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On modelling physical systems with stochastic
models: diffusion versus Lévy processes
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Stochastic descriptions of multiscale interactions are more and more frequently found in
numerical models of weather and climate. These descriptions are often made in terms of
differential equations with random forcing components. In this article, we review the
basic properties of stochastic differential equations driven by classical Gaussian white
noise and compare with systems described by stable Lévy processes. We also discuss
aspects of numerically generating these processes.

Keywords: stochastic differential equations; Lévy processes; Gaussian processes;
numerical methods
On

*A
1. Introduction

Subgrid-scale processes must be treated somehow in numerical weather and
climate models, whatever these models’ spatial and temporal resolutions. First of
all, one could ignore them. Although this is often done, the procedure has not
proven particularly successful. A more common, if not the most common,
approach is to parametrize them deterministically in terms of resolved processes.
Some authors even define ‘parametrization’ that way, reserving the term
‘unparametrizable’ to describe what cannot be represented in terms of what a
numerical model can resolve.

Modern numerical models (e.g. Buizza et al. 1999) employ stochastic parame-
trizations to account for both mean effects and variability due to dynamical
interactions between processes that cannot be explicitly represented in a
numerical model and the large-scale systems the model attempts to predict. At
the European Centre for Medium-Range Weather Forecasting, for example,
efforts are made to parametrize turbulent energy backscatter (e.g. Fjørtoft 1953)
from the unresolved scales to the resolved scales in the ensemble prediction
system by means of cellular automata (Shutts 2005) or using red noise processes
(Berner et al. submitted).

There is both empirical and modelling evidence that such an approach is both
practical and physically meaningful. The almost embarrassing similarity of
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prediction skill in statistical and numerical models of El Niño (e.g. Penland &
Sardeshmukh 1995, PS95 hereafter; Saha et al. 2006) and medium-range weather
(Winkler et al. 2001) lends credibility to the idea that at least some aspects of
dynamical forcing can be treated stochastically (see also Hasselmann 1976).

The fact that forcing may be treated stochastically does not mean that details
of the stochastic treatment are arbitrary. Failure to identify the physical origins
of the stochastic forcing, which usually results in a mistaken mathematical
description of that forcing, can easily translate into a misinterpretation of the
dynamical response. For example, PS95 present evidence that El Niño dynamics,
as represented by tropical sea-surface temperatures (SSTs), is very well
explained in terms of a stable linear process driven by Gaussian stochastic
forcing. In fact, the ‘tau test’ (see their article for details) that is passed by the
statistics of tropical SSTs can only be passed by such a system. The problem with
PS95 is that the authors placed too strong an emphasis on tests for Gaussianity
of the SSTs themselves; while a linear dynamical system driven by Gaussian
forcing may be Gaussian, that need not be the case if the stochastic forcing is
modulated by a linear function of the SSTs (Müller 1987; Sardeshmukh & Sura
submitted; Sura & Sardeshmukh 2008). That is, if the amplitudes of rapidly
varying wind stress and heat flux depend on SST, which they do, then the
distribution of SST cannot be expected to be Gaussian even when the underlying
SST dynamics are stable and linear. A result of PS95’s misplaced emphasis on
Gaussianity was the publication of articles (e.g. An & Jin 2004), which found a
small but significant non-Gaussian behaviour in tropical east Pacific SST, and
concluded that the dynamics of El Niño must be primarily nonlinear. In other
words, scientists were arguing about the resolved dynamics of an extremely
important phenomenon without giving due consideration to the nature of the
stochastic forcing. There were indeed studies that considered the effect of
stochastic forcing in the El Niño system (e.g. Flügel et al. 2004), but these did not
consider how the basic mathematical description of the stochastic forcing could
affect the marginal distribution of SST.

It turns out that the marginal distribution of a linear Gaussian-driven process
may not only be non-Gaussian but may also exhibit skew, fat tails and other
properties usually associated with more exotic types of stochastic phenomena,
such as non-Gaussian a-stable Lévy processes. Even when the dynamical system
can be shown to be linear and Gaussian driven, the distribution of that system
depends on whether the dynamics describing it respond to the stochastic forcing
through ‘Itô’ or ‘Stratonovich’ calculus, a differentiation that we explain below.
Nevertheless, although these characteristics permit linear dynamics, they differ
from the tau test in which they do not require it. Further, the distribution of
these different kinds of stochastic dynamics may have many characteristics in
common, but the classes of physical causes giving rise to them are quite different.
Thus, when using stochastic numerical models of finite resolution to diagnose the
physical system, it is not only necessary to choose accurately the stochastic
parametrizations appropriate to the class of subgrid-scale processes one wishes to
represent but also to ensure that the numerical algorithms built into the models
are able to reproduce the correct stochastic response.

The stochastic parametrizations for which the following remarks are appro-
priate comprise a somewhat limited class of stochastic models. There are certainly
other valuable methods, such as random cascades and particle-interaction
Phil. Trans. R. Soc. A (2008)
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techniques, which have a valid place in the literature. However, in this article, we
shall confine ourselves to the rather restricted field of stochastic differential
equations (SDEs) driven by either Gaussian white noise, i.e. diffusion processes,
or, more generally, by a-stable Lévy processes. The special case of diffusion
processes has already been extensively treated in the climate literature
(e.g. Hasselmann 1976; Penland 1989; Penland 1996; Majda et al. 1999;
Sardeshmukh & Sura submitted), but this literature has yet to be widely
applied in climate science. At the same time, the ability of Lévy processes to
describe properties such as intermittency has attracted the attention of climate
scientists, some of whom (e.g. Ditlevsen 1999) have begun to employ a wider
class of SDEs (LSDEs) driven by stable Lévy processes to describe observational
records in palaeoclimatology. Many scientific studies using LSDEs do not allow
the random forcing to depend on the state of the system, i.e. they employ
additive rather than multiplicative Lévy noise. We follow this approach as it
greatly simplifies both the theoretical and the numerical descriptions of such
systems, deferring the more complex issues to a later paper.

