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Abstract. Pursuing our work in [18], [17], [20], [5], we consider in
this article the two-dimensional thermohydraulics equations. We
discretize these equations in time using the implicit Euler scheme
and we prove that the global attractors generated by the numerical
scheme converge to the global attractor of the continuous system
as the time-step approaches zero.
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1. Introduction

In this article we discretize the two-dimensional thermohydraulics
equations in time using the implicit Euler scheme, and we show that
global attractors generated by the numerical scheme converge to the
global attractor of the continuous system as the time-step approaches
zero. In order to do this, we first prove that the scheme is H1-uniformly

Date: May 24, 2012.
2000 Mathematics Subject Classification. Primary: 65M12; Secondary: 76D05.
Key words and phrases. Thermohydraulics equations, discrete Gronwall lemmas,

implicit Euler scheme, global attractors.
1



2 EWALD, TONE

stable in time (see Section 4) and then we show that the long-term
dynamics of the continuous system can be approximated by the discrete
attractors of the dynamical systems generated by the numerical scheme
(see Section 5).

In the case of the Navier–Stokes equations with Dirichlet boundary
conditions, the H1-uniform stability of the fully implicit Euler scheme
has proven to be rather challenging. However, using techniques based
on the classical and uniform discrete Gronwall lemmas, we have been
able to show the H1-stability for all time of the implicit Euler scheme
for the Navier–Stokes equations with Dirichlet boundary conditions
(see [20]). The H2-stability has also been established. More precisely,
the H2-stability has first been proven in the simpler case of space pe-
riodic boundary conditions (see [17]), and then extended to Dirichlet
boundary conditions (see [18]); the magnetohydrodynamics equations
are also considered in [18].

Our first objective in this article is to extend the H1-uniform stability
proven in [20] for the Navier–Stokes equations with Dirichlet bound-
ary conditions, to the thermohydraulics equations. In order to do so,
we divide our proof into three steps. First, we prove the L2-uniform
stability of both the discrete temperature θn and the discrete velocity
vn (see Lemma 3.2 and Lemma 3.3 below). Then, using techniques
based on the classical and uniform discrete Gronwall lemmas, we de-
rive the H1-uniform stability of vn (see Proposition 4.1 below), which
we will use in Subsection 4.2 in order to establish the H1-uniform sta-
bility of θn (see Proposition 4.2 below). Besides the intrinsec interest
of considering the thermohydraulics equations, the new technical diffi-
culties which appear here are related to the specific treatment of the
temperature with the necessary utilization of the maximum principle.
Furthermore, we have simplified some steps of the proof as compared
to [20].

Our second objective in this article is to employ the technique de-
veloped in [5] to prove that the global attractors generated by the fully
implicit Euler scheme converge to the global attractor of the contin-
uous system as the time-step approaches zero. When discretizing the
two-dimensional thermohydraulics equations in time using the implicit
Euler scheme, one can prove the uniqueness of the solution provided
that the time step is sufficiently small. More precisely, the time re-
striction depends on the initial value, and thus one cannot define a
single-valued attractor in the classical sense. This is why we need to
use the theory of the so-called multi-valued attractors, which we briefly
recall in Subsection 5.1.
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2. The thermohydraulics equations

Let Ω = (0, 1) × (0, 1) be the domain occupied by the fluid and let
e2 be the unit upward vertical vector. The thermohydraulics equations
consist of the coupled system of the equations of fluid and temperature
in the Boussinesq approximation and they read (see, e.g., [6], [15]):

∂v

∂t
+ (v · ∇)v − ν∆v +∇p = e2(T − T1),(2.1)

∂T

∂t
+ (v · ∇)T − κ∆T = 0,(2.2)

div v = 0;(2.3)

here v = (v1, v2) is the velocity, p is the pressure, T is the temperature,
T1 is the temperature at the top boundary, x2 = 1, and ν, κ are positive
constants. We supplement these equations with the initial conditions

v(x, 0) = v0(x),(2.4)

T (x, 0) = T 0(x),(2.5)

where v0 : Ω → R2, T 0 : Ω → R are given, and with the boundary
conditions

v = 0 at x2 = 0 and x2 = 1,(2.6)

T = T0 = T1 + 1 at x2 = 0 and T = T1 at x2 = 1,(2.7)

and

p, v, T and the first derivatives of v and T are periodic

of period 1 in the direction x1,
(2.8)

meaning that φ|x1=0 = φ|x1=1 for the corresponding functions φ.
Letting

(2.9) θ = T − T0 + x2,

and changing p to

(2.10) p−
(
x2 −

x2
2

2

)
,
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equations (2.1)–(2.3) together with the boundary conditions (2.6)–(2.8)
become

∂v

∂t
+ (v · ∇)v − ν∆v +∇p = e2θ,(2.11)

∂θ

∂t
+ (v · ∇)θ − v2 − κ∆θ = 0,(2.12)

div v = 0,(2.13)

v = 0 at x2 = 0 and x2 = 1,(2.14)

θ = 0 at x2 = 0 and x2 = 1,(2.15)

(2.8) holds with T replaced by θ.(2.16)

These equations are supplemented with the initial conditions

v(x, 0) = v0(x),(2.17)

θ(x, 0) = T 0(x)− T0 + x2 =: θ0(x).(2.18)

For the mathematical setting of the problem we define the space H =
H1 ×H2, where

H1 =
{
v ∈ L2(Ω)2, div = 0, v2|x2=0 = v2|x2=1 = 0, v1|x1=0 = v1|x1=1

}
,

(2.19)

H2 = L2(Ω),(2.20)

and we denote the scalar products and norms in H1, H2 and H by (·, ·)
and | · |.

We also define the space V = V1 × V2, where

V1 =
{
v ∈ H1(Ω)2, v|x2=0 = v|x2=1 = 0, v|x1=0 = v|x1=1, div v = 0

}
,

(2.21)

V2 =
{
θ ∈ H1(Ω), θ|x2=0 = θ|x2=1 = 0, θ|x1=0 = θ|x1=1

}
.(2.22)

The space V2 is a Hilbert space with the scalar product and the norm

(2.23) ((φ, ψ)) =

∫
∇φ · ∇ψ dx, ‖φ‖ =

√
((φ, φ)),

and we have the Poincaré inequality (see, e.g., [15], page 134)

(2.24) |φ| ≤ ‖φ‖, ∀φ ∈ V1 or V2.

We denote both scalar products and norms in V1 and V by ((·, ·)) and
‖ · ‖.

Let D(A) = D(A1)×D(A2), where

(2.25) D(Ai) =

{
v ∈ Vi ∩H2(Ω)2,

∂v

∂x1

∣∣∣
x1=0

=
∂v

∂x1

∣∣∣
x1=1

}
, i = 1, 2,
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and let A be the linear operator from D(A) into H and from V into V ′

defined by

(2.26) (Au1, u2) = a(u1, u2), ∀ui = {vi, θi} ∈ D(A), i = 1, 2,

with

(2.27) a(u1, u2) = ν((v1, v2)) + κ((θ1, θ2)).

We consider the trilinear continuous form b on V , defined by

b(u1, u2, u3) =b1(v1, v2, v3) + b2(v1, θ2, θ3),∀ui = {vi, θi} ∈ V,(2.28)

where

(2.29) b1(y, w, z) =
∑
i,j=1,2

∫
Ω

yi
∂wj
∂xi

zj dx,∀ y, w, z ∈ H1(Ω)2,

(2.30) b2(y, φ, ψ) =
2∑
i=1

∫
Ω

yi
∂φ

∂xi
ψ dx, ∀ y ∈ H1(Ω)2, φ, ψ ∈ H1(Ω).

The form b1 is trilinear continuous on V1 × V1 × V1 and enjoys the
following properties:

(2.31) |b1(y, w, z)| ≤ cb|y|1/2‖y‖1/2‖w‖|z|1/2‖z‖1/2, ∀ y, w, z ∈ V1,

(2.32)
|b1(y, w, z)| ≤ cb|y|1/2|A1y|1/2‖w‖|z|,

∀ y ∈ D(A1), w ∈ V1, z ∈ H1,

(2.33)
|b1(y, w, z)| ≤ cb|y|1/2‖y‖1/2‖w‖1/2|A1w|1/2|z|,

∀ y ∈ V1, w ∈ D(A1), z ∈ H1,

(2.34) b1(y, w, w) = 0, ∀ y, w ∈ V1,

the last equation implying

(2.35) b1(y, w, z) = −b1(y, z, w), ∀ y, w, z ∈ V1.

The form b2 is trilinear continuous on V1 × V2 × V2 and enjoys the
following properties, similar to (2.31)–(2.35):

(2.36) |b2(y, φ, ψ)| ≤ cb|y|1/2‖y‖1/2‖φ‖|ψ|1/2‖ψ‖1/2, ∀ y, φ, ψ ∈ V2,

(2.37)
|b2(y, φ, ψ)| ≤ cb|y|1/2|A2y|1/2‖φ‖|ψ|,

∀ y ∈ D(A2), φ ∈ V2, ψ ∈ H2,

(2.38)
|b2(y, φ, ψ)| ≤ cb|y|1/2‖y‖1/2‖φ‖1/2|A2φ|1/2|ψ|,

∀ y ∈ V1, φ ∈ D(A2), ψ ∈ H2,
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(2.39) b2(y, φ, φ) = 0, ∀ y ∈ V1, φ ∈ V2,

the last equation implying

(2.40) b2(y, φ, ψ) = −b2(y, ψ, φ), ∀ y ∈ V1, φ, ψ ∈ V2.

