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Abstract. The aim of this article is to discuss the convergence of some numerical
stochastic schemes in geophysical fluid dynamics (GFD) and to make some remarks on
the numerical analysis of stochastic differential equations (SDEs).

1. Introduction. Important work has been done in recent years on the numerical
analysis of stochastic differential equations by G. N. Milstein, P. Kloeden and E. Platen,
W. Rümelin, D. Talay and others; see, e.g., [Mil], [KP], [Rum], [Tal1, Tal2], and the
references therein. Nevertheless many problems remain open for the numerical analysis
of stochastic differential equations (SDEs) and stochastic partial differential equations
(SPDEs). Issues which are well understood and even classical in the deterministic con-
text, such as consistency of numerical schemes, stability, convergence or order of approx-
imations, are sometimes at the frontier of current knowledge in the stochastic context;
perhaps as we will see in this article it may even be too early to raise such questions, but
such questions will have to be addressed at some point in the future.

This presentation is based on the experience of the authors in their efforts to under-
stand some numerical schemes used in geophysical fluid dynamics and to develop some
higher-order schemes (schemes of order > 1 in time).

After this brief introduction we will present some of the issues and difficulties related
to the approximation of stochastic differential equations. Further comments will be made
in the conclusion.
Some difficulties with the numerical analysis of SDEs/SPDEs.

We start by listing some of the difficulties encountered in the numerical analysis of
SDEs and SPDEs, difficulties which will be addressed below:
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596 BRIAN D. EWALD AND ROGER TÉMAM

a) Derivation of the schemes
Many numerical schemes used for the approximation of deterministic ordinary or par-

tial differential equations are based on some utilization of Taylor’s expansion. As we shall
recall below, its stochastic analogue, the stochastic Taylor expansion, is more difficult to
derive and contains many more terms, including terms which are hard to generate (to
simulate).

b) The consistency issue
Checking the consistency of a scheme is checking that, if convergent, a given scheme

will approximate the desired equation. Furthermore, in the stochastic case, the equation
contains a stochastic integral, and, besides checking that the scheme approximates the
desired equation, we need to verify whether the integral is approximated in the Itô or
Stratonovich sense, or possibly some other sense.

c) The issue of strong vs. weak convergence
Two types of convergence of schemes can usually be obtained in the stochastic context.

The first one, called strong convergence, corresponds to the convergence in an appropriate
L2-space. The weak convergence corresponds to the convergence of moments (integrals)
of the unknown function. (This use of the term “weak”, different from the more standard
usage of weak to mean the convergence of distributions in probability, is perhaps unfor-
tunate, but is standard in the numerics literature.) Strong convergence is closer from
analysis and usually harder to achieve. Weak convergence is closer from the probabilistic
point of view and in fact suffices in most practical applications.

d) The order of convergence
Most numerical schemes currently available are of order 1 or 1/2 in time (O(∆t) or

O(∆t1/2)) in the strong or weak sense; we will see that there are some fundamental
obstructions to deriving higher-order schemes which would be otherwise desirable.

2. The stochastic Taylor formula. We are given a probability space (Ω,A, P )
with a filtration F = (Ft)t≥0, and we consider a stochastic differential equation which
can be written in one of the following three equivalent forms:

dU = a(U) dt + b(U) dW,

dU(t, ω)
dt

= a(U(t, ω)) + b(U(t, ω))
dW

dt
(t, ω), ω ∈ Ω,

Ut = U0 +
∫ t

0

a(Us) ds +
∫ t

0

b(Us) dWs.

(1)

Here W is a Wiener process and the underlined integral is an Itô stochastic integral:
• W is continuous, but not of bounded variation on any interval,

and so nowhere differentiable,
• W (t) − W (s) is Gaussian with mean 0 and variance t − s,
• W (t) − W (s) is independent of the values of W (s∗) for all
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s∗ ≤ s, i.e., independent of the σ-algebra Fs.
Note that we will use the notation W (s) and Ws synonymously, depending on which

we feel is more convenient.
Reminder: Itô vs. Stratonovich calculus. Let us recall that the Itô integral

