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Abstract. We propose a variance reduction method for Monte Carlo computation
of option prices in the context of the Coupled Additive-Multiplicative Noise model.
Four different schemes are applied for the simulation. The methods select control
variates which are martingales in order to reduce the variance of unbiased option
price estimators. Numerical results for European call options are presented to
illustrate the effectiveness and robustness of this martingale control variate method.
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1. Introduction

In financial mathematics, stochastic differential equations (SDEs) play an impor-
tant role as the setting for most of the models used for pricing derivatives. The
SDEs describe the evolution of certain financial variables, such as the stock price,
volatility of an asset, or interest rate. The classic model which people usually apply
for pricing European call options is the Black-Scholes model, where the volatility is
assumed to be constant. But this assumption is a limitation of the standard Black-
Scholes model, which is proven by the so-called smile effect: that implied volatilities
of market prices are not constant with strike price and the time to maturity of the
contract. One way to take this into account is to treat volatility as varying in time
as well.

People have done plenty of research in a framework for pricing derivatives: for
example, Fouque [1], Hull and White [2]. Among these works, mean reversion of the
volatility has been used to simplify the basic pricing and estimation problems as well
as reflect reality to some extent, as volatility doesn’t wander to arbitrarily large or
small values.

What is volatility? There are several notions of volatility. Some of them are model
dependent, and others are data dependent.
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Like mentioned in Fouque’s slides [3], realized volatility, sometimes referred to as
the historical volatility, measures one aspect of what actually happened in the past.
The measurement of the volatility depends on the particular situation. For example,
one could look at the realized volatility for the equity market in November of 2008 by
taking the standard deviation of the daily returns within that month. One could also
calculate the realized volatility between 11:00AM and 12:00PM of May 16, 2008 by
calculating the standard deviation of one minute returns. Here, let t0 < t1 < · · · < tN
be a sequence of times. Then

(1)
1

T − t0

∫ tN

t0

Σ2
s ds ∼

1

N

N∑
i=1

(logSti − logSti−1
)2

ti − ti−1

,

where Σs is the realized volatility, and Sti is the stock price at time ti.
In contrast to realized volatility, implied volatility, as explained by Beckers [4]

and Mayhew [5], refers to the market’s assessment of future volatility under the
assumption that the dynamics can be modelled by a Black-Scholes model. It is an
estimation of the volatility of a stock as implied by the price of an option on that
stock, as follows. Given an observed European call option price Cobs for a contract
with strike price K and expiration date T , the implied volatility I is defined to be
the value of the volatility parameter that must go into the Black-Scholes formula to
match this price:

(2) CBS(t, x;K,T ; I) = Cobs.

Model dependent volatility has two main categories: local volatility and stochastic
volatility. People usually set a lognormal model for the asset price Xt:

(3) dXt = µXt dt+ σXt dWt.

One popular way to modify the lognormal model is to suppose that volatility is a
deterministic positive function of time and stock price: σ = σ(t,Xt). This is called
the local volatility. The stochastic differential equation modeling the stock price is
then

(4) dXt = µXt dt+ σ(t,Xt)Xt dWt.

In stochastic volatility models, the value σt, called the volatility process, is allowed to
vary stochastically. It does not have to be an Itô process: it can be a jump process,
a Markov chain, etc. It should be positive, as it is a volatility. Unlike the local
volatility, the stochastic volatility process need not be perfectly correlated with the
Brownian motion, Wt, in the asset price model:

(5) dXt = Xt(µ dt+ σt dWt).
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In other words, the stochastic volatility is a function of some process Yt, where Yt
contains an additional source of randomness:

(6) σt = f(Yt).

2. Stochastic Volatility Models

2.1. Standard Models. As mentioned in the last section, typically, stochastic
volatility is taken to be a function of a stochastic process (Yt) in general (but we
consider only the Itô process case here), that is σt = f(Yt). The process (Yt) satisfies
a stochastic differential equation driven by a second Brownian motion. The desired
models should make the volatility positive.

An important feature often applied in the stochastic volatility models is mean
reversion. The definition for the term “mean reversion” is a linear pull-back term in
the drift of the volatility process itself, or in the drift of some (underlying) process
of which volatility is a function. It also refers to the characteristic time it takes for
a process to get back to the mean level of its invariant distribution. The stochastic
differential equation for (Yt) introduces a new Brownian motion Z ′t

(7) dYt = α(m− Yt) dt+ β(t, Yt) dZ
′
t.

Here the parameters are α and m. α is the rate of the mean reversion and m is the
long-run mean level of Yt. Yt will approach m with speed α, on average.

The simplest mean-reverting model is an Ornstein-Uhlenbeck (OU) process, which
is defined as a solution of equation (7) where β(t, Yt) = β is constant. Also notice that
the second Brownian motion (Z ′t) is typically correlated with the Brownian motion
(Wt) from the asset price equation (5). ρ ∈ [−1, 1] is the instantaneous correlation
coefficient defined by equation (8). ρ is often found to be negative because of the
leverage effect between stock price and volatility shocks. It’s often convenient to
write it like equation (9), where (Zt) is a standard Brownian motion independent
from (Wt):

(8) dWt dZ
′
t = ρ dt

with

(9) Z ′t = ρWt +
√

1− ρ2Zt.

Besides the Ornstein-Uhlenbeck process, there are some other common mean-
reverting processes. The Feller or Cox-Ingersoll-Ross (CIR) process is another com-
mon one:

(10) dYt = κ(m′ − Yt) dt+ ν
√
Yt dZ

′
t.

The popular Heston model [6] is based on the CIR process with f(Yt) =
√
Yt.
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To revise the lognormality assumption (3) of Black-Scholes [7], the Constant Elas-
ticity of Variance (CEV) model [8] is also focused on by researchers. The CEV model
is in the form:

(11) dXt = µXt dt+ σX
θ
2
t dWt,

that is,

(12)
dXt

Xt

= µ dt+
σ

X
1− θ

2
t

dWt.

The return variance with respect to price Xt, ν(Xt, t) = σ2Xθ−2
t , has the relationship

(13)
dν(Xt, t)/dXt

ν(Xt, t)/Xt

= θ − 2,

which implies that

(14) dν(Xt, t)/ν(Xt, t) = (θ − 2)dXt/Xt.

The quantity θ − 2 is called elasticity of return.
In particular, if θ = 2, then the elasticity is zero and the stock price is lognormally

distributed as in the Black-Scholes model. If θ = 1, then the elasticity is −1. This
is the model proposed by Cox and Ross.

The CEV model has been exploited a lot recently, for example, Anderson [9] and
Lord [10]. As mentioned in [10], the asset price process (Xt) and the variance process
(Yt) evolve according to the following SDEs:

(15) dXt = µXt dt+ λ
√
YtX

β
t dWt,

(16) dYt = κ(m′ − Yt) dt+ ωY α
t dZ

′
t.

