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1. Introduction

The phenomenon of convection in a fluid saturated porous medium has been stud-

ied quite extensively, dating back to the work of Horton and Rogers [HR45] and

Lapwood [L48]. An effective model for convection in a porous medium is the Darcy-

Boussinesq system [N99]. Under a large Darcy-Prandtl number assumption this

system can be reduced to the infinite Darcy-Prandtl model [DC98]. Both of these

models have generated considerable interest lately. They find diverse applications

in the fields of geothermal engineering, construction of thermal insulators, nuclear

waste management, thermal enhanced oil recovery and hydraulic fracturing. En-

hanced oil recovery now represents a 31 billion dollar market opportunity, in the

United States alone [S09]. Furthermore, to meet the growing demand for energy

and to slow down greenhouse gas emissions, nuclear power can be an important

source. With the use of nuclear power comes the issue of disposal of radioactive

waste, possibly via shallow land burial. All of the above processes involve modelling
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fluid flows in porous media [S01].

In [P10], [PT09], we show convergence of the invariant measures of the Darcy-

Boussinesq system to those of the infinite Darcy-Prandtl number model, as the

Darcy-Prandtl number approaches infinity. We would now like to consider the ques-

tion of uniqueness of the invariant measures for the infinite Darcy-Prandtl model.

For the deterministic system there is no uniqueness, as seen by constructing mea-

sures consisting of point masses centered at various steady states [WS09]. These

multiple steady states then will give rise to multiple invariant measures.

One possible approach is to consider the deterministic system forced by a white

noise. Heuristically, the noise will connect the various branches of the attractor,

which would not be able to interact without the presence of the noise. Essentially,

the stochastic forcing introduces a probability of being “kicked” from one steady

state to another, an impossibility without the noise. The noise will thus connect all

disconnected branches of the attractor to yield an invariant measure. We pay the

price however by having to work in a probabilistic setting on a Banach space.

Techniques of adding noise to deterministic partial differential equations have

become quite popular. There is a vast literature on these so-called stochastic par-

tial differential equations. See [DZ96] for a detailed treatment of such techniques.

The breadth of techniques covered in [DZ96] are of a very technical nature. The

authors treat the case of infinite-dimensional noise. For our case however, a finite-

dimensional noise will suffice. Although there is no general theory to treat equations

forced by degenerate or finite-dimensional noise, there are various results that pro-

vide us with valuable insight into the existence and uniqueness of invariant measures

for dissipative stochastic systems. We recall certain prominent results relevant in

our setting.

Mattingly, in his PhD dissertation, considered the 2d stochastic Navier-Stokes

equations forced by degenerate white noise [M98]. He proved uniqueness of the in-

variant measure for this equation. Later, along with E and Sinai he studied this

problem further, deriving various results that were reported in [MES01]. The

methodology developed by them was extended to a host of other stochastic par-

tial differential equations such as the stochastic Ginzburg-Landau and stochastic

Cahn-Hilliard. These equations were considered by E and Liu [E02]. Recently these

techniques were also applied to the 3d truncated stochastic Boussinesq system by

Wu and Lee [Wu04].

Inspired by the above results we propose to consider the infinite Darcy-Prandtl

number model in a stochastic setting. Essentially we add a finite-dimensional white

noise term to the infinite Darcy-Prandtl number model to yield a stochastic partial

differential equation. This enables us to borrow a variety of techniques from the

literature on dissipative stochastic partial differential equations forced via finite-

dimensional noise.

Our goal in the current manuscript is to apply results directly from [E02] to the

stochastic infinite Darcy-Prandtl number model. E and Liu in [E02] prove existence
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of a unique invariant measure for a general dissipative stochastic PDE, under certain

suitable conditions. We will systematically check that the stochastic infinite Darcy-

Prandtl number model satisfies each one of these. We have organized our manuscript

as follows. In section 2 we describe the mathematical formulation of the problem.

Section 3 is aimed at validating the first two conditions as posed in [E02]: see the

appendix. In section 4 we make various probabilistic estimates aimed at validating

the remaining conditions. The results of these sections are brought together in

section 5, where we state our main result via Theorem 5.1. We then offer some

concluding remarks in section 6. For the benefit of the reader the appendix in

section 7 recapitulates the essence of the results that we are applying from [E02]

to our current work. In all estimates made henceforth C is a generic constant that

can change in its value from line to line, and sometimes within the same line, if so

required.

2. The Mathematical Formulation

2.1. The infinite Darcy-Prandtl number model

The physical space for the problem consists of a fluid-saturated porous medium,

confined between two plates a distance of h units apart vertically. The porous layer

is of length Lx in the x-direction and length Ly in the y-direction. The bottom

plate is heated to a temperature T2 and the top plate is cooled to a temperature

T1 where T2 > T1. In order to non-dimensionalize the problem we measure length

in units of the layer thickness h, and time in units of the thermal diffusion time

scale h2

κ , where κ is the coefficient of thermal diffusion. Thus the fluid occupies the

non-dimensional region

X = [0,Λx]× [0,Λy]× [0, 1]. (2.1)

Here Λx = Lx
h and Λy =

Ly
h .

The differential heating induces convection in the fluid, which is modeled by

a set of coupled partial differential equations—see [N99], [DC98]—known as the

Darcy-Boussinesq system.

A key parameter in the above system is the Darcy-Prandtl number. This is

defined as

PrD =
νh2

κK
. (2.2)

Here, K is the Darcy permeability coefficient, and ν is the kinematic fluid viscosity.

The Darcy-Prandtl number essentially measures the ability of the porous medium

to transport fluid. A typical range of values for K is 10−8–10−16. When the porous

medium in question has very low permeability, say O(10−16) (such as very tightly

packed sand, clay, or granite), the result is a very large Darcy-Prandtl number.

The infinite Darcy-Prandtl number model is obtained via formally taking the

limit as PrD approaches ∞ in the Darcy-Boussinesq system [DC98]. The model is
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described by the following set of coupled partial differential equations along with a

free-slip set of boundary conditions:

u +∇p = RaD kT, (2.3)

∂T

∂t
+ u · ∇T = ∆T, (2.4)

u3|z=0,1 = 0,
∂u1

∂z

∣∣∣∣
z=0,1

=
∂u2

∂z

∣∣∣∣
z=0,1

= 0, (2.5)

∇ · u = 0, (2.6)

T |z=0 = 1, T |z=1 = 0,u|t=0 = u0, T |t=0 = T0. (2.7)

On the side walls, periodic boundary conditions are imposed for convenience.

Here u is the seepage velocity, T is the temperature field, and k is the upward

pointing unit vector. The parameter in the system is the Darcy-Rayleigh number

defined as

RaD =
gα(T2 − T1)Kh

νκ
, (2.8)

where g is the gravitational acceleration.

