Exact categories

= Perfect complexes on schemes
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Waldhausen categories ||

Examples

= Fin_: Finite pointed sets
= 7 Mod%: Finitely generated projective modules over a ring R <
= (Quillen) Exact categories

= Perfect complexes on schemes
Pushouts and cofibers

Given a cofibration A »—~ B, the cofiber of A > B is the pushout

A — 5

I

¥ o —— B/A
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Waldhausen categories lll: S, -construction

The S, -construction associates to a Waldhausen category € a simplicial category wS, C.

= wS, C has objects: diagrams

— b d b d b d

* - AO,O —_— A0,1 —_— A0'2 > s > AO'n
b d b d b d

* = A1,1 — A1,2 > Al n

such that each square is a pushout.

= Morphisms are levelwise weak equivalences.

September 16, 2025 | Ettore Aldrovandi | Categorifying Algebraic Cycles and Intersection Theory \ 2025 Nairobi Workshop in Algebraic Geometry



K-Theory space/spectrum

= The K-theory space associated to a Waldhausen category € is

K(C) = Q|diag N, (wS, C)| £ Q|wS. €|

= The K-theory spectrum is the sequence of spaces
K(C) = Q|wS. €|, |wS.C|, [wS.S5.€, ..., lwstve, ...

obtained by iterating the S, -construction, to form the multi-simplicial category wsi™e.

= The K-groups are the homotopy groups of the K-theory space/spectrum:

K,(C) £ m,K(C) = m,K(C), i>0.
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K-Theory groups

Examples

= Ky(C) is the Grothendieck group of €
= If Ris a (nice commutative) ring, define K;(R) = Ki(Mod%).
- K{(R) = R*
(In general there is a map K;(R) — R*)
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K-Theory sheaves

Recall: X smooth, proper variety over a field F.
(More generally, separated smooth scheme of finite type over a field.)

Definition

= The K-theory sheaf X x is the Zariski sheaf associated to the presheaf

U'— K, (03(U))

= We can consider the sheaf of spectra Ky associated to the Zariski presheaf

U— K(04(0))
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The Gersten complex and conjecture
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The Gersten complex |

Definition
For i > 0, the Gersten Complex is the complex of sheaves on X
Ger; x ,,,K(F(X)) — @% (k(x)) — - — @# K (k(x)) — @ Ky (k(x))

xeX(1 xeX (i1 xEX(‘)
g LT — X

F(X) is the function field of X, XU) is the set of points of codimension j in X, and k(x) is the residue field

at x.

The Gersten conjecture

The Gersten complex Ger; x is a (flasque) resolution of the sheaf X x
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The Gersten complex |

Definition
For i > 0, the Gersten Complex is the complex of sheaves on X

Gerix : K(F(X))— B K_1(k(x)) =~ — P Kik(x)) — B Ko(k(x))

xeX(1) xeX(i-1) xeX(®

F(X) is the function field of X, XU) is the set of points of codimension j in X, and k(x) is the residue field

at x.

The Gersten conjecture

The Gersten complex Ger; x is a (flasque) resolution of the sheaf X x

As a result:
0— K; x — K (F )—>@ k() — - — P Ki(k @Kok(x)
xeX( xeX(i-1) xeX()
is exact.
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The Gersten complex 1l

Remarks

D, x Ko(k(x)) = B, cxvZ is the sheaf associated to the presheaf U i Z'(U).
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The Gersten complex |

Remarks

D, x Ko(k(x)) = B, cxvZ is the sheaf associated to the presheaf U i Z'(U).
" D, xi Kl(k(x)) — D,ex Ky(k(x)) is the "ord” map:

h(x*
) P kx)— P z fl—)Zord(f)x

xeX(i=1) xeX ()
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The Gersten complex |

Remarks

= D, xKy(k(x)) = ®,cx0Z is the sheaf associated to the presheaf U Z4U).
= B, xi-n K (k(X)) — B,exoKo(k(x)) is the "ord” map:

= D, xii2 Ko(k(x)) — D,cxi-1nKi(k(x)) is given by tame symbols

ord,(g)
Tx{f: g} — (_1)ordx(f)ordx(g) (Z;ord 7 mod X) € k(x)*

By Matsumoto's theorem, K,(F) is generated by symbols {f, g} satisfying bilinearity, anti-symmetry,
and the Steinberg relation {f,1 —f} = 1.
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Bloch-Quillen formula

