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Abstract. We consider the weak analogues of certain strong stochastic numerical
schemes considered in [10], namely a Adams-Bashforth scheme and a semi-implicit
leapfrog scheme. We show that the weak version of the Adams-Bashforth scheme con-
verges weakly with order 2, and the weak version of the semi-implicit leapfrog scheme
converges weakly with order 1. We also note that the weak schemes are computation-
ally simpler and easier to implement than the corresponding strong schemes, resulting
in savings in both programming and computational effort.

1. Introduction

A great deal of effort over the last several decades has been spent in studying numerical

schemes to approximate the solutions of stochastic differential equations (SDEs)

(1.1) dUt = a(Ut) dt+ b(Ut) dWt

for Ut ∈ Rd, a a function from Rd into itself, W a Wiener process on Rm and b a

function from Rd into Rd×m.

There has been considerable research into strong stochastic multistep schemes; see,

for example, [3], [4], [5], [6], [7]. On the other hand, weak multistep schemes seem to have

attracted little attention. Weak schemes are generally simpler than corresponding strong

schemes, requiring the generation of fewer stochastic increments and the calculation of

fewer terms involving the drift and diffusion coefficients of the stochastic differential

equation or their derivatives. Further, the terms that can be dropped when truncating

from a strong to a weak scheme are usually among the more problematic terms compu-

tationally. Therefore, when the application only requires the approximation of moments

of the solution of the SDE, it is appropriate and generally advantageous to consider

weak schemes. This is often the case in certain applications, such as pricing of options
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in finance; or in geophysics, where in any case certain quantities are only to be predicted

in a statistical sense.

In [10], the author along with Roger Temam investigated certain strong multistep

schemes, in which the sample paths of solutions are approximated, that are related

to certain multistep numerical methods that have been used for the approximation of

deterministic equations of use in geophysics, specifically an Adams-Bashforth scheme

and a semi-implicit leapfrog scheme. Here we consider corresponding weak schemes.

2. Formulations and preliminary results

We consider the stochastic differential equation (1.1). The stochastic version of the

change of variables formula is the so-called Ito formula:

(2.1) dFt =

[
∂F

∂t
+ ak(Ft)

∂F

∂uk
+

1

2
bij(Ft)b

kj(Ft)
∂2F

∂ui∂uk

]
dt+ bij(Ft)

∂F

∂ui
dWt,

for F : R+ ×Rd → Rd; here we sum over repeated indices.

We will use the following notations from [12]: A multiindex α of length ` = `(α) is a

row vector α = (j1, . . . , j`), where each ji ∈ {0, 1, . . . ,m}. The multiindex of length 0 is

denoted by ν. For adapted, right-continuous functions f , and stopping times ρ, τ with

0 ≤ ρ ≤ τ ≤ T almost surely, we define:

(2.2) Iα[f(·)]ρ,τ =


f(τ) if `(α) = 0,∫ τ
ρ
Iα−[f(·)]ρ,s ds if `(α) ≥ 1, j`(α) = 0,∫ τ

ρ
Iα−[f(·)]ρ,s dW

j`(α)
s if `(α) ≥ 1, j`(α) 6= 0.

By α−, we mean α with its final component removed.

We next define the function spaces Hα as follows:

The space Hν is the space of adapted, right-continuous stochastic processes f with

left-hand limits such that |f(t)| is almost surely finite, for each t ≥ 0. Then H(0) is the

subspace of Hν consisting of those f which additionally satisfy

(2.3)

∫ t

0

|f(s)| ds <∞
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almost surely, for every t ≥ 0, and H(j), for j 6= 0, is the subspace of Hν consisting of

those f which additionally satisfy

(2.4)

∫ t

0

|f(s)|2 ds <∞

almost surely, for every t ≥ 0. And, finally, we recursively define Hα as the subspace of

Hν consisting of those f which satisfy

(2.5) Iα−[f(·)]0,t ∈ H(j`(α))

almost surely, for every t ≥ 0.

