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Chapter 1

Introduction

The pricing of derivatives is a problem that people have been examining over
the years. The model by Black and Scholes[?] provided a framework in which
it is possible to solve the problem. Their model formed a basis for the pricing
of derivatives from the simplest to the most exotic. However, the assump-
tions of the model placed some limitations on its use. These limitations on
the model have prompted and still continue to prompt various attempts and
corrections that are aimed at finding models that are more accurate with
respect to prices that are obtained in markets.

One of the assumptions underlying the model is that of constant volatil-
ity. The graph of the implied volatility of the model against the strike price
produces a smile curve, which shows that volatility is not constant. Many
models have been proposed to correct the Black-Scholes model by making
volatility non-constant. Stochastic volatility models are models whereby the
volatility is assumed to be a stochastic process with its own dynamics. A
property that is particularly desirable for such models is mean-reversion.

An Ornstein-Uhlenbeck (OU) process is an example of a process with the
mean-reverting property and some stochastic volatility models assume that
volatility has the dynamics of an OU process. Stochastic volatility mod-
els are meant to account for the skewness observed in the implied volatility
curve. The stationary distribution of an OU process is Gaussian, which has
constant skewness and kurtosis, regardless of its parameters. However, the
skewness and kurtosis of historical volatilities are not constant. This flaw
can be improved on by adding another source of noise to the model to give
another stochastic process with additive and multiplicative noise.

The skewness and kurtosis of the stochastic process with additive and
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multiplicative noise has been found to be not constant. Also, results ob-
tained from simulation show that the graph of kurtosis against skewness of
paths followed by the process with additive and multiplicative noise has a
similar shape to the graph of kurtosis versus skewness of the log of historical
volatilities.

For parameter estimation, we first note that the Euler discretization used
for simulation provide a linear relationship between successive pairs of data.
Least squares regression method is used to find the parameters for the linear
relationship, and these parameters are then used to find the parameters for
the model. The first two parameters are found directly from the least square
parameters and the remaining three parameters are estimated by further us-
ing the maximum likelihood method on the residuals.
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Chapter 2

Background for Stochastic
Volatility Models

Stochastic volatility models for option pricing were developed to try to cor-
rect the unrealistic assumption of constant volatility of the Black-Scholes
model. The assumption of constant volatility is particularly shown to be
untrue by the implied volatility of the model.

The implied volatility is the volatility that makes the price from the
Black-Scholes formula equal to the market price of the option. Different
strike prices and maturities yield different implied volatilities. This is clearly
seen from the skewness and so called smile curve which is obtained by plot-
ting the implied volatilities against the strike prices of options on a particular
underlying asset.

Let CBS(St, t; K,T ; σ) be the price obtained from the Black-Scholes for-
mula for a European call option on an underlying asset St at time t with
strike K, maturity T and constant volatility σ. Let Cobs be the observed
market value for the call option. The constant volatility that makes the
Black-Scholes call value equal to the market price is σ = I, where I is called
the implied volatility. So we have

CBS(St, t; K, T ; I) = Cobs. (2.1)

Several models have been proposed to handle assets with non-constant
volatility as evidenced by the differing implied volatilities obtained using the
Black-Scholes formula for options on the same asset. One such general class
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of models, referred to as local volatility models, uses deterministic functions
of the asset price and time for the volatility. Local volatility models provide
improvements on the Black-Scholes model but they are still not good enough
as volatility is in no way deterministic.

Another class of models, known as stochastic volatility models, treats
volatility as a stochastic process. Here, volatility is taken to be a random
variable having its own stochastic differential equation. A popular feature of
this class of model is mean-reversion. Although there are other models, the
mean-reverting property is particularly desirable because it can help to keep
the growth of the volatility in check.

An Ornstein-Uhlenbeck (OU) process is an example of a mean-reverting
process that is used by some stochastic volatility models. The OU process
satisfies the stochastic differential equation

dYt = κ(θ − Yt)dt + αdW 1
t (2.2)

where κ, θ, α, µ are constants, and W 1
t is a Wiener process. The OU pro-

cess has a Gaussian distribution. Its stationary distribution is Gaussian with
mean θ and variance α2

2κ
.