The purpose of this article is to present a fairly basic synopsis of properties of
diffusion processes and stable Lévy processes. We emphasize what we believe
would be useful to scientists who wish to use SDEs in stochastic parametriza-
tions. This exposition is certainly not exhaustive and is not meant to be so.
Rather, we hope we present a starting point from which scientists can develop an
intuitive feel for the reasoning behind SDEs and an appreciation for the necessity
of rigor. Rather than repeat lengthy derivations, we have tried to give a
qualitative understanding of the physical processes for which a class of stochastic
models is appropriate. When possible, we have tried to provide sufficient
quantitative guidance for the numerical generation of that class.

The article is organized as follows: §2 reviews classical SDEs based on
Langevin systems with Brownian motion, i.e. Markov diffusion processes. Section
3 discusses a-stable Lévy processes and simple additive LSDEs. Section 4
provides examples of the stochastic models discussed in §§2 and 3, including a
numerical comparison of a simple system driven by Gaussian white noise with
that same system driven by a symmetric a-stable Lévy process with identical
scale parameter. Section 5 concludes the article.
2. Stochastic systems with Brownian motion

(a ) Preliminary discussion

Classical SDEs are valid when there is a clear time-scale separation between
‘fast’ and ‘slow’ terms in a dynamical system, although many researchers
(Dozier & Tappert 1978a,b; Penland 1985; Majda et al. 1999) have found that
this restriction can be quite forgiving, and that useful results can be made
even when a clear time-scale separation is not obtained. Hasselmann (1976)
assigns meteorological meaning to the fast and slow systems, which he calls
‘weather’ and ‘climate’, respectively. We sometimes use this terminology,
although the reader should in no way take this usage as strict definitions of
weather and climate.

As an example of a system that might be governed by an SDE, consider a state
vector x(t) representing some surface phenomenon (e.g. SST, etc.) in the tropical
Phil. Trans. R. Soc. A (2008)
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ocean. Let us also imagine that the evolution of x(t) might be written as a
differential equation as follows:

dx

dt
Z cðx; tÞCwðx; tÞ: ð2:1Þ

In equation (2.1), the climate variable c(x, t) could be modelled easily using a
time step of, say, 10 days. This was the time step used in the El Niño model of
Zebiak & Cane (1986). By contrast, the weather term w(x, t) may represent
tropical convection, so that an accurate model of this term would require a time
step on the order of minutes or seconds; the mesoscale model MM5 having a
spatial resolution of 1 km uses a time step of 3 s (G. Bryan & T. Hamill 2007,
personal communication). It is often assumed that w(x, t) can either be
parametrized by processes represented by c(x, t) or even neglected completely
on large time scales if it varies rapidly enough. One then assumes that the long
time-scale evolution of x(t) in equation (2.1) might be well described using only
c(x, t) in a model integrated with a 10-day time step. Unfortunately, this is very
inaccurate for highly nonlinear systems. On the other hand, time steps small
enough to resolve the interactions between c(x, t) and w(x, t) may be
impractical. If the time-scale separation between c(x, t) and w(x, t) is sufficiently
large, we can still model an approximate version of equation (2.1) using the
longer time step, with w(x, t) replaced by a deterministic function of x and t
(which may or may not be a constant) multiplying a Gaussian stochastic
quantity. That is, w(x, t) varies rapidly enough so that its autocorrelation has
decayed to insignificance over the course of the long time step, but the size of
w(x, t), though finite, is big enough that its effects on x cannot be neglected.
Thus, the effects of nearly independent values of w(x, t) are combined in such a
way that central limit theorem (CLT) behaviour obtains, and Gaussian statistics
are introduced into the evolution equation for x on long enough time scales.
(b ) An approximation using standard Brownian motion

The Gaussian stochastic quantity introduced in the previous paragraph is not
arbitrary, but rather has a variance dependent on the time scales of the system.
Quantifying these ideas requires consideration of a ‘Wiener process’, also called
‘Brownian motion’, which we denote by W(t). The Brownian motion is also
sometimes called a ‘continuous random walk’. We shall use these terms
interchangeably. Using angle brackets to denote expectation values, we state
the following properties of the vector Wiener process W .

W(t) is a vector of Gaussian random variables, and

W ð0ÞZ 0; ð2:2aÞ
hW ðtÞiZ 0; ð2:2bÞ

hW ðsÞWTðtÞiZ I minðs; tÞ ð2:2cÞ
and

hdW ðsÞdWTðtÞiZ I dðsK tÞ: ð2:2d Þ
In equation (2.2), I denotes the identity matrix, and the d function in equation
(2.2d ) approaches dt as s goes to t. The Wiener process is continuous but is only
differentiable in a generalized sense,

dWk Z xk dt: ð2:3Þ
Phil. Trans. R. Soc. A (2008)
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Equation (2.3) defines the kth component xk of ‘white noise’. Note that the units
of Wk(t) are the square root of time; numerical stochastic models typically
involve terms based on deterministic dynamics, which are updated with
increments equal to the time step, and other terms involving stochastic terms,
which are updated using increments equal to the square root of the time step.
More detailed descriptions of Wiener processes and white noise may be found in
Arnold (1974, ch. 3).

The Fourier spectrum of Wk(t) varies everywhere as the inverse square of the
frequency. Also note that the inverse square spectrum implies that every finite
sample of Brownian motion is dominated by an oscillation having a period near
to the length of the time series.