We associate with b the bilinear continuous operator B from V × V
into V ′ and from D(A)×D(A) into H, such that

(2.41) 〈B(u1, u2), u3〉V ′,V = b(u1, u2, u3), ∀u1, u2, u3 ∈ V.
We also define the continuous operator in H

(2.42) Ru = −{e2θ, v2}, u = {v, θ}.
For more details about the function spaces D(A), V and H, as well as
the operators A, B, R and b, the reader is referred to, e.g., [15].

In the above notation, the system (2.11)–(2.13) can be written as
the functional evolution equation

(2.43) ut + Au+B(u) +Ru = 0, u(0) = u0 = {v0, θ0}.
In the two-dimensional case under consideration, the solution to the

thermohydraulics equations is known to be smooth for all time (cf.
[15]). Using the maximum principle for parabolic equations, one can
show that θ ∈ L∞(R+;L2(Ω)) and the velocity u is bounded uniformly
for all time by

(2.44) |v(t)|2L2(Ω)2 ≤ e−νt|v0|2L2(Ω)2 +
θ2
∞
ν2

(
1− e−νt

)
,

where θ∞ = |θ|L∞(R+;L2(Ω)). Furthermore, using techniques based on
the uniform Gronwall lemma (cf. [15]), one can bound the solution u
of (2.43) uniformly in V for all t ≥ 0.

In this article we discretize (2.43) in time using the fully implicit
Euler scheme, and define recursively the elements un = {vn, θn} of V
as follows:

u0 = {v0, θ0}, where v0(x) = v0(x), and

θ0(x) = θ0(x) := T 0(x)− T0 + x2 are given;
(2.45)

then when u0 = {v0, θ0}, · · · , un−1 = {vn−1, θn−1} are known, we define
un = {vn, θn} ∈ V such that

1

k
(vn − vn−1, v) + ν((vn, v)) + b1(vn, vn, v) = (e2θ

n, v), ∀v ∈ V1,

(2.46)

1

k
(θn − θn−1, θ) + κ((θn, θ)) + b2(vn, θn, θ)− (vn2 , θ) = 0, ∀θ ∈ V2.

(2.47)
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The above system is very similar to the stationary Navier–Stokes
equations and the existence of solutions is proven e.g. by the Galerkin
method, as in [16]. Uniqueness can also be derived as in [16] under
some conditions. Let us explain this point, which somehow motivates
the developments in Section 5. For that, we rewrite the system (2.45)–
(2.47) in the form

(vn, v) + νk((vn, v)) + kb1(vn, vn, v)− k(e2θ
n, v) = (vn−1, v), ∀v ∈ V1,

(2.48)

(θn, θ) + κk((θn, θ)) + kb2(vn, θn, θ)− k(vn2 , θ) = (θn−1, θ), ∀θ ∈ V2,

(2.49)

and assume that {vn, θn} and {v̄n, θ̄n} are two solutions corresponding
to the same initial data {v0, θ0} ∈ V . Setting ṽn = vn − v̄n and

θ̃n = θn − θ̄n, we obtain that {ṽn, θ̃n} is a solution to the following
system:

(ṽn, v) + νk((ṽn, v)) + kb1(ṽn, vn, v) + kb1(v̄n, ṽn, v)− k(e2θ̃
n, v) = 0, ∀v ∈ V1,

(2.50)

(θ̃n, θ) + κk((θ̃n, θ)) + kb2(ṽn, θn, θ) + kb2(v̄n, θ̃n, θ)− k(ṽn2 , θ) = 0. ∀θ ∈ V2,

(2.51)

Taking v = ṽn in (2.50) and using (2.34), we obtain

(2.52) |ṽn|2 + νk‖ṽn‖2 + kb1(ṽn, vn, ṽn)− k(e2θ̃
n, ṽn) = 0.

Using property (2.31) of the trilinear form b1 and the bound (4.52)
below on ‖vn‖, we obtain (for k ≤ κ4(‖{v0, θ0}‖), with κ4(‖{v0, θ0}‖)
given in Theorem 4.1 below):

kb1(ṽn, vn, ṽn) ≤ cbk|ṽn|‖ṽn‖‖vn‖ ≤ cbK6k|ṽn|‖ṽn‖

≤ ν

4
k‖ṽn‖2 +

cb
ν
K2

6k|ṽn|2.
(2.53)

We also have

k(e2θ̃
n, ṽn) ≤ k|e2θ̃

n||ṽn| ≤ k|θ̃n|‖ṽn‖

≤ ν

4
k‖ṽn‖2 +

1

ν
k|θ̃n|2.

(2.54)

Relations (2.52)–(2.54) imply

(2.55)
(

1− cb
ν
K2

6k
)
|ṽn|2 +

ν

2
k‖ṽn‖2 ≤ 1

ν
k|θ̃n|2.

Now taking θ = θ̃n in (2.51) and using (2.39), we obtain

(2.56) |θ̃n|2 + κk‖θ̃n‖2 + kb2(ṽn, θn, θ̃n)− k(ṽn2 , θ̃
n) = 0.
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Using property (2.36) of the trilinear form b2 and the bound (4.52)
below on ‖θn‖, we obtain

kb2(ṽn, θn, θ̃n) ≤ cbk|ṽn|1/2‖ṽn‖1/2‖θn‖|θ̃n|1/2‖θ̃n‖1/2

≤ ν

4
k‖ṽn‖2 +

κ

4
k‖θ̃n‖2 + cK2

6k|ṽn|2 + cK2
6k|θ̃n|2.

(2.57)

We also have

k(ṽn2 , θ̃
n) ≤ k|ṽn2 ||θ̃n| ≤ k|ṽn|‖θ̃n‖ ≤ κ

4
k‖θ̃n‖2 +

1

κ
k|ṽn|2.(2.58)

Relations (2.56)–(2.58) yield

(2.59) (1− cK2
6k)|θ̃n|2 +

κ

2
k‖θ̃n‖2 ≤ ν

4
k‖ṽn‖2 + cK2

6k|ṽn|2 +
1

κ
k|ṽn|2.

Adding relations (2.55) and (2.59), we obtain(
1− cb

ν
K2

6k − cK2
6k −

1

κ
k

)
|ṽn|2 +

(
1− cK2

6k −
c

ν
k
)
|θ̃n|2

+
ν

4
k‖ṽn‖2 +

κ

2
k‖θ̃n‖2 ≤ 0.

(2.60)

Assuming k is sufficiently small, that is

(2.61) k ≤ min

{
κ4(‖{v0, θ0}‖),

1

2
(
cb
ν
K2

6 + cK2
6 + 1

κ

) , 1

2
(
cK2

6 + c
ν

)} ,
relation (2.60) implies ṽn = θ̃n = 0. Hence, the system (2.45)–(2.47)
possesses a unique solution, provided that the time-step satisfies the
constraint (2.61). This is enough to uniquely define the sequence
{vn, θn} for k small enough, but the dependence of the time step k
on the initial data prevents us from defining a single-valued attrac-
tor in the classical sense, and this is why we need the theory of the
multi-valued attractors, that we discuss in Subsection 5.1.

Our next aims are to prove that the solution un = {vn, θn} to the
discrete system (2.45)–(2.47) is uniformly bounded in the V -norm and
then to show that the global attractors generated by the numerical
scheme (2.45)–(2.47) converge to the global attractor of the continuous
system as the time-step approaches zero.

In this article we only consider time discretization, we do not con-
sider space discretization. Important background information on space
discretization and on various computational methods can be found in
some of the books and articles available in the literature. On finite el-
ements, see, e.g., [7], [9]; on finite differences and finite elements, [10],
[16]; on spectral methods, [3], [8].
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3. H-Uniform Boundedness of vn and θn

In proving the H-uniform boundedness of vn and θn, we need first to
prove a variant of the maximum principle for θn. In order to do so, we
introduce the following truncation operators (cf. [15]), that associate
with the function ϕ, the functions ϕ+ and ϕ−, given by

(3.1) ϕ+(x) = max(ϕ(x), 0), ϕ−(x) = max(−ϕ(x), 0).

Note that, with this notation, we have ϕ = ϕ+−ϕ−, the absolute value
|ϕ| of ϕ is ϕ+ +ϕ− and ϕ+ϕ− = 0. Using these operators, we can prove
the following preliminary lemma

Lemma 3.1. If ϕ, ψ ∈ L2(Ω), then

(3.2) 2(ϕ− ψ, ϕ+) ≥ |ϕ+|2 − |ψ+|2 + |ϕ+ − ψ+|2,

(3.3) −2(ϕ− ψ, ϕ−) ≥ |ϕ−|2 − |ψ−|2 + |ϕ− − ψ−|2.

Proof. We have

2(ϕ− ψ, ϕ+) = 2(ϕ+ − ϕ− − ψ+ + ψ−, ϕ+)

= 2(ϕ+ − ψ+, ϕ+)− 2(ϕ− − ψ−, ϕ+)

= |ϕ+|2 − |ψ+|2 + |ϕ+ − ψ+|2 + 2

∫
Ω

ψ−ϕ+ dx

≥ |ϕ+|2 − |ψ+|2 + |ϕ+ − ψ+|2,

(3.4)

since ψ−ϕ+ ≥ 0. The proof is similar for (3.3) and the lemma is
proved. �

We are now able to prove the following variant of the maximum
principle for θn:

Lemma 3.2. If vn and θn satisfy (2.46) and (2.47), then

θn = θ̃n + θ̄n,(3.5)

with

x2 − 1 ≤ θ̃n ≤ x2,(3.6)

|θ̄n| ≤
(
|θ0

+|+ |θ0
−|
)

(1 + 2κk)−
n
2 .(3.7)

Moreover, there exists M1 = M1(|θ0|), given in (3.26) below, such that

(3.8) |θn| ≤M1,∀n ≥ 1.