The problem with using the OU process for volatility is that the observed
volatility does not really follow a Gaussian distribution. Figure 2.1 and figure
2.2 are plots of the skewness against kurtosis of historical volatilities and log
of historical volatilities respectively. The historical data was obtained from
the Chicago Board Options Exchange (CBOE) website. The graphs show
that the skewness and kurtosis of volatility are not constants. These call into
question the suitability of the OU process for stochastic volatility models.
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Figure 2.1: Skewness vs kurtosis for historical volatilities of stock returns.
Data obtained from CBOE.
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Figure 2.2: Skewness vs kurtosis for log of historical volatilities of stock
returns. Data obtained from CBOE.
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Chapter 3

Coupled
Additive-Multiplicative Noise
Model

The OU process used by some stochastic volatility models has one source of
noise, which is additive. Another type of stochastic model that will now be
considered has an extra source of noise, the multiplicative noise, in addition
to the additive noise of the OU process.

Consider the stochastic model for a process Yt:

dYt = κ(θ − Yt)dt + αdW 1
t + βYtdW 2

t (3.1)

where W 1
t and W 2

t are correlated Wiener processes. αdW 1
t is the additive

noise and βVtdW 2
t is the multiplicative noise part.

Let

W 1
t = ρZ2

t +
√

1− ρ2Z1
t

W 2
t = Z2

t

Then
dYt = κ(θ − Yt)dt + α

√
1− ρ2dZ1

t + (αρ + βYt)dZ
2
t

where Z1
t and Z2

t are independent Wiener processes.

Let E[Yt] = µ1, E[Y 2
t ] = µ2, E[Y 3

t ] = µ3, ... For the process Yt,

dµ1 = κ(θ − µ1)dt. (3.2)
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Solving for µ1 gives
θ − µ1 = C1e

−κt, (3.3)

C1 a constant, and this further implies that

µ1 = θ(1− e−κt) + Y0e
−κt (3.4)

where Y0 is the initial value of Yt. As t → ∞, µ1 → θ. And so, θ is the
long-run mean of the process Yt.

For Y 2
t , the stochastic differential equation is given by

dY 2
t = 2YtdYt + (dYt)

2. (3.5)

Substituting Yt and simplifying gives

dY 2
t = [(β2 − 2κ)Y 2

t + 2(κθ + αβρ)Yt + α2]dt

+2α
√

1− ρ2YtdZ
1
t + 2(αρ + βYt)YtdZ

2
t . (3.6)

Taking the expectation then yields

dµ2 = [(β2 − 2κ)µ2 + 2(κθ + αβρ)µ1 + α2]dt. (3.7)

To have finite moments as t →∞, the condition β2 − 2κ < 0 must hold.

Doing similar calculations for µ3, µ4, µ5 and µ6, we obtain

dµ3 = [3(β2 − κ)µ3 + 3(κθ + 2αβρ)µ2 + 3α2µ1]dt, (3.8)

dµ4 = [2(3β2 − 2κ)µ4 + 4(κθ + 3αβρ)µ3 + 6α2µ2]dt, (3.9)

dµ5 = [5(2β2 − κ)µ5 + 5(κθ + 4αβρ)µ4 + 10α2µ3]dt, (3.10)

and

dµ6 = [3(5β2 − 2κ)µ6 + 6(κθ + 5αβρ)µ5 + 15α2µ4]dt. (3.11)
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To have finite moments as t →∞, the following conditions must hold:

For µ2 : β2 < 2κ or β2 <
2

1
κ. (3.12)

For µ3 : β2 < κ or β2 <
2

2
κ. (3.13)

For µ4 : 3β2 < 2κ or β2 <
2

3
κ. (3.14)

For µ5 : 2β2 < κ or β2 <
2

4
κ. (3.15)

For µ6 : 5β2 < 2κ or β2 <
2

5
κ. (3.16)

Generally, for µi, i ≥ 2,

β2 <
2

i− 1
κ. (3.17)

