Groups, Rings and Vector Spaces I

蔡

Proposed Problems - Groups

October 17, 2018
I. Construct a homomorphism $C_{2} * C_{n} \rightarrow D_{2 n}$. Optionally, if you dare, prove it is surjective.
2. Let G be a group. For any $g \in G$, prove that the map $\iota_{g}: G \rightarrow G$ defined by $l_{g}(h)=$ $g h g^{-1}, \forall h \in G$, is an isomorphism.
3. For any group G, prove that the map

$$
\begin{aligned}
\iota: G & \longrightarrow \operatorname{Aut}(G) \\
g & \iota_{g}
\end{aligned}
$$

is a homomorphism
4. For a group G, prove that G is abelian if and only if the binary operation in G, as a function

$$
m: G \times G \longrightarrow G
$$

is a group homomorphism.
5. For a group G, prove that the map $\sigma: G \rightarrow G, \sigma(g)=g^{-1}$, is a group homomorphism if and only if G is abelian.
6. Let C_{k} be the cyclic group of order k. Recall that if $k \mid n$ there is a canonical homomorphism $\pi_{k}^{n}: C_{n} \rightarrow C_{k}$. Prove that $\left(\pi_{m}^{m n}, \pi_{n}^{m n}\right): C_{m n} \rightarrow C_{m} \times C_{n}$ is an isomorphism iff $\operatorname{gcd}(m, n)=1$.
7. Let S and T be two sets with the same cardinality. Prove that the corresponding permutation groups $\operatorname{Aut}(S)$ and $\operatorname{Aut}(T)$ are isomorphic.
8. Prove that in the category $\mathcal{G} r p$ an epimorphism is necessarily surjective. Provide an example to show that in the category $\mathcal{G} r p$ an epimorphism does not necessarily have a right inverse.
9. Prove that D_{24} is not isomorphic with S_{4}.

1o. There are two interesting, nonabelian, groups of order 8: D_{8}, and Q_{8}, the Quaternion Group. $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$, where $i^{2}=j^{2}=k^{2}=-1, i j=k=-j i$, plus cyclic permutation of these, and ± 1 behave in the expected way. Prove that D_{8} is not isomorphic to Q_{8}.
II. Let G be a group and H, K two subgroups. Prove that if $G=H \cup K$, then either $H=G$, or $K=G$.
12. Let G be a group such that it only has two subgroups. Prove that G is of prime order.
13. Let F be a field and let $\mathrm{GL}_{n}(F)$ be the groups of $n \times n$ invertible matrices with entries in F. Let $\mathrm{SL}_{n}(F)$ be the subgroup of $\mathrm{GL}_{n}(F)$ of matrices whose determinant is equal to one. Denote by I the identity matrix and define:

$$
\operatorname{PGL}_{n}(F)=\mathrm{GL}_{n}(F) /\left\{\lambda I \mid \lambda \in F^{*}\right\} .
$$

- Verify that $\mathrm{PGL}_{n}(F)$ is a group, in other words, verify that $\left\{\lambda I \mid \lambda \in F^{*}\right\}$ is normal;
- Prove that there is an isomorphism $\operatorname{PGL}_{2}(\mathbb{C}) \cong \operatorname{PSL}_{2}(\mathbb{C})$, but that $\operatorname{PSL}_{2}(\mathbb{R})$ and $\operatorname{PGL}_{2}(\mathbb{R})$ are not isomorphic to each other.
- Can you explain this phenomenon in terms of F? (HINT: It helps thinking about these isomorphisms in terms of the first isomorphism theorem.)

14. Let \mathbb{F}_{2} be the field with two elements (as an abelian group we call it $\mathbb{Z} / 2 \mathbb{Z}$) and consider the group $\mathrm{SL}_{2}\left(\mathbb{F}_{2}\right)$. Note that this is equal to the group $\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ (why?) Identify it (i.e. find an isomorphism) with a previously know group.
15. Let $\operatorname{SU}(1,1)=\left\{g \in M_{2}(\mathbb{C}) \left\lvert\, \bar{g}^{t}\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) g=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\right.\right\}$ (the group of 2×2 matrices with complex entries satisfying the stated condition). $\operatorname{Define} \operatorname{PSU}(1,1)$ in the way analogous to the previous problem.
Identify $\operatorname{PSU}(1,1)$ with a group you know from another course.
16. Let G be a group acting on a set S. Define a groupoid \mathcal{G} by letting $\mathrm{Ob}(\mathcal{G})=S$, and declaring that there is an arrow from s to t if and only if there exists $g \in G$ such that $t=g s$.
(a) Verify that \mathcal{G} is indeed a groupoid
(b) What is $\pi_{0}(\mathcal{G})$?
(c) If $s \in S$, what is $\operatorname{Aut}_{g}(s)$?
17. Let $G=\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$, and consider $\widehat{\mathbb{F}_{2}}=\mathbb{F}_{2} \cup\{\infty\}$. Let G act on $\widehat{\mathbb{F}_{2}}$ by fractional linear transformations (check that it does it make sense). Is this action faithful, transitive, free? Analyze the orbits. Identify the action (i.e. find an isomorphism) with that of a known group (that you should have identified from a previous problem)