Theorem (Bloch, Quillen)

If X is a smooth, proper variety over a field F, then

CH{(X) — H{(X, X x)
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Bloch-Quillen formula

Theorem (Bloch, Quillen)

If X is a smooth, proper variety over a field F, then
CH{(X) — H{(X, X x)

Remark
The part of the Gersten complex
d
Gerix: - — P (kX)) = P Z—0
xeX(i=1) xeX ()

gives the cycles modulo rational equivalence.
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Categorification of cycles and higher torsors
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Animas and higher stacks

Following Cesnavicius—Scholze, Lurie...

= The oo-category Ab of Abelian Animas of Animated Abelian Groups is the co-category
obtained from the category of simplicial abelian groups by inverting weak equivalences.

= Ab =~ D=Y(Z), the connective part of the co-derived category of Z.
= Sh(X, Ab) is the co-category of Zariski sheaves of anima on X with values in Ab.

September 16, 2025 \ Ettore Aldrovandi \ Categorifying Algebraic Cycles and Intersection Theory \ 2025 Nairobi Workshop in Algebraic Geometry



Animas and higher stacks

Following Cesnavicius—Scholze, Lurie...

= The oo-category Ab of Abelian Animas of Animated Abelian Groups is the co-category
obtained from the category of simplicial abelian groups by inverting weak equivalences.

= Ab =~ D=Y(Z), the connective part of the co-derived category of Z.
= Sh(X, Ab) is the co-category of Zariski sheaves of anima on X with values in Ab.

Remarks

= Concretely, an object of Ab is a simplicial abelian group A, or a connective chain complex of
abelian groups A,.

= Dold-Kan correspondence:
Chyo(Ab) = sAb
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Animas and higher stacks

Following Cesnavicius—Scholze, Lurie...

= The oo-category Ab of Abelian Animas of Animated Abelian Groups is the co-category
obtained from the category of simplicial abelian groups by inverting weak equivalences.

= Ab =~ D=Y(Z), the connective part of the co-derived category of Z.
= Sh(X, Ab) is the co-category of Zariski sheaves of anima on X with values in Ab.

Remarks

= Concretely, an object of Ab is a simplicial abelian group A, or a connective chain complex of
abelian groups A,.

= Dold-Kan correspondence:
Chyo(Ab) = sAb

but invert weak equivalences.
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Classifying map of a cycle?

Write the Bloch-Quillen formula as
CHY(X) = HY(X, X; x) = H(X,B'X, x) = noI'(X, B'X; )

Problem/Question

Up to equivalence, a cycle a € Z*(X) should correspond to a “classifying” map
fo: % — B'X, x

in Sh(X, Ab). By pullback, we get the “B X y torsor” €, corresponding to a:

ia - I (£ %)
S Ta) BL.%L'X
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Bloch-Quillen-Gersten revisited

Write the Gersten resolution as a morphism

.7(5'X > 0 > 0 > 0

| | | | |

Ki(F(X)) — &xexw Kioi(k(x)) —— - —— SexunKi(k(x)) —— ByexwKol(k(x))

Y
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Bloch-Quillen-Gersten revisited

Write the Gersten resolution as a morphism

.7(5'X > 0 > 0 > 0

| | | | |

Ki(F(X)) — &xexw Kioi(k(x)) —— - —— SexunKi(k(x)) —— ByexwKol(k(x))

Y

Then Ger; x (or rather the anima it determines) is a model for B‘X; x in Sh(X, Ab).

Degrees are now homological, so X x is in degree i. We should really write Ger; x[i].
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Higher torsors attached to cycles

= Cycle =3} n,x € Z!(X) determines
fo: Z[0] — Ger x[i]

sending 1 € Z to the vector {n,} € ®,xwKy(k(x)).
= In Sh(X, Ani), we have

fa: * — @yexKo(k(x)) — Ger x[i] = Bij(i,X

= Pullback gives the B"_lﬂCL-,X—torsor C, attached to a:

C, — %
* ——> B'X; x
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Higher torsors attached to cycles Il

= Rewrite the equivalence Ger; «[i] = B'X; x as an extension in Sh(X, Ab):
Bi_lj{i,x — 13197 x[l] — ByexwoKo(k(x))