Solving the differential equations (3.7) to (3.9) for µ2, µ3 and µ4 gives

µ2 = C2e
(β2−2κ)t +

2C1(κθ + αβρ)

β2 − κ
e−κt − 2(κθ + αβρ)θ + α2

β2 − 2κ
(3.18)

µ3 = C3e
3(β2−κ)t − 3C2(κθ + 2αβρ)

2β2 − κ
e(β2−2κ)t − 3C1

3β2 − 2κ
Υe−κt − 1

β2 − κ
Ψ

(3.19)

µ4 = C4e
(6β2−4κ)t − 4C3(κθ + 3αβρ)

3β2 − κ
e3(β2−κ)t

− C2

5β2 − 2κ

(
6α2 − 12(κθ + 2αβρ)(κθ + 3αβρ)

2β2 − κ

)
e(β2−2κ)t

− C1

6β2 − 3κ

(
12α2(κθ + αβρ)

β2 − κ
− 12(κθ + 3αβρ)

3β2 − 2κ
Υ

)
e−κt

+
1

6β2 − 4κ

(
6α2(2(κθ + αβρ)θ + α2)

β2 − 2κ
+

4(κθ + 3αβρ)

β2 − κ
Ψ

)
(3.20)
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where

Υ =

(
2(κθ + αβρ)(κθ + 2αβρ)

β2 − κ
− α2

)
(3.21)

and

Ψ =

(
α2θ − (κθ + 2αβρ)

(
2(κθ + αβρ)θ + α2

β2 − 2κ

))
. (3.22)

C1 = θ − Y0. C2, C3 and C4 are constants that can be obtained by setting
t = 0 in the above solutions for µ2, µ3 and µ4.

Let µ′i = limt→∞ µi. µ′1 = θ from equation (3.4). Suppose β and κ satisfy
the inequality in (3.17). Then,

µ′2 = −2(κθ + αβρ)θ + α2

β2 − 2κ
(3.23)

= − 1

β2 − 2κ

[
2(κθ + αβρ)µ′1 + α2

]
(3.24)

µ′3 = − 1

β2 − κ

[
(κθ + 2αβρ)µ′2 + α2µ′1

]
(3.25)

µ′4 = − 1

6β2 − 4κ

[
4(κθ + 3αβρ)µ′3 + 6α2µ′2

]
. (3.26)

Let µ̂, σ̂2, γ̂ and K̂ be the stationary mean, variance, skewness and kur-
tosis of Yt respectively. Then, using the definition of standardized moments
of random variables, we get

µ̂ = θ (3.27)

σ̂2 = −(θβ + αρ)2 + α2(1− ρ2)

β2 − 2κ
(3.28)

γ̂ =
2αβρ(α2 + 3θ2β2) + 2θβ2(α2 + 2α2ρ2 + θ2β2)

(β2 − 2κ)(β2 − κ)σ̂3
(3.29)

K̂ =
Â

(6β2 − 4κ)(β2 − 2κ)(β2 − κ)σ̂4
(3.30)
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where

Â = 6α4(β2 − κ)− 6θ4β4(3β2 + κ)− 12β2α2θ2(β2 + κ)

−24α2β2ρ2(α2 + κθ2 + 4β2θ2)

−24αρθβ(α2β2 + κθ2β2 + α2κ + 3θ2β4 + 2α2β2ρ2). (3.31)

It can be observed from the above stationary moments for the stochastic
model with additive and multiplicative noise that the stationary variance is
always positive because of the assumption that β2 − 2κ < 0. The stationary
skewness is not a constant and it can be either positive or negative, depend-
ing on the values of the parameters. If the first term (2αβρ(α2 + 3θ2β2))
in the numerator of γ̂ is negative and its absolute value is greater than the
second term (2θβ2(α2 +2α2ρ2 +θ2β2)) in the numerator, then the stationary
skewness will be negative; otherwise, the stationary skewness will be positive.
The stationary kurtosis, K̂, depends on κ, θ, α, β and ρ, and is therefore
also not a constant.