Here the process is specified under the risk-neutral probability measure. The param-
eter µ is the risk neutral drift of the asset price, κ ≥ 0 is the speed of mean-reversion
of the variance, m′ > 0 is the invariant average variance, ω ≥ 0 is the so-called
volatility of variance, and λ is a scaling constant. Finally, as explained above, Wt

and Z ′t are correlated Brownian motions, with instantaneous correlation coefficient
ρ. β is restricted to lie in (0, 1] and α to be positive. The popular Heston model is
the special case when α = 1

2
and β = 1.

2.2. CAM Model. The coupled additive-multiplicative noise (CAM) model was
introduced by Sardeshmukh and Sura in their papers [11] and [12]. In [11], they
found a link between the skewness and kurtosis of daily sea surface temperature
(SST) variations. If the standard deviation of SST anomalies T ′0 at a particular
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point on the ocean’s surface is denoted by σ, the skewness (skew) and kurtosis (kurt)
become

(17) skew ≡ 〈T
′3
0 〉
σ3

and kurt ≡ 〈T
′4
0 〉
σ4
− 3.

Skewness is a measure of asymmetry of a probability density function. If the left tail
is heavier than the right tail, the probability density function has negative skewness.
If the reverse is true, it has positive skewness. If the probability density function is
symmetric, like the Gaussian, it has zero skewness. Kurtosis (or more accurately,
“excess kurtosis”, since the kurtosis of 3 for a Gaussian distribution is subtracted)
measures the excess probability (fatness) in the tails, where excess is defined in
relation to a Gaussian distribution.

The kurt-skew relationship was gained from the scatterplot of emprically calculated
kurtosis vs skewness of the time series of all high-resolution observational data points
at most locations around the globe. The scatterplot evinced a lower parabolic bound
on kurtosis in their dataset: kurt ≥ (3/2) skew2. All of the data points lay above this
parabola, and this is evidently a very strong constraint on the non-Gaussian character
of the SST variability. From these observations, a detailed dynamical explanation
was provided. They introduced a univariate linear model with multiplicative noise
to capture the observed non-Gaussianity of SST anomalies over almost all the globe:

(18)
∂T ′0
∂t

= −λT ′0 − φF ′T ′0 + F ′ +R′ + φF ′T ′0.

Here T ′0 is the SST anomalies, −λ and −φ are locally constant parameters, F ′ and
R′ are rapidly varying forcing terms. They assumed that the rapidly varying terms
F ′ and R′ can be approximated as independent, zero mean Gaussian white noise
processes, under which (18) becomes an SDE for SST anomalies T ′0. They also
derived an analytical equation from (18) to explain the kurtosis-skewness relationship
shown in the scatterplot figure, and they finally concluded that the CAM model is
applicable for anomalous SST variability.

Empirical plots of skewness vs kurtosis for log volatility of commodity or stock
prices also exhibits the parabolic lower bound. So the log volatility of a commodity
also has a non-Gaussian distribution. In order to capture this non-Gaussian behavior,
we propose to model stochastic volatility by a CAM model. So we apply this new
model for pricing the European call option in this paper. If we make the volatility of
option price σ(Yt) = exp(Yt), the log volatility is just the diffusion process Yt. Based
on the asset price model (5) and (6), we consider the CAM model for the diffusion
process Yt in this way:

(19) dYt = α(m− Yt)dt+ βdẐ
(1)
t + γYtdẐ

(2)
t .
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This is the so-called CAM process. This SDE is developed from the simplest
Ornstein-Uhlenbeck (OU) process, and it has a mean-reverting drift term. A second

source of randomness Ẑ
(2)
t is added to the equation besides Ẑ

(1)
t . And the three white

noises Wt, Ẑ
(1)
t , Ẑ

(2)
t are correlated. We can use the coefficients of correlation ρ1, ρ2,

ρ3 and three independent white noises Wt, Z
(1)
t , Z

(2)
t to represent the correlations:

(20) Wt = Wt,

(21) Ẑ
(1)
t = ρ1Wt +

√
1− ρ2

1Z
(1)
t

and

(22) Ẑ
(2)
t = ρ2Wt +

ρ3 − ρ1ρ2√
1− ρ2

1

Z
(1)
t +

√
1− ρ2

2 −
(ρ3 − ρ1ρ2)2

1− ρ2
1

Z
(2)
t .

Besides its mean-reverting property, we apply the CAM model for pricing the Eu-
ropean call option because of its several advantages. First, it’s analytically tractable
in some ways. We can ask this question: when does the moment EY n

t stay bounded
as t → ∞? We can solve the ordinary differential equation for EY n

t to find a rela-
tionship between the parameters which can ensure that a particular moment stays
bounded for all the time. This relationship turns out to be

(23) α ≥ (n− 1)

2
γ2.

For example, in order for fifth moments of the stationary distribution to exist, we
would need that

(24) α ≥ 2γ2.

The proof of (23) and (24) will be shown in the appendix A.

3. Option Pricing using CAM Model

3.1. Different Numerical Monte Carlo Schemes.

3.1.1. Black-Scholes Formula. The price of the European call option for a non-
dividend paying underlying stock in terms of the Black-Scholes parameters is

C(t, S) = SN(d1)−Ke−r(T−t)N(d2),

d1 =
log( S

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

,

d2 =
log( S

K
) + (r − σ2

2
)(T − t)

σ
√
T − t

,
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and

d2 = d1 − σ
√
T − t.

Here N(·) is the cumulative distribution function of the standard normal distribution.
The time to maturity is T − t, the stock price is S, the strike price is K, the risk free
rate is r, and the volatility of returns of the underlying asset is σ.

3.1.2. Euler Scheme. Here our model is

(25) dXt = µXt dt+ σtXt dWt

with the CAM model diffusion process

(26) dYt = α(m− Yt) dt+ β dẐ
(1)
t + γYt dẐ

(2)
t , and σt = exp(Yt).

And apply (20), (21) and (22), we can rewrite the diffusion process Yt in the form of
(27)

d

(
Xt

Yt

)
=

(
µXt

α(m− Yt)

)
dt

+

(
exp(Yt)Xt 0 0

βρ1 + γYtρ2 β
√

1− ρ2
1 + γYt

ρ3−ρ1ρ2√
1−ρ21

γYt

√
1− ρ2

2 −
(ρ3−ρ1ρ2)2

1−ρ21

)
×

 dWt

dZ
(1)
t

dZ
(2)
t

 ,

where Wt, Z
(1)
t , and Z

(2)
t are three independent standard Brownian Motions. We

use some simple notations here: a0 = µXt, b0 = exp(Yt)Xt, a = α(m − Yt), b1 =

βρ1 + γYtρ2, b2 = β
√

1− ρ2
1 + γYt

ρ3−ρ1ρ2√
1−ρ21

, and b3 = γYt

√
1− ρ2

2 −
(ρ3−ρ1ρ2)2

1−ρ21
. As in

[1], using the risk-neutral theory, there is an equivalent martingale measure P∗ under
which the discounted stock price X̃t = e−rtXt is a martingale. And we can compute
the European call option price with time-T payoff H using the formula

(28) Ct = E∗{e−r(T−t)H|Ft}

for all t ≤ T , when there is no arbitrage opportunity. Thus Ct is a possible price
for the European call option. We can try to construct the equivalent martingale
measures now. Like what Fouque’s group did, we absorb the drift term of X̃t in its
martingale term by setting

(29) W ∗
t = Wt +

∫ t

0

(µ− r)
exp(Ys)

ds.