Note the system is not equipped with homogeneous boundary conditions. This

is circumvented by introducing a change of variable

T = θ + γ(z). (2.9)

Here γ(z) is a background temperature profile: see [CD96]. We require that

γ(1) = 0, γ(0) = 1. (2.10)

Thus θ will satisfy homogenous boundary conditions,

θ|z=0,1 = 0. (2.11)

Inserting the above into (2.3)–(2.4) yields

∇p+ u = RaD kθ, (2.12)

∇ · u = 0, (2.13)

∂θ

∂t
+ u · ∇θ + u3γ

′(z) = ∆θ + γ′′(z), (2.14)

θ|z=0,1 = 0. (2.15)

We will suppose γ′(z) has the form

γ′(z) = 0, 0 ≤ z ≤ 1− δ, (2.16)
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γ′(z) =
1

δ
, 1− δ < z ≤ 1, (2.17)

so that

γ′′(z) = 0. (2.18)

Appropriate choices of δ will be made later, as required.

2.2. The stochastic infinite Darcy-Prandtl number model

Notice from (2.12), the velocity is completely determined by the temperature field

modulo the pressure. We will use this to our advantage and convert (2.12)–(2.14) to

a single equation. We apply the Leray-Hopf projector, denoted P , ([T97]), to (2.12)

and insert the result into (2.14) to yield the following equation

∂θ

∂t
= ∆θ −RaDP (kθ) · ∇θ −RaDγ′(z)P (θ), (2.19)

θ|z=0,1 = 0. (2.20)

An appropriate white noise is added to (2.19) to yield the stochastic infinite Darcy-

Prandtl number model

dθ = (∆θ −RaDP (kθ) · ∇θ −RaDγ′(z)P (θ)) dt+ dW, (2.21)

θ|z=0,1 = 0. (2.22)

We now choose δ = 2CRaD—the reason for this will become clear in Lemma 3.1—

where C is the Poincaré constant that arises in the Poincaré inequality

|θ(t)|22 ≤ C|∇θ(t)|22. (2.23)

We pause and ask the following question. Does there exist a unique invariant

measure for (2.21)? We answer this question in the affirmative by applying results

from [E02].

2.3. Stochastic preliminaries

In this section we discuss the stochastic framework on which much of the subsequent

analysis relies. The key idea is to perform stochastic analysis on a Banach space.

To this end we would like to discuss the structure of the noise and spaces used. For

details the reader is referred to [DZ96]. We follow the presentation of [E02].

We consider (2.21) yet again

dθ = (∆θ −RaDP (kθ) · ∇θ −RaDγ′(z) P (θ)) dt+ dW, t ≥ 0, θ(0) = θ0. (2.24)

The noise W(·, t) is of the form

W(x, ω, t) =
∑

σkωk(ω, t)ek(x), (2.25)
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where the ωk’s are independent standard brownian motions which generate the

filtered probability space (Ω,F ,Ft,P). The σk ∈ R are coordinate-wise standard

deviations, and the ek(x) form a basis for L2(X). Expectations are taken with

respect to P. The phase space for us is H = L2(X). This is equipped with the stan-

dard inner product 〈·, ·〉. Defining noise with this structure facilitates taking inner

products. This becomes important in the energy estimates performed henceforth.

We will assume (2.21) can be solved for almost all ω ∈ Ω and defines a continuous

markovian semigroup, denoted

φωs,tθ0 = θ(s, t;ω, θ0). (2.26)

A probability measure µ on the phase space H equipped with the Borel σ-algebra

is invariant if and only if∫
H

F (θ)µ(dθ) =

∫
H

E[F (φωt θ)]µ(dθ), (2.27)

for all continuous bounded functions F on H and all t ≥ 0.

An invariant measure µ can be extended to a measure µp on the path space

C((−∞, 0], H). First, we define a cylinder set

A = {θ(s) ∈ C((−∞, 0], H), θ(ti) ∈ Ai, i = 0, ...n} , (2.28)

where t0 < t1 < t2 < ...< tn < 0, and the Ai are Borel subsets of H. Define

B ⊂ H × Ω by

B =
{

(θ, w), θ ∈ A0, φt0,ti ∈ Ai, i = 1, 2, ..n
}
, (2.29)

and define µp(A) = (µ × P)(A). Then µp is consistent on cylinder sets and can be

extended to the natural σ-algebra by Kolmogorov’s extension theorem.

We also briefly recount the concept of gibbsian dynamics of the low modes. We

partition the phase space H = L2(X) into a space of high modes and low modes:

Hl = span {ek(x), k ≤ N} , Hh = span {ek(x), k > N} , (2.30)

where H = Hl ⊕Hh. We denote by Pl the projection operator from H to Hl and

by Ph the projection operator from H to Hh. Thus a solution to (2.21) is written

as θ(t) = (l(t), h(t)) where Pl(θ(t)) = l(t) and Ph(θ(t)) = h(t). We can thus rewrite

(2.21) in terms of its high mode and low mode components as

dl(t) = ∆l(t) dt− Pl(RaDP (kθ) · ∇θ −RaDγ
′
(z)P (θ)) dt+ dW(t), (2.31)

dh(t)

dt
= ∆h(t)− Ph(RaDP (kθ) · ∇θ −RaDγ

′
(z)P (θ)). (2.32)

A number of conditions are imposed on (2.21): see the appendix. Note that given

an ergodic invariant measure µ, for µp-almost all θ(·) ∈ C((−∞, 0], H) we have that

lim
t0→−∞

1

t− t0

∫ t

t0

K(θ(s)) ds ≤ β, (2.33)

for some positive function K (see condition 2 in the appendix).
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We next define the set U ⊆ C((−∞, 0], H) to consist of all v : (−∞, 0] → H

such that v satisfies the estimates derived in Lemma 4.4 and the integral estimate

derived above. Then due to conditions 1 and 2, which we prove henceforth, and

the ergodicity assumption, we have that µp(U) = 1. Also we will use l(t) to denote

the value of the low modes of the solution at time t, and Lt to denote the entire

trajectory of the low modes from −∞ to t. Therefore we have that l(t) ∈ Hl and

Lt ∈ C((−∞, t], Hl), and that l(s) = Lt(s) for 0 ≤ s ≤ t. We define a map Φs(L
t, h0)

which is a solution to (2.32) at time s with initial condition h0 and low mode forcing

Lt.

Note that Φs(L
t, h0) only depends on the information of Lt between 0 and s.

Therefore we can define Φt0,s(L
t, h0) for solutions starting from t0 rather than time

0. We will suppose N is large enough so that the requisite condition from Lemma

5.1 holds. Then we can solve for the future of l using the gibbsian dynamics

dl(t) = [∆l(t) +G(l(t),Φt(L
t))] dt = dW(t). (2.34)

Here

G(l, h) = Pl(RaDP (k(l + h)) · ∇(l + h) +RaDP (l + h))). (2.35)

Thus we have a closed form for the dynamics of the low modes given an initial past.

The following difference operator also appears often:

D(f, g1, g2) = G(f, g1)−G(f, g2). (2.36)

Also we will abbreviate the nonlinear terms in (2.21) as

R(θ) = −RaD P (kθ) · ∇θ −RaD γ′(z)P (θ). (2.37)

3. Proof of first two conditions

We now proceed systematically to verify the conditions set forth by E and Liu in

[E02]: again, see the appendix. Essentially we want to follow the ideas in [E02] and

reduce the infinite dimensional dynamics of the stochastic infinite Darcy-Prandtl

number model to the finite-dimensional gibbsian dynamics. This will facilitate the

use of Girsanov’s theorem to yield a unique invariant measure. In this section we

state and prove two lemmas from which the first two conditions in [E02] will be a

direct consequence.