Before continuing on to how the Wiener process is used in modelling a physical
system with an SDE, it is necessary to mention a crucially important property:
unlike the deterministic Riemann integral, which has a single ‘fundamental
theorem of integral calculus’ (e.g. Purcell 1972), it is possible to define infinitely
many different integration rules involving Brownian motion. Two of these calculi
are found in nature. The one that primarily interests us corresponds to the
continuous multiscale interaction problem with which we began this section. It is
called ‘Stratonovich calculus’ and has the same integration rules as standard
Riemannian calculus. The other physically meaningful calculus, called ‘Itô
calculus’, obtains when a system consists of discrete jumps, but the time between
jumps is vanishingly small compared with the time scales of interest. That is,
there are two limits here that do not commute, the white noise and the
continuous limits, and we want to take them both. A computer, of course,
requires discretization with a small enough time step that the system is
approximately continuous, but this is yet another approximation and is separate
from the two limits that obtain even before we begin to think about the computer
program. Now, even though a hydrodynamic system is made up of molecules, we
usually base the models of the ocean and the atmosphere on a continuous set of
deterministic equations, such as rotating Navier–Stokes. Then, in order to make
progress, we make some assumptions about the time scales of the system. This is
equation (2.1). Finally, we use the dynamic CLT to approximate the fast
variables as stochastic terms. These are the conditions leading to Stratonovich
calculus, and appropriate numerical schemes are required to approximate
numerically the solution to the SDE. We revisit this issue below.

Let us consider a case that is less often used, but may be geophysically
relevant in some cases, where a fluid is at an intermediate level of concentration
where it is dense enough that continuity equations are still valid on average, but
rarified enough that momentum transfer through frequent individual molecular
collisions presents a non-negligible stochastic effect. In this case, the physical
system might well be described as an Itô SDE, and numerical models of it require
different schemes from those modelling Stratonovich systems. Fortunately,
although numerical schemes describing the different calculi are not the same,
they are often rather similar. Exhaustive discussions may be found in, for
example, Kloeden & Platen (1992).

As might be expected, Itô and Stratonovich numerical schemes converge to
the same answer in the deterministic limit. This most emphatically does not
mean that a ‘stochastification’ of a deterministic numerical scheme is obvious.
Computers do not care whether a numerically generated solution to an equation
Phil. Trans. R. Soc. A (2008)
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is physical or not, and they can quite happily spit out a perfectly accurate
solution to an SDE corresponding to a calculus that does not exist in nature if the
numerical scheme is not appropriate to the physical system at hand. We will
revisit this issue below, but first we need to set up the problem correctly. This is
the subject of the §2c.
(c ) The central limit theorem

Informally, the traditional CLT (e.g. Doob 1953; Wilks 1995) usually
employed by geoscientists to justify use of Gaussian distributions states that
the sum of independently sampled quantities having finite variance is
approximately Gaussian. As discussed above, we consider here dynamical
systems described by a slow time scale and faster time scales. The equations are
averaged over a temporal interval large enough that the fast time scales
collectively act as Gaussian stochastic forcing of the slow, coarse-grained system.
In the mathematical literature (e.g. Feller 1966), the fact that fine details of how
the fast processes are distributed do not strongly affect the coarse-grained
behaviour of the slower dynamics is often called ‘the invariance principle’. As the
proof of this theorem is outside the scope of this paper, we state a commonly used
form of it and refer the interested reader to the literature for details. Gardiner
(1985) gives a heuristic description; we prefer Papanicolaou & Kohler (1974) for
a technical statement of the theorem.

A dynamical system consisting of separated time scales may be written in the
following manner:

dx

dt
Z 3Gðx; tÞC32Fðx; tÞ; ð2:4Þ

where x is an N-dimensional vector. In equation (2.4), the smallness parameter 3
should not be taken as a measure of importance. It does measure the rapidity
with which the terms on the r.h.s. of (2.4) vary relative to each other; one can
think of 32 as the ratio of the characteristic time scale of the first term to the
characteristic time scale of the second. If we now cast (2.4) in terms of a scaled
time coordinate

DsZ 32Dt; ð2:5Þ
it becomes

dx

ds
Z

1

3
G x;

s

32

� �
CF x;

s

32

� �
: ð2:6Þ

We further assume that the first term in (2.4) decays quickly ‘enough’ in the time
interval Dt. In the limit 3/0, Dt/N with 32Dt remaining finite, the CLT states
that (2.6) converges weakly to a Stratonovich SDE in the scaled coordinates,

dx ZF 0ðx; sÞdsCG0ðx; sÞ+dW ðsÞ: ð2:7Þ
The primes in (2.7) denote only that F and G may be somewhat different than
the terms in (2.4). W in (2.7) is a K-dimensional vector, each component of
which is an independent Wiener process, or Brownian motion, and the ‘+’
indicates that it is to be interpreted in the sense of Stratonovich. G 0(x, s) is a
matrix, the first index of which corresponds to a component of x and the second
index of which corresponds to a component of dW.
Phil. Trans. R. Soc. A (2008)
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For details and proof of the CLT, we recommend, for example, the articles by
Wong & Zakai (1965), Khasminskii (1966) and by Papanicolaou & Kohler
(1974). Examples of geophysical applications may be found in Kohler &
Papanicolaou (1977), Penland (1985), Majda et al. (1999) and Sardeshmukh
et al. (2001).

Remark 8 of Papanicolaou & Kohler (1974) is particularly applicable to many
problems. In that case, the ith component of the rapidly varying term in equation
(2.6) can be given as

Gi x;
s

32

� �
Z

XK
kZ1

Gikðx; sÞhk
s

32

� �
; ð2:8Þ

where hk(s/3
2) is a stationary, centred and bounded random function. The

integrated lagged covariance matrix of h is defined to be

Ckm h

ðN
0

hkðtÞhmðtC t 0Þ
� �

dt 0; k;mZ 1; 2;.;K : ð2:9Þ

With these restrictions, the CLT states that in the limit of long times (t/N)
and small 3 (3/0), taken so that sZ32t remains fixed, the conditional probability
density function (pdf ) for x at time s given an initial condition x0(s0) satisfies the
backward Kolmogorov equation (e.g. Horsthemke & Lefever 1984; Bhattacharya &
Waymire 1990),