Any shift of the second and the third independent Brownian motions of the form

(30) Z
(j)∗
t = Z

(j)
t +

∫ t

0

θ(j)
s ds (j = 1, 2)
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will not change the drift of X̃t. By the multiple dimensional Girsanov’s theorem from
[13], (W ∗) and (Z(j)∗) are independent standard Brownian motions under a measure

P∗(θ(1)θ(2)) defined by

dP∗(θ(1)θ(2))
dP =

exp
(
−1

2

∫ T
0

((θs)
2 + (θ

(1)
s )2 + (θ

(2)
s )2)ds−

∫ T
0
θsdWs −

∫ T
0
θ

(1)
s dZ

(1)
s −

∫ T
0
θ

(2)
s dZ

(2)
s

)
,

θt =
(µ− r)
exp(Yt)

.

Here (θ
(j)
t ) are any adapted (and suitably regular) processes. We assume that the

newly defined measure P∗(θ(1)θ(2)) is well-defined, so that f is bounded away from zero

and (θ
(j)
t ) are bounded. Then, under this new risk-neutral measure, the SDEs (25)

and (26) become
(31)

d

(
Xt

Yt

)
=

(
rXt

α(m− Y )t− Φ(t, x, y)

)
dt

+

(
exp(Yt)Xt 0 0

βρ1 + γYtρ2 β
√

1− ρ2
1 + γYt

ρ3−ρ1ρ2√
1−ρ21

γYt

√
1− ρ2

2 −
(ρ3−ρ1ρ2)2

1−ρ21

)
×

 dW ∗
t

dZ
(1)∗
t

dZ
(2)∗
t

 ,

where

(32)
Φ(t, x, y) = (βρ1 + γYtρ2) (µ−r)

eYt
+

(
β
√

1− ρ2
1 + γYt

ρ3−ρ1ρ2√
1−ρ21

)
θ

(1)
t

+γYt

√
1− ρ2

2 −
(ρ3−ρ1ρ2)2

1−ρ21
θ

(2)
t .

And the three Brownian motions W ∗
t , Z

(1)∗
t and Z

(2)∗
t under the new measure are

independent. The function Φ(t, x, y), as explained in [1], is related to the risk pre-
mium factor from the second and the third sources of the randomness that drive the
volatility. For the Monte Carlo computation of the derivative prices, it is used to
treat Φ(t, x, y) = 0 for simplification as in [16], and this won’t affect the computation
results.

We will have the time intervals equal to each other, so T = N∆ where T is the
time to maturity of the option with t0 = 0 and N is the number of time steps. As
stated in [14], there are general strong and weak Itô-Taylor approximations. For
strong approximations, the stochastic process Xt satisfies the convergence condition
[E[(Xt−Xδ

t )2]]
1
2 ≤ O(∆tα1). For weak schemes, any function, f , of Xt should satisfy

the convergence condition E|f(Xt)−f(Xδ
t )| ≤ O(∆tβ1) provided f and enough of its

partial derivatives have polynomial growth. HereXδ
t is the numerical discretization of

Xt, and α1, β1 are orders of the schemes. Since the payoff function of the European
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call option is just a simple function of the stock price at maturity XT , the weak
scheme here is sufficient for pricing the option.

The Euler scheme corresponds to the truncated Itô-Taylor expansion which con-
tains only the ordinary time integral and the simple Itô integral. We shall see from
a general convergence result for weak Taylor approximations, as stated in Theorem
14.5.1 of chapter 14 of [14], that the Euler approximation has order of weak con-
vergence 1.0, if amongst other assumptions, aa, bb, a, b1, b2 and b3 are four times
continuously differentiable. This means that the Euler scheme is the order 1.0 weak
Taylor approximation.

So for the SDEs

(33) dXt = a0(t,Xt) dt+ b0(t,Xt) dW
∗
t

and

(34) dYt = a(t, Yt) dt+ b1(t, Yt) dW
∗
t + b2(t, Yt) dZ

(1)∗
t + b3(t, Yt) dZ

(2)∗
t ,

the Euler scheme has the form

(35) Xt+∆ = Xt + a0(Xt)∆ + b0(Xt)∆W
∗
t

and

(36) Yt+∆ = Yt + a(Yt)∆ + b1(Yt)∆W
∗
t + b2(Yt)∆Z

(1)∗
t + b3(Yt)∆Z

(2)∗
t ,

with initial value X0 = x and Y0 = y, where

∆ = tn+1 − tn , ∆W ∗ = W ∗
tn+1
−W ∗

tn and ∆Z(j)∗ = Z
(j)∗
tn+1
− Z

(j)∗
tn

with j = 1, 2.

3.1.3. Simplified Weak Euler Scheme. From [14], for weak convergence we only need
to approximate the measure induced by the Itô process Yt, so we can replace the

Gaussian increments ∆W ∗
t and ∆Z

(j)∗
t in (36) by other random variables ∆Z̃

(i)
t (i =

1, 2, 3) with similar moment properties. We can thus obtain a simpler scheme by
choosing more easily generated noise increments. This leads to the simplified weak
Euler scheme

(37) Yn+1 = Yn + a(Yn)∆ + b1(Yn)∆Z̃
(1)
t + b2(Yn)∆Z̃

(2)
t + b3(Yn)∆Z̃

(3)
t ,

where the ∆Z̃
(i)
t for i = 1, 2, . . . ,m (here m = 3) must be independent measurable

random variables with moments satisfying the convergence condition:

(38) |E(∆Z̃
(i)
t )|+ |E((∆Z̃

(i)
t )3)|+ |E((∆Z̃

(i)
t )2)−∆| ≤ C∆2
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for some constant C, and this is from [14]. A very simple example of such ∆Z̃
(i)
t in

(37) are two-point distributed random variables with

P
(

∆Z̃
(i)
t = ±

√
∆
)

=
1

2
.

