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The aim of this article is to establish the existence and uniqueness of stochastic solutions21
of the two-dimensional equations of the ocean and atmosphere. White noise is additive,
and the solutions are strong in the probabilistic sense. Finally, from the point of view of23
partial differential equations, they are of the type z-weak, that is bounded in L∞(L2)
together with their derivative in z.25
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1. Introduction

The mathematical theory of the Primitive Equations (PEs) for the ocean and the29

atmosphere has made substantial progress since the early articles [10, 11]. For the
most recent developments, see the review article [17] and the subsequent articles31

by Cao and Titi [4] and by Kobelkov [9]. The object of the present article and of
the companion article [7], is to study the existence and uniqueness of stochastic33

solutions to these equations driven by an additive white noise; the space dimension
two is considered in this article and the space dimension three in [7]. Note that these35

two articles are devoted to the concept of strong solutions, strong in the probabilistic
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sense, that is, the solutions defined pathwise. The concept of weak solutions defined1

by martingales will be investigated elsewhere. As we explain below, the white noise
is additive, i.e. of the form dW/dt, and strong solutions are obtained by requiring3

enough spatial regularity on W (as in, e.g., [1, 2]).
We start, in Sec. 2, by presenting the two-dimensional Primitive Equations with5

periodic boundary conditions as in [12] and give their functional formulation. We
also state a result of existence and uniqueness of (semi) weak solutions which will be7

the starting point for the stochastic case. This result of existence and uniqueness
of solutions is an unpublished result of Ziane which will appear in [13], but we9

prove here, in Sec. 3, a slightly more general version of it. We proceed in Sec. 2 by
introducing the probability spaces and the driving white noise. Finally, in Sec. 3,11

we consider the actual two-dimensional PEs driven by a white noise as well as prove
and state the main result of existence and uniqueness of solution.13

We consider the equations for the ocean; the equations would be the same for the
atmosphere if we use the potential temperature instead of the usual temperature,15

(see, e.g., [8] or [6]) and if the vertical coordinate is the pressure. The coupled
ocean-atmosphere pertain to the same methods. Furthermore, we consider only the17

space periodic case. All the other cases (ocean with different boundary conditions,
atmosphere or coupled ocean-atmosphere) are treated in the same way at the price19

of some modifications in the notations which are described briefly below and with
full details in [17].21

2. The Two-Dimensional Space Periodic Primitive Equations

For the sake of simplicity and to follow [12], we do not consider the salinity; intro-23

ducing the salinity would not produce any additional technical difficulty. In this
case, the density ρ is a linear function of the temperature T .25

Because of the hydrostatic equation, it is not possible to produce a solution
that is space periodic in all variables without restriction. For that reason, ρ, p27

(the pressure) and T below represent the deviation from a stratified solution. In
what follows, ρ̄ is the stratification profile for which N2 = −(g/ρ0)(dρ̄/dz) is a29

constant, and, as usual, by the hydrostatic equation and the equation of state,
dp̄/dz = −gρ̄ and ρ̄ = ρ0(1 − α(T̄ − T0)), ρ0, T0 being reference values of ρ and T31

(of the same order as ρ̄ and T̄ ). Furthermore, the periodic (disturbance) solutions
that we consider present certain symmetries that are described below (see (2.2)33

below). We refer the reader to [12,17] for more details on the physical background.
The PEs that we consider here are written in nondimensional form (see [12]), and35

they read:

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
− 1

Ro
v +

1
Ro

∂p

∂x
= νv∆u + Fu, (2.1a)

∂v

∂t
+ u

∂v

∂x
+ w

∂v

∂z
+

1
Ro

u = νv∆v + Fv, (2.1b)
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∂p

∂z
= −ρ, (2.1c)

∂u

∂x
+

∂w

∂z
= 0, (2.1d)

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
− N2

Ro
w = νρ∆ρ + Fρ. (2.1e)

All the independent variables (t, x, z) and the dependent variables (u, v, w, ρ, p)1

are dimensionless, as are the forcing and source terms (Fu, Fv, Fρ). Here, (u, v, w)
are the three components of the velocity vector and, as we have mentioned, p3

and ρ denote the pressure and density deviations, respectively, from the pre-
scribed stratified state. The (dimensionless) parameters are the Rossby number5

Ro; N , which is related to the Burger number; and the (eddy) Reynolds numbers
νv and νρ.7