Proof. Rewriting (2.47) in terms of T n = θn + T0 − x2, we find:

1

k
(T n − T n−1, T ) + κ((T n, T )) + b2(vn, T n, T ) = 0, ∀T ∈ V2,= 0, n ≥ 1.

(3.9)
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Replacing T by 2k(T n − T0)+ in the above equation and using (3.2),
we obtain:

|(T n − T0)+|2 − |(T n−1 − T0)+|2

+|(T n − T0)+ − (T n−1 − T0)+|2 + 2kκ‖(T n − T0)+‖2 ≤ 0.
(3.10)

Using the Poincaré inequality (2.24), we find

|(T n − T0)+|2 ≤
1

α
|(T n−1 − T0)+|2,(3.11)

where

(3.12) α = 1 + 2κk.

Using recursively (3.11), we find

|(T n − T0)+|2 ≤ (1 + 2κk)−n|(T 0 − T0)+|2.(3.13)

Similarly, using (3.3), we obtain

|(T n − T1)−|2 ≤ (1 + 2κk)−n|(T 0 − T1)−|2.(3.14)

Setting

T n = T̃ n + T̄ n, with T̄ n = (T n − T0)+ − (T n − T1)−,(3.15)

we find that T̃ n = T n − (T n − T0)+ + (T n − T1)−, so that T̃ n = T1, for
T n ≤ T1, T̃ n = T n, for T1 ≤ T n ≤ T0, and T̃ n = T0, for T n > T0; in all
cases

T1 ≤ T̃ n ≤ T0.(3.16)

Rewriting (3.13)–(3.15) in terms of θ, we obtain

|(θn − x2)+|2 ≤ (1 + 2κk)−n|(θ0 − x2)+|2,(3.17)

|(θn − x2 + 1)−|2 ≤ (1 + 2κk)−n|(θ0 − x2 + 1)−|2,(3.18)

θn + T0 − x2 = T̃ n + (θn − x2)+ − (θn − x2 + 1)−.(3.19)

Setting

θ̄n = (θn − x2)+ − (θn − x2 + 1)−,(3.20)

θ̃n = T̃ n − T0 + x2,(3.21)

equation (3.19) becomes

θn = θ̃n + θ̄n.(3.22)

By (3.16), we have

x2 − 1 ≤ θ̃n ≤ x2,(3.23)
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and by (3.20), (3.17) and (3.18) we derive

|θ̄n| ≤ |(θn − x2)+|+ |(θn − x2 + 1)−|
≤ (1 + 2κk)−

n
2 (|θ0

+|+ |θ0
−|).

(3.24)

To complete the proof of the lemma, we note that (3.22), (3.23) and
(3.24) yield

(3.25) |θn| ≤ |Ω|1/2 +
(
|θ0

+|+ |θ0
−|
)

(1 + 2κk)−
n
2 ,∀n ≥ 1,

and setting

(3.26) M1(|θ0|) = |Ω|1/2 + |θ0
+|+ |θ0

−|,
we obtain conclusion (3.8) of the lemma. �

Corollary 3.1. If

(3.27) k ≤ 1

2κ
,

then BL2(0, 2|Ω|1/2), the ball in L2 centered at 0 and radius 2|Ω|1/2, is
an absorbing ball for θn in L2.

Proof. Indeed, let B be any bounded set in L2 and assume that it is
included in a ball B(0, R) of L2. It is easy to deduce from (3.25) that
for any θ0 ∈ B(0, R),

(3.28) |θn| ≤ |Ω|1/2 + 2R(1 + 2κk)−
n
2 ,∀n ≥ 1,

and using assumption (3.27) on k and the fact that 1+x ≥ exp(x/2) if x ∈

(0, 1), we obtain that there exists N1
0 (R, k) :=

2 ln

(
2R

|Ω|1/2

)
κk

such that

θn ∈ BL2(0, 2|Ω|1/2),∀n ≥ N1
0 . This completes the proof of the corol-

lary. �

We are now able to prove the H-uniform boundedness of vn. More
precisely, we have the following:

Lemma 3.3. Let {vn, θn} be the solution of the numerical scheme
(2.46)–(2.47). Then for every k > 0, we have

(3.29) |vn|2 ≤ (1 + νk)−n |v0|2 +
M2

1

ν2

[
1− (1 + νk)−n

]
, ∀n ≥ 0.

Moreover, there exists K1 = K1(|v0|, |θ0|), such that

(3.30) |vn| ≤ K1, ∀n ≥ 0,

and

(3.31) νk

m∑
j=i

‖vj‖2 ≤ |vi−1|2 +
1

ν
k

m∑
j=i

|θj|2, ∀ i = 1, · · · ,m,
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(3.32) κk
m∑
j=i

‖θj‖2 ≤ |θi−1|2 +
1

κ
k

m∑
j=i

|vj|2, ∀ i = 1, · · · ,m.

Proof. Taking v to be 2kvn in (2.46) and using the relation

(3.33) 2(ϕ− ψ, ϕ) = |ϕ|2 − |ψ|2 + |ϕ− ψ|2,

as well as the skew property (2.34), we obtain

|vn|2 − |vn−1|2 + |vn − vn−1|2 + 2νk ‖vn‖2 = 2k(e2θ
n, vn).(3.34)

Using the Cauchy–Schwarz inequality and the Poincaré inequality (2.24),
we majorize the right-hand side of (3.34) by

2k(e2θ
n, vn) ≤ 2k|e2θ

n||vn| ≤ 2k|θn||vn|

≤ 2k|θn|‖vn‖ ≤ νk‖vn‖2 +
1

ν
k |θn|2.

(3.35)

Relations (3.34) and (3.35) imply

(3.36) |vn|2 − |vn−1|2 + |vn − vn−1|2 + νk ‖vn‖2 ≤ 1

ν
k |θn|2.

Using again the Poincaré inequality (2.24), we find

(3.37) |vn|2 ≤ 1

α
|vn−1|2 +

1

αν
k |θn|2,

where

(3.38) α = 1 + νk.

Using recursively (3.37), we find

|vn|2 ≤ 1

αn
|v0|2 +

1

ν
k

n∑
i=1

1

αi
|θn+1−i|2

≤ (1 + νk)−n |v0|2 +
M2

1

ν2

[
1− (1 + νk)−n

]
,

(3.39)

which proves (3.29).

Taking K2
1 = |v0|2 +

M2
1

ν2 relation (3.30) follows right away.
Adding inequalities (3.36) with n from i to m we obtain (3.31).
Now, replacing θ by 2kθn in (2.47) and using the skew property

(2.39), we obtain

|θn|2 − |θn−1|2 + |θn − θn−1|2 + 2κk ‖θn‖2 = 2k(vn2 , θ
n).(3.40)
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Using again the Cauchy–Schwarz inequality and the Poincaré inequality
(2.24), we majorize the right-hand side of (3.40) by

2k(vn2 , θ
n) ≤ 2k|vn2 ||θn| ≤ 2k|vn|‖θn‖

≤ κk‖θn‖2 +
1

κ
k |vn|2.

(3.41)

Relations (3.40) and (3.41) imply

(3.42) |θn|2 − |θn−1|2 + |θn − θn−1|2 + κk ‖θn‖2 ≤ 1

κ
k |vn|2.

Summing inequalities (3.42) with n from i to m we obtain (3.32). �

Corollary 3.2. Let

(3.43) k ≤ min

{
1

2κ
,

1

ν

}
=: κ1,

and set ρ0 = 2|Ω|1/2 +
√

5|Ω|1/2

ν
. Then BH(0, ρ0), the ball in H centered

at 0 and radius ρ0, is an absorbing ball for {vn, θn} in H.

Proof. Let B be any bounded set in H and assume that it is included
in a ball B(0, R) of H. For any initial data {v0, θ0} ∈ B, Corollary 3.1
implies that

(3.44) |θn| < 2|Ω|1/2,∀n ≥ N1
0 (R, k),

and then (3.37) becomes

(3.45) |vn|2 ≤ 1

α
|vn−1|2 +

4

αν
|Ω|k, ∀n ≥ N1

0 (R, k),

where

(3.46) α = 1 + νk.

Iterating the above inequality, we find (for any n ≥ N1
0 (R, k))

|vn|2 ≤ 1

α(n−N1
0 )
|vN1

0 |2 +
4

ν
|Ω|k

n−N1
0∑

i=1

1

αi

= (1 + νk)−(n−N1
0 ) |vN1

0 |2 +
4

ν2
|Ω|
[
1− (1 + νk)−(n−N1

0 )
]
,

≤ (1 + νk)−(n−N1
0 )

[
R2 +

4

ν2
(|Ω|+ 2R2)

]
+

4

ν2
|Ω|

(by (3.29) and (3.26)),

(3.47)
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and using assumption (3.43) on k and the fact that 1+x ≥ exp(x/2) if x ∈
(0, 1), we obtain that there exists N2

0 (R, k),

(3.48) N2
0 (R, k) :=

2

νk
ln
ν2
[
R2 + 4

ν2 (|Ω|+ 2R2)
]

|Ω|
,

such that |vn| ≤
√

5|Ω|1/2/ν, ∀n ≥ N1
0 +N2

0 =: N0(R, k).
We, therefore, have that {vn, θn} ∈ BH(0, ρ0), for all n ≥ N0(R, k),

which completes the proof of the corollary. �

4. V -Uniform Boundedness of vn and θn

We now seek to obtain uniform bounds for vn and θn in V , similar
to those we have already obtained in H (see (3.30) and (3.8) above).
In order to do this, we will first use the discrete Gronwall lemma to
derive an upper bound on ‖vn‖, n ≤ N , for some N > 0, and then
we will use the discrete uniform Gronwall lemma to obtain an upper
bound on ‖vn‖, n ≥ N . Once we have obtained the V -uniform bounds
on vn, we can use those, together with a new version of the discrete
uniform Gronwall lemma, to derive the V -uniform boundedness of θn.