∫ t

0
FsdWs

is defined as the limit in L2(Ω, P ) of the Riemann sums:∑
i

[(1 − λ)F (ti−1) + λF (ti)] · [W (ti) − W (ti−1)] , (2)

with λ = 0, whereas the Stratonovich integral, sometimes written
∫ t

0
Fs•dWs, is obtained

as the limit of the same sums (2) with d = 1
2 . For other values of λ, 0 ≤ λ ≤ 1, other

(unusual) stochastic integrals can be obtained.
In fact in (1), U can be a scalar or a vector valued function, U(t, ω) ∈ Rd. For d > 1,

(1) is then a system of SDEs, and such systems of SDEs appear e.g. when discretizing in
space an SPDE: we can then rewrite (1) componentwise as

dU i = ai(U) dt +
r∑

k=1

bik(U) dW k, 1 ≤ i ≤ d, (3)

where U = (U1, . . . , Ud), a = (a1, . . . , ad), b = (bik) 1≤i≤d
1≤k≤r

, each W k being a scalar

Wiener process.
Taylor formula. We now recall the usual (deterministic) Taylor expansion and write

it in a form suitable for stochastic generalization. We start with functions U = U(t) and
f ◦ U = f(U(t)) and write:

dU = a(U) dt,

df(U) = Lf(U) dt,

L = a
d

dU
if d = 1, or L = ai ∂

∂U i
if d > 1,

where the Einstein summation convention is understood (when d > 1). Alternatively in
integral form:

f(U(T )) = f(U(0)) +
∫ T

0

Lf(U(t)) dt.

Then, applying this formula to Lf, L2f, etc., we obtain

f(U(T )) = f(U(0)) + TLf(U(0)) +
T 2

2
L2F (U(0)) + R,

R =
∫ T

0

∫ t

0

∫ s

0

L3f(U(r)) dr ds dt,

or, with the compact notation to be used in the stochastic case:

fT = f0 + TLf0 +
T 2

2
L2f0 + R.
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Stochastic Taylor formula. We now turn to the stochastic Taylor Formula. The for-
mula which is used is based on the Itô calculus. It is more involved and it contains many
more terms. We arrive at (see [KP]):

fT =
∑
α

Lαf0 · Iα +
∑

β

Iβ(LβfT ), (4)

where

L0 =
∂

∂t
+ ak ∂

∂Uk
+

1
2
bkjblj ∂2

∂Uk∂U�
,

Lj = bkj ∂

∂Uk
, 1 ≤ j ≤ d,

(5)

and, for multi-indices α = (α1, . . . , α�), β = (β1, . . . , β�),

Lα = Lα1 . . . Lα� , Iα =
∫ T

0

· · ·
∫ t2

0

dWα1
t1 . . . dWα�

t�
,

and

Iβ(g) =
∫ T

0

· · ·
∫ t2

0

g(t1) dW β1
t1 . . . dW β�

t�
,

where dW 0 = dt and dW k is the kth component of dW . The Einstein summation
convention is again understood in (5) for the Latin indices.

Remark 1. The integrals Iα, Iβ are difficult to simulate, and this will be an impedi-
ment to high-order schemes. However, as we will see, a number of these integrals can be
omitted if we are interested in weak convergence.

3. Strong convergence. We consider a (vector-valued) stochastic process U that is
a solution of a stochastic differential equation such as (1) and we consider a numerical
scheme producing approximants Y n, 0 ≤ n ≤ N , where T = N∆t, ∆t being the time
mesh and Y n meant as an approximation of U(n∆t), also written as Un∆t.

The strong convergence of the scheme at order θ is the following L2-convergence:

E

[
sup

0≤n≤N
|Un∆t − Y n|2 | F0

]1/2

= O(∆tθ).

We now recall the well-known strong convergence results for the explicit and implicit
Euler schemes and the so-called Heun scheme; we then present the convergence results
for the stochastic Adams–Bashforth scheme following [ET2].

Explicit Euler scheme. The scheme reads1

Y n+1 = Y n + a(Y n)∆t + b(Y n)∆Wn, (6)

with
∆Wn = Wtn+1 − Wtn

tn = n∆t, (7)

and Y0 = U0.
This scheme converges strongly to the Itô solution of (1) at order 1

2 .