3.1.4. Order 2.0 Weak Taylor Scheme. First, we need to introduce the stochastic
Taylor expansions. From [14] we denote the following notations. The multi-index
α = (j1, j2, . . . , jl) is a row vector with ji ∈ {0, 1, . . . ,m} for i ∈ {1, 2, . . . , l} and
m = 1, 2, 3, . . . . The length of α is l = l(α) ∈ {1, 2, . . . }. The vector ν denotes
the multi-index of length zero, which means l(ν) = 0. In addition, the number n(α)
denotes the number of components of a multi-index α which are equal to 0. We denote
the set of all multi-indices byM = {(j1, j2, . . . , jl) : ji ∈ {0, 1, . . . ,m}, i ∈ {1, . . . , l}}
∪{ν}, for l = 1, 2, 3, . . . .

For adapted right continuous stochastic processes f(t), we can define certain func-
tion spaces Hα. The first such is the totality of all such processes, which is Hν . It
contains all the f with |f(t)| being almost surely finite, for each t ≥ 0. The second
space, H(0), is the subspace of Hν consisting of those f with

(39)

∫ t

0

|f(s)| ds <∞

almost surely, for every t ≥ 0. And the third space, H(j) with j 6= 0, is the subspace
of Hν consisting of those f with

(40)

∫ t

0

|f(s)|2 ds <∞

almost surely, for every t ≥ 0.
Let ρ and τ be two stopping times with 0 ≤ ρ(ω) ≤ τ(ω) ≤ T , w.p. 1. Then the

multiple Itô integral Iα[f(·)]ρ,τ is defined by

(41) Iα[f(·)]ρ,τ :=


f(τ) : l = 0∫ τ
ρ
Iα−[f(·)]ρ,sds : l ≥ 1 and jl = 0∫ τ

ρ
Iα−[f(·)]ρ,sdW jl

s : l ≥ 1 and jl ≥ 1,

and α− denotes α with its last component jl removed. Now Hα with α ∈ M and
length l(α) > 1, is considered recursively by

(42) Iα−[f(·)]0,t ∈ H(jl)

almost surely, for every t ≥ 0.
To define the Itô Taylor expansion we also need to learn the Itô coefficient func-

tions. There are two types of differential operators related to a SDE. These are, for
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the general SDE

(43) dut = a(t, ut) dt+ b(t, ut) dWt,

we have

(44) L0 =
∂

∂t
+
∑
k

ak
∂

∂uk
+

1

2

∑
j,k,l

bkjblj
∂2

∂uk∂ul

and

(45) Lj =
∑
k

bkj
∂

∂uk
.

For each α = (j1, . . . , jl), we define Lα = Lj1 · · ·Ljl , and fα = Lα = Lαf , fν = f .
The Itô-Taylor expansion is considered for the Itô process

(46) Xt = Xt0 +

∫ t

t0

a(s,Xs) ds+
m∑
j=1

∫ t

t0

bj(s,Xs) dW
j
s ,

with t0 ≤ t ≤ T , the equivalent, integral form of SDE above. Using the previous
contents in this section, let’s define a hierarchical set A ⊂ M as a nonempty set of
multiindices such that supα∈A l(α) <∞, and −α ∈ A whenever α 6= ν is in A. The
remainder set B(A) consists of all those α not in A such that −α is in A. Finally,
we get the Itô Taylor expansion of the function f applied to a solution X of (46):

(47) f(τ,Xτ ) =
∑
α∈A

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈B(A)

Iα[fα(·, X.)]ρ,τ ,

and for γ = 1, 2, . . . , we denote by Aγ the hierarchical set consisting of all as of length
at most γ, and we call the Itô Taylor expansion with A = Aγ the (weak) Itô Taylor
expansion to order γ. A weak Taylor scheme is simply the strong Taylor-expansion
with high order terms truncated. To see the derivation, refer to [14].

Now we can consider the order 2.0 weak Taylor scheme, which is obtained by
adding all of the double stochastic integrals from the Itô-Taylor expansion (47) to
the Euler scheme.

Applying the Itô Taylor expansion (47) in the case d = 2, m = 3 for f ≡ y (or x),
we obtain the following for the CAM model:

(48)

Yt+∆ = Yt + a∆ + b1∆W ∗ + b2∆Z(1)∗ + b3∆Z(2)∗ + L1b1I(1,1)

+L2b1I(2,1) + L3b1I(3,1) + L1b2I(1,2) + L2b2I(2,2) + L3b2I(3,2)

+L1b3I(1,3) + L2b3I(2,3) + L3b3I(3,3) + L0b1I(0,1) + L0b2I(0,2)

+L0b3I(0,3) + L1aI(1,0) + L2aI(2,0) + L3aI(3,0)

+1
2
L0a∆2 +R∆

2 (t),
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(49)
Xt+∆ = Xt + a0∆ + b0∆W ∗ + L1b0I(1,1) + L2b0I(2,1) + L3b0I(3,1)

+L0b0I(0,1) + L1a0I(1,0) + L2a0I(2,0) + L3a0I(3,0) + 1
2
L0a0∆2 + R̃∆

2 (t),

where R∆
2 (t) and R̃∆

2 (t) are remainders. The differential operators here are

(50)

L0 = ∂
∂t

+ rXt
∂
∂Xt

+ α(m− Yt) ∂
∂Yt

+ 1
2
e2YtX2

t
∂2

∂X2
t

+ 1
2
(βρ1 + γYtρ2)2 ∂2

∂X2
t

+eYtXt(βρ1 + γYtρ2) ∂2

∂Xt∂Yt
+ 1

2
(β
√

1− ρ2
1 + γYt

ρ3−ρ1ρ2√
1−ρ21

)2 ∂
∂Y 2

t

+1
2
γ2Y 2

t (1− ρ2
2 −

(ρ3−ρ1ρ2)2

1−ρ21
) ∂2

∂Y 2
t
,

(51) L1 = eYtXt
∂

∂Xt

+ (βρ1 + γYtρ2)
∂

∂Yt
,

(52) L2 =

(
β
√

1− ρ2
1 + γYt

ρ3 − ρ1ρ2√
1− ρ2

1

)
∂

∂Yt
,

and

(53) L3 = γYt

√
1− ρ2

2 −
(ρ3 − ρ1ρ2)2

1− ρ2
1

∂

∂Yt
.

We have the multiple Itô integrals involving different components of the Wiener
process, which is not easy to generate in reality. Under weak convergence, we can still

use some ∆Z̃
(i)
t to replace ∆W ∗

t and ∆Z
(j)∗
t , use 1

2
∆Z̃

(i)
t ∆ to replace I(0,i) and I(i,0).

The last type of multiple integrals I(i1,i2) can be replaced by 1
2
(∆Z̃

(i1)
t ∆Z̃

(i2)
t +Vi1,i2).

Here the ∆Z̃
(i)
t for i = 1, 2, 3 are independent random variables satisfying the moment

conditions explained in [14] and three-point distributed with

(54) P (∆Z̃
(i)
t = ±

√
3∆) =

1

6
, P (∆Z̃

(i)
t = 0) =

2

3
.