4.1. H1-Uniform Boundedness of vn.

Lemma 4.1. For every k > 0, we have

(4.1) ‖vn‖2 ≤ K2‖vn−1‖2 +
4

ν2
M2

1 , ∀n ≥ 1,

where K2 = 2(1 + 2c2
bK

2
1/ν

2).

Proof. Replacing v by 2k(vn − vn−1) in (2.46), we obtain

2|vn − vn−1|2 + νk‖vn‖2 − νk‖vn−1‖2 + νk‖vn − vn−1‖2

+ 2k b1(vn, vn, vn − vn−1) = 2k (e2θ
n, vn − vn−1).

(4.2)

Using properties (2.34), (2.35) and (2.31) of the trilinear form b1 and
recalling (3.30), we bound the nonlinear term as

2kb1(vn, vn, vn − vn−1) = 2kb1(vn, vn−1, vn) (by (2.34), (2.35))

≤ 2cbk|vn|‖vn‖‖vn−1‖ (by (2.31))

≤ ν

2
k‖vn‖2 +

2c2
b

ν
K2

1k‖vn−1‖2.

(4.3)
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We bound the right-hand side of (4.26) using Cauchy–Schwarz’ inequal-
ity, (2.24) and (3.8):

2k(e2θ
n, vn − vn−1) ≤ 2k|θn||vn − vn−1|

≤ k|θn|‖vn − vn−1‖

≤ ν

2
k‖vn − vn−1‖2 +

2

ν
kM2

1 .

(4.4)

Gathering relations (4.26) through (4.4), we find

2|vn − vn−1|2 +
ν

2
k‖vn‖2 −

(
ν +

2c2
b

ν
K2

1

)
k‖vn−1‖2

+
ν

2
k ‖vn − vn−1‖2 ≤ 2

ν
kM2

1 ,

(4.5)

We thus obtain

(4.6) ‖vn‖2 ≤ K2‖vn−1‖2 +
4

ν2
M2

1 ,

which is exactly conclusion (4.1) of the lemma. �

Lemma 4.2. For every k > 0, we have

(4.7) c1K
2
1k‖vn‖4 − ‖vn‖2 + ‖vn−1‖2 +

2

ν
kM2

1 ≥ 0, ∀n ≥ 1,

where c1 = 27c4
b/(2ν

3).

Proof. Replacing v by 2kA1v
n in (2.46), we obtain

‖vn‖2 − ‖vn−1‖2 + ‖vn − vn−1‖2 + 2kb1(vn, vn, A1v
n)

+ 2νk|A1v
n|2 = 2k(e2θ

n, A1v
n).

(4.8)

Using property (2.32) of the trilinear form b1 and recalling (3.30), we
have the following bound of the nonlinear term,

2kb1(vn, vn, A1v
n) ≤ 2 cb k |vn|1/2‖vn‖|A1v

n|3/2

≤ ν

2
k|A1v

n|2 +
27c4

b

2ν3
K2

1k‖vn‖4.
(4.9)

Using the Cauchy–Schwarz inequality and recalling (3.8), we bound the
right-hand side of (4.8) by

2k(e2θ
n, A1v

n) ≤ 2k|θn||A1v
n|

≤ ν

2
k|A1v

n|2 +
2

ν
kM2

1 .
(4.10)
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Relations (4.8)–(4.10) imply

‖vn‖2 − ‖vn−1‖2 + ‖vn − vn−1‖2 + νk|A1v
n|2

≤ 27c4
b

2ν3
K2

1k‖vn‖4 +
2

ν
kM2

1 ,
(4.11)

from which we obtain conclusion (4.7) of Lemma 4.1. �

In what follows, we will make use of the following two lemmas, whose
proofs can be found in [14]:

Lemma 4.3. Given k > 0 and positive sequences ξn, ηn and ζn such
that

(4.12) ξn ≤ ξn−1(1 + kηn−1) + kζn, for n ≥ 1,

we have, for any n ≥ 2,

(4.13) ξn ≤

(
ξ0 +

n∑
i=1

kζi

)
exp

(n−1∑
i=0

kηi

)
.

Lemma 4.4. Given k > 0, a positive integer n0, positive sequences ξn,
ηn and ζn such that

(4.14) ξn ≤ ξn−1(1 + kηn−1) + kζn, for n ≥ n0,

and given the bounds

(4.15)

N+k0∑
n=k0

kηn ≤ a1,

N+k0∑
n=k0

kζn ≤ a2,

N+k0∑
n=k0

kξn ≤ a3,

for any k0 ≥ n0, we have,

(4.16) ξn ≤
( a3

Nk
+ a2

)
ea1 , ∀n ≥ N + n0.

Proposition 4.1. Let T > 0 be arbitrarily fixed and let {vn, θn} be
the solution of the numerical scheme (2.46)–(2.47). Then there exists
K5 = K5(‖v0‖, |θ0|, T ), such that for every k ≤ κ1, we have

(4.17) ‖vn‖ ≤ K5, ∀n ≥ 0,

m∑
n=i

‖vn − vn−1‖2 ≤K2
5 +

27c4
b

2ν3
K2

1K
4
5(m− i+ 1)k

+
2

ν
M2

1 (m− i+ 1)k, ∀ i = 1, · · · ,m.
(4.18)



LONG-TERM DYNAMICS OF 2D THERMOHYDRAULICS EQUATIONS 17

Moreover, for any initial data from H, there exists K4(T ) such that

(4.19) ‖vn‖ ≤ K4, ∀n ≥ N +N0 + 1,

where N := bT/kc and T0 = N0k is the time the approximate solution
{vn, θn} enters the absorbing ball B(0, ρ0) in H.

Proof. Using (4.1), we infer from (4.7)

‖vn‖2 ≤ c1K
2
1k

(
K2‖vn−1‖2 +

4

ν2
M2

1

)2

+ ‖vn−1‖2 +
2

ν
kM2

1

≤ ‖vn−1‖2

(
1 + c1K

2
1K

2
2k‖vn−1‖2 +

8

ν2
c1K

2
1K2M

2
1k

)
+

1

ν
kM2

1

(
16

ν3
c1K

2
1M

2
1 + 2

)
.

(4.20)

We rewrite (4.20) in the form

(4.21) ξn ≤ ξn−1(1 + kηn−1) + kζn,

with
(4.22)

ξn = ‖vn‖2, ηn = c1K
2
1K

2
2‖vn‖2+

8

ν2
c1K

2
1K2M

2
1 , ζn =

1

ν
M2

1

(
16

ν3
c1K

2
1M

2
1 + 2

)
,

and recalling (3.8) and (3.30), we compute the following:

(4.23)

n∑
i=1

kζi =
1

ν
M2

1

(
16

ν3
c1K

2
1M

2
1 + 2

)
nk,

(4.24)
n−1∑
i=0

kηi = c1K
2
1K2k

n−1∑
i=0

(
K2‖vn‖2 +

8

ν2
M2

1

)
≤ c1

ν
K2

1K
2
2

[
K2

1 +
M2

1

ν
(n− 1)k

]
+ c1K

2
1K2k‖v0‖2 +

8

ν2
c1K

2
1K2M

2
1nk

(by (3.31)).

Then conclusion (4.13) of Lemma 4.3 yields

‖vn‖2 ≤
(
‖v0‖2 +

1

ν
M2

1

(
16

ν3
c1K

2
1M

2
1 + 2

)
nk

)
exp

{
c1

ν
K2

1K2

[
K2

1K2 +
M2

1

ν
(K2 + 8)nk

]}
exp

{
c1K

2
1K2k‖v0‖2

}
=: K2

3(‖v0‖, |θ0|, nk),

(4.25)

and thus

(4.26) ‖vn‖2 ≤ K2
3(‖v0‖, |θ0|, T + T0),∀n = 0, · · · , N +N0.
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In order to derive a bound on ‖vn‖2 valid for n ≥ N + N0 + 1, we
will apply (the discrete uniform Gronwall) Lemma 4.4. In order to do
so, we recall that |vn| < ρ0, |θn| < ρ0, for n ≥ N0, and we compute the
following (for k0 ≥ N0 + 1):

(4.27)

N+k0∑
n=k0

kηn = c1K
2
1K2k

N+k0∑
n=k0

(
K2‖vn‖2 +

8

ν2
M2

1

)
≤ c1

ν
ρ4

0K
2
2

(
1 +

1

ν
(N + 1)k

)
+

8

ν2
c1ρ

4
0K2nk

(by (3.31)),

(4.28)

N+k0∑
n=k0

kζn =

N+k0∑
n=k0

1

ν
M2

1

(
16

ν3
c1K

2
1M

2
1 + 2

)
nk

≤ 1

ν
ρ2

0

(
16

ν3
c1ρ

4
0 + 2

)
(N + 1)k,

(4.29)

N+k0∑
n=k0

kξn =

N+k0∑
n=k0

k‖vn‖2

≤ ρ2
0

ν

(
1 +

1

ν
(N + 1)k

)
(by (3.31)).