vpðx; sjx0; s0Þ
vs0

ZLpðx; sjx0; s0Þ; ð2:10Þ

where

LZ
XN
i;jZ1

aijðx0; s0Þ
v2

vx0ivx0j
C

XN
iZ1

biðx0; s0Þ
v

vx 0i

ð2:11Þ

and

aijðx; sÞZ
XK
k;mZ1

CkmGikðx; sÞGjmðx; sÞ; ð2:12aÞ

biðx; sÞZ
XK
k;mZ1

Ckm

XN
jZ1

Gjkðx; sÞ
vGimðx; sÞ

vxj
CFiðx; sÞ: ð2:12bÞ

In this limit, the conditional pdf also satisfies a forwardKolmogorov equation (called
a ‘Fokker–Planck equation’ in the scientific literature) in the scaled coordinates

vpðx; sjx0; s0Þ
vs

ZL†pðx; sjx0; s0Þ; ð2:13Þ

where

L†pZ
XN
i;jZ1

v2

vxivxj
½aijðx; sÞp�K

XN
iZ1

v

vxi
½biðx; sÞp�: ð2:14Þ

In short, the moments of x can be approximated by the moments of the solution to
the Stratonovich SDE

dx ZFðx; sÞ dsCGðx; sÞS+dW : ð2:15Þ
Phil. Trans. R. Soc. A (2008)
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In equation (2.15),G(x, s) is the matrix whose (i, k)th element isGik(x, s) andS is a

matrix where the (k,m)th element ofSST isCkm. Note thatS is only unique up to its
product with an arbitrary orthogonal matrix. Also note that the usual factor of one-
half found in most formulations of the Fokker–Planck equation has been absorbed
into the definition of Ckm.

From the first temporal derivative in (2.13) and the second derivative with
respect to the state variable in (2.14), it can be seen that the Fokker–Planck
equation is a type of diffusion equation. For this reason, b(x, s) in (2.14) is often
called the ‘drift’, a(x, s) is called the ‘diffusion’, and the process x is called a
‘Markov diffusion process’. This term is used to make the distinction between
systems driven by Gaussian white noise and those driven by non-Gaussian stable
Lévy processes, as discussed below.

There do exist Kolmogorov equations (equations (2.10) and (2.13)) for Itô
systems, with the modification that in (2.12b), bi(x, s) is simply equal to Fi(x, s).
The difference between Itô and Stratonovich calculi is important for scientists to
understand because most of the physical phenomena they deal with are
Stratonovich, while most mathematical references on stochastic numerical
techniques are primarily interested in Itô schemes. There is a formal equivalence
between Itô & Stratonovich descriptions of reality, so a theorem about an Itô
process can generally be carried over to the corresponding Stratonovich process.
More precisely, the Stratonovich SDE (absorbing the matrix S into G)

dxi ZFiðx; tÞdtC
X
a

Giaðx; tÞ+dWa ð2:16aÞ

is equivalent to the Itô SDE

dxi Z Fiðx; tÞC
1

2

X
a;j

Gjaðx; tÞ
vGiaðx; tÞ

vxj

" #
dtC

X
a

Giaðx; tÞdWa: ð2:16bÞ

By ‘equivalent’ it is meant that solving equation (2.16a) using Stratonovich
calculus gives the same solution as solving equation (2.16b) using Itô calculus.
That is, each equation evaluated for x using its appropriate calculus would
describe an experimental outcome equally well as the other; the statistics of x in
each case are the same. Note that if G(x, s) is independent of x, Itô and
Stratonovich calculi converge to each other. In equation (2.16b), we have omitted
‘+’ in keeping with standard mathematical notation of an Itô SDE.
Unfortunately, the transformation from one description to the other can be
prohibitively difficult in physical applications.

For longer discussions on the difference between Itô and Stratonovich systems,
we refer the reader to Arnold (1974), Horsthemke & Lefever (1984), Kloeden &
Platen (1992) and Ewald & Penland (2008). The important message here is for
when one wishes to approximate a continuous real system with short but finite
correlation time in a general circulation model (GCM) with a Gaussian
stochastic variable. As noted in equation (2.9), the correlation structure of the
fast variable comes into play. Simply replacing the fast term with a Gaussian
random deviate with standard deviation equal to that of the variable to be
approximated, and then using deterministic numerical integration schemes, is a
recipe for disaster (Sura & Penland 2002; Ewald et al. 2004).
Phil. Trans. R. Soc. A (2008)
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(d ) Notes on numerical techniques involving SDEs

One can write, and some have written (e.g. Kloeden & Platen 1992), enormous
tomes on the theory and practice of numerically integrating SDEs. A review of
some of these techniques, including longer discussions of the schemes we present
here, may be found in Ewald & Penland (2008). In this subsection, we confine
ourselves to discussing the procedure and results of using an explicit stochastic
Euler scheme (Rümelin 1982), an explicit stochastic Heun scheme (Rümelin
1982) and an implicit stochastic integration scheme developed by Ewald &
Temam (2005; see also Ewald et al. 2004) especially for spectral versions of
GCMs. To set notation, we denote the time step by D, while the {zmi} denote
centred Gaussian random deviates, each with variance D, sampled at time ti. If m
varies from 1 to M, then zmi is the mth component of the M-dimensional vector zi.
xm represents the mth component of an N-dimensional vector x obeying the
following SDE:

dx ZFðx; sÞdsCGðx; sÞð+ÞdW : ð2:17Þ

In equation (2.17), Gðx; sÞð+ÞdW equals Gðx; sÞdW if the system is Itô, and
Gðx; sÞ+dW if it is Stratonovich.

The stochastic Euler scheme

xmðtiC1ÞZ xmðtiÞCFmðx; tiÞDC
X
m

Gmmðx; tiÞzmi ð2:18Þ

converges to Itô calculus, unless G(x, s) is not really a function of x. In that case,
we repeat, the Itô and Stratonovich calculi give the same moments of x. It is
important that the vector zi be generated outside the loop performing the
summation in (2.18); otherwise, random phases are generated, which erroneously
eliminate the contribution to hxxTi by any off-diagonal elements of GGT. Again,
if G(x, s) is a function of x, equation (2.18) generates Itô calculus.