Lemma 3.1. For the infinite Darcy-Prandtl number model there exist constants

η > 0 and k0 ≥ 0 such that

〈∆θ, θ〉2 + 〈−RaD P (kθ) · ∇θ −RaD γ′(z)P (θ), θ〉2 ≤ −η|θ(t)|
2
2 + k0. (3.1)
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Proof. From the form of (2.19), and the assumed choice of δ we have that

〈∆θ, θ〉2 + 〈R(θ), θ〉2 = 〈∆θ, θ〉2 +

〈
−RaD P (kθ) · ∇θ −RaD

1

2CRaD
P (θ), θ

〉
2

≤ −|∇θ|22 +
1

2C
|θ|22

≤ − 1

C
|θ|22 +

1

2C
|θ|22

≤ − 1

2C
|θ(t)|22.

This follows via integration by parts, Poincaré’s inequality

|θ|22 ≤ C|∇θ|22, (3.2)

and the estimate on the Leray projector

|P (θ)|22 ≤ |θ|22. (3.3)

Thus the lemma is proved for, say, η = 1
2C and k0 = 0.

Thus condition 1 (see appendix) from [E02] is satisfied.

We now look at the difference of the non-linear terms, R(θ1− θ2), where θ1 and

θ2 are two different solutions to the infinite Darcy-Prandtl number model such that

θ1 = l + h1 and θ2 = l + h2. We set ρ = θ1 − θ2 = h1 − h2 and state the lemma:

Lemma 3.2. For the infinite Darcy-Prandtl number model there exists a constant

α ∈ [0, 1) and a non negative function K(θ1) such that

〈R(ρ), ρ〉 ≤ α 〈−∆ρ, ρ〉+K(θ1)|ρ|22. (3.4)

Furthermore there exists a uniform constant C such that∫
H

K(θ1) dµ(θ1) ≤ C. (3.5)

Proof. Recall from the form of (2.21) we have

R(ρ) = −RaD P (kθ1) · ∇θ1 +RaD P (kθ2) · ∇θ2 +RaD γ′(z) P (ρ). (3.6)

We will rewrite R(ρ) as

R(ρ) = −RaD P (kθ2) · ∇ρ−RaD ∇θ1 · P (kρ) +RaD γ′(z)P (ρ). (3.7)

Without loss of generality we assume θ1 ≥ θ2. We multiply (3.7) through by ρ =
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θ1 − θ2 and integrate by parts to yield

〈R(ρ), ρ〉 ≤ 〈−RaD P (kθ2) · ∇ρ−RaD ∇θ1 · P (kρ) +RaDγ
′(z)P (ρ), ρ〉

= −RaD
∫
H

(θ1)zP (ρ)ρdx +RaD

∫
H

γ′(z)P (ρ)ρ dx

≤ RaD|B(ρ, θ1, ρ)|+ 1

2C

∫
H

|ρ|2 dx

≤ 1

4
|∇ρ|22 + C|ρ|2|∇ρ|2|∇θ1|2 + C|ρ|22

≤ 1

4
|∇ρ|22 + C|∇θ1|22||ρ|22 + C|ρ|22

≤ 1

4
〈−∆ρ, ρ〉2 + (C + |∇θ1|22)|ρ|22.

This follows via estimates for the tri-linear term, the Cauchy with epsilon inequality,

Poincaré’s inequality and the choice of γ′(z). Thus the lemma is proved for, say, α

= 1
4 and K(θ1) = (C + |∇θ1|22). In order to see how we obtain

∫
H

K(θ1) dµ(θ1) ≤ C, (3.8)

see the proof for Lemma 4.2.

4. Estimates on the growth rate of energy and enstrophy

Our goal in this section is to derive estimates for the energy E[|θ|22] and the enstrophy

E[|∇θ|22]. This is necessary to derive certain lemmas which are crucial for proving

the next set of conditions.

4.1. A priori estimates on the energy

We begin with estimates on the energy. We apply Itô’s lemma on the map

θ(t) 7→ 1

2
|θ(t)|22. (4.1)

This yields

1
2d|θ(t)|22 = [RaD

∫
Ω
γ′(z)P (kθ(t))θ(t) dx− |∇θ(t)|22 − 〈u · ∇θ, θ〉2] dt

−〈θ,dW〉2 + ε0 dt.
(4.2)

Here ε0 =
∑
|σk|2. Via the appropriate choice for γ(z) we obtain

1

2
d|θ(t)|22 ≤

[
1

2C
|θ(t)|22 − |∇θ(t)|22

]
dt+ ε0 dt− 〈θ,dW〉2 . (4.3)

Define a stopping time T , for any given H, by

T = inf
{
t : |θ(t)|22 ≥ H2

}
. (4.4)
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Integrate (4.3) from 0 to t ∧ T and take expectations to yield

1
2E[|θ(t ∧ T )|22] ≤ 1

2E[|θ(0)|22] + 1
2C

∫ t∧T
0

E[|θ(s)|22] ds−
∫ t∧T

0
E[|∇θ(s)|22] ds

−E[
∫ t∧T

0
〈θ,dW〉2] + ε0(t ∧ T ).

(4.5)

Now define the quantity

MT
t =

∫ t

0

〈θ(s ∧ T ),dW〉L2 . (4.6)

We can show that the quadratic variation of MT
t is finite, implying that MT

t is a

martingale and so

E[MT
t ] = 0. (4.7)

We can therefore use the optional sampling theorem to conclude

E[MT
t∧T ] = 0. (4.8)

Hence we can take H →∞ so T →∞ and thus t ∧ T → t. Incorporating these

limits in (4.5) yields

1

2
E[|θ(t)|22] +

∫ t

0

E[|∇θ(s)|22] ds ≤ 1

2
E[|θ(0)|22] +

1

2C

∫ t

0

E[|θ(s)|22] ds+ ε0t. (4.9)

Thus application of Poincaré’s inequality yields

1

2
E[|θ(t)|22] +

1

C

∫ t

0

E[|θ(s)|22] ds ≤ 1

2
E[|θ(0)|22] +

1

2C

∫ t

0

E[|θ(s)|22] ds+ ε0t. (4.10)

Thus we have

1

2
E[|θ(t)|22] +

1

2C

∫ t

0

E[|θ(s)|22] ds ≤ 1

2
E[|θ(0)|22] + ε0t, (4.11)

and an application of Gronwall’s lemma yields

E[|θ(t)|22] ≤ e−2C2tE[|θ(0)|22] +
ε0
C2

(1− e−2C2t). (4.12)

Here C2 = 1
2C .

We now state a lemma that enables us to derive a uniform bound on the L2-norm

of θ.