Then conclusion (4.16) of Lemma 4.4 yields
(4.30)

‖vn‖2 ≤
[
ρ2

0

νNk

(
1 +

1

ν
(N + 1)k

)
+

1

ν
ρ2

0

(
16

ν3
c1ρ

4
0 + 2

)
(N + 1)k

]
exp

{
c1

ν
ρ4

0K
2
2

(
1 +

1

ν
(N + 1)k

)
+

8

ν2
c1ρ

4
0K2nk

}
≤
[
ρ2

0

νT

(
1 +

T

ν
+

1

ν2

)
+

1

ν
ρ2

0

(
16

ν3
c1ρ

4
0 + 2

)(
T +

1

ν

)]
exp

{
c1

ν
ρ4

0K
2
2

(
1 +

T

ν
+

1

ν2

)
+

8

ν2
c1ρ

4
0K2T

}
=: K2

4(T ), ∀n ≥ N +N0 + 1.

Combining the above bound with (4.26), we obtain both conclusion
(4.17) and conclusion (4.19) of the proposition.

Taking the sum of (4.11) with n from i to m and using (4.17) gives
conclusion (4.18) and thus the proof of Proposition 4.1 is complete.
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�

4.2. H1-Uniform Boundedness of θn. We are now going to prove
the H1-uniform boundedness of θn, for all n ≥ 0. In order to do so, we
will first use the discrete Gronwall lemma to derive an upper bound on
‖θn‖, n ≤ N , for some N > 0, and then we will use another version of
the discrete uniform Gronwall lemma (see Lemma 4.6 below) to obtain
an upper bound on ‖θn‖, n ≥ N .

Lemma 4.5. Let {v0, θ0} ∈ V and {vn, θn} be the solution of the nu-
merical scheme (2.46)–(2.47). Also, let T > 0 be arbitrarily fixed and
k be such that

(4.31) k ≤ min

{
κ1,

1

2c2K2
1K

2
5(‖v0‖, |θ0|)

}
=: κ2(‖v0‖, |θ0|),

where κ1 is given by (3.43), c2 = 27c4
b/(32κ2) and K5(‖v0‖, |θ0|) is

given in Proposition 4.1. Then we have
(4.32)

‖θn‖2 ≤ 4c2K
2
1K

2
5T

(
‖θ0‖2 +

2

c2κK2
5

)
, ∀n = 1, · · · , N := bT/kc.

Proof. Replacing θ by 2kA2θ
n in (2.47), we obtain

‖θn‖2 − ‖θn−1‖2 + ‖θn − θn−1‖2 + 2kb2(vn, θn, A2θ
n)

− 2k(vn2 , A2θ
n) + 2κk|A2θ

n|2 = 0.
(4.33)

Using property (2.38) of the trilinear form b2 and recalling (3.30) and
(4.17), we have the following bound of the nonlinear term,

2kb2(vn, θn, A2θ
n) ≤ 2 cb k |vn|1/2‖vn‖1/2‖θn‖1/2|A2θ

n|3/2

≤ κ

2
k|A2θ

n|2 + c2K
2
1K

2
5k‖θn‖2.

(4.34)

Using the Cauchy–Schwarz inequality and recalling (3.30), we have the
following bound

−2k(vn2 , A2θ
n) ≤ 2k|vn2 ||A2θ

n|

≤ κ

2
k|A2θ

n|2 +
2

κ
K2

1k.
(4.35)

Relations (4.33)–(4.35) imply

‖θn‖2 − ‖θn−1‖2 + ‖θn − θn−1‖2 + κk|A2θ
n|2

≤ c2K
2
1K

2
5k‖θn‖2 +

2

κ
K2

1k,
(4.36)

from which we obtain

(4.37) ‖θn‖2 ≤ 1

α
‖θn−1‖2 +

2

κα
K2

1k,
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where

(4.38) α = 1− c2K
2
1K

2
5k.

Using recursively (4.37), we find

(4.39) ‖θn‖2 ≤ (1− c2K
2
1K

2
5k)−n

(
‖θ0‖2 +

2

c2κK2
5

)
.

Since

1− x ≥ 4−x, 0 < x ≤ 1

2
,

and, by hypothesis, c2K
2
1K

2
5k ≤ 1/2, conclusion (4.32) follows imme-

diately. This completes the proof of Lemma 4.5. �

In order to derive an upper bound on ‖θn‖, n ≥ N , we will need
the following version of the discrete uniform Gronwall lemma, slightly
different from Lemma 4.4:

Lemma 4.6. We are given k > 0, positive integers n0, n1 and positive
sequences ξn, ηn, ζn such that

(4.40) kηn <
1

2
, for n ≥ n0,

(4.41) (1− kηn)ξn ≤ ξn−1 + kζn, for n ≥ n0.

Assume also that

(4.42)

k

k0+n1∑
n=k0

ηn ≤ a1(n0, n1), k

k0+n1∑
n=k0

ζn ≤ a2(n0, n1),

k

k0+n1∑
n=k0

ξn ≤ a3(n0, n1),

for any k0 ≥ n0. We then have,

(4.43) ξn ≤
(a3(n0, n1)

kn1

+ a2(n0, n1)
)

e4a1(n0,n1),

for any n ≥ n0 + n1.

Proof. Let n3 and n4 be such that n0 ≤ n2 < n3 ≤ n2 + n1. Using
recursively (4.41), we derive
(4.44)

ξn2+n1 ≤
1∏n2+n1

n=n3
(1− kηn)

ξn3−1 + +k

n2+n1∑
n=n3

1∏n2+n1

j=n (1− kηj)
ζn.
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Using the fact that 1−x ≥ e−4x, ∀x ∈
(
0, 1

2

)
, and recalling assumptions

(4.42)1 and (4.42)2, we obtain

ξn2+n3 ≤ (ξn3−1 + a2)e−4a1 .

Multiplying this inequality by k, summing n3 from n2+1 to n2+n1 and
using assumption (4.42)3 gives the conclusion (4.43) of the lemma. �

We are now able to derive an upper bound on ‖θn‖, n ≥ N . More
precisely, we have the following:

Lemma 4.7. Let {v0, θ0} ∈ V and {vn, θn} be the solution of the nu-
merical scheme (2.46)–(2.47). Also, let T > 0 be arbitrarily fixed and
k be such that

k ≤ min

{
κ2(‖v0‖, |θ0|),

T

2

}
=: κ3(‖v0‖, |θ0|),(4.45)

where κ2(·, ·) is given in Lemma 4.5. Then there exists M2 = M2(‖v0‖, |θ0|, T ),
given in (4.48) below, such that

(4.46) ‖θn‖ ≤M2(‖v0‖, |θ0|, T ), ∀n ≥ N := bT/kc.

Proof. We apply Lemma 4.6 to (4.36), which we rewrite as

(1− c2K
2
1K

2
5k)‖θn‖2 − ‖θn−1‖2 + ‖θn − θn−1‖2 + κk|A2θ

n|2

≤ 2

κ
K2

1k.
(4.47)

We set ξn = ‖θn‖2, ηn = c2K
2
1K

2
5 , ζn = 2

κ
K2

1 , n0 = 1, n1 = N − 1 and
for k0 ≥ 1 we compute:

k

k0+n1∑
n=k0

ηn = k

k0+n1∑
n=k0

c2K
2
1K

2
5 ≤ c2K

2
1K

2
5T,

k

k0+n1∑
n=k0

ζn = k

k0+n1∑
n=k0

2

κ
K2

1 ≤
2

κ
K2

1T,

k

k0+n1∑
n=k0

ξn = k

k0+n1∑
n=k0

‖θn‖2 ≤ 1

κ

(
M2

1 +
K2

1

κ
T

)
(by (3.32)).

Then Lemma 4.6 implies

‖θn‖2 ≤ 2

κ

(
M2

1

T
+
K2

1

κ
+K2

1T

)
e4c2K2

1K
2
5T

:= M2
2 (‖v0‖, |θ0|, T ), ∀n ≥ N.

(4.48)

Thus, the lemma is proved. �
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Combining Lemma 4.5 and Lemma 4.7, we obtain that θn are uni-
formly bounded in V , for all n ≥ 0. More precisely, we have

Proposition 4.2. Let {v0, θ0} ∈ V and {vn, θn} be the solution of the
numerical scheme (2.46)–(2.47). Also, let T > 0 be arbitrarily fixed
and k be such that k ≤ κ3(‖v0‖, |θ0|), where κ3(·, ·) is given in Lemma
4.7. Then there exists M3 = M3(‖v0‖, ‖θ0‖), such that

(4.49) ‖θn‖ ≤M3(‖v0‖, ‖θ0‖), ∀n ≥ 0.