And the independent variables Vi1,i2 are in a two-point distribution with

(55) P (Vi1,i2) =
1

2
for i2 = 1, . . . , i1 − 1,

(56) Vi1,i2 = −∆

and

(57) Vi2,i1 = −Vi1,i2
for i2 = i1 + 1, . . . ,m and i1 + 1, . . . ,m. Finally, the convergence of this weak order
2.0 scheme was proved by [14].
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3.1.5. A Stochastic Adams-Bashforth Scheme. The Stochastic Adams-Bashforth (SAB)
scheme can be represented in several versions. The simplest one is for the ordinary
differential equation φ′ = F (φ):

(58) φn+1 = φn +
∆t

2
[3F (φn)− F (φn−1)],

and is of order ∆t2. The paper [15] listed a stochastic analog of the previous one
with strong convergence. The version we applied here is a weak convergent form.
This is derived from the order 2.0 Itô-Taylor expansion which is

(59)

Ut+∆ = Ut +
∑

j b
j∆W j + a∆ +

∑
j,k L

jbkI(j,k)

+
∑

k L
0bkI(0,k) +

∑
j L

jaI(j,0) + 1
2
L0a∆2 +R∆

2 (t)

= Ut + a∆ + 1
2
L0a∆2 +M∆(t),

where each coefficient is evaluated at the point (t, Ut), and each stochastic integral
is from t to t+ ∆, ∆ = ∆t.

We can also apply the Itô-Taylor expansion for the coefficient a in orders 1 and 0:

(60) a(t+ ∆, Ut+∆) = a+ L0a∆ +N∆(t),

whereN∆(t) =
∑

j L
ja∆W j +R∆

1 (t), and

(61) L0a(t+ ∆, Ut+∆) = L0a+ P∆(t),

where P∆(t) = R0∆(t).
We combine these results to yield, for any η and θ,

(62)
Ut+∆ = Ut + [ηa(t+ ∆, Ut+∆) + (1− η)a]∆

+(1
2
− η)[θL0a(t+ ∆, Ut+∆) + (1− θ)L0a]∆2

−η∆N∆(t)− (1
2
− η)θ∆2P∆(t) +M∆(t).

So, if t = tn, ∆ = 2∆t, η = θ = 0, and writing Un for Utn ,

(63) Un+2 = Un + 2a(tn, Un)∆t+ 2L0a(tn, Un)∆t2 +M2∆t(tn),

and if t = tn, ∆ = ∆t, η = −3
2
, and θ = 0,

(64)
Un+1 = Un − 3

2
a(tn+1, Un+1)∆t+ 5

2
a(tn, Un)∆t

+2L0a(tn, Un)∆t2 + 3
2
N∆t(tn)∆t+M∆t(tn).

Hence,

(65)
Un+2 = Un+1 + (Un+2 − Un)− (Un+1 − Un)
= Un+1 + [3

2
a(tn+1, Un+1)− 1

2
a(tn, Un)]∆t

−3
2
∆tN∆t(tn) + (M2∆t(tn)−M∆t(tn)).
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So, we will consider the following version of a SAB scheme:

(66) Yn+2 = Yn+1 +

[
3

2
a(tn+1, Yn+1)− 1

2
a(tn, Yn)

]
∆t+Bn+1(tn+1, Yn+1),

in which
(67)

Bn+1(t, x) =
∑
j

bj(t, x)∆W j
t +
∑
j

L0bj(t, x)I(0,j)+
∑
j

Lja(t, x)I(j,0)+
∑
j,k

Ljbk(t, x)I(j,k),

where the random intervals are evaluated over the interval from tn+1 to tn+2. This
was proved to be convergent by [15]. The exact scheme for CAM model is:

(68)

Yt+2∆ = Yt+∆ +
[

3
2
a(t+ ∆, Yt+∆)− 1

2
a(t, Yt)

]
∆ + b1∆W ∗

t + b2∆Z
(1)∗
t

+b3∆Z
(2)∗
t + L0b1I(0,1) + L0b2I(0,2) + L0b3I(0,3) + L1aI(1,0) + L2aI(2,0)

+L3aI(3,0) + L1b1I(1,1) + L1b2I(1,2) + L1b3I(1,3) + L2b1I(2,1) + L2b2I(2,2)

+L2b3I(2,3) + L3b1I(3,1) + L3b2I(3,2) + L3b3I(3,3),

(69)
Xt+2∆ = Xt+∆ +

[
3
2
a0(t+ ∆, Xt+∆)− 1

2
a0(t,Xt)

]
∆ + b0∆W ∗

t + L0b0I(0,1)

+L1a0I(1,0) + L2a0I(2,0) + L3a0I(3,0) + L1b0I(1,1) + L2b0I(2,1) + L3b0I(3,1).

Here ∆W ∗
t and ∆Z

(j)∗
t can also be replaced by ∆Z̃

(i)
t , and the multiple Itô inte-

grals can also be replaced by the simple three-point distributed random variables as
mentioned before.

4. The Martingale Control Variate Method for Option Pricing
Under CAM Model

Under a risk-neutral pricing probability P∗ parametrized by the combined volatility
risk related terms Λ1(y) and Λ2(y), we consider the following CAM model:

(70) dXt = rXt dt+ σtXt dW
∗
t , σt = f(Yt),

(71)

dYt =

[
1

ε
c1(Yt)−

g1(Yt)√
ε

Λ1(Yt)−
g2(Yt)√

ε
Λ2(Yt)

]
dt+

g1(Yt)√
ε

dẐ
(1)∗
t +

g2(Yt)√
ε
Yt dẐ

(2)∗
t ,

where

(72) Ẑ
(1)∗
t = ρ1W

∗
t +

√
1− ρ2

1Z
(1)∗
t ,

(73) Ẑ
(2)∗
t = ρ2W

∗
t +

ρ3 − ρ1ρ2√
1− ρ2

1

Z
(1)∗
t +

√
1− ρ2

2 −
(ρ3 − ρ1ρ2)2

1− ρ2
1

Z
(2)∗
t .
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Here Xt is the underlying asset price process with a constant risk-free interest rate

r as explained before. And c1(Yt) = (m− y), α = 1
ε
, β = ν

√
2√
ε

, γ = χ√
ε
, g1(y) = ν

√
2,

g2(y) = χ.