= C

« i the fiber of 7., Ger; \[i] over the point a: * — @, xw Ky(k(x)):

B™IK, x —— 1157 x[i] —— ®rexio Ko(k(x))

. A

C > sk
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Categorification of intersection theory
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Intersection of cycles

Bloch-Quillen gives is compatible with intersection products:

CHY(X) x CH/(X) — CH"™(X)
o fodud « k'%'“k

Same as
| | v ®
H‘(X,j(ilx)xHJ(X,jCj,X)—>H‘+J(X,7(L-'X®5(j'x)—>H‘“(X,j(iﬂ-,x)

where the last map is induced by the product on K-theory spectra [Grayson]
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Intersection of cycles

Bloch-Quillen gives is compatible with intersection products:
CHY(X) x CH/(X) — CH"™(X)
Same as
H (X, Kix) % H/(X, Kix) — H*(X, Kix ®K;x) — H*(X, Kitjx)

where the last map is induced by the product on K-theory spectra [Grayson]

Remark

There is no map at the cycle level:

Z{(X)x ZI(X) — ZH(X), (a,B) — a-B
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Intersection of cycles ||

There is a map at the level of classifying maps of cycles:

%k Ol_/\ﬁ) Bi.y(iyx A BJ.%J,X — BH](KLX@KLX) — Bi+j.7c'i+jyx

Let G, be the resulting B“/~' %, ; x-torsor.
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Intersection of cycles |l

There is a map at the level of classifying maps of cycles:

%k Ol_/\ﬁ) Bi.y(iyx A BJ.%J,X — BH](KLX@KLX) — Bi+j.7c'i+jyx

Let G, be the resulting B“/~' %, ; x-torsor.

Questions

= Can we describe C,,z in terms of C, and Cp?

= Is C,,p equivalent to Cp 57
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Codimension 2
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X,-gerbes attached to codimension 2 cycles

In codimension 2 we have the four-term exact sequence:
Tame ord
0 — Ko x — Ky(F(X)) — P Ki(k(x)) — P Ko(k(x)) — 0
xeX@) xeX(2)

If a is a codimension 2 cycle, the corresponding Blﬂ(Q,X-torsor C, is a X, x-gerbe.

Theorem (E.A.—N. Ramachandran, 2016)

= The class of €, in H*(X, X, x) corresponds to a € CH?(X) via the Bloch-Quillen
isomorphism.

= C, and Gz are equivalent as X, x-gerbes if and only if a and B are rationally equivalent.
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Heisenberg group and cup product

o= U = Dp 2 Bxaf ((o,0), (a,45)
)
The Heisenberg group is the central extension of abelian sheaves on X ¢ -
ol J
0_)‘7(1,X®‘7(1,X_) H_)jc‘l,Xx‘gCl,X_)O a@éz
| 'Tlu
\V} ey y
l - AN /{ m"‘aﬁ'w"“l

!
{&’E}ék?"( O — -7(2')( _ H —B%,/k?&'}(4f——> Q 7] ]C@Z

)

The classifying map BX; x x BX; x — B2562'X corresponds to the gerbe of liftings of a
K1 x x K7 x-torsor to an H-torsor.

The cup product H*(X, K1 x) X HY(X, Kix) — H?(X, X, x) arises from the Heisenberg group via
the class of the extension.
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The X, x-gerbe of an intersection

Let D, E be divisors on X, with associated Oy-torsors L, M.
The corresponding classifying maps fp, fg determine a X, x-gerbe Cp, g via the pullback

* — B x x BX; x — B*%, &

of the class of the Heisenberg extension.

Theorem (E.A.—N. Ramachandran, 2016)

Let « = D - E be the intersection cycle. There is a natural equivalence of X, y-gerbes

C,— Cpr
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Behavior under certain morphisms

Let m: X — S be a smooth projective morphism of relative dimension one.

Theorem (E.A.—N. Ramachandran, 2023)

= [here exists a natural additive functor

/! 82%2,)(—)81.7(1'5 - TEQQ(O;)

1A

= Suppose that L, M are Oy-torsors corresponding to divisors D, E on X. Let Cp ¢ be the
X, x-gerbe of liftings associated to L, M. Then

/ Cpe = (L, M)

3

where (M is the Deligne pairing of L and M.
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Thank you!
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