Proof. Taking

M3(‖v0‖, ‖θ0‖) = max

{
4c2K

2
1K

2
5T

(
‖θ0‖2 +

2

c2κK2
5

)
,M2(‖v0‖, |θ0|, T )

}
,

Lemmas 4.5 and 4.7 give conclusion (4.49) of the proposition. �

Corollary 4.1. Under the assumptions of Proposition 4.2, we also
have

m∑
n=i

‖θn − θn−1‖2 ≤M2
3 + c2K

2
1K

2
5M

2
3k(m− n+ 1)

+
2

κ
K2

1k(m− n+ 1), ∀ i = 1, · · · ,m.
(4.50)

Proof. Taking the sum of (4.36) with n from i to m and using (4.49)
gives conclusion (4.50) of the corollary right away. �

With the notation ‖{v0, θ0}‖ = ‖v0‖ + ‖θ0‖, Proposition 4.1 and
Proposition 4.2 can be combined to obtain the following theorem, which
is one of our main results:

Theorem 4.1. Let {v0, θ0} ∈ V and {vn, θn} be the solution of the
numerical scheme (2.46)–(2.47). Then there exists a positive function
κ4(·), depending decreasingly of its argument, and a positive function
K6(·), depending increasingly of its argument, such that if

(4.51) k ≤ κ4(‖{v0, θ0}‖),
then

(4.52) ‖{vn, θn}‖ ≤ K6(‖{v0, θ0}‖), ∀n ≥ 0.

5. Convergence of Attractors

In this section we address the issue of the convergence of the attrac-
tors generated by the discrete system (2.45)–(2.47) to the attractor
generated by the continuous system (2.11)–(2.18). Whereas for the
continuous system (2.11)–(2.18) one can prove both the existence and
uniqueness of the solution (see, e.g., [15])–and, therefore, define a global
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attractor–, for the discrete system (2.45)–(2.47) one can prove (using
Theorem 4.1) the uniqueness of the solution provided that k ≤ κ(‖u0‖),
for some κ(‖u0‖) > 0. Since the time restriction depends on the initial
data, one cannot define a single-valued attractor in the classical sense,
and this is why we need to use the attractor theory for the so-called
multi-valued mappings. Multi-valued dynamical systems have been in-
vestigated by many authors (see, e.g., [1], [2], [4], [11], [12], [13]), but in
this article we use the tools developed in [5] to study the convergence of
the discrete (multi-valued) attractors to the continuous (single-valued)
attractor. For convenience, we recall those results in Subsection 5.1,
and then we apply them to the thermohydraulics equations in Subsec-
tion 5.2.

5.1. Attractors for multi-valued mappings. Throughout this sub-
section, we consider (H, | · |) to be a Hilbert space and T to be either
R+ = [0,∞) or N.

Definition 5.1. A one-parameter family of set-valued maps S(t) :
2H → 2H is a multi-valued semigroup (m-semigroup) if it satis-
fies the following properties:

(S.1) S(0) = I2H (identity in 2H);
(S.2) S(t+ s) = S(t)S(s), for all t, s ∈ T.

Moreover, the m-semigroup is said to be closed if S(t) is a closed
map for every t ∈ T, meaning that if xn → x in H and yn ∈ S(t)xn
is such that yn → y in H, then y ∈ S(t)x. (To simplify the notation,
hereafter we have written S(t)x in place of S(t){x}.)

Definition 5.2. The positive orbit of B, starting at t ∈ T, is the set

γt(B) =
⋃
τ≥t

S(τ)B,

where

S(t)B =
⋃
x∈B

S(t)x.

Definition 5.3. For any B ∈ 2H , the set

ω(B) =
⋂
t∈T

γt(B)

is called the ω-limit set of B.

Definition 5.4. A nonempty set B ∈ 2H is invariant for S(t) if

S(t)B = B, ∀t ∈ T.
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Definition 5.5. A set B0 ∈ 2H is an absorbing set for the m-
semigroup S(t) if for every bounded set B ∈ 2H there exists tB ∈ T
such that

S(t)B ⊂ B0, ∀t ≥ tB.

Definition 5.6. A nonempty set C ∈ 2H is attracting if for every
bounded set B we have

lim
t→∞

dist(S(t)B, C) = 0,

where dist(·, ·) is the Hausdorff semidistance, defined as

(5.1) dist(B, C) = sup
b∈B

inf
c∈C
|b− c|,∀B, C ⊂ H.

Definition 5.7. A nonempty compact set A ∈ 2X is said to be the
global attractor of S(t) if A is an invariant attracting set.

Remark 5.1. The global attractor, if it exists, is necessarily unique.
Moreover, it enjoys the following maximality and minimality properties:

(i) if Ã is a bounded invariant set, then A ⊃ Ã;
(ii) if Ã is a closed attracting set, then A ⊂ Ã.

Definition 5.8. Given a bounded set B ∈ 2H , the Kuratowski mea-
sure of noncompactness α(B) of B is defined as

α(B) = inf
{
δ : B has a finite cover by balls of X of diameter less than δ

}
.

We note that α(B) = 0 if and only if B is compact.

The following theorem, whose proof can be found in [5], gives condi-
tions under which a global attractor exists.

Theorem 5.1. Suppose that the closed m-semigroup S(t) possesses a
bounded absorbing set B0 ∈ 2H and

(5.2) lim
t→∞

α(S(t)B0) = 0.

Then ω(B0) is the global attractor of S(t).

For the purpose of this article, we need to introduce the notion of
discrete m-semigroups. More precisely, we have the following:

Definition 5.9. Given a set-valued map S : 2H → 2H , we define a
discrete m-semigroupby

S(n) = Sn, ∀n ∈ N,

and we will denote it by {S}n∈N (instead of {Sn}n∈N).
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Remark 5.2. Given two nonempty sets B, C ∈ 2H , we write

B − C = {b− c : b ∈ B, c ∈ C} and |B| = sup
b∈B
|b|.

In order to prove the convergence of the attractors generated by
the discrete system (2.45)–(2.47) to the attractor generated by the
continuous system (2.11)–(2.18) we will use the following result, whose
proof can be found in [5]; see also [21], [19].

Theorem 5.2. Let S(t) be a closed m-semigroup, possessing the global
attractor A, and for κ0 > 0, let {Sk, 0 < k ≤ κ0}n∈N be a family
of discrete closed m-semigroups, with global attractor Ak. Assume the
following:

(H1) [Uniform boundedness]: there exists κ1 ∈ (0, κ0] such that the
set

K =
⋃

k∈(0,κ1]

Ak

is bounded in H;
(H2) [Finite time uniform convergence]: there exists t0 ≥ 0 such that

for any T ? > t0,

lim
k→0

sup
x∈Ak, nk∈[t0,T ?]

|Snkx− S(nk)x| = 0.

Then
lim
k→0

dist(Ak,A) = 0,

where dist denotes the Hausdorff semidistance defined in (5.1).

5.2. Application: The thermohydraulics equations. The system
(2.11)–(2.18) possesses a unique solution and thus generates a continu-
ous single-valued dynamical system S(t) : H → H, with global attrac-
tor A, bounded in V (see, e.g., [15]). Using Theorem 4.1 one can prove
that the discrete system (2.45)–(2.47) has a unique solution provided
that k ≤ κ(‖u0‖), for some κ(‖u0‖) > 0. The dependence of the time
step k on the initial data prevents us from defining a single-valued at-
tractor in the classical sense, but this difficulty can be overcome by the
theory of the multi-valued attractors. More precisely, in this article we
will prove that there exists κ0 > 0 such that if 0 < k ≤ κ0, the system
(2.45)–(2.47) generates a closed discrete m-semigroup {Sk}n∈N, with
global attractors Ak, that will converge to A in the sense of Theorem
5.2.

In order to do that, we define, for k > 0, the multi-valued map
Sk : 2H → 2H as follows: for every ũ = {ṽ, θ̃} ∈ H,

Skũ = {u = {v, θ} ∈ V : u solves (5.3)–(5.4) below with time-step k} :
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(v, v′) + νk((v, v′)) + kb1(v, v, v′)− k(e2θ, v
′) = (ṽ, v′), ∀v′ ∈ V1,

(5.3)

(θ, θ′) + κk((θ, θ′)) + kb2(v, θ, θ′)− k(v2, θ
′) = (θ̃, θ′), ∀θ′ ∈ V2.(5.4)

We then have the following:

Theorem 5.3. The multi-valued map Sk associated with the implicit
Euler scheme (2.45)–(2.47) generates a closed discrete m-semigroup
{Sk}n∈N.

Proof. Since conditions (S.1) and (S.2) are satisfied by definition, we
just need to prove that for each n ∈ N, Snk is a closed multi-valued
map. For that, we let n ∈ N be arbitrarily fixed and, as j →∞, we let
u0
j → u0 in H, where u0

j = {v0
j , θ

0
j}, u0 = {v0, θ0}. Also let unj ∈ Snku0

j

be such that unj → un in H, where unj = {vnj , θnj }, un = {vn, θn}. We

need to show that un ∈ Snku0.
Indeed, since unj ∈ Snku0

j , there exists a sequence (u0
j , u

1
j , . . . , u

n−1
j , unj ),

with uij ∈ Skui−1
j , such that

(vij, v
′) + νk((vij, v

′)) + kb1(vij, v
i
j, v
′)− k(e2θ

i
j, v
′) = (vi−1

j , v′), ∀v′ ∈ V1,

(5.5)

(θij, θ
′) + κk((θij, θ

′)) + kb2(vij, θ
i
j, θ
′)− k((vij)2, θ

′) = (θi−1
j , θ′), ∀θ′ ∈ V2.

(5.6)

The sequence u0
j being convergent in H, it is also bounded in H and

thus there exists M > 0 such that

(5.7) sup
j
|u0
j |2 ≤M.