We define the differential operators related to the equation (1.1)

(2.6) L0 =
∂

∂t
+ ak

∂

∂uk
+

1

2
bkjblj

∂2

∂uk∂ul

and

(2.7) Lj = bkj
∂

∂uk
,

and for notational compactness, if we have a function f : R+ × Rd → R which has

sufficient derivatives, we set fnu = f , and, if `(α) ≤ 1, we define recursively

(2.8) fα = Lj1fα′ ,

where α′ = (j2, . . . , j`) denotes α with its first component j1 removed.

We now define a hierarchical set A as a nonempty set of multiindices such that

supα∈A `(α) is finite, and α′ is in A whenever α 6= ν is in A. The remainder set B(A)

consists of those α not in A such that α′ is in A. Then for any hierarchical set A, we

will have a stochastic Taylor expansion of a function f : R+ × Rd → R applied to a

solution U of (1.1):

(2.9) f(τ, Uτ ) =
∑
α∈A

Iα[fα(ρ, Uρ)]ρ,τ +
∑

α∈B(A)

iα[fα(·, u·)]ρ,τ .

Below, when we use a specific case of this expansion, we will write out the first summation

explicitly, and we will write simply R∆
j for the second summation, the remainder term,

where ∆ is the length of the time interval over which we are expanding, and j is just a

number to distinguish different remainders.
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Finally for γ = 1, 2, . . ., we denote by Aγ the hierarchical set consisting of all αs

of length at most γ, and we call stochastic Taylor expansion with A = Aγ the (weak)

stochastic Taylor expansion to order γ.

3. A stochastic Adams-Bashforth scheme

In this section, we will consider a weak stochastic analog of the deterministic Adams-

Bashforth scheme. This scheme for the ordinary differential equation φ′ = F (φ) takes

the form

(3.1) φn+1 = φn +
∆t

2
[3F (φn)− F (φn−1)],

and is of order ∆t2.

To derive our stochastic version of this scheme, we consider the stochastic Taylor

expansion to order 2:

Ut+∆ = Ut + bj∆W j + a∆ + LjbkI(j,k) + L0bkI(0,k)

+ LjaI(j,0) +
1

2
L0a∆2 +R∆

2 (t)

= Ut + a∆ +
1

2
L0a∆2 +M∆(t),

where each coefficient is evaluated at the point (t, Ut), each stochastic integral is from t

to t+ ∆, ∆ = ∆t, and we sum over repeated indices.

Also, using the stochastic Taylor expansion for orders 1 and 0, we have that

(3.2) a(t+ ∆, Ut+∆) = a+ L0a∆ +N∆(t),

where N∆(t) = Lja∆W j +R∆
1 (t), where R∆

1 is the remainder in the order 1 expansion,

and

(3.3) L0a(t+ ∆, Ut+∆) = L0a+ P∆(t),

where P∆(t) = R∆
0 (t), the remainder in the order 0 expansion.
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We combine these results to yield, for any η and θ,

Ut+∆ = Ut + [ηa(t+ ∆, Ut+∆) + (1− η)a]∆

+

(
1

2
− η
)

[θL0a(t+ ∆, Ut+∆) + (1− θ)L0a]∆2

−η∆N∆(t)−
(

1

2
− η
)
θ∆2P∆(t) +M∆(t).

So, if t = tn, ∆ = 2∆t, η = θ = 0, and writing Un for Utn ,

(3.4) Un+2 = Un + 2a(tn, Un)∆t+ 2L0a(tn, Un)∆t2 +M2∆t(tn),

and if t = tn, ∆ = ∆t, η = −3
2
, and θ = 0,

Un+1 = Un −
3

2
a(tn+1, Un+1)∆t+

5

2
a(tn, Un)∆t

+2L0a(tn, Un)∆t2 +
3

2
N∆t(tn)∆t+M∆t(tn).

Hence,

Un+2 = Un+1 + (Un+1 − Un)− (Un+1 − Un)

= Un+1 +

[
3

2
a(tn+1, Un+1)− 1

2
a(tn, Un)

]
∆t

−3

2
∆tN∆t(tn) + (M2∆t(tn)−M∆t(tn)).

