Groups, Rings and Vector Spaces I

*

Proposed Problems — Cats

September 30, 2018

- I. Let $\mathcal{C} = Set$. Identify the categories $\mathcal{C}_{/\{*\}}$ and $^{\emptyset}/\mathcal{C}$.
- 2. Still let $\mathcal{C} = Set$. Identify the category $\mathcal{C}_{/\emptyset}$
- 3. Let C be any category. Fix an object S of C and consider the slice (=comma) category $C_{/S}$. Now, let $f : T \to S$ be an object of $C_{/S}$. Identify $(C_{/S})_{/f}$.
- 4. Let *C* be a category in which products and coproducts exist, and assume that *I* is an initial object and *T* is a terminal one. Prove that, for any object *X* of *C*, there are isomorphisms

$$T \times X \cong X \cong X \times T, \quad I \sqcup X \cong X \cong X \sqcup I.$$

5. It is not going to be possible to formulate a general result such as that of the preceding problem if we switch the rôles of *I* and *T*. *However*, do the following: if *C* = *Set*, and *S* is any set, what are the results of

$$\emptyset \times S, \{*\} \sqcup S$$
?

6. Consider the category Set_* of pointed sets, and use the short-hand notation (T, t) to denote a pointed set $t : \{*\} \rightarrow T$. If S is any set, and (T, t) any pointed one, prove that there is an isomorphism

 $\operatorname{Hom}_{\operatorname{Set}_*}(\{*\} \sqcup S, (T, t)) \cong \operatorname{Hom}_{\operatorname{Set}}(S, T),$

where in the right-hand side *T* simply denotes the underlying set of (T, t) (i.e. you forget the distinguished point).

- 7. Let \mathcal{G} be a groupoid, assumed to be small to avoid set-theoretic complications. Define a relation on the objects of \mathcal{G} as follows: *X* is equivalent to *Y*, written $X \sim Y$, if there exists an arrow $X \rightarrow Y$. Prove ~ is an equivalence relation. (Ob(\mathcal{G})/~ is typically denoted by $\pi_0(\mathcal{G})$.)
- 8. Let $f: T \to S$ be a surjective function. Define the following *category* \mathcal{G} : the objects are the points of T, i.e. $Ob(\mathcal{G}) = T$; the morphisms are the pairs $(t_1, t_2) \in T \times T$ such that $f(t_1) = f(t_2)$.
 - (a) Verify that \mathcal{G} is a category and prove that it is in fact a groupoid;
 - (b) Prove that $\pi_0(\mathcal{G}) \cong S$;
 - (c) Prove that any equivalence relation arises in this way.
 - (d) More generally, drop that the assumption that f be surjective; prove that in this case $\pi_0(\mathcal{G})$ is isomorphic to the image of f.
- 9. Using the notions expounded in Problems 7 and 8, can you reconstruct a groupoid \mathcal{G} from the knowledge of $\pi_0(\mathcal{G})$? Why or why not?
- 10. The skeleton of A CATEGORY. Let C be a category, and define a new category Sk C in the following way. Select one object for each *isomorphism class* of objects of C, where, again, X and Y are in the same class if there exists an isomorphism $X \rightarrow Y$. If U, V are two such objects, define

$$\operatorname{Hom}_{\operatorname{Sk}\mathcal{C}}(U,V) = \operatorname{Hom}_{\mathcal{C}}(U,V).$$

Note that it is possible that V = U. What happens then?

- (a) Verify that Sk C is well defined.
- (b) Let k be your favorite field, and let $C = Vect_k$ be the category of vector spaces over k. What is Sk($Vect_k$)? (HINT: This category appears in one of the problems in the textbook...)
- (c) Let $\mathcal{F}in$ the category of *finite* sets, and $\mathcal{F}in_*$ that of finite, *pointed* sets. Give descriptions of Sk($\mathcal{F}in$) and Sk($\mathcal{F}in_*$).