Lemma 4.1. Consider a θ that is a solution to the stochastic infinite Darcy-Prandtl

number model. For an invariant measure µ on H, there exists a constant C such

that the following estimate holds uniformly:∫
H

|θ|22 dµ(θ) ≤ C. (4.13)

Proof. For any ε > 0, there is a bε such that µ
{
θ : |θ|22 ≤ bε

}
≥ 1 − ε. We define

the set

Bε =
{
θ : |θ|22 ≤ bε

}
. (4.14)
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Thus we have that for any H and t > 0,∫
H

(|θ|22 ∧H) dµ(θ) =

∫
H

E(|φω0,tθ|22 ∧H) dµ(θ)

≤
∫
Bε

E(|φω0,tθ|22) dµ(θ) +Hε

≤ e−2C2tbε +
ε0
C2

(1− e−2C2t).

This follows via the estimates derived in (4.12). We now let t → ∞ and H → ∞
and obtain the result, as ε was arbitrary. This proves the lemma.

4.2. A priori estimates on the enstrophy

We will now derive estimates for E[|∇θ(t)|22]. We apply Itô’s lemma on the map

θ(t) 7→ 1

2
|∇θ(t)|22. (4.15)

This yields

1
2d|∇θ(t)|22 = [−|∆θ(t)|22 +RaD

∫
Ω
γ′(z)∆θP (θ) dx] dt

−〈∆θ,dW〉2 + (〈u · ∇θ,∆θ〉2 + ε1) dt.
(4.16)

Here ε1 =
∑
k2|σk|2. We now define the stopping time T , for any given H, by

T = inf
{
t : |∇θ(t)|22 ≥ H2

}
. (4.17)

We use the Cauchy-Schwartz, H’̈older’s, Poincaré’s, and Young’s inequalities and

choose

γ′(z) =
1

8C3
, (4.18)

where C3 is the constant that arises in the embedding of H2(X) ↪→ H1
0 (X), i.e.,

|∇θ|22 ≤ C3|∆θ|22, (4.19)

to obtain
1
2d|∇θ(t)|22 ≤ [−|∆θ(t)|22 +RaD |θ|∞|∇θ|2|∆θ|2 + 1

8C3
|∇θ|22] dt

−〈∆θ,dW〉2 + ε1 dt.
(4.20)

Recall the interpolation inequality

|∇θ|2 ≤ C|∆θ|
1
2
2 |θ|

1
2
2 , (4.21)

and use this to bound the nonlinear term:

−RaD
∫

Ω

(P (kθ) · ∇θ)∆θ dx ≤ RaD ||θ||∞
(∫

Ω

|∇θ|2 dx

)1
2
(∫

Ω

|∆θ|2 dx

)1
2

≤ C

(∫
Ω

|θ|2 dx

)1
4
(∫

Ω

|∆θ|2 dx

)3
4

≤ 3

4

∫
Ω

|∆θ|2 dx + C

∫
Ω

|θ|2 dx.
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Thus we obtain

d|∇θ|22 = 2

[
−|∆θ|22 +

1

8C3
|∇θ|22]dt−RaD

∫
Ω

(P (kθ) · ∇θ)∆θ dx

]
dt

−〈∆θ,dW〉2 + ε1 dt

≤ 2

[
−|∆θ|22 +

3

4
|∆θ|22 +

1

8C3
|∇θ|22 + C3

∫
Ω

|θ|2 dx

]
dt

−〈∆θ,dW〉2 + ε1 dt.

Now integrating from 0 to t ∧ T and taking expectation on both sides yields

1
2E|∇θ(t ∧ T )|22 ≤ − 1

4

∫ t∧T
0

E|∆θ(s)|22 ds+ 1
8C3

∫ t∧T
0

E[|∇θ(s)|22] ds

+C
∫ t∧T

0
E|θ(s)|22 ds−

∫ t∧T
0

E 〈∆θ,dW〉2 + ε1(t ∧ T ).
(4.22)

We now define the quantity

MT
t =

∫ t

0

〈∆θ(s ∧ T ),dW(s)〉2 , (4.23)

and we can show that the quadratic variation of MT
t is finite, implying that MT

t is

a martingale and therefore E[MT
t ] = 0 . Then the optional sampling theorem yields

E[MT
t∧T ] = 0. Hence we can take H → ∞, so T → ∞ and thus t ∧ T → t. Again

incorporating these limits in (4.22) gives

1
2E[|∇θ(t)|22]− 1

8C3

∫ t
0
E[|∇θ(s)|22] ds+ 1

4

∫ t
0
E[|∆θ(s)|22] ds

≤ 1
2E[|∇θ(0)|22] + C

∫ t
0
E[|θ(s)|22] ds+ ε1t.

(4.24)

Note the embedding of H2(X) ↪→ H1(X):

|∇θ|22 ≤ C3|∆θ|22. (4.25)

Using the above in conjunction with the Poincaré’s inequality yields

1
2E|∇θ(t)|

2
2 − 1

8C3

∫ t
0
E[|∇θ(s)|22] ds+ 1

4C3

∫ t
0
E[|∇θ(s)|22] ds

≤ 1
2E[|∇θ(0)|22] + C

∫ t
0
E[|θ(s)|22] ds+ ε1t,

(4.26)

and so

1

2
E[|∇θ(t)|22] + C4

∫ t

0

E[|∇θ(s)|22] ds ≤ 1

2
E[|∇θ(0)|22] + (C5 + ε1)t. (4.27)

Here C4 = 1
8C3

and C5 is the uniform estimate on E[|θ(s)|22] via (4.12). Hence an

application of Gronwall’s lemma yields

E[|∇θ(t)|22] ≤ e−2C4t(E[|∇θ(0)|22]) +

(
ε1 + C5

2C4

)
(1− e−2C4t). (4.28)

We now state a lemma that enables us to derive a uniform bound on the L2-norm

of ∇θ.
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Lemma 4.2. Consider a θ that is a solution to the stochastic infinite Darcy-Prandtl

number model. For an invariant measure µ on H, there exists a constant C such

that if |∇θ(0)|22 ≤ C, then the following estimate holds uniformly:∫
H

|∇θ|22 dµ(θ) ≤ C. (4.29)

Proof. The proof could follow via mimicking the methods for the L2-norm of θ.

However, we provide an alternate proof. It follows from the a priori estimates on

E[|∇θ|22] that

1

2
E[|θ(t)|22] +

∫ t

t0

E[|∇θ(s)|22] ds ≤ 1

2
E[|θ(t0)|22] +

1

2C

∫ t

t0

E[|θ(s)|22] ds+ ε0(t− t0).

(4.30)

This implies that

lim
t0→∞

1

t− t0

∫ t

t0

E[|∇θ(s)|22] ds ≤ lim
t0→∞

1

t− t0
1

2
E[|θ(t0)|22]

+ lim
t0→∞

1

t− t0
1

2C

∫ t

t0

E[|θ(s)|22] ds+ ε0

≤ C,

using the uniform estimates on E[|θ(s)|22]. Thus, from ergodicity, it follows that

lim
t0→∞

1

t− t0

∫ t

t0

E[|∇θ(s)|22] ds =

∫
H

E[|∇θ(s)|22] dµ(θ) ≤ C. (4.31)

However an application of Fubini’s theorem for nonnegative integrands implies that∫
H

E[|∇θ(s)|22] dµ(θ) = E
∫
H

[|∇θ(s)|22] dµ(θ) ≤ C, (4.32)

and from the definition of invariant measure we obtain

E
∫
H

|∇θ(s)|22 dµ(θ) =

∫
H

|∇θ(s)|22 dµ(θ) ≤ C. (4.33)

This proves the lemma.