Given the CAM model, the price of a plain European option with the integrable
payoff function H and expiry T is given by

(74) P ε(t, x, y) = E∗t,x,y{e−r(T−t)H(XT )},
where E∗t,x,y denotes the expectation with respect to P∗ conditioned on the current
states Xt = x, Yt = y. A basic Monte Carlo simulation estimates the option price
P (0, S0, Y0) at time 0 by

(75)
1

N

N∑
i=1

e−rTH(X
(i)
T ),

where N is the total number of independent sample paths and X
(i)
T denotes the i-th

simulated stock price at time T .
Assuming that the European option price P (t,Xt, Yt) is smooth enough, we apply

Itô’s lemma to its discounted price e−rtP , and then integrate from time 0 to the
maturity T . The following martingale representation is obtained

(76) P ε(0, X0, Y0) = e−rTH(XT )−M0(P )− 1√
ε
M1(P )− 1√

ε
M2(P ),

where centered martingales are defined by

(77) M0(P ) =

∫ T

0

e−rs
∂P ε

∂x
σtXt dW

∗
t ,

(78) M1(P ) =

∫ T

0

e−rs
∂P ε

∂y
ν
√

2 dẐ
(1)∗
t ,

(79) M2(P ) =

∫ T

0

e−rs
∂P ε

∂x
χYt dẐ

(2)∗
t .

The martingales play the role of “perfect” control variates for Monte Carlo simu-
lations and their integrands would be the perfect Delta hedges if P were known and
volatility factors were traded. Like mentioned in [17], neither P nor its gradient at
any time 0 ≤ s ≤ T are in any analytic form even though all the parameters of the
model have been calibrated as we suppose here. We can approximate the option price
and substitute for P in the martingales above and still retain martingale properties.
The approximation of the Black-Scholes type is derived in[18] for continuous payoffs:

(80) P ε(t, x, y) ≈ PBS(t, x; σ̄).
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We denote by PBS(t, x; σ̄) the solution of the Black-Scholes partial differential equa-
tion with the terminal condition PBS(T, x) = H(x). The average volatility σ̄ is
defined by

(81) σ̄ = exp(−m).

Note that the approximate option price PBS(t, x; σ̄) is independent of the variable y.
A martingale variate estimator is formulated as

(82)
1

N

N∑
i=1

[e−rTH(X
(i)
T )−M(i)

0 (PBS)],

where

M0(PBS) =

∫ T

0

e−rs
∂PBS
∂x

(x,Xs; σ̄)f(Ys)Xs dW
∗
s .

5. Variance Analysis of Martingale Control Variates

For the sake of simplicity, we first assume that the instant correlation coefficients,
ρ1, ρ2 and ρ3 in (71), (72) and (73), are zero. From (76), the variance of the controlled
payoff

(83) e−rTH(ST )−M0(PBS)

is simply the sum of quadratic variations of martingales:

(84)

V ar(e−rTH(ST )−M0(PBS))

= E∗0,t,x,y{
∫ T

0
e−2rs(∂P

∂x
− ∂PBS

∂x
)2(s, Ss, Ys)f

2(Ys)S
2
s ds

+1
ε

∫ T
0
e−2rs(∂P

∂y
)22ν2 ds

+1
ε

∫ T
0
e−2rs(∂P

∂y
)2χ2Y 2

s ds}.

Theorem 1.1. Under the assumptions made above and the payoff function H being
continuous piecewise smooth as a call (or a put), for any fixed initial state (0,x,y),
there exists a constant C > 0 such that for ε ≤ 1,

V ar(e−rTH(ST −M0(PBS)) ≤ Cε.

The proof of Theorem 1.1 is given in the Appendix B. The proof is from the similar
procedure given in Fouque’s paper [17].

6. Numerical Results

The numerical experiments are implemented to illustrate that the martingale con-
trol variate method is efficient and robust for European option problems under CAM
model with its relevant parameters and initial values specified in Table 1 and Table
2.
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Table 1. Parameters used in the CAM model.

r m β ρ1 ρ2 ρ3 Φ f(y)
0.1 -2.6 1 -0.5 -0.7 0.5 0 exp(y)

Table 2. Initial conditions and call option parameters.

$X0 Y0 $K T years
110 -2.32 100 1

Compared to plain Monte Carlo simulations, significant variance reduction ratios
for European options are obtained. These results confirm the robustness of our
method based on martingale control variates constructed as in delta hedging strate-
gies. The effectiveness of our method depends on option price approximations to
the pricing problem considered. Results of variance reduction under the four dif-
ferent schemes are illustrated in Table 3 – Table 6 with various parameters α and
γ. The time step size for all the schemes is ∆t = 10−3 and the number of realiza-
tions is N = 10, 000. Figure 1 – Figure 4 present sampled European option prices
with respect to the number of realizations. The dash line correponds to basic Monte
Carlo simulations, while the dot line corresponds to the same Monte Carlo simula-
tions using the martingale control variate M0(PBS). Figure 5 – Figure 8 present
standard deviation of simulated option prices with respect to the number of realiza-
tions. The dash line corresponds to basic Monte Carlo simulations, while the dot line
corresponds to the same Monte Carlo simulations using the martingale control vari-
ate method. The results confirm that the standard deviation under control variate
method converges faster.

7. Conclusion

In this paper we have presented the application of a Coupled Additive-Multiplicative
Noise model in option pricing. We have focused our attention on four different
schemes: Euler scheme, simplified weak Euler scheme, order 2.0 weak Taylor scheme
and SAB scheme. The effectiveness of the four schemes is presented. A martingale
control variate method is proposed to price European options by Monte Carlo simu-
lations. The size of the variance reduction by this generic control variate method has
been characterized by a theoretical variance analysis. We also obtain the significant
variance reduction ratio by comparing to the results from plain Monte Carlo sim-
ulations. The results confirm the practical application of the CAM model and the
robustness of the martingale control variates method constructed as in delta hedging
strategies.
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Figure 1. Implicit Euler scheme: Monte Carlo simulations under im-
plicit Euler scheme for a European call option price when α = 3 and
γ = 1. Sampled prices are obtained along the number of realizations.

Figure 2. Implicit Euler scheme with coin flips
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Figure 3. Weak order 2.0 scheme

Figure 4. SAB scheme
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Figure 5. Implicit Euler scheme: Monte Carlo simulations under im-
plicit Euler scheme for a European call option price when α = 3 and
γ = 1. Standerd error are obtained along the number of realizations.

Figure 6. Implicit Euler scheme with coin flips
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Table 3. Implicit Euler Scheme: Comparison of standard errors with
various α and γ. The notation StdBMC stands for the standard error
estimated from basic Implicit Euler Scheme Monte Carlo simulations,
and StdMCV the standard error from the same Monte Carlo simulations
but using the martingale control variate. Numbers within parenthesis
in the third and fourth columns are sample means estimated from the
two Monte Carlo methods, respectively. The fifth column records the
variance reduction ratio, which is calculated by (StdBMC/StdMCV )2.