Some motivations on the physical background and the derivation of these equa-
tions are given in [12]. The two spatial directions are 0x and 0z, corresponding9

to the west-east and vertical directions in the so-called f -plane approximation for
geophysical flows (see [12]); ∆ = ∂2/∂x2 + ∂2/∂z2.11

We work in a limited domain M = (0, L1) × (−L3/2, L3/2), and we assume
space periodicity with period M, that is, all functions are taken to satisfy13

f(x + L1, z, t) = f(x, z, t) = f(x, z + L3, t) (2.2)

when extended to R
2.15

Moreover, we assume that the following symmetries hold:

u(x, z, t) = u(x,−z, t), Fu(x, z, t) = Fu(x,−z, t),

v(x, z, t) = v(x,−z, t), Fv(x, z, t) = Fv(x,−z, t),

ρ(x, z, t) = −ρ(x,−z, t), Fρ(x, z, t) = −Fρ(x,−z, t),

w(x, z, t) = −w(x,−z, t), p(x, z, t) = p(x,−z, t).

(2.3)

17

Here, u, v and p are said to be even in z, and w and ρ odd in z.
Our aim is to solve the problem (2.1a)–(2.1e) with initial data19

u = u0, v = v0, ρ = ρ0, at t = 0. (2.4)

Hence the natural function spaces for this problem are as follows:

V =
{

U = (u, v, ρ) ∈ (Ḣ1
per(M))3,

u, v even in z, ρ odd in z,

∫ L3/2

−L3/2

u(x, z′)dz′ = 0
}

, (2.5)

H = closure of V in (L̇2(M))3. (2.6)
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Here the dot above Ḣ1
per or L̇2 denotes the functions with average in M equal1

to zero. These spaces are endowed with Hilbert scalar products; in H the scalar
product is3

(U, Ũ)H = (u, ũ)L2 + (v, ṽ)L2 + κ(ρ, ρ̃)L2 , (2.7)

and in Ḣ1
per and V the scalar product is (using the same notation when there is no5

ambiguity):

((U, Ũ)) = ((u, ũ)) + ((v, ṽ)) + κ((ρ, ρ̃)). (2.8)7

Here, we have written dM for dxdz, and

((φ, φ̃)) =
∫
M

(
∂φ

∂x

∂φ̃

∂x
+

∂φ

∂z

∂φ̃

∂z

)
dM; (2.9)

9

the positive constant κ is defined below. We have

|U |H ≤ c0‖U‖, ∀ U ∈ V, (2.10)11

where c0 > 0 is a positive constant related to κ and the Poincaré constant
in Ḣ1

per(M). More generally, the ci, c
′
i, c

′′
i will denote various positive constants.13

Inequality (2.10) implies that ‖U‖ = ((U, U))1/2 is indeed a norm on V .
Let us recall that we can express the diagnostic variables w and p in terms of15

the prognostic variables u, v and ρ. For each U = (u, v, ρ) ∈ V , we can determine
uniquely w = w(U) from (2.1d):17

w(U) = w(x, z, t) = −
∫ z

0

ux(x, z′, t) dz′, (2.11)

since w(x, 0) = 0, w being odd in z. Furthermore, writing that, by periodicity and19

antisymmetry, w(x,−L3/2, t) = ±w(x, L3/2, t) = 0, we also have

∫ L3/2

−L3/2

ux(x, z′, t) dz′ = 0. (2.12)
21

As for the pressure, we obtain from (2.1d),

p(x, z, t) = ps(x, t) −
∫ z

0

ρ(x, z′, t) dz′, (2.13)
23

where ps = p(x, 0, t) is the surface pressure. Thus, we can uniquely determine the
pressure p in terms of ρ up to ps.25

We then derive the variational formulation of problem (2.1a)–(2.1e). For that
purpose, we consider a test function Ũ = (ũ, ṽ, ρ̃) ∈ V and we multiply (2.1a),27

(2.1b) and (2.1e), respectively by ũ, ṽ and κρ̃, where the constant κ (which was
already introduced in (2.7) and (2.8)) will be chosen later. We add the resulting29
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equations and integrate over M. We use (2.1c) and (2.1d) for the term involving ρ,1

and we arrive at:

d
dt

(U, Ũ)H + a(U, Ũ) + b(U, U, Ũ) +
1

Ro
e(U, Ũ) = (F, Ũ)H , ∀ Ũ ∈ V. (2.14)3

Here, we have set

a(U, Ũ) = νv((u, ũ)) + νv((v, ṽ)) + κνρ((ρ, ρ̃)),

e(U, Ũ) =
1

Ro

∫
M

(uṽ − vũ) dM +
1

Ro

∫
M

(ρw̃ − κN2wρ̃) dM,

b(U, U �, Ũ) =
∫
M

(
u

∂u�

∂x
+ w(U)

∂u�

∂z

)
ũ dM +

∫
M

(
u

∂v�

∂x
+ w(U)

∂v�

∂z

)
ṽ dM

+
∫
M

(
u

∂ρ�

∂x
+ w(U)

∂ρ�

∂z

)
ρ̃ dM.