So, we will consider the following version of a stochastic Adams-Bashforth scheme:

(3.5) Yn+2 = Yn+1 +

[
3

2
a(tn+1, Yn+1)− 1

2
a(tn, Yn)

]
∆t+Bn+1(tn+1, Yn+1),

in which

(3.6) Bn+1(t, x) = bj(t, x)∆W j + L0bj(t, x)I(0,j) + Lja(t, x)I(j,0) + Ljbk(t, x)I(j,k),

where the random intervals are evaluated over the interval from tn+1 to tn+2.

Theorem 1. Suppose that the coefficient functions fα, defined as in (2.8) with f(x) = x

satisfy the conditions |fα(t, x)−fα(t, y)| ≤ K|x−y|, fα ∈ Hα, and |fα(t, x)| ≤ K(1+|x|),

for all α ∈ A4. Then if Y1 is chosen such that |Eg(U1) − Eg(Y1)| = O(∆t2) holds for

every polynomial g, then we also have

(3.7) |Eg(UN)− Eg(YN)| = O(∆t2).
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Remark 1. Note that, in general, the constant C implied by the notation O(∆t) in (3.7)

will depend on the polynomial g.

Proof:

For the proof, we will use Theorem 14.5.2 of [12]. For this, we will need to check that

(3.5) satisfies the following three conditions (3.8)–(3.10):

For q = 1, 2, . . . , there exists a constant C and integer r such that

(3.8) E
[

max
0≤n≤N

|Yn|2q
∣∣∣F0

]
≤ C(1 + |Y0|2r);

(3.9) E[|Yn+1 − Yn|2q | Fn] ≤ C
(

1 + max
0≤k≤n

|Yk|2r
)

∆tq,

where Fn is the σ-algebra to time n in the standard filtration; and, for ` = 1, 2, 3, 4, 5,

(3.10)
∣∣E(Yn+1 − Yn)` − E(Y ∗n+1 − y∗n)`

∣∣ ≤ C
(

1 + max
0≤n≤N

)
|Yn|2r∆t3.

In this last condition, Y ∗ denotes the second order weak Taylor scheme.

Note that, roughly speaking, (3.8) is necessary for the numerical scheme not to “blow

up”. In particular, it makes the definition of weak convergence meaningful. The second

condition (3.9) requires that we have some control on oscillations in the scheme. And

the final condition (3.10) tells us that our scheme converges at the correct order to the

correct distribution, namely, the same as the second order weak Taylor scheme, which

is known to be what we want.

For (3.8), we use the linear growth conditions on the coefficient functions a and b

as well as the fact that the expected value of any power of any stochastic increment is

either 0 or a constant times a power of ∆t to find that

(3.11) E|Yn+2|2q ≤ E
[
|Yn+1|2q + C(1 + |Yn+1|2q + |Yn|2q)∆t

]
.

(Note that here, the expectations are really conditional expectations given F0, which we

leave understood.) Therefore, we can define ηn = E|Yn|2q, and this is just

(3.12) ηn+2 ≤ ηn+1 + C(1 + ηn+1 + ηn)∆t.
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Now define ε0 = 1
2

+ η0, ε1 = 1
2

+ η1, and recursively,

(3.13) εn+2 = εn+1 + C(εn+1 + εn)∆t,

so that ηn ≤ εn, for every n. Note also that the ε’s increase, and so εn+2 ≤ (1+2C∆t)εn+1,

and therefore

(3.14) ηN ≤ εN ≤ (1 + 2C∆t)Nε0 ≈ e2CT ε0,

and so, in view of Doob’s Lp-inequality (see, for example, Theorem II.52.6 of [17]), we

have (3.8).

For (3.9), we have, as above,

E[|Yn+2 − Yn+1|2q | Fn+1] ≤ CE[1 + |Yn+1|2q + |Yn|2q | Fn+1]∆tq

≤ C(1 + E[ max
0≤k≤n+1

|Yk|2q | Fn+1])∆tq

= C(1 + E max
0≤k≤n+1

|Yk|2q)∆tq.