4.3. Probabilistic estimate on growth rate of energy and enstrophy

The following lemma gives a probabilistic estimate of the growth rate of |θ|22 and

|∇θ|22.

Lemma 4.3. For all a ∈ (0, 1), δ > 1, there exists a K1 such that if |θ0|22+|∇θ0|22 ≤
C0, then, for any t ≥ 0,

P

{
|θ(t)|22 + |∇θ(t)|22 + C(

∫ t
0
|∇θ(s)|22 ds+

∫ t
0
|∆θ(s)|22 ds)

≤ C1 + C2t+K1(t+ 1)δ

}
≥ 1− a. (4.34)
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Proof. From (4.3), (4.16) we have that

|θ(t)|22 + |∇θ(t)|22 + C

(∫ t

0

|∇θ(s)|22 ds+

∫ t

0

|∆θ(s)|22 ds

)
≤ C(|θ(0)|22 + |∇θ(0)|22) + (ε0 + C5 + ε1)t+

∫ t

0

〈θ,dW〉2 −
∫ t

0

〈∆θ,dW〉2

≤ C1 + C2t+

∫ t

0

〈θ,dW〉2 −
∫ t

0

〈∆θ,dW〉2 .

Consider the processes

Mt =

∫ t

0

〈θ,dW〉2 (4.35)

and

M1
t = −

∫ t

0

〈∆θ,dW〉2 . (4.36)

For our purpose it suffices to show that, for t ≥ 0,

P
{
Mt +M1

t ≤
K1

2
(t+ 1)δ

}
≥ 1− a. (4.37)

We consider the quadratic variations of the processes Mt and M1
t to obtain

[M,M ]t ≤ (σ∗max)2

∫ t

0

|θ(s)|22 ds (4.38)

and

[M1,M1]t ≤ (∆σ∗max)2

∫ t

0

|θ(s)|22 ds, (4.39)

where

(σ∗max)2 = sup |σk|2 (4.40)

and

(∆σ∗max)2 = sup |k2σk|2. (4.41)

Note we have obtained estimates on the L2-norm of θ. We thus proceed by

defining the following events

Bk =

{
sup
s∈[0,k]

|Ms| ≥
K1

4
(k + 1)δ

}
. (4.42)
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We proceed by making an estimate of the probability of this event.

P {Bk} ≤
42

(K1)2(k + 1)2δ
E[|Ms|2] (Doob’s inequality applied to Bk)

≤ 42

(K1)2(k + 1)2δ
E

[
sup
s∈[0,k]

|Ms|2
]

≤ 42

(K1)2(k + 1)2δ
E[([M,M ]k)] (Burkholder-Davis-Gundy inequality)

≤ 42

(K1)2(k + 1)2δ
E
[
(σ∗max)2

∫ t

0

|θ(s)|22
]

ds (estimate on E[([M,M |]k)])

≤ 42

(K1)2(k + 1)2δ
(σ∗max)2

∫ k

0

E[|θ(s)|22] ds

≤ 42

(K1)2(k + 1)2δ
(σ∗max)2Ck (estimate on E[|θ(s)|22]).

Therefore we have that

P {Bk} ≤
Ck

(k + 1)2δ
. (4.43)

We note that

P
{
Mt ≤

K1

4
(t)δ
}

= 1− P

{⋃
k

Bk

}
≥ 1−

∑
k

P {Bk} . (4.44)

We see that these sums are finite for sufficiently large δ. In particular δ > 1 suffices.

We note

P
{
Mt ≤

K1

4
(t)δ
}
≥ 1−

∑
k

P {Bk} . (4.45)

We can make the sum
∑
k P {Bk} arbitrarily small by increasing K1, since∑

k

P {Bk} ≤
1

K2
1

∑
k

Ck

(k + 1)2δ
≤ 1

K2
1

∑
k

1

kp
≤ C

K2
1

. (4.46)

Here p > 1. Thus, given a ∈ (0, 1), if we choose K1 =
√

2C
a , we obtain

P
{
Mt >

K1

4
tδ
}
≤ a

2
. (4.47)

The same argument applies to the process M1
t . Similar estimates can be made

on P {Ak} where

Ak =

{
sup
s∈[0,k]

|M1
s | ≥

K1

4
(k + 1)δ

}
. (4.48)
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Thus after performing a similar analysis as above, we can choose K1 large enough

to have

P
{
M1
t >

K1

4
(t)δ
}
≤ a

2
, (4.49)

and then combining (4.47) and (4.49) yields

P
{
Mt +M1

t ≤
K1

2
(t+ 1)δ

}
≥ 1− a, (4.50)

for t ≥ 0, as was required. This completes the proof of the lemma.

We next prove the following lemma.

Lemma 4.4. Let µp be a measure induced on C((−∞, 0], L2(X)) by any given sta-

tionary measure µ. Fix any K0 ≥ 0 and δ > 1
2 . Then for µp-almost every trajectory

θ(s) in C((−∞, 0], L2(X)), there exists a constant T1 such that for s ≤ 0 we have

that

|θ(s)|22 ≤ ε0 +K0 min(T1, |s|)δ. (4.51)

Proof. The basic energy estimates give us

|θ(t)|22 ≤ |θ0|22 − C1

∫ t

t0

|θ(s)|22 ds+ ε0(t− t0) +

∫ t

t0

〈θ(s),dW(s)〉2 . (4.52)

Define the quantity

Fk(s) = −C1

∫ s

−k
|θ(t)|22 dt+

∫ s

−k
〈θ(t),dW(t)〉2 . (4.53)

By the above definition we have that, for any k ≥ 1,

sup
s∈[−k,−k+1]

|θ(s)|22 ≤ |θ(−k)|22 + ε0 + sup
s∈[−k,−k+1]

Fk(s). (4.54)

We now define the event

Ak =

{
θ(s) : sup

s∈[−k,−k+1]

|θ(t)|22 ≤ ε0 +K0|k − 1|δ
}
. (4.55)

Let

UT =
⋂
k≥T

Ak. (4.56)

Then

U cT =

( ⋂
k≥T

Ak

)c
=
⋃
k≥T

Ack, (4.57)

and we have that

µp(U
c
T ) = µp

( ⋃
k≥T

Ack

)
≤
∑
k≥T

µp(A
c
k). (4.58)
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It follows from the definition of a measure that

µp(A
c
k) ≤ µp

{
(θ(s)) : |θ(−k)|22 ≥ K0

2 |K − 1|δ
}

+µp

{
(θ(s)) : sups∈[−k,−k+1] Fk(s) ≥ K0

2 |K − 1|δ
}
.