The fact that the skewness and kurtosis are not constant for different
parameters is enough evidence that the random variable Yt is not Gaussian,
since Gaussian distribution has constant skewness and kurtosis. This is in
contrast to the OU process without multiplicative noise, which has a Gaus-
sian distribution. Thus, the addition of the multiplicative noise to the OU
process results in another process with a non-Gaussian distribution.

Monte carlo simulation of the paths followed by the process Yt in equa-
tion (3.1) suggests that the stochastic equation may be used to model the
log of volatility of stock prices. Figure 3.1 is the plot of the skewness against
kurtosis of some simulated paths of Yt and it shows that the skewness and
kurtosis are not constant for different parameters of the model. The graph
has a similar shape to the graph of the log of volatility for historical data in
figure 2.2 and both graphs can be fitted on top of a parabola.

Stochastic models of this kind have been used for modeling in other fields.
In meteorology and oceanography, Sardeshmukh and Sura[?, ?] have investi-
gated and proposed the suitability of using the stochastic model with additive
and multiplicative noise for daily sea surface temperature variations. They
showed that the scattered plot of the kurtosis against the skewness of some
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Figure 3.1: Skewness vs kurtosis for the simulated paths of process Yt of
equation (3.1).

observed data fits above a parabola. From their analysis of the moments of
a process with the stochastic equation with multiplicative noise, they found
that the kurtosis is greater than or equal three-halves of the squared-skewness
(kurt ≥ (3/2)skew2), which gives a lower limit for the graph of the observed
data. The graph of the kurtosis and skewness of the log of volatilities of
stocks in figure 2.2 is similar to the graph obtained by Sardeshmukh and
Sura[?] for the variations in sea surface temperature. It is this perceived
similarity of the stochastic nature of ocean temperature variations and stock
volatilities that informed this study.

In finance, the steady state probability density function (PDF) has been
obtained by using the Fokker-Planck equation for the model. Anteneodo
and Riera[?] considered the case where the Wiener processes, W 1

t and W 2
t ,

are not correlated. The PDF obtained provided a good fit to the empirical
PDF. Cheng et al [?] examined the PDF for when the Wiener processes are
correlated.
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Chapter 4

Parameter Estimation

The coupled additive-multiplicative noise model for stochastic volatility is

dYt = κ(θ − Yt)dt + αdW 1
t + βYtdW 2

t

where W 1
t and W 2

t are correlated Wiener processes with correlation coeffi-
cient ρ.

The stochastic equation can also be written as

dYt = κ(θ − Yt)dt + α
√

1− ρ2dZ1
t + (αρ + βYt)dZ

2
t

where Z1
t and Z2

t are independent Wiener processes.

In order to simulate paths for Yt, some form of discretization is needed.
Discretizing the model using Euler method gives

Yj = Yj−1 + κ(θ − Yj−1)δt + α
√

(1− ρ2)δtz1

+(αρ + βYj−1)
√

δtz2

where z1 and z2 are independent standard random normal.
The terms involving z1 and z2 can be combined into one term as follows:

Yj = Yj−1(1− κδt) + κθδt +
√

ζj−1δtz

where
ζj−1 = α2 + 2αβρYj−1 + β2Y 2

j−1

and z is standard normal.

There are five parameters to be estimated: κ, θ,α,β, and ρ. κ and θ are
estimated using least squares regression method, and maximum likelihood
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estimation (MLE) method is further used for the remaining three parame-
ters.

4.1 Least Squares Regression

The last equation shows that there is a linear relationship between Yj−1 and
Yj. The Euler Discretization can be written in the form

Yj = Yj−1(a) + b +
√

δtεj−1

where
a = 1− κδt

b = κθδt

and
εj−1 =

√
ζj−1z

Fitting a line using least squares, we get a, b and εj−1.
The conditional distribution of εj−1 given Yj−1 is normal with mean zero and
variance ζj−1.

4.1.1 Estimation of κ and θ

Now, a = 1− κδt implies

κ =
1− a

δt

and b = κθδt implies

θ =
b

1− a
.