Finally, for (3.10), we note that here we are comparing moments of the stochastic

Adams-Bashforth scheme with moments of the weak Taylor scheme. For this we note

the following moments of the weak Taylor scheme, from (6.2) chapter 15 of [12] (here

we write simply a for a(Y ∗n ), b for b(Y ∗n ), etc.):

(3.15) E(Y ∗n+1 − Y ∗n ) = E

[
a∆t+

1

2
(aa′ +

1

2
b2a′′)∆t2

]
+O(∆t3),

(3.16) E(Y ∗n+1−Y ∗n )2 = E

[
b2∆t+

1

2
[2a(a+ bb′) + b2(2a′ + (b′)2 + bb′′)]∆t2

]
+O(∆t3),

(3.17) E(Y ∗n+1 − Y ∗n )3 = E[3b2(a+ bb′)∆t2] +O(∆t3),

(3.18) E(Y ∗n+1 − Y ∗n )4 = E[3b4∆t2] +O(∆t3),

(3.19) E(Y ∗n+1 − Y ∗n )5 = O(∆t3),

We need only show that the corresponding moments of the stochastic Adams-Bashforth

scheme agree with these up to O(∆t3).

In what follows, we use an for a(Yn), bn for b(Yn), etc.
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Note first that we have the Taylor expansion

an−1 = an + a′n(Yn−1 − Yn) +
1

2
a′′n(Yn−1 − Yn)2 +O(|Yn−1 − Yn|3)

= (upon taking expectations)

= an − a′n
(

3

2
an −

1

2
an−1

)
∆t+

1

2
a′′nb

2
n∆t+O(∆t2)

= an − ana′n∆t+
1

2
a′′nb

2
n∆t2 +O(∆t2).

Therefore,

E(Yn+1 − Yn) = E

(
3

2
an −

1

2
an−1

)
∆t

= Ean∆t+ E

(
1

2
ana

′
n +

1

4
b2
na
′′
n

)
∆t2 +O(∆t3),

and the first moments agree.

Next, using that E∆W 2 = ∆t, E∆W 4 = 3∆t2, etc., we have that

E(Yn+1 − Yn)2 = E

[(
3

2
an −

1

2
an−1

)
∆t2 + b2∆t+

1

2
b2(b′)2∆t2

+
1

2
b

(
ab′ +

1

2
bb′′
)

∆t2 + b2a′∆t2
]

+O(∆t3),

and we see that the second moments agree.

For the third moments,

E(Yn+1 − Yn)3 = 3E

[(
3

2
an −

1

2
an−1

)
b2∆t2 + b3b′∆t2

]
+O(∆t3),

and we have agreement.

The fourth and fifth moments are trivial.

This completes our proof.

Remark 2. This result is a modification and simplification of the strong second order

Adams-Bashforth scheme in [10]. In the case of the weak scheme here, we have conver-

gence to the same order as the strong scheme (except, of course, that the convergence

is only weak), but the most problematic terms from the strong scheme are absent here,

resulting in considerable savings.
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4. A stochastic semi-implicit leapfrog scheme

Similarly to section 3, we want to now find a (weak) stochastic analog of the deter-

ministic scheme

(4.1) φn+1 = φn−1 + 2∆ta1(φn) + 2∆ta2(φn+1)

for the differential equation φ′ = a1(φ) + a2(φ), where a2 is to be treated implicitly.

Therefore we consider the stochastic differential equation

(4.2) dUt = [a1(t, Ut) + a2(t, Ut)] dt+ b(t, Ut) dWt,

similar to (1.1).

Using stochastic Taylor schemes to order 0, we have that

a1(tn+1, Un+1) = a1(tn, Un) +R∆
1 t(tn);

a2(tn+2, Un+2) = a1(tn, Un) +R∆
2 t(tn);

a2(tn+2, Un+2) = a1(tn+1, Un+1) +R∆
3 t(tn).