1Note that we previously used the superscript for W to denote the components as e.g. in (3). Here it
refers to time. This should be clear in the context, and we prefer to avoid making the notation more

complicated.
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Implicit Euler scheme. The scheme reads

Y n+1 = Y n + a(Y n+1) ∆t + b(Y n) ∆Wn, (8)

∆Wn as in (7), and with again Y 0 = U0. This scheme also strongly converges at order
1
2 to the Itô solution of (1).

Heun scheme. The Heun scheme is a predictor–corrector scheme, with predictor Ỹ n+1

and corrector Y n+1 defined by

Ỹ n+1 = Y n + a(Y n)∆t + b(Y n)∆Wn,

Y n+1 = Ỹ n+1 + ān∆t + b̄n∆Wn,

ān =
1
2

[
a(Y n) + a(Ỹ n+1)

]
,

b̄n =
1
2

[
b(Y n) + b(Ỹ n+1)

]
.

(9)

Here ∆Wn is defined as before and again Y 0 = U0. This scheme strongly converges at
order 1

2 to the Stratonovich solution of (1) when ∆t → 0.
Remark 2. In relation with the consistency issue, it is remarkable that there are no

simple “warnings” indicating that the solutions of (6) or (8) will converge to the Itô
solution of (1) whereas the solution of (9) converges to the Stratonovich solution of (1).
This conclusion can only be reached by a nonstraightforward analysis or a deep intuitive
insight.

A stochastic Adams–Bashforth scheme. We now turn to the properties of the sto-
chastic Adams–Bashforth scheme. In the deterministic case, this scheme, often used in
computational fluid mechanics, is as follows. For

dU

dt
= a(U),

the scheme reads (Y n ∼ U(n∆t)) :

Y n+2 = Y n+1 +
∆t

2
[3a(Y n+1) − a(Y n)].

With suitable definitions of Y 0 and Y 1, this explicit scheme is of second order in time,
O(∆t2). By inspection of the stochastic Taylor formula at order 2, a stochastic version
of this scheme has been proposed for equation (1) in [ET2]. Namely, for the equation

dU = a(U)dt + b(U)dW (1)

we write

Y n+2 = Y n+1 +
[
3
2

a(Y n+1) − 1
2

a(Y n)
]

∆t

− 3
2

∆t An(Y n) + Bn(Y n),
(SAB)

in which

An(U) = Lja(U)∆W j + Lj1Lj2a(U)I(j1,j2), (10)
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where the random increments (e.g., I(j1,j2)) are from time tn = n∆t to tn+1 = (n+1)∆t,

and

Bn(U) = bj(U)∆W j + L0bj(U)I(0,j) + Lja(U)I(j,0)

+ Lj1bj2(U)I(j1,j2) + L0Lj1bj2(U)I(0,j1,j2)

+ Lj1L0bj2(U)I(j1,0,j2) + Lj1Lj2a(U)I(j1,j2,0)

+ Lj1Lj2bj3(U)I(j1,j2,j3) + Lj1Lj2Lj3bj4(U)I(j1,j2,j3,j4) ,

(11)

where the random increments are from time tn to tn+2 minus those from tn+1 to tn+2.
The role of the underlined terms will be described subsequently.

Strong convergence of the stochastic Adams–Bashforth scheme. For the SAB scheme
we prove in [ET2]:

Theorem 1. Under suitable (mild) regularity and decay assumptions on a and b, the
SAB scheme converges strongly to U at order 2 as ∆t → 0, where U is the solution of
the SDE (1) taken in the Itô sense.

4. Weak convergence. We now discuss weak convergence of numerical schemes.
The weak convergence of the scheme at order θ is the following convergence of the mo-
ments:

For every polynomial g,

|Eg(U(N∆t)) − Eg(Y N )| = O(∆tθ).

For example it is known that the explicit and implicit Euler schemes, (5), (8) weakly
converge to the Itô solution of (1) at order 1 (instead of order 1

2 for the strong con-
vergences for the same schemes). Similarly the solution to the Heun scheme weakly
converges at order 1 (instead of 1

2 for strong convergence). We now turn to the weak
convergence of the Adams–Bashforth scheme.