For reasons explained elsewhere (e.g. Rümelin 1982; Ewald & Penland 2008),
explicit schemes generating Stratonovich calculus are usually predictor–corrector
methods. The simplest version is a second-order Runge–Kutta scheme, called the
Heun scheme. Here, one generates an intermediate variable using an Euler estimate

x 0
mðtiC1ÞZ xmðtiÞCFmðx; tiÞDC

X
m

Gmmðx; tiÞzmi; ð2:19aÞ

which is then updated as follows:

xmðtiC1ÞZ xmðtiÞC
1

2
Fmðx; tiÞCFmðx 0; tiC1Þ

� �
D

C
1

2

X
m

fGmmðx; tiÞCGmmðx 0; tiC1Þgzmi: ð2:19bÞ

Note that the same random vector zi is used in both (2.19a) and (2.19b).
Our final example of a numerical scheme designed for SDEs is the

implicit scheme of Ewald & Temam (2003, 2005). This algorithm was devised
to accommodate the architecture of extant climate models, including
barotropic vorticity models (e.g. Sardeshmukh & Hoskins 1988) and full GCMs
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(e.g. Saha et al. 2006). The deterministic climate models usually integrate
the state vector first using a leapfrog step, followed by an implicit step.
To implement the stochastic analogue of this procedure, we rewrite equation
(2.17) as

dx ZF1ðx; tÞdtCF2ðx; tÞdtCGðx; tÞð+ÞdW : ð2:20Þ
In (2.20), F1(x, t) and F2(x, t) are the explicit and the implicit parts of the
model, respectively. The implicit leapfrog scheme of Ewald & Temam (2003,
2005) is as follows:

x 0ðtiC2ÞZxðtiÞC2F1ðxðtiC1Þ; tiC1ÞDCMðxðtiÞ; tiÞCMðxðtiC1Þ; tiC1Þ; ð2:21aÞ
and

xðtiC2ÞZ x 0ðtiC2ÞC2F2ðxðtiC2Þ; tiC2ÞD: ð2:21bÞ
In the updating expressions, the mth component of the vector MðxðtiÞ; tiÞ is

Mmðx; tiÞZ
X
n;m;n

Gnmðx; tiÞ
vGmnðx; tiÞ

vxn
Iðm;nÞC

X
m

Gmmðx; tiÞzm: ð2:21cÞ

The derivative in (2.21c) can be approximated as

vGmnðx; tiÞ
vxn

Z
GmnðxC3n

ffiffiffiffi
D

p
ên; tiÞKGmnðx; tiÞ
3n

ffiffiffiffi
D

p : ð2:21dÞ

In (2.21d ), ên is a unit vector corresponding to the component xn. The vector 3
has components less than or equal to unity, in units of x=

ffiffi
t

p
, and allows the

modeller to adjust the discretized derivatives to the problem at hand.
The difference between Itô and Stratonovich calculi is effected through estimates
of the multiple stochastic integral in (2.21c)

Iðm;nÞ Z
1

2
ðzmznK dmnDÞ ðItôÞ; ð2:22aÞ

Iðm;nÞ Z
1

2
zmzn ðStratonovichÞ: ð2:22bÞ

In this and in all implicit stochastic algorithms, the stochastic terms enter the
problem during the explicit step. When random numbers occur in the
denominator of the implicit step, the numerical solution eventually explodes.
3. Aspects of modelling with Lévy processes

(a ) Preliminary discussion

The fact that a process has infinite variance, or even infinite mean, does not
preclude its existence. Consider the game proposed in 1713 by Nicolaus Bernoulli
in a letter to Pierre Raymond de Montmort. A player flips a coin repeatedly until
he gets ‘tails’, at which point the game ends. If the tails appears on the first flip,
he wins $1. If it appears on the second flip, he wins double that, or $2. If he
achieves two heads before a tails on the third flip, he wins double that, or $4. If
the tails shows up on the (kC1)th flip, he wins $2k. Thus, his expected winnings
are a sum of terms, each consisting of the probability that a certain event occurs
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times the return, or 1=2Cð1=4Þ$2Cð1=8Þ$4C/, which sums to infinity. Of
course, it would take an infinite amount of time to get this infinite return, but
that does not mean the game cannot be played to its end. This paradox is called
‘the St Petersburg paradox’ since it was published in 1738 by Nicolaus’ brother
Daniel Bernoulli (presumably with Nicolaus’ permission) in the Commentaries of
the Imperial Academy of Science of St Petersburg.

With these ideas in mind, we return to the classic CLT, where independent,
identically distributed normalized variables are added together. However, the
condition of finite variance is relaxed. The result is a class of distributions called
‘a-stable Lévy distributions’, of which the Gaussian distribution is a special case
(Lévy 1937; Gnendenko & Kolmogorov 1954). These distributions are
characterized by a parameter a, 0!a%2, for which moments of order m diverge
for mRa. The exception to this rule is when aZ2, which corresponds to the
Gaussian distribution. The reason these distributions are called ‘stable’ is
because sums of appropriately centred and normalized (by n1/a, with n being the
number of terms in the sum) variables sampled from such a distribution belong
to the same distribution. For example, the sum of Gaussian variables is also a
Gaussian variable.

The class of a-stable Lévy processes are themselves a special case of systems
called simply Lévy processes (Appelbaum 2004; Protter 2005). All that is
required of a Lévy process X(t) is that (i) it has independent increments, i.e.
X(t)KX(s) is independent of X(r)KX(q) at times q, r, s and t for increments that
do not overlap, (ii) the increments are stationary, i.e. the pdf of X(t)KX(s) is the
same as that of X(tKs), (iii) X(t) is continuous in probability, i.e. for any dO0,
no matter how small d is, the probability that jX(t)KX(s)jOd is zero in the limit
that t/s, and (iv) X(0)Z0. Theorems proved for Lévy processes are obviously
true for a-stable Lévy processes.