So given the values of a and b, we can estimate κ and θ.

4.2 Maximum Likelihood Estimation of α, β,

ρ

Since we now know a and b, we can define the new variable εj−1 as follows:

Yj − (aYj−1 + b)√
δt

= εj−1(α, β, ρ; Yj−1) ∼ N (0, ζj−1)
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where
ζj−1 = α2 + 2αβρYj−1 + β2Y 2

j−1

The conditional probability density function of εj−1 given Yj−1 is

f(εj−1 | Yj−1) =
1√

2πζj−1

exp{−
ε2
j−1

2ζj−1

}.

Using their conditional density, the log-likelihood function of the εj−1’s is

L(α, β, ρ) = −1

2

∑
(log 2π + log ζj−1 +

ε2
j−1

ζj−1

).

The maximum of the log-likelihood will give the values for the estimates of
the three parameters. Finding the place at which the above log-likelihood
function is maximized is equivalent to minimizing the function

M(α, β, ρ) =
∑

(log ζj−1 +
ε2
j−1

ζj−1

)

over α, β and ρ.

The minimization problem can be solved by using some method of opti-
mization. For instance, the problem can be solved by Excel Solver, which
uses the ”Generalized Reduced Gradient (GRG2) Algorithm” developed by
Leon Lasdon and Allan Waren. However, since the minimization is with
respect to three variables, optimizing M directly may be computationally
costly.

One method for finding the maximum likelihood estimates is to equate
the gradient of M to zero and then solve the resulting three equations simul-
taneously. The values of α, β, ρ for which ∇M = 0, where ∇ = ( ∂

∂α
, ∂

∂β
, ∂

∂ρ
)

are the maximum likelihood estimates.

For

M(α, β, ρ) =
∑

(log ζj−1 +
ε2
j−1

ζj−1

)

and
ζj−1 = α2 + 2αβρYj−1 + β2Y 2

j−1,
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∂M

∂α
=

∑{
2α + 2βρYj−1

ζj−1

−
(2α + 2βρYj−1)ε

2
j−1

ζ2
j−1

}
= 0

∂M

∂β
=

∑{
2αρYj−1 + 2βY 2

j−1

ζj−1

−
(2αρ + 2βY 2

j−1)ε
2
j−1

ζ2
j−1

}
= 0

∂M

∂ρ
=

∑{
2αβYj−1

ζj−1

−
(2αβYj−1)ε

2
j−1

ζ2
j−1

}
= 0.

The equation ∂M
∂ρ

= 0 simplifies to

∑{
Yj−1

ζj−1

−
Yj−1ε

2
j−1

ζ2
j−1

}
= 0

which implies that ∑ Yj−1

ζj−1

=
∑ Yj−1ε

2
j−1

ζ2
j−1

.

Also, ∂M
∂α

= 0 can be factorized as

2α
∑{

1

ζj−1

−
ε2
j−1

ζ2
j−1

}
+ 2βρ

∑{
Yj−1

ζj−1

−
Yj−1ε

2
j−1

ζ2
j−1

}
= 0

and, upon substituting the result from ∂M
∂ρ

= 0, gives

∑ 1

ζj−1

=
∑ ε2

j−1

ζ2
j−1

.

Similarly, ∂M
∂β

= 0 can be factorized thus:

2αρ
∑{

Yj−1

ζj−1

−
Yj−1ε

2
j−1

ζ2
j−1

}
+ 2β

∑{
Y 2

j−1

ζj−1

−
Y 2

j−1ε
2
j−1

ζ2
j−1

}
= 0.

Substituting the result from ∂M
∂ρ

= 0 gives

∑ Y 2
j−1

ζj−1

=
∑ Y 2

j−1ε
2
j−1

ζ2
j−1

.
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So we need to solve the following system of three equations for α, β and
ρ : ∑ 1

ζj−1

=
∑ ε2

j−1

ζ2
j−1∑ Yj−1

ζj−1

=
∑ Yj−1ε

2
j−1

ζ2
j−1∑ Y 2

j−1

ζj−1

=
∑ Y 2

j−1ε
2
j−1

ζ2
j−1

.