Then Lemmas 3.2 and 3.3 imply that for every i = 1, . . . , n, the se-
quences vij and θij are bounded in V1 and V2, respectively. We therefore

have that there exist subsequences still denoted vij and θij, such that as
j →∞:

vij → vi, strongly in H1 and weakly in V1,(5.8)

θij → θi, strongly in H2 and weakly in V2.(5.9)

Now, passing to the limit in (5.5)–(5.6), we obtain

(vi, v′) + νk((vi, v′)) + kb1(vi, vi, v′)− k(e2θ
i, v′) = (vi−1, v′), ∀v′ ∈ V1,

(5.10)

(θi, θ′) + κk((θi, θ′)) + kb2(vi, θi, θ′)− k((vi)2, θ
′) = (θi−1, θ′), ∀θ′ ∈ V2.

(5.11)

We therefore obtain that ui ∈ Skui−1, for each i = 1, . . . , n, and hence,
un ∈ Skun−1 ⊂ Snku

0. This completes the proof of the theorem. �
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In order to prove the existence of the discrete global attractors, we
first prove the existence of absorbing sets. More precisely, we have the
following:

Proposition 5.1. There exists κ5 > 0, independent of {v0, θ0}, n, k,
such that if k ∈ (0, κ5] the following holds: there exists a constant
R1 > 0 such that for every R ≥ 0 and |{v0, θ0}| ≤ R, there exists
N1 = N1(R, k) ≥ 0 such that

(5.12) ‖Snk {v0, θ0}‖ ≤ R1, ∀n ≥ N1.

Hence, the set

B1 = {{v, θ} ∈ V : ‖{v, θ}‖ ≤ R1}

is a V -bounded absorbing set for {Sk}n∈N, for k ∈ (0, κ5].

Proof. Let κ1 be as in Corollary 3.2 and let k ≤ min{1, κ1}. Also,
let R ≥ 0 and |{v0, θ0}| ≤ R. Then, by Corollary 3.2, there exists
N0 = N0(R, k) ≥ 0 such that

(5.13) |{vn, θn}| ≤ ρ0, ∀n ≥ N0.

Let m := N0 +
⌊

1
k

⌋
. Then equations (3.31) and (3.32) imply

(5.14) νk
m∑

j=N0+1

‖vj‖2 ≤ ρ2
0 +

1

ν
ρ2

0(m−N0)k,

(5.15) κk
m∑

j=N0+1

‖θj‖2 ≤ ρ2
0 +

1

κ
ρ2

0(m−N0)k.

Adding the above relations we obtain
(5.16)

k

(
m∑

j=N0+1

(ν‖vj‖2 + κ‖θj‖2)

)
≤ ρ2

0

(
2 +

1

ν
(m−N0)k +

1

κ
(m−N0)k

)
.

Assuming that for every j ∈ {N0 + 1, · · · ,m}

(ν‖vj‖2 + κ‖θj‖2) ≥ ρ2
0

k(m−N0)

(
2 +

1

ν
(m−N0)k +

1

κ
(m−N0)k

)
,

we obtain
(5.17)

k

(
m∑

j=N0+1

(ν‖vj‖2 + κ‖θj‖2)

)
≥ ρ2

0

(
2 +

1

ν
(m−N0)k +

1

κ
(m−N0)k

)
,
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which contradicts (5.16). Hence there exists l ∈ {N0 + 1, · · · ,m} such
that

(ν‖vl‖2 + κ‖θl‖2) ≤ ρ2
0

k(m−N0)

(
2 +

1

ν
(m−N0)k +

1

κ
(m−N0)k

)
≤ 2ρ2

0

(
2 +

1

ν
+

1

κ

)
.

(5.18)

We, therefore, have

(5.19) ‖{vl, θl}‖2 ≤ 2ρ2
0

(
2 +

1

ν
+

1

κ

)(
1

ν
+

1

κ

)
=: R2

∗.

Applying Theorem 4.1 with initial data {vl, θl} we obtain that there
exists κ4(‖{vl, θl}‖) and K6(‖{vl, θl}‖) such that if k ≤ κ4(‖{vl, θl}‖),
then

(5.20) ‖{vn, θn}‖ ≤ K6(‖{vl, θl}‖),∀n ≥ l.

Recalling (5.19) and the fact that κ4(·) and K6(·) are, respectively,
decreasing and increasing functions of their arguments, (5.20) yields

(5.21) ‖{vn, θn}‖ ≤ K6(R∗) =: R1,∀n ≥ N1 = N1(R, k) := N0 +
⌊1

k

⌋
,

provided that k ≤ κ5, where

(5.22) κ5 = min{1, κ1, κ4(R∗)}.
This completes the proof of Proposition 5.1. �

We are now in a position to prove the existence of the discrete global
attractors. More precisely, we have the following:

Proposition 5.2. For every k ∈ (0, κ5], there exists the global attractor
Ak of the m-semigroup {Sk}n∈N.

Proof. Let B0 = BH(0, ρ0) be the bounded absorbing set given in Corol-
lary 3.2. Then Proposition 5.1 implies that SnkB0 is bounded in V , for
all n ≥ N1(ρ0, k). Since V is compactly embedded in H, we obtain
that SnkB0 is relatively compact in H and, thus, α(SnkB0) = 0, for all
n ≥ N1(ρ0, k). Condition (5.2) of Theorem 5.1 is therefore satisfied
and then the existence of the discrete global attractor Ak follows right
away. �

Remark 5.3. Since the global attractor Ak is the smallest closed at-
tracting set of H, Proposition 5.1 implies

(5.23) Ak ⊂ B1,∀k ∈ (0, κ5],
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and thus

(5.24)
⋃

k∈(0,κ5]

Ak ⊂ B1.

Let us recall that our goal is to prove, using Theorem 5.2, that the
discrete global attractors Ak converge to the continuous global attrac-
tor A. Thanks to (5.24), condition (H1) of Theorem 5.2 holds true.
There remains to prove the finite time uniform convergence required
by (H2). In order to do that, we define, for any k > 0 and for any
function ψ, the following:

(5.25) ψk(t) = ψn, t ∈ [(n− 1)k, nk),

(5.26) ψ̃k(t) = ψn +
t− nk
k

(ψn − ψn−1), t ∈ [(n− 1)k, nk).

With the above notations, equations (2.46) and (2.47) can be rewrit-
ten as follows; for t ∈ [(n− 1)k, nk):

(
∂ṽk(t)

∂t
, v

)
+ ν((ṽk(t), v)) + b1(ṽk(t), ṽk(t), v) = (e2θ̃k(t), v) + (fk(t), v), ∀v ∈ V1,

(5.27)

(
∂θ̃k(t)

∂t
, θ

)
+ κ((θ̃k(t), θ)) + b2(ṽk(t), θ̃k(t), θ)− (ṽk(t))2, θ) = (gk(t), θ), ∀θ ∈ V2,

(5.28)

where

(fk(t), v) = ν((ṽk(t)− vk(t), v)) + b1(ṽk(t), ṽk(t), v)

− b1(vk(t), vk(t), v)− (e2(θ̃k(t)− θk(t)), v),
(5.29)

(gk(t), θ) = κ((θ̃k(t)− θk(t), θ)) + b2(ṽk(t), θ̃k(t), θ)

− b2(vk(t), θk(t), θ)− ((ṽk(t)− vk(t))2, θ).
(5.30)

Lemma 5.1. Let T ∗ > 0 be arbitrarily fixed and let k ≤ κ0, where

(5.31) κ0 = min{κ5, κ4(R1)},
with κ5 being given in (5.22) and κ4 being given in Theorem 4.1. As-
sume that {v0, θ0} ∈ Ak and let {vn, θn} be the solution of the numerical
scheme (2.45)–(2.47). Then there exist K7(T ∗) and K8(T ∗) such that

(5.32) ‖fk‖2
L2(0,T ∗;V ′1) ≤ kK7(T ∗),

and

(5.33) ‖gk‖2
L2(0,T ∗;V ′2) ≤ kK8(T ∗).
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Proof. Let us first note that for any t ∈ [(n− 1)k, nk) we have

ψ̃k(t)− ψk(t) =
t− nk
k

(ψn − ψn−1).(5.34)

Also, since {v0, θ0} ∈ Ak, we have that ‖{v0, θ0}‖ ≤ R1 (by (5.23))
and then Theorem 4.1 implies that for k ≤ κ0,

(5.35) ‖{vn, θn}‖ ≤ K6(R1), ∀n ≥ 0.

Now let v ∈ V1 be such that ‖v‖ ≤ 1, and let t ∈ [(n − 1)k, nk) be
fixed. Using property (2.31) of the trilinear form b1, we have

|b1(ṽk(t), ṽk(t), v)− b1(vk(t), vk(t), v)|
= |b1(ṽk(t)− vk(t), ṽk(t), v) + b1(vk(t), ṽk(t)− vk(t), v)|
≤ cb(‖ṽk(t)− vk(t)‖(‖ṽk(t)‖+ ‖vk(t)‖)‖v‖
≤ c‖vn − vn−1‖ (by (5.34), (5.35) and ‖v‖ ≤ 1).

