Groups, Rings and Vector Spaces I

察
Proposed Problems - Cats

September 30, 2018
I. Let $\mathcal{C}=\operatorname{Set}$. Identify the categories $\mathcal{C}_{[\{*\}}$ and ${ }^{\varnothing} / \mathcal{C}$.
2. Still let $\mathcal{C}=\operatorname{Set}$. Identify the category $\mathcal{C}_{/ \varnothing}$
3. Let \mathcal{C} be any category. Fix an object S of \mathcal{C} and consider the slice (=comma) category $\mathcal{C}_{/ S}$. Now, let $f: T \rightarrow S$ be an object of $\mathcal{C}_{/ S}$. Identify $\left(\mathcal{C}_{/ S}\right)_{/ f}$.
4. Let \mathcal{C} be a category in which products and coproducts exist, and assume that I is an initial object and T is a terminal one. Prove that, for any object X of \mathcal{C}, there are isomorphisms

$$
T \times X \cong X \cong X \times T, \quad I \sqcup X \cong X \cong X \sqcup I .
$$

5. It is not going to be possible to formulate a general result such as that of the preceding problem if we switch the rôles of I and T. However, do the following: if $\mathcal{C}=\operatorname{Set}$, and S is any set, what are the results of

$$
\varnothing \times S, \quad\{*\} \sqcup S ?
$$

6. Consider the category Set $_{*}$ of pointed sets, and use the short-hand notation (T, t) to denote a pointed set $t:\{*\} \rightarrow T$. If S is any set, and (T, t) any pointed one, prove that there is an isomorphism

$$
\operatorname{Hom}_{s e t_{*}}(\{*\} \sqcup S,(T, t)) \cong \operatorname{Hom}_{s e t}(S, T),
$$

where in the right-hand side T simply denotes the underlying set of (T, t) (i.e. you forget the distinguished point).
7. Let \mathcal{G} be a groupoid, assumed to be small to avoid set-theoretic complications. Define a relation on the objects of \mathcal{G} as follows: X is equivalent to Y, written $X \sim Y$, if there exists an arrow $X \rightarrow Y$. Prove \sim is an equivalence relation.
$\left(\mathrm{Ob}(\mathcal{G}) / \sim\right.$ is typically denoted by $\left.\pi_{0}(\mathcal{G}).\right)$
8. Let $f: T \rightarrow S$ be a surjective function. Define the following category 9 : the objects are the points of T, i.e. $\operatorname{Ob}(\mathcal{G})=T$; the morphisms are the pairs $\left(t_{1}, t_{2}\right) \in T \times T$ such that $f\left(t_{1}\right)=f\left(t_{2}\right)$.
(a) Verify that \mathcal{G} is a category and prove that it is in fact a groupoid;
(b) Prove that $\pi_{0}(\mathcal{G}) \cong S$;
(c) Prove that any equivalence relation arises in this way.
(d) More generally, drop that the assumption that f be surjective; prove that in this case $\pi_{0}(\mathcal{G})$ is isomorphic to the image of f.
9. Using the notions expounded in Problems 7 and 8, can you reconstruct a groupoid \mathcal{G} from the knowledge of $\pi_{0}(\mathcal{G})$? Why or why not?
io. The skeleton of a CATEGORy. Let \mathcal{C} be a category, and define a new category $\mathrm{Sk} \mathcal{C}$ in the following way. Select one object for each isomorphism class of objects of \mathcal{C}, where, again, X and Y are in the same class if there exists an isomorphism $X \rightarrow Y$. If U, V are two such objects, define

$$
\operatorname{Hom}_{\text {ske } e}(U, V)=\operatorname{Hom}_{e}(U, V) .
$$

Note that it is possible that $V=U$. What happens then?
(a) Verify that $\mathrm{Sk} \mathcal{C}$ is well defined.
(b) Let k be your favorite field, and let $\mathcal{C}=\operatorname{Vect}_{k}$ be the category of vector spaces over k. What is $\operatorname{Sk}\left(\right.$ Vect $\left._{k}\right)$? (Hint: This category appears in one of the problems in the textbook...)
(c) Let $\mathcal{F i n}$ the category of finite sets, and $\mathcal{F i n}$ * that of finite, pointed sets. Give descriptions of $\operatorname{Sk}(\mathcal{F i n})$ and $\operatorname{Sk}\left(\mathcal{F i n}_{*}\right)$.