This system can be simplified further by rewritting ζj−1 :

ζj−1 = α2 + 2αβρYj−1 + β2Y 2
j−1.

Completing the square in Yj−1 gives

ζj−1 = α2 − α2ρ2 + (αρ + βYj−1)
2.

and after factoring out α2 − α2ρ2 = α2(1− ρ2),

ζj−1 = α2(1− ρ2)

[
1 +

(
ρ√

1− ρ2
+

βYj−1

α
√

1− ρ2

)]
.

Now, let

A = α2(1− ρ2), B =
ρ√

1− ρ2
, C =

βYj−1

α
√

1− ρ2
.

Then ζj−1 = A
[
1 + (B + CYj−1)

2]. That is, ζj−1 is transformed from being
a function of α, β, ρ to a function of A, B, C.

Furthermore, let
ηj−1 = 1 + (B + CYj−1)

2

so that
ζj−1 = Aηj−1.

Substituting this into the system of equations gives∑ 1

Aηj−1

=
∑ ε2

j−1

A2η2
j−1∑ Yj−1

Aηj−1

=
∑ Yj−1ε

2
j−1

A2η2
j−1∑ Y 2

j−1

Aηj−1

=
∑ Y 2

j−1ε
2
j−1

A2η2
j−1

.
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Since A can be pulled out of the summation, the system reduces to

∑ 1

ηj−1

=
1

A

∑ ε2
j−1

η2
j−1∑ Yj−1

ηj−1

=
1

A

∑ Yj−1ε
2
j−1

η2
j−1∑ Y 2

j−1

ηj−1

=
1

A

∑ Y 2
j−1ε

2
j−1

η2
j−1

,

which can also be written as

A =

∑ ε2j−1

η2
j−1∑
1

ηj−1

, A =

∑ Yj−1ε2j−1

η2
j−1∑ Yj−1

ηj−1

, A =

∑ Y 2
j−1ε2j−1

η2
j−1∑ Y 2
j−1

ηj−1

.

To get rid of the fraction of summations, the log of A can be taken to obtain

log A = log
∑ ε2

j−1

η2
j−1

− log
∑ 1

ηj−1

log A = log
∑ Yj−1ε

2
j−1

η2
j−1

− log
∑ Yj−1

ηj−1

log A = log
∑ Y 2

j−1ε
2
j−1

η2
j−1

− log
∑ Y 2

j−1

ηj−1

.

This shows that the variable A can be expressed as a function of the two
other variables B and C of ηj−1. The system of three unknowns (A, B, C)
can now be changed to a system of two equations and two unknowns (B, C)
by equating any two of the expressions for A.

The system of two equations in the two unknowns, B and C, is a simpler
problem to solve. After obtaining the values for B and C, any of the expres-
sions for A can then be used to find the value of A.

Also, the expressions for A or the equations in B and C can be visual-
ized by plotting their 3-dimensional graphs. The ranges where B and C lie
can be seen from the graphs and this can help in restricting the interval for
searching for the values of B and C.
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Moreover, a simpler expression can be obtained for A by considering the
function to minimize as a function of A, B and C. That is, for

M =
∑(

log ζj−1 +
ε2
j−1

ζj−1

)
,

if ζj−1 = Aηj−1, then

M(A, B, C) =
∑{

log A + log ηj−1 +
ε2
j−1

Aηj−1

}
.

Looking at the first order condition with respect to A, the partial deriva-
tive of M with respect to A is equated to zero, which gives∑(

1

A
−

ε2
j−1

A2ηj−1

)
= 0.

Like before, the A’s can be factored out of the summation to get

1

A

∑
1 =

1

A2

∑ ε2
j−1

A2ηj−1

,

which simplifies to AN =
∑ ε2j−1

ηj−1
.

Therefore, the minimum value of M is obtained when

A =
1

N

∑ ε2
j−1

ηj−1

,

or equivalently when

log A = log
∑ ε2

j−1

ηj−1

− log N.