(5.36)

We also have

(5.37) ν|((ṽk(t)− vk(t), v))| ≤ ν‖vn − vn−1‖,

(5.38) |(e2(θ̃k(t)− θk(t)), v)| ≤ ‖θn − θn−1‖.
Relations (5.36)–(5.38) imply

(5.39) ‖fk(t)‖V ′1 ≤ c(‖vn − vn−1‖+ ‖θn − θn−1‖),
and thus, setting N∗ = bT ?/kc and recalling that ‖{v0, θ0}‖ ≤ R1 , we
obtain

‖fk‖2
L2(0,T ∗;V ′1) =

∫ T ∗

0

‖fk(t)‖2
V ′1
dt =

N∗+1∑
n=1

∫ nk

(n−1)k

‖fk(t)‖2
V ′1
dt

≤ kK7(T ∗) (by (5.39), (4.18), (4.50)),

(5.40)

which proves (5.32).
Now let θ ∈ V2 be such that ‖θ‖ ≤ 1, and let t ∈ [(n − 1)k, nk) be

fixed. Using property (2.36) of the trilinear form b2, we have

|b2(ṽk(t), θ̃k(t), θ)− b2(vk(t), θk(t), θ)|
= |b2(ṽk(t)− vk(t), θ̃k(t), θ) + b2(vk(t), θ̃k(t)− θk(t), θ)|
≤ cb(‖ṽk(t)− vk(t)‖‖θ̃k(t)‖+ ‖vk(t)‖‖θ̃k(t)− θk(t)‖)‖θ‖
≤ c(‖vn − vn−1‖+ ‖θn − θn−1‖) (by (5.34), (5.35) and ‖θ‖ ≤ 1).

(5.41)

We also have

(5.42) κ|((θ̃k(t)− θk(t), θ))| ≤ κ‖θn − θn−1‖,
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(5.43) |((ṽk(t)− vk(t))2, θ)| ≤ ‖vn − vn−1‖.
Relations (5.41)–(5.43) imply

(5.44) ‖gk(t)‖V ′2 ≤ c(‖vn − vn−1‖+ ‖θn − θn−1‖),

and thus setting N∗ = bT ?/kc and recalling that ‖{v0, θ0}‖ ≤ R1 , we
obtain

‖gk‖2
L2(0,T ∗;V ′2) =

∫ T ∗

0

‖gk(t)‖2
V ′2
dt =

N∗+1∑
n=1

∫ nk

(n−1)k

‖gk(t)‖2
V ′2
dt

≤ kK8(T ∗) (by (5.44), (4.18), (4.50)),

(5.45)

which proves (5.33) and the proof of the lemma is complete. �

We are now able to prove that condition (H2) of Theorem 5.2 is
satisfied. More precisely, we have the following

Proposition 5.3 (Finite time uniform convergence). For any T ∗ > 0
we have

(5.46) lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T ∗]

|Snk {v0, θ0} − S(nk){v0, θ0}| = 0.

Proof. Let

(5.47) ξk(t) = v(t)− ṽk(t), ηk(t) = θ(t)− θ̃k(t).
Subtracting (5.27) and (5.28) from (2.11) and (2.12) written in their
week form, respectively, we obtain(

∂ξk(t)

∂t
, v′
)

+ ν((ξk(t), v
′)) + b1(ξk(t), v(t), v′)

+ b1(ṽk(t), ξk(t), v
′) = (e2ηk(t), v

′)− (fk(t), v
′), ∀v′ ∈ V1,

(5.48)

(
∂ηk(t)

∂t
, θ′
)

+ κ((ηk(t), θ
′)) + b2(ξk(t), θ(t), θ

′)

+ b2(ṽk(t), ηk(t), θ
′)− ((ξk(t))2, θ

′) = −(gk(t), θ
′), ∀θ′ ∈ V2.

(5.49)

Replacing v′ by ξk(t) in (5.48), we find

1

2

d

dt
|ξk(t)|2 + ν‖ξk(t)‖2 + b1(ξk(t), v(t), ξk(t))

= (e2ηk(t), ξk(t))− (fk(t), ξk(t)).
(5.50)

Using property (2.31) of the form b1, we bound the nonlinear term as

b1(ξk(t), v(t), ξk(t)) ≤ cb|ξk(t)|‖ξk(t)‖‖v(t)‖

≤ ν

6
‖ξk(t)‖2 +

c

ν
|ξk(t)|2‖v(t)‖2.

(5.51)
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Using the Cauchy–Schwarz inequality, we also have

|(e2ηk(t), ξk(t))| ≤ |ηk(t)||ξk(t)|
≤ |ηk(t)|‖ξk(t)‖

≤ ν

6
‖ξk(t)‖2 +

c

ν
|ηk(t)|2,

(5.52)

|(fk(t), ξk(t))| ≤ ‖fk(t)‖V ′1‖ξk(t)‖

≤ ν

6
‖ξk(t)‖2 +

c

ν
‖fk(t)‖2

V ′1
.

(5.53)

Relations (5.50)–(5.53) imply

d

dt
|ξk(t)|2 + ν‖ξk(t)‖2 ≤ c

ν
‖v(t)‖2|ξk(t)|2

+
c

ν
|ηk(t)|2 +

c

ν
‖fk(t)‖2

V ′1
.

(5.54)

Now replacing θ′ by ηk(t) in (5.49), we find

1

2

d

dt
|ηk(t)|2 + κ‖ηk(t)‖2 + b2(ξk(t), θ(t), ηk(t))

− ((ξk(t))2, ηk(t)) = −(gk(t), ηk(t)).
(5.55)

Using property (2.36) of the form b2, we bound the nonlinear term as

|b2(ξk(t), θ(t), ηk(t))| ≤ cb|ξk(t)|1/2‖ξk(t)‖1/2‖θ(t)‖|ηk(t)|1/2‖ηk(t)‖1/2

≤ ν

6
‖ξk(t)‖2 +

κ

6
‖ηk(t)‖2

+
c

ν
‖θ(t)‖2|ξk(t)|2 +

c

κ
‖θ(t)‖2|ηk(t)|2.

(5.56)

Using the Cauchy–Schwarz inequality, we also have the following bounds:

|((ξk(t))2, ηk(t))| ≤ |ξk(t)||ηk(t)|

≤ κ

6
‖ηk(t)‖2 +

c

κ
|ξk(t)|2,

(5.57)

|(gk(t), ηk(t))| ≤ ‖gk(t)‖V ′2‖ηk(t)‖

≤ κ

6
‖ηk(t)‖2 +

c

κ
‖gk(t)‖2

V ′2
.

(5.58)

Relations (5.55)–(5.58) imply

d

dt
|ηk(t)|2 + κ‖ηk(t)‖2 ≤ν

3
‖ξk(t)‖2 +

c

ν
‖θ(t)‖2|ξk(t)|2

+
c

κ
‖θ(t)‖2|ηk(t)|2 +

c

κ
|ξk(t)|2

+
c

κ
‖gk(t)‖2

V ′2
.

(5.59)
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Adding equations (5.54) and (5.59), we obtain

d

dt
(|ξk(t)|2 + |ηk(t)|2) +

2

3
ν‖ξ(t)‖2 + κ‖η(t)‖2

≤ c

ν

(
‖v(t)‖2 + ‖θ(t)‖2 +

ν

κ

)
|ξk(t)|2

+ c

(
1

ν
+

1

κ
‖θ(t)‖2

)
|ηk(t)|2

+
c

ν
‖fk(t)‖2

V ′1
+
c

κ
‖gk(t)‖2

V ′2
.

(5.60)

As shown in [15], the solution {v, θ} of the continuous problem is uni-
formly bounded in V for all t ≥ 0. More precisely, we have

(5.61) sup
t≥0

sup
{v0,θ0}∈B1

‖S(t){v0, θ0}‖ ≤ c.

Thus, inequality (5.60) becomes

d

dt
(|ξk(t)|2 + |ηk(t)|2) +

2

3
ν‖ξ(t)‖2 + κ‖η(t)‖2

≤ c(|ξk(t)|2 + |ηk(t)|2) +
c

ν
‖fk(t)‖2

V ′1
+
c

κ
‖gk(t)‖2

V ′2
.

(5.62)

By Gronwall’s lemma and using the fact that ξk(0) = η(0) = 0, we
obtain

|ξk(t)|2 + |ηk(t)|2 ≤ cecT
∗
(‖fk‖2

L2(0,T ∗;V ′1) + ‖gk‖2
L2(0,T ∗;V ′2)),(5.63)

and recalling (5.32) and (5.33), we find

|ξk(t)|2 + |ηk(t)|2 ≤ ck,(5.64)

for some constant c = c(T ∗) > 0.
We therefore have,

lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T ∗]

|Snk {v0, θ0} − S(nk){v0, θ0}|

= lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T ∗]

sup
{vn,θn}∈Sn

k {v0,θ0}
|{vn, θn} − {v(nk), θ(nk)}|

= lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T ∗]

sup
{vn,θn}∈Sn

k {v0,θ0}
|{ṽk(nk), θ̃k(nk)} − {v(nk), θ(nk)}|

= lim
k→0

sup
{v0,θ0}∈Ak, nk∈[0,T ∗]

sup
{vn,θn}∈Sn

k {v0,θ0}
|{ξk(nk), ηk(nk)}| = 0,

(5.65)

which concludes the proof of the lemma. �

We have, therefore, proved that conditions (H1) and (H2) of Theorem
5.2 are both satisfied and thus, the long-term behavior of the semigroup



34 EWALD, TONE

S(t) generated by the continuous thermohydraulics equations (2.11)–
(2.12) is approximated by that of the m-semigroups generated by the
discrete system (2.45)–(2.47). More precisely, we have the following
result concerning the approximation of the attractor; this is our second
main result:

Theorem 5.4. The family of attractors {Ak}k∈(0,κ0] converges, as k →
0, to A, in the following sense:

lim
k→0

dist(Ak,A) = 0,

where dist denotes the Hausdorff semidistance in H, namely

dist(Ak,A) = sup
xk∈Ak

inf
x∈A
|xk − x|.
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