We now choose κ = 1/N2 and it can easily be seen that:

a : V × V → R is bilinear, continuous,
e : V × V → R is bilinear, continuous,
a + e is coercive, a(U, U) + e(U, U) ≥ c1‖U‖2, ∀U ∈ V, c1 > 0,

b is trilinear, continuous from V × V2 × V into R,

and from V × V × V2 into R,

(2.15)

5

where V2 is the space V ∩(H2
per(M))3 (which is closed in (H2

per(M))3). Furthermore,

b(U, Ũ, U �) = −b(U, U �, Ũ),

b(U, Ũ, Ũ) = 0,
(2.16)

7

when U, Ũ, U � ∈ V with Ũ or U � in V2. We also have the following (see [10–12]):

Lemma 2.1. There exists a constant c2 > 0 such that, for all U ∈ V, Ũ ∈ V2 and
U � ∈ V :

|b(U, U �, Ũ)| ≤ c2|U |1/2
L2 ‖U‖1/2‖U �‖ |Ũ |1/2

L2 ‖Ũ‖1/2

+ c2‖U‖‖U �‖1/2|U �|1/2
V2

|Ũ |1/2
L2 ‖Ũ‖1/2. (2.17)

Alternatively, we can introduce the linear and bilinear operators A, B, E from9

V into V ′, defined by

〈AU, Ũ〉 = a(U, Ũ), ∀U, Ũ ∈ V,

〈EU, Ũ〉 = e(U, Ũ), ∀U, Ũ ∈ V,

〈B(U, Ũ), U �〉 = b(U, Ũ, U �), ∀U, Ũ ∈ V, U � ∈ V2,11
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and we then write (2.14) as a functional differential equation:1

dU

dt
+ AU + B(U, U) + EU = F, (2.18)

which we supplement with the initial condition3

U(0) = U0. (2.19)

The usual terminology in PDEs and fluid mechanics is to call weak solutions, the5

solutions of (2.18)–(2.19) which belong to L∞(0, t1; H) ∩ L2(0, t1; V ), ∀ t1 > 0, and
strong solutions, the solutions belonging to L∞(0, t1; V ) ∩ L2(0, t1; V2), ∀ t1 > 0. It7

was shown (see [17] and the references therein) that, for the incompressible Navier–
Stokes equations in space dimension two, (2.18) and (2.19) possess a unique strong9

solution defined for all time (with suitable hypotheses on the data). Concerning the
weak solutions, existence for all time has been shown (see, e.g., [10, 11, 17]), but,11

unlike the Navier–Stokes, the uniqueness of the two-dimensional weak solutions has
not been proven. Instead, we have a result of existence and uniqueness of (semi)13

weak solutions which we now recall.

Theorem 2.2. Given U0 ∈ H, with U0z = ∂U0/∂z ∈ L2(M)3, and F ∈
L∞(R+; H) with Fz = ∂F/∂z ∈ L∞(R+; L2(M)3)), there exists a unique solution
of (2.18) − (2.19), defined for all t > 0 and satisfying:

U ∈ C([0, t1]; H) ∩ L2(0, t1; V ), ∀ t1 > 0,

Uz ∈ C([0, t1]; L2(M)3) ∩ L2(0, t1; H1(M)3), ∀ t1 > 0.

As indicated before, this unpublished result of Ziane will be included in [13].15

However, we show below in Sec. 3 a result slightly more general than Theorem 2.2.

Remark 2.3. Before we proceed, we would like to explain how Eq. (2.18) relates17

to the initial equations (2.1a)–(2.1e). For that purpose, we introduce the orthogonal
projector P from L2(M)3 onto H . It is easy to see that if U = (u, v, ρ) ∈ L2(M)3,19

then

PU = (u − ū, v, ρ), (2.20)21

where ū is the average

ū(x) =
1
L3

∫ L3/2

−L3/2

u(x, z′)dz′. (2.21)
23

The domain D(A) of A in H is the same as the space denoted V2 before, and for
U ∈ D(A),25

AU = −(νv∆(u − ū), νv∆v, κνρ∆ρ).