Weak convergence of the stochastic Adams–Bashforth scheme. Weak convergence at
order 2 can be proved for a simplified version of the scheme (SAB) where the underlined
terms have been removed. That is,

Y n+2 =Y n+1 + ∆t

[
3
2

a(Y n+1) − 1
2

a(Y n)
]

− 3
2

∆tÃn(Y n) + B̃n(Y n),
(S̃AB)

with

Ãn(Y ) = Lja(Y )∆W j ,

B̃n(Y ) = bj(U)∆W j + L0bj(U)I(0,j)

+Lja(U)I(j,0) + Ljbk(U)I(j,k).
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Theorem 2 ([Ewa]). The stochastic Adams–Bashforth scheme (S̃AB) is weakly conver-
gent to order 2.

Remark 3. Note that for (S̃AB), the only integral difficult to simulate is I(j,k), unlike
the scheme (SAB) for which several integrals are difficult to simulate.

5. An implicit leap-frog scheme. We now consider a barotropic vorticity model
studied by Cecile Penland and Prashant Sardeshmukh, namely

dζ

dt
= −∇(vζ) + S − rξ − κ∇4ζ, (12)

where
ξ = ∇2ψ is the vorticity,
ζ = ξ + f is the total vorticity, f the Coriolis term,
v = the velocity, and
r, κ > 0 are dissipation constants.

The numerical scheme uses spherical harmonics and, writing F for −∇(vζ), the equa-
tions read

d

dt
ζm
n = Fm

n + Sm
n − rξm

n − κ

[
n(n + 1)

a2

]2

ζm
n . (13)

We write this equation in short as

dU = [a1(t, U) + a2(t, U)] dt, (14)

with
(a1)m,n = Fm

n + Sm
n ,

(a2)m,n = −rξm
n − κ

[
n(n + 1)

a2

]2

ζm
n .

The leap-frog scheme proceeds in two steps:{
Ỹ (t + ∆t) = Y (t − ∆t) + 2∆ta1(t, Y (t)),

Y (t + ∆t) = Ỹ (t + ∆t) + 2∆ta2(t + ∆t, Y (t + ∆t)).
(15)

Note that the last step is implicit in Y (t + ∆t), but a2 is linear (diagonal) in U.

We add a white noise and (14) becomes

dUt = [a1(t, Ut) + a2(t, Ut)] dt + b(t, Ut)dWt. (16)

The stochastic version of the leap-frog scheme is as follows:

Ỹ n+2 = Y n + 2∆ta1(tn+1, Y
n+1) + Mn(Y n) + Mn+1(Y n+1),

Y n+2 = Ỹn+2 + 2∆ta2(tn+2, Y
n+2),

with
Mn(y) = bj(tn, y)∆W j

n + bb′(tn, Y )I(1,1),n.
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Theorem 3 ([ET2]). The scheme is strongly convergent at order one. That is, if

E
[
|Ut1 − Y1|2|F0

]1/2 ≤ C∆t,

then

E

[
sup

0≤n≤N
|Utn

− Yn|2|F0

]1/2

≤ C∆t.

For the weak convergence, the terms underlined twice coming from Mn(Y n) and
Mn+1(Y n+1) are omitted.

We then have

Theorem 4 ([Ewa]). If Y1 is chosen such that

|Eg(U1) − Eg(Y 1)| = O(∆t),

for each polynomial g, then

|Eg(UN ) − Eg(Y N )| = O(∆t).

We now conclude with a few remarks.
Remark 4 (Proof of weak convergence). The weak convergence results are proven

by comparing the actual scheme with some version of the stochastic Taylor scheme for
which weak convergence is proven in the book of Kloeden and Platen [KP]. In short,
writing the stochastic Taylor formula

fT =
∑
α

Lαf0 · Iα +
∑

β

Iβ(LβfT ),

as we did before, the stochastic Taylor scheme reads

Y n+1 =
∑
α

Lαftn
· Iα,(tn,tn+1) .

Note that the proof in [KP] relies on quite involved probabilistic arguments.
Remark 5 (Finite Differences Issues (SPDEs)). When discretizing SPDEs in space,

the coefficient of the white noise may involve a spatial derivative of the unknown function
u(t, x) = u(t, x; ω), that is, e.g., b = b(t, u, ∂u

∂x1
).