Why do we care about non-Gaussian a-stable Lévy processes? Well, as we saw
in §2, the distance a Brownian particle travels from the origin varies as

jW ðtÞj2wt: ð3:1Þ
More generally, the diffusion away from its origin travelled by an a-stable Lévy
process La(t) is given by

jLaðtÞj2wt2=a: ð3:2Þ
Thus, for a!2, large excursions from the mean can occur in a much shorter
amount of time than for Gaussian-driven processes. This property has its effect
on the probability of finding large excursions PfLaðtÞOrg, which has ‘heavy
tails’, i.e.

PfLaðtÞOrgwrKa: ð3:3Þ
A formalism allowing the existence of heavy tails in the distribution of stochastic
forcing allows a much broader class of observed phenomena to be modelled as
SDEs of the form

dx ZFðx; sÞdsCGðx; sÞð+ÞdL: ð3:4Þ
(N.B. the Itô–Stratonovich quandary persists for a!2.) Indeed, non-Gaussian
Lévy models have been applied to atmospheric turbulence (e.g. Viecelli 1998;
Ditlevsen 2004) and palaeoclimate (e.g. Ditlevsen 1999), and have been used to
explain anomalous diffusion observed in hydrological records (Hurst 1951).
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Just as the pdfs of Markov diffusion processes obey a Fokker–Planck equation,
so do those of systems involving non-Gaussian stable Lévy processes. However,
these Fokker–Planck equations involve fractional derivatives of order a rather
than second derivatives with respect to the state variable in the diffusion term
(e.g. Chechkin et al. 2003; Ditlevsen 2004). It is often more convenient to
consider a spectral form of the Fokker–Planck equation so that the fractional
derivatives are replaced by conjugate variables raised to the power a. Not
surprisingly, much of the theory of Lévy a-stable processes also involves Fourier
and Laplace transforms, as we see in the next sections. For clarity, we shall
confine our discussion to univariate variables unless the multivariate general-
ization is clear.
(b ) Poisson processes and compound Poisson processes

This subsection is intended to give the reader an intuitive feel for Lévy
processes. To do so, it is extremely useful to employ the fact that Lévy processes
can be written in terms of a ‘Lévy–Itô decomposition’, which is a combination of
a drift, a Brownian motion and compound Poisson processes (Appelbaum 2004).
We discussed Brownian motions in detail in §2; we now turn our attention to
Poisson and compound Poisson processes.

Consider a rabbit standing (or sitting) at a place we shall designate the origin.
After some time t, the bunny may or may not have taken one or more jumps. We
shall denote the number of jumps taken by our lapine friend in time t as N(t).
Using Protter’s (2005) formalism, let us say the rabbit jumps for the nth time
at time Tn, with T0Z0 and TnC1OTn. The counting process N(t) can be written
in terms of the indicator function 1ftRTng, which is one for tRTn and zero for
t!Tn, i.e.

NðtÞZ
X
nR1

1ftRTng: ð3:5Þ

If N(t) obeys a Poisson process, then the probability that N(t) equals some non-
negative integer n is

PfNðtÞZngZ ðltÞn expðKltÞ
n!

; ð3:6Þ

for some lO0. That is, lt is the parameter of the Poisson process and l is called
the arrival intensity. The Poisson process has some well-known properties. For
example, its mean and variance are time dependent and each is equal to lt. Note
that this probability is not only continuous for tO0 but also differentiable with
respect to time,

dPfNðtÞZng
dt

Z lPfNðtÞZnK1gKlPfNðtÞZng: ð3:7Þ

A Poisson process from which the mean lt is subtracted is called a compensated
Poisson process, and has mean zero. Note further that we confine ourselves to
finite l.

So far, we have not said anything about how big these jumps are. Let
us say the kth jump has length Yk. Then, the distribution of the sum
Y1CY2C/CYN ðtÞ, with N(t) a Poisson process, is a compound Poisson process
(Feller 1966; Protter 2005). The compound Poisson processes as just described
are Lévy processes.
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It is possible to combine the compound Poisson process and Brownian motion
into yet another Lévy process: let the combination of a Brownian motion W(t)
and a linear drift bt be denoted as C(t), and a compound Poisson process as just
described be denoted as Y(t). Then, we may define yet another Lévy process X(t)
(Appelbaum 2004) as

XðtÞZCðtÞCY ðtÞ: ð3:8Þ
This means that X(t) is simply the Brownian motion with drift until the first
jump, say, at time T1 and height Y1. After that, X(t) evolves again as a Brownian
motion with drift until the next jump, and so on. That is,

XðtÞZ

CðtÞ for 0% t!T1;

CðT1ÞCY1 for t ZT1;

XðT1ÞCCðtÞKCðT1Þ for T1! t!T2;

XðT1ÞCCðT2ÞKCðT1ÞCY2 for t ZT2; etc:

8>>>><
>>>>:

ð3:9Þ

Equation (3.9) is an example of a Lévy process represented as the sum of a
drift, a Brownian motion and superpositions of compound Poisson processes
(Bhattacharya & Waymire 1990; Appelbaum 2004; Eliazar & Klafter 2003). This
is what is meant by the qualitative description of Lévy forcing as white noise with
jumps, particularly since T1 and T2 may be as close together as we like.
(c ) Characteristics of Lévy a-stable processes

We do not use the term ‘characteristic’ lightly. In fact, Lévy a-stable
processes are generally defined in terms of their characteristic functions fðuÞZ
hexpðiuLaÞi (e.g. Weron & Weron 1995; Eliazar & Klafter 2003; Dybiec et al.
2006; Nolan 2007),

ln fðuÞZKsajuja 1K ib sgnðuÞ tan pa

2

� �n o
C imu; as1; ð3:10aÞ

ln fðuÞZKsajuja 1C ib sgnðuÞ 2
p

ln juj
� 	

C imu; aZ 1: ð3:10bÞ

In (3.10a) and (3.10b), the location parameter m shifts the distribution to the
l.h.s. or r.h.s. For aZ2, m represents the Gaussian mean. The scale parameter
s, which is greater than zero, represents the width of the distribution about m.
In this notation, the variance of a Gaussian distribution is 2s2. This convention
is somewhat inconvenient for those of us whose main experience is with
Gaussian distributions, but it is the convention used in most of the Lévy
process literature, so we may as well get used to it. The skewness parameter b
lies in the interval [K1,1], and the distribution is symmetric when bZ0. In fact,
when both b and m are zero, the characteristic function has the form

fðuÞZ expðKsajujaÞ: ð3:11Þ
For the Lévy process corresponding to a Brownian motion W(t), saZs2Zt/2.