(4.59)

We will now estimate each of the quantities on the right hand side of the above

inequality. We proceed with the first one. Chebyeshev’s inequality yields

µp

{
(θ(s)) : |θ(−k)|22 ≥

K0

2
|K − 1|δ

}
≤ 16

K2
0 |k − 1|2δ

(E|θ(−k)|22). (4.60)

We now use the earlier derived energy estimates to yield

µp

{
(θ(s)) : |θ(−k)|22 ≥

K0

2
|K − 1|δ

}
≤ C

|k − 1|2δ
. (4.61)

Here C absorbs the uniform bounds of the energy estimates derived earlier. If we

choose δ > 1
2 , then ∑

k

C

|k − 1|2δ
<∞. (4.62)

Now we have shown that

[Mk,Mk] ≤ (σ∗max)2

∫ s

−k
|θ(t)|22 dt. (4.63)

We have that

Fk(s) ≤ C1Mk −
1

(σ∗max)2
[Mk,Mk]. (4.64)

Recall the exponential martingale inequality for any positive constants α and β:

P

{
sup

s∈[−k,0]

Mk(s)− α

2
[Mk,Mk] ≥ β

}
≤ e−αβ . (4.65)

It therefore follows that

µp

{
(θ(s)) : sups∈[−k,−k+1] Fk(s) ≥ K0

2 |k − 1|2δ
}

≤ e−
2K0

(σmax)2
|k−1|δ

+ e
− 2K0

(σ∗max)2
|k−1|δ

≤ C1e
−C2|k−1|δ .

(4.66)

Again, clearly for δ > 1
2 , we have that∑

k

C1e
−C2|k−1|δ <∞. (4.67)

Hence we arrive at∑
k≥T

µp(A
c
k) ≤

∑
k

C

|k − 1|2δ
+
∑
k

C1e
−C2|k−1|δ <∞. (4.68)

This implies that ∑
k≥T

µp(A
c
k) <∞, (4.69)
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and by the Borel-Cantelli lemma we have that

µp(lim sup
k→∞

Ack) = 0. (4.70)

This tells us that for large values of k the complement of Ak would µp-almost never

occur. Hence Ak would µp-almost certainly occur. Hence there must exist a time

T1 such that

|θ(s)|22 ≤ ε0 +K0 min(T1, |s|)δ. (4.71)

Therefore the lemma is proved.

5. Control of high modes

We now state a lemma which gives an estimate on the difference of high modes

of two different solutions to (2.21). This lemma is crucial for a proof of the third

condition that follows subsequently.

Lemma 5.1. Suppose there exist two solutions to the stochastic infinite Darcy-

Prandtl number model:

θ1(t) = l(t) + h1(t) (5.1)

and

θ2(t) = l(t) + h2(t). (5.2)

Then there exists a positive constant C such that when N is chosen so that

−γ = −(1− α)N2 + β < 0, (5.3)

then θ1 = θ2, i.e., h1(t) = h2(t). Furthermore, given a solution θ(t), any h0, and

t ≤ 0 the limit exists:

lim
t0→−∞

Φt0,t(l, h0) = h(t). (5.4)

Note the α and β referred to in the Lemma above are introduced in condition 2

in [E02]: see the appendix. This Φ is the same as introduced in section 2.3.

Proof. Let ρ(t) = h1(t)− h2(t). Then subtracting the requisite equations yields

dρ

dt
= −Aρ+ Ph[R(θ1 − θ2)]. (5.5)

We multiply the above equation by ρ, integrate by parts and use condition 2 to

yield

d|ρ|22
dt

= −〈Aρ, ρ〉+ 〈[R(θ1 − θ2)], ρ〉

≤ − 〈Aρ, ρ〉+
1

4
〈Aρ, ρ〉+ (C +K(θ1)|ρ|22)

≤ −3N2

4
|ρ|22 + (C +K(θ1)|ρ|22.
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Then there exists T2 depending on t and θ1 such that for t0 ≤ T2, we have that

−
(
−3N2

4

)
(t− t0) +

∫ t

t0

(C +K(θ1)) ds ≤ −γ(t− t0). (5.6)

Hence, by Gronwall’s inequality, we have

|ρ|22 ≤ exp

{
−(
−3N2

4
)(t− t0) +

∫ t

t0

(C +K(θ1) ds)

}
≤ e−γ(t−t0)|ρ(t0)|22
≤ e−γ(t−t0)[εθ0 +K0(t0)δ].

It follows then that for any time t0 ≤ min(T1, T2), we have, as t0 → −∞, exponential

decay when N2 ≥ 4
3(t−t0)

∫ t
t0

(C +K(θ1) ds.

For the second part of the lemma, let the high mode of the given solution θ(t)

be h1, and the solution to the high-mode equation starting from t0 and h0 be h2.

Then we have

|ρ|22 ≤ |h(t0)− h0|22 exp

{
−

(
3N2

4

)
+

∫ t

t0

K(θ1(s)) ds

}
. (5.7)

By the argument made before, ρ(t) decays to 0 as t0 → −∞, and the limit equals

h(t). This proves the lemma.

5.1. Proof of third condition

We are now in a position to verify the third condition from [E02]. We fix L0 ∈ P
and h̄(0), which is an initial value for the high mode at time 0. Let Ls = Sωs L

0

define Sωs , and l(s) = Lt(s) for s ≤ t. Then we know that with probability 1,

h(s) = Φs(L
s) where θ(s) = (l(s), h(s)), by Lemma 4.3. Fix a constant C0 such

that |θ(0)|22 + |∇θ(0)|22 ≤ C0. For any positive C we define

D(C) =

{
f ∈ C([0,∞), L2

l ) : |θ|22 + |∇θ|22 +

∫ t

0

(|∇θ|22 + |∆θ|22) ds ≤ C1 + C2 t+ C tδ
}
.

(5.8)

Here θ∗ = f(s) + Φs(f,Φ0(L0))

Now we project θ(t) onto Hl, and by Lemma 5.1 we have that for any a ∈ (0, 1),

there exists a C such that

P
{
ω : Sωs L

0 ∈ D(C)
}
> 1− a > 0. (5.9)

Therefore if we set h̄(s) = Φs(L
s, h̄(0)) and ρ(s) = h(s) − h̄(s), then θ = l + h =

l + h̄+ ρ. We state the following lemma.

Lemma 5.2. For the set D(C) as defined in (5.8), the following estimate holds

sup
{ω:Sωt L

0∈D(C)}

∫ ∞
0

|D(l(t), h(t), h̄(t))|2 dt <∞, (5.10)

where D(l, h, h̄) is defined in equation (2.36).
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Proof. We have

|D(l(t), h(t), h̄(t)|22
= sup
{w∈L2,|w|2≤1}

|RaD
〈
Pl(P (k(l + h) · ∇(l + h))− P (k(l + h̄) · ∇(l + h̄))), w

〉
|2

≤ sup
{w∈L2,|w|2≤1}

|RaD 〈Pl(P (k(l + h) · ∇ρ)), w〉 |2

+ sup
{w∈L2,|w|2≤1}

| 〈RaD Pl(P (k∇(l + h)ρ)), w〉 |2

≤ sup
{w∈L2,|w|2≤1}

|RaD 〈Pl(P (k(l + h) · ρ)),∇w〉 |2

+ sup
{w∈L2,|w|2≤1}

| 〈RaD Pl(P (k(l + h)ρ)),∇w〉 |2

≤ sup
{w∈L2,|w|2≤1}

Ra2
D |Pl(∇w)|2∞|P (k(l + h))|22|ρ|22

+ sup
{w∈L2,|w|2≤1}

Ra2
D |Pl(∇w)|2∞|P (k(l + h))|22|ρ|22

≤ sup
{w∈L2,|w|2≤1}

Ra2
D(|w|2H3)|θ|22|ρ|22

≤ C(N) Ra2
D|θ|22|ρ|22.