α γ StdBMC StdMCV Variance Reduction Ratio
0.03 0.01 0.1317(20.7965) 0.1002(20.8989) 1.73
0.3 0.1 0.1218(20.2950) 0.0941(20.3741) 1.68
3 1 0.1415(19.5385) 0.0893(19.6697) 2.51

Table 4. Implicit Euler Scheme with coin flips

α γ StdBMC StdMCV Variance Reduction Ratio
0.03 0.01 0.1329(21.2100) 0.0895(20.8610) 2.21
0.3 0.1 0.1226(20.6810) 0.0843(20.3546) 2.12
3 1 0.1417(20.0061) 0.0786(19.6817) 3.25

Table 5. Weak order 2.0 scheme

α γ StdBMC StdMCV Variance Reduction Ratio
0.03 0.01 0.1319(20.8082) 0.1027(20.9511) 1.65
0.3 0.1 0.1214(20.2783) 0.0962(20.4159) 1.59
3 1 0.1446(19.7554) 0.0850(19.6829) 2.89

Table 6. SAB Scheme

α γ StdBMC StdMCV Variance Reduction Ratio
0.03 0.01 0.1318(20.8002) 0.1027(20.9431) 1.65
0.3 0.1 0.1213(20.2724) 0.0962(20.4097) 1.59
3 1 0.1445(19.7457) 0.0852(19.6734) 2.88

Appendix A. When does EY n
t stay bounded as t→∞?

For n = 1, the solution of the CAM process (19) is explicitly given in terms of its
(assumed known) starting value y by

(85) Yt = y +

∫ t

0

α(m− Ys) ds+

∫ t

0

β dẐ(1) +

∫ t

0

γYs dW
(2).
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Figure 7. Weak order 2.0 scheme

Figure 8. SAB scheme

Taking expectations for this solution (85) will give

(86) EYt = Ey + E
∫ t

0

α(m− Ys) ds,
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so

(87)
EYt
dt

= E[α(m− Yt)]

then

(88) EYt = m+ Ce−αt.

The condition for EYt stay bounded is α ≥ 0.

For n = 2, the solution of the stochastic differential equation

(89)

dY 2
t = 2Yt dYt + 1

2
(2)dYt · dYt

= 2Yt[α(m− Yt) dt+ β dẐ(1) + γYt dẐ
(1)] + β2 dt+ γ2Y 2

t dt+ 2βγYtρ2 dt

= [2αYt(m− Yt) + β2 + γ2Y 2
t + 2βγYtρ2] dt+ 2βYt dẐ

(1) + 2γY 2
t dẐ

(2)

is

(90)
Y 2
t = y2 +

∫ t
0
[(γ2 − 2α)Y 2

s + (2αm+ 2βρ2γ)Ys + β2] ds

+
∫ t

0
2βYs dẐ

(1) +
∫ t

0
2γY 2

s dẐ
(2).

Taking expectations on both sides of this solution we will get

(91) EY 2
t = Ey2 + E

∫ t

0

[(γ2 − 2α)Y 2
s + (2αm+ 2βρ2γ)Ys + β2] ds,

so

(92)

dEY 2
t

dt
= E[(γ2 − 2α)Y 2

t + (2αm+ 2βρ2γ)Yt + β2]

= (γ2 − 2α)E[Y 2
t ] + (2αm+ 2βρ2γ)E[Yt] + β2.

.

The solution for this ordinary differential equation is

(93) EY 2
t =

2αm2 + 2βρ2γm+ β2

2α− γ2
+

(2αm+ 2βρ2γ)C

α− γ2
· e−αt + C ′ · e−(2α−γ2)t.

The condition for the moment to stay bounded as t→∞ is α ≥ γ2

2
.

For n = 3, the solution of the stochastic differential equation
(94)

dY 3
t = 3Y 2

t dYt + 1
2
(6Yt)dYt · dYt

= 3Y 2
t [α(m− Yt) dt+ β dẐ(1) + γYt dẐ

(2)] + 3Yt[β
2 dt+ γ2Y 2

t dt+ 2βρ2γYt dt]

= [(3γ2 − 3α)Y 3
t + (3mα + 6βρ2γ)Y 2

t + 3β2Yt] dt+ 3βY 2
t dẐ

(1) + 3γY 3
t dẐ

(2)
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is

(95)
Y 3
t = y3 +

∫ t
0

[(3γ2 − 3α)Y 3
s + (3mα + 6βρ2γ)Y 2

s + 3β2Ys] ds

+
∫ t

0
3βY 2

s dẐ
(1) +

∫ t
0

3γY 3
s dẐ

(2).

Taking expectations on both sides of the solution gives

(96) EY 3
t = Ey3 + E

∫ t

0

[
(3γ2 − 3α)Y 3

s + (3mα + 6βρ2γ)Y 2
s + 3β2Ys

]
ds.

So the corresponding ordinary differential equation is

(97)
dEY 3

t

dt
= 3(γ2 − α)E[Y 3

t ] + 3(mα + 2βρ2γ)E[Y 2
t ] + 3β2E[Yt].

From the solution of the ordinary differential equation, the condition for not blowing
up is α ≥ γ2.

Similarly as before, when n = 4,

(98)
dEY 4

t

dt
= (6γ2 − 4α)EY 4

t + (4mα + 12βρ2γ)EY 3
t + 6β2EY 2

t .

From the solution of this ordinary differential equation, the condition for not blowing
up is α ≥ 3

2
γ2.

Similarly, we can conclude that for any positive interger n, the condition under

which the nth moment of Yt does not blow up is α ≥ (n−1)
2
γ2. In our simulation, we

want n = 5, so we use the relationship α ≥ 2γ2.

Appendix B. Derivation of the accuracy of the variance analysis

In order to prove Theorem 1.1, we need the following three lemmas.
Lemma A.1. Under the assumptions of Theorem 1.1, for any fixed initial state

(0,x,y), there exists a positive constant C1 > 0 such that for ε ≤ 1, one has

E∗0,t,x,y

{∫ T

0

e−2rs

(
∂P ε

∂x
− ∂PBS

∂x

)2

(s, Ss, Ys)f
2(Ys)S

2
s ds

}
≤ C1ε.

Proof: By Cauchy-Schwartz inequality

(99)

E∗0,t,x,y{
∫ T

0
e−2rs(∂P

ε

∂x
− ∂PBS

∂x
)2(s, Ss, Ys)f

2(Ys)S
2
sds}

≤
√
E∗{
∫ T

0
(∂P

ε

∂x
− ∂PBS

∂x
)4(s, Ss, Ys)} ds

×
√∫ T

0
E∗{f 4(Ys)(e−rsSs)4} ds.
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The second factor on the right hand side is bounded by

(100)

√∫ T

0

E∗{f 4(Ys)(e−rsSs)4} ds ≤ C2
f

√∫ T

0

E∗{(e−rsSs)4} ds

for some constant Cf , as the volatility function f is bounded. Using the notation
σt = f(Yt) as in (70), and if W ∗

t = W for simplicity, one has

e−rsSs = S0e
∫ s
0 σudWu− 1

2

∫ s
0 σ

2
udu,

and therefore

E∗{(e−rsSs)4} = S4
0E∗{eσ

∫ s
0 σ

2
udue

∫ s
0 4σudWu− 1

2

∫ s
0 16σ2

udu}
≤ C

′

fS
4
0E∗{e

∫ s
0 4σudWu− 1

2

∫ s
0 16σ2

udu} = C
′

fS
4
0 ,

where we have used again the boundness of f and the martingale property. Combined
with (100) we obtain

(101)

√∫ T

0

E∗{f 4(Ys)(e−rsSs)4}ds ≤ C2,

for some positive constant C2.
In order to study the first factor on the right hand side of the inequality (99), we

have to control the “delta” approximation, ∂P ε

∂x
→ ∂PBS

∂x
, as opposed to the option

price approximation, P ε → PBS, studied in [18] for European options, or in [1] for
digital-type options.