This expression for A, which is also a function of B and C, but simpler than
the other three expressions previously obtained, can be used in conjunction
with any two of the previous three to get two equations in B and C.

So another system to solve for B and C could be comprised of any two
equations from

log
∑ ε2

j−1

ηj−1

− log N = log
∑ ε2

j−1

η2
j−1

− log
∑ 1

ηj−1

log
∑ ε2

j−1

ηj−1

− log N = log
∑ Yj−1ε

2
j−1

η2
j−1

− log
∑ Yj−1

ηj−1

log
∑ ε2

j−1

ηj−1

− log N = log
∑ Y 2

j−1ε
2
j−1

η2
j−1

− log
∑ Y 2

j−1

ηj−1

.
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Also, the minimization function M can be changed to a function of two
variables B and C by substituting the optimal value of A into the function
as follows:

M(A, B, C) =
∑{

log A + log ηj−1 +
ε2
j−1

Aηj−1

}
.

Substituting A = 1
N

∑ ε2j−1

ηj−1
gives

M =
∑log

(∑ ε2
j−1

ηj−1

)
− log N + log ηj−1 +

ε2
j−1

ηj−1

N∑ ε2j−1

ηj−1

 .

This implies that

M = N log

(∑ ε2
j−1

ηj−1

)
−N log N +

∑
log ηj−1 + N.

Since −N log N + N is a constant, it can be removed from the function to
give

M1(B, C) = N log

(∑ ε2
j−1

ηj−1

)
+
∑

log ηj−1,

which is a function of two variables B and C. The minimum value of M1

can then be found using some optimization method. The graph of M1 can
be plotted against B and C to see the behavior of the function.

Once the values for A, B and C have been obtained, they can be trans-
formed back to get α, β and ρ. So, solving

A = α2(1− ρ2), B =
ρ√

1− ρ2
, C =

βYj−1

α
√

1− ρ2

for α, β and ρ gives

α =
√

A(1 + B2), β = C
√

A, ρ =
B√

1 + B2
,

which are the remaining three parameter estimates.

4.3 Simulation results and Application

The parameters used for simulations are κ = 4, θ = 1,α = 0.5,β = 0.6,ρ =
0.7,δt = 1

12
.
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Figure 4.1: Log of error (|Exact− Estimate|) of κ against log
of data size (N)

Sample paths were generated using these parameters. N is the amount of
data generated for each sample path.
The described parameter estimation method is used to estimate the five pa-
rameters for the generated data.

The graphs below show that, as the data size (N) gets bigger, the error
(difference between estimated and exact parameter values) gets smaller for
all five parameters.

The same method can be used to estimate the parameters of the CAM
stochastic volatility model for different stocks by treating volatility of stock
returns as time series.
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y = -0.3461x - 0.8192
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Figure 4.2: Log of error (|Exact− Estimate|) of θ against log
of data size (N)

y = -0.3737x - 0.2201
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Figure 4.3: Log of error (|Exact− Estimate|) of α against log
of data size (N)
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y = -0.3691x + 0.1178
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Figure 4.4: Log of error (|Exact− Estimate|) of β against log
of data size (N)

y = -0.2201x + 0.1161
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Figure 4.5: Log of error (|Exact− Estimate|) of ρ against log
of data size (N)
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Chapter 5

Conclusion

We have considered a stochastic volatility model that has additive and mul-
tiplicative noise. The model has five parameters and we have been able to
estimate all of them. The first two parameters were found using the method
of least squares on successive observation pairs. Then the remaining three
parameters were estimated by further using the maximum likelihood method
on the least squares residuals.

In the process of estimation of the last three parameters using the maxi-
mum likelihood method, we initially had three equations in three unknowns.
However, by doing a change of variable, one of the three new variables could
be written in terms of the other two variables such that, upon substitut-
ing into the optimization problem, we then got a function in two variables
instead of the original three we had.

The function of two variables could now be viewed in a 3-dimensional
graph. This would allow one to have a better guess of the point where the
function is optimized, which could further help in speeding up the process
of optimizing the function and thus obtaining quicker the parameters of the
stochastic volatility model.
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