This follows via integration by parts and the compact embedding

H2(X) ↪→ L∞(X) ↪→ L2(X). (5.11)

Note if Lt ∈ D(C) we can use the estimates on |θ|22 in Lemma 4.2, and on |ρ|22
in Lemma 5.1 to yield

|D(l(t), h(t), h̄(t)|22 ≤ |ρ(0)|22C(N)e(−N2+ 1
2 +C)t(C1 + C2t). (5.12)

If N is chosen such that N2 > 1
2 + C as t → ∞, the right hand side decays

exponentially. This yields

sup
{ω:Sωt L

0∈D(C)}

∫ ∞
0

|D(l(t), h(t), h̄(t))|22 dt

≤ sup
{ω:Sωt L

0∈D(C)}

∫ ∞
0

tδC(N)e(−N2+ 1
2 +C)t(C1 + C2t) dt

< K

<∞.

This proves the lemma.

Thus condition 3 (see appendix) from [E02] is verified.

5.2. Estimation of high modes

The following lemma will be useful in proving the last condition from [E02]. This

gives an estimate on the high modes of a solution to the stochastic infinite Darcy-

Prandtl number model.
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Lemma 5.3. If h(t) is the high mode component of the solution to the stochastic

Darcy-Boussinesq equation with low-mode forcing l ∈ C([0, t], L2
l ), then |h(t)|22 is

bounded by a constant that depends only on |h(0)|22 and
∫ t

0
|l(s)|22 ds.

Proof. We start with the equations for the high modes of the system, multiply

them by the high mode component and integrate the result by parts to yield

d

dt
|h|22 ≤ −2|∇h|22 − 2RaDPh(P (k(l + h)) · ∇(l + h)h+ 2RaD γ′(z)Ph[P (l + h)]h

≤ −2|∇h|22 − 2RaD 〈P (k(l + h) · ∇l, h〉 − 〈P (k(l + h) · ∇h, h〉+ C |h|22

≤ −2|∇h|22 − 2RaD

∫
H

(llzh+ hlzh) dx + 2RaD|h|22

≤ RaD|lz|∞|l|22 +RaD|lz|∞|h|22 + 2RaD|lz|∞|h|22 + C |h|22
≤ RaD|∆lz|2|l|22 +RaD|∆lz|2|h|22 + 2RaD|∆lz|2|h|22 + C |h|22
≤ RaDC(N)|l|22 + (3C(N)RaD + C)|h|22
≤ RaDC(N)|l|22 + C(N)RaD|h|22.

These follow via integration by parts, the embedding H2(X) ↪→ L∞(X) and the

uniform estimate on |θ|2. Thus, via the Gronwall inequality, we obtain

|h|22 ≤ |h(0)|22 +

∫ t

0

C(N)RaD|l|22 exp

{
C

∫ s

0

|l(τ)|22 dτ + C(N)RaDs

}
ds. (5.13)

This completes the proof of the lemma.

5.3. Proof of last condition

Let us assume that |l(0)|2 ≤ M . We define, for f ∈ C([0,∞), L2
l ) and 0 ≤ s ≤ T ,

θ(s) = f(s) + Φs(f,Φ0(L0)). Set

DT (C) =

{
f ∈ C([0,∞), L2

l ) :

∫ t

0

|θ|22 ds < CT, 0 ≤ t ≤ T
}
. (5.14)

We now state the following lemma.

Lemma 5.4. For the set DT (C) defined in (5.14), the following estimate holds:

sup
{Lt∈DT }

∫ t

0

|G(l(s),Φs(L
s,Φ0(L0))|22 ds <∞. (5.15)

Proof. We know h(s) = Φs(L
s,Φ0(L0)) with probability 1, from Lemma 5.1. Thus
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we have

|G(l(s),Φs(L
s, φ0(L0)))|2

= sup
{w∈L2,|w|2≤1}

〈Pl(−P (k(l + h)) · ∇(l + h)) +RaD Pl(l + h)3, w〉

≤ sup
{w∈L2,|w|2≤1}

1

2

〈
Pl(P (∇(l + h)))2, w

〉
+ sup
{w∈L2,|w|2≤1}

〈RaD Pl(l + h), w〉

≤ sup
{w∈L2,|w|2≤1}

|Pl∇w|∞ 〈|l + h|, |l + h|〉+RaD |Pl∇w|2|l|2

≤ sup
{w∈L2,|w|2≤1}

|∇w|∞(|l + h|22 +RaD |l|22)

≤ C(N)(|l|22 + |h|22).

Here C(N) absorbs various constants. Therefore we have that for l ∈ DT (C∗)

|h|22 ≤ |h(0)|22 +

∫ t

0

C(N)RaD|l|22 exp

{
C

∫ s

0

|l(τ)|22 dτ + (C(N)RaD)s

}
ds

≤ |h(0)|22 +

∫ T

0

C(N)RaD|l|22 exp

{
C

∫ s

0

|l(τ)|22 dτ + (C(N)RaD)s

}
ds.

This is less than some C by Lemma 5.3, as we are on a finite time interval [0, T ].

Here C depends only on |h0|2 and the C and T used to define DT (C). Therefore

sup
Lt∈DT

∫ T

0

|G(l(s),Φs(L
s,Φ0(L0))|22 ds

≤
∫ T

0

C(N)(|l|22 + |h|22) ds

≤ C(N)CT +

∫ T

0

C(N)RaD|l|22 exp

{
C

∫ t

0

|l(s)|22 ds+ (C(N)RaD)t

}
dt

≤ C12 T + C13e
C14T

≤ K
<∞.

Thus the Lemma is proved.

Condition 4 (see appendix) from [E02] now follows. Since we have verified that

the stochastic infinite Darcy-Prandtl number model satisfies all the conditions as

postulated in [E02], we can apply the results that appear therein, to yield the

following result:

Theorem 5.1. The stochastic infinite Darcy-Prandtl number model, as defined via

(2.21), possesses a unique invariant measure for

N2 >
4C

3
, (5.16)

where C is the uniform constant appearing in Lemma 4.2.
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6. Conclusion

In conclusion we have shown the uniqueness of invariant measure for the stochas-

tic infinite Darcy-Prandtl number model, under stochastic forcing of low modes.