By pathwise differentiation (see [19] for instance), the chain rule can be applied
and we obtain

∂P ε

∂St
(t, St, Yt) = E∗

{
e−r(T−t)I{ST>K}

∂ST
∂St

∣∣∣∣St, Yt} .
At time t = 0,

(102) e−rT
∂ST
∂S0

= e
∫ T
0 σtdW ∗t −

1
2

∫ T
0 σ2

t dt

gives an exponential martingale, and therefore one can construct a P∗-equivalent
probability measure P̃ by Girsanov Theorem. As a result, the delta ∂P ε

∂St
(t, St, Yt)

has a probabilistic representation under the new measure P̃ corresponding to the
digital-type option

∂P ε

∂St
(t, St, Yt) = Ẽ{I{ST>K} | St, Yt},

where the dynamics of St become

dSt = (r + f 2(Yt))Stdt+ σtStdW̃t,
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with W̃ being a standard Brownian motion under P̃. The dynamics of Yt remain
the same because we have assumed here zero correlation between Brownian motions.
The one can apply the accuracy result in [1] for digital options to claim that∣∣∣Ẽ{I{ST>K} | St, Yt} − Ē{I{S̄T>K} | S̄t = S − t}

∣∣∣ ≤ C3(Yt)
√
ε,

where the constant C3 may depend on Yt, and the “homogenized” stock price S̄t
satisfies

dS̄t = (r + σ̄2)S̄t dt+ σ̄S̄t dW̄t

with W̄t being a standard Brownian motion [1]. In fact, the homogenized approxi-
mation Ē{I{S̄T>K} | S̄t} is a probabilistic representation of the homogenized “delta”,
∂PBS
∂x

. Consequently, we obtain the accuracy result for delta approximation:∣∣∣∣(∂P ε

∂x
− ∂PBS

∂x

)
(t, St, Yt)

∣∣∣∣ ≤ C3(Yt)
√
ε.

The existence of moments of Yt ensures the existence of the fourth moment of C3(Yt),
and therefore the first factor on the right hand side of (99) is bounded by

(103)

√√√√E∗
{∫ T

0

(
∂P ε

∂x
− ∂PBS

∂x

)4

(s, Ss, Ys) ds

}
≤ C4ε

for some positive constant C4. From (99), (103) and (101), we conclude that

E∗
{∫ T

0

e−2rs

(
∂P ε

∂x
− ∂PBS

∂x

)2

(s, Ss, Ys)f
2(Ys)S

2
s ds

}
≤ C1ε

for some constant C1.

Lemma A.2. Under the assumptions of Theorem 1.1 for any fixed initial state
(0, x, y), there exists ε a positive constant C such that for ε ≤ 1, one has∫ T

0

e−2rs

(
∂P ε

∂y

)2

(s, Ss, Ys)g
2
1(Ys) ds ≤ Cε2.

Proof: Conditioning on the path of the volatility process and by iterative expec-
tations, the price of a European option can be expressed as

(104)
P ε(t, x, y) = E∗t,x,y{E∗{e−r(T−t)(ST −K)+ | σs, t ≤ s ≤ T}}

= E∗t,x,y{PBS(t, x;K,T ;
√
σ̄2)},

where the realized variance is denoted by σ̄2:

(105) σ̄2 =
1

T − t

∫ T

t

f(Ys)
2ds.
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Taking a pathwise derivative for P ε with respect to the fast varying variable y, we
deduce by the chain rule

(106)
∂P ε

∂y
(t, x, y) = E∗t,x,y

{
∂PBS
∂σ

(t, x;K,T ;
√
σ̄2(y)

∂
√
σ̄2

∂y

}
.

Inside of the expectation the first derivative, known as Vega,

∂PBS
∂σ

=
xe−d

2
1/2
√
T − t

2π
,

with d1 =
log(x/K)+(r+ 1

2
σ2)(T−t)

σ
√
T−t , is uniformly bounded in σ. Using the chain rule one

obtains

(107)
∂
√
σ̄2

∂y
=

1

(T − t)
√
σ̄2

∫ T

t

[
∂f

∂y
(Ys)

∂Ys
∂y

]
f(Ys) ds.

In order to control the growth rate of ∂Ys
∂y

we consider its dynamics:

(108)
d

dS

(
∂Ys
∂y

)
=

[
−1

ε
+
ν
√

2√
ε

∂Λ1

∂y
(Ys) +

χ√
ε

∂Λ2

∂y
(Ys)

]
∂Ys
∂y

with the initial condition ∂Yt
∂y

= 1.

Rescaling the system (108) by defing Ỹs
ε

= Ysε, we deduce

d

dS

(
∂Ỹ ε

s

∂y

)
= −∂Ỹ

ε
s

∂y
+
√
ε

(
ν
√

2
∂Λ̃1(Ỹs

ε
)

∂y
+ χ

∂Λ̃2(Ỹs
ε
)

∂y

)
∂Ỹs

ε

∂y
.

The functions Λ̃1 and Λ̃2 are defined according to the rescaling and they are smooth

and bounded as Λ’s. By a classical stability result [20], we obtain
∣∣∣∂Ys∂y ∣∣∣ < C5e

−(s−t)/ε

for some constant C5. Applying these estimates to (107) and by the smooth bound-
edness of f , we obtain

∂
√
σ̄2

∂y
≤ Cε

for some C, and consequently a similar bound for ∂P ε

∂y
(t, x, y) in (106). Finally, as

g1 = ν
√

2, Lemma A.2 follows.

Lemma A.3. Under the assumptions of Theorem 1.1, for any fixed initial state
(0, x, y), there exists a positive constant C such that for ε ≤ 1, one has∫ T

0

e−2rs

(
∂P ε

∂y

)2

g2
2(Ys) ds ≤ C ′ε
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with g2(Yt) = µYt.
Proof: The proof is similar to Lemma A.2.
From the bounds in Lemma A.1, A.2 and A.3, we deduce Theorem 1.1.
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