There are two other a-stable Lévy processes for which the pdf is known to have
a closed-form solution. One is the Cauchy distribution, where aZ1 and bZ0,

pðxÞZ 1

p

1

s2 CðxKmÞ2
: ð3:12Þ
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The other is the Lévy distribution, where aZ0.5 and bZ1,

pðxÞZ
ffiffiffiffiffiffi
s

2p

r
exp K s

2x


 �
x3=2

: ð3:13Þ

For more general cases, one may evaluate the Fourier transform of (3.10a) and
(3.10b) numerically.

(d ) Additive a-stable Lévy-driven SDEs

Consider differential equations of the form

dx ZFðx; tÞdtCGdLa; ð3:14Þ
where the coefficient G of the Lévy noise vector increment dLa is simply a
constant matrix. Although (3.14) is far from general, there are certainly plenty of
applications for which it is applicable. In these cases, the standard numerical
approach (e.g. Dybiec et al. 2006) is to use a Euler scheme

xmðtiC1ÞZ xmðtiÞCFmðxðtiÞ; tiÞDC
X
m

GmmD
1=azmi; ð3:15Þ

where D is the time step and {zmi} are random variables sampled at time ti from a
centred a-stable Lévy distribution. Note that the time step in (3.15) is raised to

the power 1/a. For aZ2, (3.15) is equivalent to (2.18) with D1=2zmi representing
the Gaussian random deviate of variance D.

Techniques for approximating random variables {zmi} from a-stable Lévy
distributions may be found in Dybiec et al. (2006) as well as Weron & Weron
(1995). As of this writing, mathematician John Nolan, a professor at American
University, has a website: http://academic2.american.edu/wjpnolan/stable/
stable.html from which one may download Lévy-variable generators for use with
proper acknowledgement. An example of an additive LSDE is given in §4.
4. Diffusion and a-stable Lévy processes: some examples

(a ) Ornstein–Uhlenbeck processes

To compare the qualitative properties of a system driven by Gaussian white
noise with that driven by an a-stable Lévy noise, we consider a simple Ornstein–
Uhlenbeck (OU) process as follows:

dx ZKgxdtCdz: ð4:1Þ
In (4.1), z is either a symmetric a-stable Lévy variable with aZ1.5 or Brownian
motion (aZ2). The decay parameter g is equal to 0.1/tu and the scale parameter
s for each noise process is unity. Recall that sZ1 for a Gaussian process is
equivalent to a variance of 2. Equation (4.1) is integrated numerically using an
Euler integration scheme ((3.15); see also Protter & Talay 1997) with a time step
of DZ0.1 tu. Random numbers in the interval (0,1] are generated using a
Mersenne Twister (Matsumoto & Nishimura 1998), which are then used to
generate either Gaussian random variables using a Box-Mueller scheme (Press
et al. 1992) or Lévy variables (Weron & Weron 1995).

The time series of random variables used to integrate (4.1) are shown in
figure 1. Note that the ordinate of the graph showing the Lévy process is an order
of magnitude larger than that showing the Gaussian process, though both
Phil. Trans. R. Soc. A (2008)
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Figure 1. Time series of random numbers used to numerically integrate (4.1). (a) Gaussian random
variables and (b) Lévy-distributed variables.
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Figure 2. First 10 tu of time series as shown in figure 1. Solid line, Gaussian random noise; dashed
line, Lévy-distributed noise.
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processes are characterized by the same scale parameter s. The first 10 tu,
comprising 100 time steps, of the time series are shown in figure 2. There it can
be seen that the two time series are qualitatively similar, except in the region of
the occasional jump.

The Gaussian-driven and the Lévy-driven OU processes are shown in
figure 3a,b, respectively. Also shown (figure 4) is a close-up of the two OU
processes; note the effect of the jump that occurred around 6 tu persists for
approximately 15 time steps (1.5 tu) in the Lévy-driven system. The global effect
of the jumps is seen in the cumulative distributions of the two OU processes
(figure 5), where the fat tails of the a-stable Lévy distributed forcing are
translated into fat tails of the Lévy-driven OU process.
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(b ) Diffusion and Lévy processes with some similarities

Sura & Sardeshmukh (2008) have shown that daily departures of SSTs from
the annual cycle are well described by the Stratonovich SDE

dT Z ATK
1

2
Eg

� 
dtCb+dW1 CðET CgÞ+dW2; ð4:2Þ

where W1 and W2 are independent Wiener processes and A, E, g and b are
constants. Sardeshmukh & Sura (submitted) similarly showed that daily
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departures of 300 mb vorticity from the annual cycle obey an equation of the
same form. The marginal pdf corresponding to this diffusion process is

pðTÞZ 1

N
½ðET CgÞ2 Cb2�KðgC1Þ exp

2gg

b
arctan

ET Cg

b

� � �
; ð4:3Þ

whereN is the normalization constant. The quantity g is defined asKðAC0:5E 2Þ=
E 2 and is positive for physically allowable systems, i.e. A is strictly negative and

jAj is larger than 0.5E 2. Thus, 0!g!N and, for large T0, PfTOT0gwT
Kð2gC1Þ
0 .