Various questions remain open at this point, for example, the uniqueness of an in-

variant measure for the stochastic Darcy-Boussinesq system. In this case we would

have to add noise to both the velocity and temperature equations. This is conceiv-

ably a harder question to tackle as the Darcy-Boussinesq system is only weakly

dissipative.

We have shown in [P10] that the stationary statistical properties for the de-

terministic Darcy-Boussinesq system are upper semi-continuous after lifting in the

singular limit, i.e., for µε ∈ IMε, 0 ≤ ε ≤ ε0, there exists a weakly convergent

subsequence, denoted µε, and µ0 ∈ IM0 such that

µε ⇀ L(µ0). (6.1)

Here µε is an invariant measure for the Darcy-Boussinesq system and µ0 is an

invariant measure for the infinite Darcy-Prandtl number model. It would be of

further interest then to derive uniqueness conditions on the µε, and µ0 as well.

Another difficult question to consider would be the zero-noise limit of both the

stochastic infinite Darcy-Prandtl number model and stochastic Darcy-Boussinesq

system. In particular since we have shown uniqueness for the stochastic infinite

Darcy-Prandtl number model, we could consider a “δ” model of the stochastic

infinite Darcy-Prandtl number model, where δ is a simple multiplicative parameter

which enters the system as

dθ = (∆θ − P (kθ) · ∇θ +RaDP (θ)) dt+ δ dW, (6.2)

θ|z=0 = 0, θ|z=1 = 0. (6.3)

Hence we would have a unique invariant measure for each fixed δ. What can be said

about the limit of these as δ goes to zero, the “zero noise limit”? Some work has

been done in this regard for axiom A systems [Y 02]. However these are difficult to

verify pragmatically for most physical systems we deal with.

7. Appendix

Consider the following stochastic PDE

du = (∆u+R(u)) dt+ dW, t ≥ 0, u0 = u(0). (7.1)

The following conditions are imposed on (7.1)

Condition 1: There exists constants η ≥ 0 and K0 ≥ 0 such that

−〈Ax, x〉H + 〈Rx, x〉H ≤ −η|x|
2
H +K0. (7.2)

Condition 2: Let θ1, θ2 ∈ H and let ρ = θ1 − θ2. There exists a constant

α ∈ [0, 1) and a non-negative function K(θ) on H such that

〈R(θ1)−R(θ2), ρ〉H ≤ α 〈Aρ, ρ〉H +K(θ1)|ρ|2H . (7.3)
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Furthermore ∫
H

K(θ) dµ(θ) ≤ β, (7.4)

for some constant β independent of the invariant measure µ.

Condition 3: For all L0 ∈ P , h̄0, and for all a ∈ (0, 1) and T ≥ 0, there exists

K ≥ 0 such that

P
{∫ ∞

0

|D(l(t), h(t), h̄(t))|2H ds < K

}
≥ 1− a > 0. (7.5)

Condition 4: a For all L0 ∈ P , a ∈ (0, 1) and T ≥ 0, there exists K ≥ 0 such

that

P

{∫ T

0

|G(l(s), h(s))|2H ds < K

}
≥ 1− a > 0. (7.6)

Theorem 7.1. (E and Liu, Journal of Statistical physics, 2002) Suppose that the

stochastic partial differential equation (7.1) satisfies conditions 1–4 and N is chosen

large enough, then equation (7.1) has a unique invariant measure.

Acknowledgments

The first author would like to sincerely acknowledge the suggestions and guidance

provided by his PhD advisor Dr Xiaoming Wang. These greatly helped in completing

the current work.

References

CD96. C. Doering and P. Constantin, heat transfer in Convective turbulence, Nonlinear-
ity., 9 (1996), 1049-1060.

DZ96. G. Da Prato and J. Zabczyk, “Ergodicity for Infinite Dimensional Systems”, Lon-
don Mathematical Society Lecture Note Series, 229, Cambridge University Press, Cam-
bridge, 1996.

DC98. C. Doering and P. Constantin, Bounds for heat transpport in a porous layer, J.
Fluid Mech., 376 (1998), 263-296.

E97. L.C.Evans, “Partial Differential Equations”, Graduate Studies in Mathematics, 19,
Providence, 1998.

L48. E.R. Lapwood, Convection of a fluid in a porous medium, Procl. Camb. Phil. Soc,
44 (1948), 508-521.

E02. D.Liu and W.E, Gibbsian dynamics and invariant measures for stochastic PDE, J.
Stat. Phys, 108 (2002),1125-1156.

M98. J.Mattingly, “The stochastically forced Navier-Stokes equations: Energy estimates
and phase space contractions”, Ph.d thesis,1998, Princeton University

MES01. J.Mattingly, E.Weinan, Y.Sinai, “Gibbsian Dynamics and ergodicity for the
stochastically forced Navier-Stokes equations”, Communications in Mathematical
Physics, 224, (2001), 83106

aFor the notation in conditions 3 and 4 please refer to section 2.3



January 26, 2011 16:14 WSPC/INSTRUCTION FILE stoc*inf*Darcy-
Pr*new

Uniqueness of invariant measure for the stochastic infinite Darcy-Prandtl number model 25

HR45. C.W.Horton and F.T. Rogers, Convection Currents in a porous medium, J. Appl.
Phys (1945), 367-370.

LT99. H.V. Ly and E.S. Titi, Global gevry regularity for the 3D benard convection in
porous medium with zero darcy-prandtl number, J Nonlinear Sci (1999), 333-362.

N99. D. Nield and A. Bejan, “Convection in Porous Media”, 2nd ed, Springer-Verlag, New
York, 1999.

P10. R.D. Parshad, Asymptotic Behaviour of the Darcy-Boussinesq System at Large
Darcy-Prandtl Number, Discrete & Contin Dyn Sys-A, Special issue 18, Vol26, no.4,
1441-1469, ( 2010).

PT09. R.D. Parshad, Asymptotic Behaviour of Convection in Porous Media, PhD Thesis,
Florida State University, 2009.

R00. R.J.Charbeneau, “Groundwater Hydraulics and Pollutant Transport”, Prentice Hall,
Upper Saddle River, 2000.

S93. M.Saad, Ensembles inertiels pour un modele de convection naturelle dissipatif, en
milieu poreux, C.R. Acad. Sci Paris, Serie I 316 (1993), 1277-1280.

S01. J. Saling, “Radioactive waste management”, Taylor and Francis, New York, 2001.
S09. J. Speight, “Enhanced Oil Recovery Handbook”, Gulf Publishing Company, 2009.
T97. R. Temam, “Infinite-dimensional dynamical systems in mechanics and physics”. 2nd

ed. Applied Mathematical Sciences, 68. Springer, New York, 1997.
WS09. X.Wang, “Lecture notes on elementary statistical theories with applications to

fluid systems”, 2007 Shanghai Mathematics Summer School in Fudan University , To
be published by Higher Education Press, 2009.

Wu04. M. Wu and J. Lee, Ergodicity for the dissipative boussinesq equations with random
forcing, J Stat Phys, 117 (2004), 929-957.

Y02. L.S.Young, What are SRB measures and which dynamical systems have them?, J
Stat Phys, 108 (2002), 733-754.