Therefore, using stochastic Taylor series to order 1 and the above,

Un+2 = Un + (Un+2 − Un+1) + (Un+1 − Un)

= Un + [bj(tn+1, Un+1)∆W j + a1(tn+1, Un+1)∆t+ a2(tn+1, Un+1)∆t+R4(tn+1)]

+[bj(tn, Un)∆W j + a1(tn, Un)∆t+ a2(tn, Un)∆t+R5(tn)].

Therefore, we will consider the scheme

(4.3)

Yn+2 = Yn+2a1(tn+1, Yn+1)∆t+2a2(tn+2, Yn+2)∆t+bj(tn, Yn)∆W j
n+bj(tn+1, Yn+1)∆W j

n+1.

Then we have

Theorem 2. Suppose that the coefficient functions fα satisfy the conditions |fα(t, x)−

fα(t, y)| ≤ K(|x − y|, fα ∈ Hα, and |fα(t, x)| ≤ K(1 + |x|), for all α ∈ A3. Then if Y1

is chosen such that |Eg(U1)− Eg(Y1)| = O(∆t), for every polynomial g, then

(4.4) |Eg(UN)− Eg(YN)| = O(∆t).



10 EWALD

Proof:

We proceed similarly to the proof of Theorem 1, except that, since this scheme is

only order 1, we have the following for (3.10): For ` = 1, 2, 3,

(4.5)
∣∣E(Yn+1 − Yn)` − E(Y ∗n+1 − y∗n)`

∣∣ ≤ C(1 + max
0≤n≤N

)|Yn|2r∆t2.

To show (3.8), if we set ηn = E|Yn|2q (the conditioning on F0 is once more left

understood), and again using the linear growth condition for a1, a2, b, etc., we have that

(4.6) ηn+2 ≤ ηn + C(1 + ηn+2 + ηn+1 + ηn)∆t.

Therefore, we set ε0 = 1
3

+ η0, ε1 = 1
3

+ η1, and, recursively,

(4.7) εn+2 = εn + C(εn+2 + εn+1 + εn)∆t.

That is,

εn+2 =
1 + C∆t

1− C∆t
εn +

C∆t

1− C∆t
εn+1

≤ 1 + 2C∆t

1− C∆t
εn+1,

and so

(4.8) εN ≤
(

1 + 2C∆t

1− C∆t

)N
ε0 ≈ e3CT ε0,

and we have (3.8).

The condition (3.9) is easily seen to be satisfied, as for Theorem 1.

Finally, for (4.5), we will need the following moments for the weak Taylor scheme:

(4.9) E(Y ∗n+2 − Y ∗n ) = E[2(a1 + a2)∆t+O(∆t2)],

(4.10) E(Y ∗n+2 − Y ∗n )2 = E[2b2∆t+O(∆t2)],

(4.11) E(Y ∗n+2 − Y ∗n )3 = O(∆t2)],
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These are easily compared to the comparable moments for the implicit leapfrog

scheme, since

E(Yn+2 − Yn) = 2(a1,n+1 + a2,n+2)∆t+O(∆t2)

= 2(a1,n + a2,n)∆t+O(∆t2),

and

E(Yn+2 − Yn)2 = (b2
n + b2

n+1)∆t+O(∆t2)

= 2b2
n∆t+O(∆t2).

The final moment is trivial, and our proof is complete.

Remark 3. We note again that this is a modification and simplification of the strong

semi-implicit leapfrog scheme in [10]. Again, we have the same convergence rate (order

1), except that the convergence is only weak. We further note that this scheme no longer

requires the calculation of derivatives of b.

5. Conclusion

We mainly note the advantages that the weak schemes here have over the correspond-

ing strong schemes in [10]. There are many fewer terms, resulting in computational

savings over the strong schemes. So long as we only desire the computation of various

moments of the solutions to our differential equations (as is very often the case), there

is no point in using the more complicated strong schemes.
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