In GFD the function b = b(u) may be determined experimentally, and determining
the dependance of b on the derivatives of u may not be easy (not accurate). In certain
cases, we have studied the effect of replacing the derivative(s) of u by finite differences
in space from the points of views of consistency and convergence (application e.g. to the
Milstein scheme). The results were satisfactory and the error at the expected order. See
e.g. [ET1], [ET2], [EPT].

Remark 6 (Probabilistic Issues). There are probabilistic issues related to the com-
putation of the stochastic integrals needed in some schemes, even for weak convergence.

Partial information is sufficient in some cases, and the product of Wiener processes
might be replaced by simpler processes to some extent; see e.g. the book of Kloeden and
Platen.
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(a) Stochastic equation (17) (b) Stochastic equation (18)

Fig. 1. Results obtained with the stochastic equation (17) (left) and
(18) (right)

In [ET2] we address this question in a computational way: for the stochastic Adams–
Bashforth Scheme we approximated by a normal law the stochastic integral I(0,1,1) (which
is difficult to generate), and this did not affect the order of the scheme for that example.

We consider the following equations:

dXt =
1
2
α2Xt dt + α

√
X2

t − 1 dWt, (17)

with α = 1 and X0 = 10, and

dXt = β2 sinh Xt cosh2 Xt dt + β cosh2 Xt dWt, (18)

with β = 1/10 and X0 = 1/2. These have the exact solutions

Xt = cosh(αWt + arccoshX0) (19)

and
Xt = arctanh(βWt + tanhX0), (20)

respectively. These can be easily verified using Itô’s formula and are just two of many
possible examples listed in [KP].

We computed approximate solutions Yn using the Euler and Milstein schemes and the
SAB scheme from Section 3. Then we computed the following error:

e =

√
E

(
sup

0≤n≤N
|Xn − Yn|2

)
. (21)

To obtain the mean value needed, we used 500 trajectories.
In the figures, the order of each scheme is given by the slope of the corresponding line.

So we can see that the orders are indeed 1
2 for Euler, 1 for Milstein, and 2 for the SAB

of Section 3.
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Note that for the SAB scheme, the stochastic integral I(0,1,1) (which is difficult to
generate) was approximated by a normal law. The results tend to show that this did not
affect the accuracy (at least in these two cases). This point seems to raise interesting
probabilistic questions.

6. Concluding remarks. (i) The proof of the results mentioned above necessitates
some lengthy calculations around the stochastic Taylor formula, which need to be made
“in fashion” in each case. It is clear that simplified notation and suitable “algebraic”
tools should be developed to make such analysis more straightforward.
(ii) Some algorithms for computing the integrals Iα or some substitute to these integrals
will be necessary.
(iii) Probabilistic tools will certainly be necessary in the numerical analysis of stochastic
differential equations. Therefore, unlike deterministic numerical analysis, which starts
from simple concepts such as the Taylor formula and develops into more complex analysis,
the numerical analysis of the stochastic equations might proceed in the opposite way,
starting from advanced concepts and ending up in practical applications.

Functional Analysis (errors) Advanced concepts
and more advanced concepts

(multilevels . . . )

⇑ ⇓

Simple concepts: Applications

Deterministic Stochastic
Numerical
Analysis

(iv) After the presentation of Roger Témam at the Brown Conference, Dan Crisan men-
tioned an alternate approach based on the so-called particle method, with work by Nicolas
Victoir and collaborators (see e.g. [FV], [LV1], [LV2], etc.) which completely bypasses the
problem of computing the integrals Iα. Such developments are certainly very important,
but, after they mature, they would imply the writing of specific totally new computing
codes. This is very problematic in geophysical fluid dynamics because of the so-called
legacy problem. Many expensive and sophisticated existing codes cannot be discarded,
and the tendency is usually to add suitable noises to existing codes with the recognized
need, advocated by e.g. Cecile Penland, to properly study the effects of these noises on
the schemes, in particular to determine the type of solution (Itô or Stratonovitch integral)
to which the scheme will converge.
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