Groups, Rings and Vector Spaces I

*

Proposed Problems — Groups

October 17, 2018

- 1. Construct a homomorphism $C_2 * C_n \to D_{2n}$. Optionally, if you dare, prove it is surjective.
- 2. Let G be a group. For any $g \in G$, prove that the map $\iota_g \colon G \to G$ defined by $\iota_g(h) = ghg^{-1}, \forall h \in G$, is an isomorphism.
- 3. For any group G, prove that the map

$$u: G \longrightarrow \operatorname{Aut}(G)$$
$$g \longmapsto \iota_g$$

is a homomorphism

4. For a group G, prove that G is abelian if and only if the binary operation in G, as a function

$$m: G \times G \longrightarrow G,$$

is a group homomorphism.

- 5. For a group G, prove that the map $\sigma : G \to G$, $\sigma(g) = g^{-1}$, is a group homomorphism if and only if G is abelian.
- 6. Let C_k be the cyclic group of order k. Recall that if k|n there is a canonical homomorphism $\pi_k^n \colon C_n \to C_k$. Prove that $(\pi_m^{mn}, \pi_n^{mn}) \colon C_{mn} \to C_m \times C_n$ is an isomorphism iff gcd(m, n) = 1.

- 7. Let S and T be two sets with the same cardinality. Prove that the corresponding permutation groups Aut(S) and Aut(T) are isomorphic.
- 8. Prove that in the category *Grp* an epimorphism is necessarily surjective. Provide an example to show that in the category *Grp* an epimorphism does not necessarily have a right inverse.
- 9. Prove that D_{24} is not isomorphic with S_4 .
- 10. There are two interesting, nonabelian, groups of order 8: D_8 , and Q_8 , the *Quaternion Group*. $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, where $i^2 = j^2 = k^2 = -1$, ij = k = -ji, plus cyclic permutation of these, and ± 1 behave in the expected way. Prove that D_8 is not isomorphic to Q_8 .
- II. Let G be a group and H, K two subgroups. Prove that if $G = H \cup K$, then either H = G, or K = G.
- 12. Let G be a group such that it only has two subgroups. Prove that G is of prime order.
- 13. Let *F* be a field and let $GL_n(F)$ be the groups of $n \times n$ invertible matrices with entries in *F*. Let $SL_n(F)$ be the subgroup of $GL_n(F)$ of matrices whose determinant is equal to one. Denote by *I* the identity matrix and define:

$$\operatorname{PGL}_n(F) = \operatorname{GL}_n(F) / \{ \lambda I | \lambda \in F^* \}.$$

- Verify that $PGL_n(F)$ is a group, in other words, verify that $\{\lambda I | \lambda \in F^*\}$ is normal;
- Prove that there is an isomorphism $PGL_2(\mathbb{C}) \cong PSL_2(\mathbb{C})$, but that $PSL_2(\mathbb{R})$ and $PGL_2(\mathbb{R})$ are *not* isomorphic to each other.
- Can you explain this phenomenon in terms of *F*? (*HINT:* It helps thinking about these isomorphisms in terms of the first isomorphism theorem.)
- 14. Let \mathbb{F}_2 be the field with two elements (as an abelian group we call it $\mathbb{Z}/2\mathbb{Z}$) and consider the group $SL_2(\mathbb{F}_2)$. Note that this is equal to the group $GL_2(\mathbb{F}_2)$ (why?) Identify it (i.e. find an isomorphism) with a previously know group.
- 15. Let $SU(1,1) = \{g \in M_2(\mathbb{C}) \mid \overline{g}^t \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} g = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \}$ (the group of 2 × 2 matrices with complex entries satisfying the stated condition). Define PSU(1,1) in the way analogous to the previous problem.

Identify PSU(1, 1) with a group you know from another course.

16. Let *G* be a group acting on a set *S*. Define a groupoid \mathcal{G} by letting $Ob(\mathcal{G}) = S$, and declaring that there is an arrow from *s* to *t* if and only if there exists $g \in G$ such that t = gs.

- (a) Verify that \mathcal{G} is indeed a groupoid
- (b) What is $\pi_0(\mathcal{G})$?
- (c) If $s \in S$, what is Aut_{*G*}(s)?
- 17. Let $G = GL_2(\mathbb{F}_2)$, and consider $\widehat{\mathbb{F}}_2 = \mathbb{F}_2 \cup \{\infty\}$. Let G act on $\widehat{\mathbb{F}}_2$ by fractional linear transformations (check that it does it make sense). Is this action faithful, transitive, free? Analyze the orbits. Identify the action (i.e. find an isomorphism) with that of a known group (that you should have identified from a previous problem)