Thus, as pointed out by Sardeshmukh & Sura (submitted), moments of order

higher than 2gC1 do not exist. The distribution of this diffusion process allows
both skew and heavy tails, depending on the level of stochastic forcing and the
level of correlation between the additive and multiplicative noises. The question
arises, then, whether (4.3) is the pdf of a diffusion that is also an a-stable Lévy
process. In general, the answer is ‘No’. While (4.3) does converge to a Cauchy
distribution for g/0 and to a Gaussian for g/N, it is straightforward to
show that the characteristic function of T(t) cannot be written in the form of
(3.10a) or (3.10b) for finite gO0.
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5. Conclusions

With the increasing popularity of stochastic parametrizations in numerical
weather and climate models, it is necessary for us to remind ourselves of how the
physical and mathematical bases for such approximations are related. In this
article, we have tried to summarize some of this theory without pretending to be
exhaustive. In particular, we have not discussed the newly developed theory of
integrating SDEs driven by state-dependent Lévy processes. The procedures for
doing so involve what are called ‘Marcus integrals’, and are beyond the scope of
this article. The most accessible reference we have found on the subject is in the
book by Appelbaum (2004).

Even the numerical simulation of Gaussian-driven processes is not trivial, but
the theory for these systems is quite well developed. Obviously, it is not
sufficient for the mere existence of power law tails or skew in a probability
distribution to preclude a valid approximation of a physical system as forced by
Gaussian white noise (see also Sardeshmukh & Sura submitted). Thus, unless
there are physical reasons for doubting the validity of such an approximation,
we recommend using the theoretical arsenal developed around classical SDEs if
at all possible.

We conclude with a reminder that the difference between Itô and Stratonovich
calculi is important. For mathematicians, it may suffice to know that there is a
transformation between them; scientists have to know what that transformation
is and how to evaluate it. A thermometer gives only one reading at a time, and
knowing that an isomorphism exists between the output of a numerical weather
prediction model and the temperature that will eventually be observed does not
help the farmer or fisherman unless scientists can apply that isomorphism in
advance. Of course, if the stochastic forcing in a numerical model can be argued
on physical grounds to exist independently of the system being modelled, the
issue of multiple calculi becomes moot and one may use the Euler scheme to
model an SDE driven by an a-stable Lévy random variable, whether or not aZ2.
The key phrase here involves argument on physical grounds; concern for the
fidelity of any type of parametrization to the physical system being modelled is
always our first priority.

The authors are pleased to acknowledge valuable conversations with P. D. Sardeshmukh,
P. Imkeller, T. Hamill, M. Charnotskii, P. Sura and I. Pavlyukevich. Particular gratitude is
expressed to an anonymous reviewer for the extremely valuable advice.
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Lecture Notes in Physics, no. 457, pp. 379–392. Berlin, Germany: Springer.

Wilks, D. S. 1995 Statistical methods in the atmospheric sciences. San Diego, CA: Academic Press.
Winkler, C. R., Newman, M. & Sardeshmukh, P. D. 2001 A linear model of wintertime low-

frequency variability. Part I: formulation and forecast skill. J. Clim. 14, 4474–4494. (doi:10.
1175/1520-0442(2001)014!4474:ALMOWLO2.0.CO;2)

Wong, E. & Zakai, M. 1965 On the convergence of ordinary integrals to stochastic integrals. Ann.
Math. Stat. 36, 1560–1564. (doi:10.1214/aoms/1177699916)

Zebiak, S. & Cane, M. 1986 A model El Niño-Southern Oscillation. Mon. Weather Rev. 115,
2262–2278. (doi:10.1175/1520-0493(1987)115!2262:AMENOO2.0.CO;2)
Phil. Trans. R. Soc. A (2008)

http://dx.doi.org/doi:10.1175/1520-0485(1987)017%3C0026:BOSSTA%3E2.0.CO;2
http://dx.doi.org/doi:10.1121/1.392906
http://dx.doi.org/doi:10.1175/1520-0493(1989)117%3C2165:RFAFUP%3E2.0.CO;2
http://dx.doi.org/doi:10.1016/0167-2789(96)00124-8
http://dx.doi.org/doi:10.1175/1520-0442(1995)008%3E1999:TOGOTS%3E2.0.CO;2
http://dx.doi.org/doi:10.1214/aop/1024404293
http://dx.doi.org/doi:10.1175/JCLI3812.1
http://dx.doi.org/doi:10.1175/JCLI3812.1
http://dx.doi.org/doi:10.1175/1520-0469(1988)045%3C1228:TGOGRF%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0469(1988)045%3C1228:TGOGRF%3E2.0.CO;2
http://dx.doi.org/doi:10.1016/S1463-5003(02)00008-2
http://dx.doi.org/doi:10.1175/2007JPO3761.1
http://dx.doi.org/doi:10.1175/1520-0469(1998)055%3C0677:OTPOSL%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0469(1998)055%3C0677:OTPOSL%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(2001)014%3C4474:ALMOWL%3E2.0.CO;2
http://dx.doi.org/doi:10.1175/1520-0442(2001)014%3C4474:ALMOWL%3E2.0.CO;2
http://dx.doi.org/doi:10.1214/aoms/1177699916
http://dx.doi.org/doi:10.1175/1520-0493(1987)115%3C2262:AMENO%3E2.0.CO;2
http://rsta.royalsocietypublishing.org/

	On modelling physical systems with stochastic models: diffusion versus Lévy processes
	Introduction
	Stochastic systems with Brownian motion
	Preliminary discussion
	An approximation using standard Brownian motion
	The central limit theorem
	Notes on numerical techniques involving SDEs

	Aspects of modelling with Lévy processes
	Preliminary discussion
	Poisson processes and compound Poisson processes
	-stable processes
	vy-driven SDEs

	Diffusion and alpha-stable Lévy processes: some examples
	Uhlenbeck processes
	vy processes with some similarities

	Conclusions
	The authors are pleased to acknowledge valuable conversations with P. D. Sardeshmukh, P. Imkeller, T. Hamill, M. Charnotskii, P. Sura and I. Pavlyukevich. Particular gratitude is expressed to an anonymous reviewer for the extremely valuable advice.
	References