Hence, with w = w(U) and p = p(U), defined as explained in (2.11)–(2.13), the sec-27

ond and third components of Eq. (2.18) are the same as (2.1b) and (2.1e), whereas
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the first component of (2.18) expresses the fact that the projection P of Eq. (2.1a)1

is satisfied:

P

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
− 1

Ro
v +

1
Ro

∂p

∂x

)
= P (νv∆u + Fu). (2.22)

3

Alternatively,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
− 1

Ro
v +

1
Ro

∂p

∂x
= νv∆u + Fu + φ, (2.23)5

where φ = φ(x, t) ∈ (I−P )(L2(M)3). According to (2.13), p is not fully determined
by the knowledge of ρ, as ps = ps(x, t) remains unknown. Hence, by changing p7

(that is, ps), we can in fact choose φ = 0 in (2.23) and rewrite this equation as

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂x
− 1

Ro
v − 1

Ro

∂

∂x

∫ z

0

ρ(z′) dz′ +
1
ε

∂

∂x
ps = νv∆u + Fu. (2.24)

9

Here, ps = ps(x, t) is defined up to a function of t which could be determined if we
impose, e.g.,

∫ L3/2

−L3/2 ps(x, t) dx = 0. Furthermore, once u, v, ρ, w are determined by11

Eqs. (2.18), (2.19) and (2.11), Eq. (2.24) precisely determines ps = ps(x, t). This
remark will be useful in the understanding of the component of the white noise on13

the orthogonal of H in L2(M)3, that is (I − P )(L2(M)3); see Remark 3.4.

3. The Stochastic Primitive Equations15

Our aim is now to consider the stochastic version of Theorem 2.2. We denote by
(Ω,F , P) a probability spacea with expectation E. The process W = W (t, ω), t ≥ 0,17

ω ∈ Ω, is an H-valued stochastic process defined on the probability space (for
instance, a Wiener process, cf. [5]), subject to the following regularity in space and19

time: for P-a.e. ω ∈ Ω,

W (·, ω) ∈ C(R+; V ), (3.1)21

and

∂

∂z
W (·, ω) ∈ C(R+; V ). (3.2)23

Furthermore, the mapping ω 
→ W (·, ω) is measurable with respect to the Borel
measures generated by the corresponding spaces.25

We also have a filtration {Ft}t≥0 , that is, the Ft are σ-subalgebras of A which
increase in t and are right-continuous in t. The Wiener process W will be adapted to27

the filtration, and the initial condition U0 must be measurable with respect to F0.

aIn this article, Ω denotes the probability space and not the angular velocity of the earth, as is
usual in geophysical fluid mechanics.
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We are now interested in solving the Ito differential equation:1

dU = −(AU + B(U, U) + EU − F )dt + dW, (3.3)

or, in short, with obvious notations,3

dU = −N(U)dt + dW, (3.4)

with5

U(0) = U0. (3.5)

For that purpose, we will perform the change of unknown function Ũ = U −W .7

In this way, the white noise dW/dt disappears and the equation for Ũ is a statistical
equation, that is an equation similar to (2.18) with the probabilistic parameter ω;9

namely

dŨ

dt
+ AŨ + B(W, Ũ ) + B(Ũ , W ) + B(Ũ , Ũ) + B(W, W ) + EŨ = F̃ , (3.6)11

with

Ũ(0) = Ũ0 = U0 − W (0), (3.7)13

and

F̃ = −(AW + EW ) + F. (3.8)15

The resolution of (3.6)–(3.8) will be similar to that of (2.18), (2.19), provided we
assume enough regularity on W . In fact, the only difference between (2.18) and17

(3.3) is the occurrence of the terms (linear in Ũ) B(W, Ũ) and B(Ũ , W ).
Due to (3.8) and the hypotheses (3.1)–(3.2) on W , we can prove the following19

lemma:

Lemma 3.1.21

Ũ0 ∈ H, Ũ0z ∈ L2(M)3, (3.9)

F̃ , F̃z ∈ L∞(R+; V ′). (3.10)23

Proof. For (3.9) and due to (3.7), it suffices to notice that W (0) ∈ H and Wz(0) ∈
L2(M)3.25

For (3.10), due to (3.8), it suffices to show that each of the following terms
separately belong to L∞(R+; L2(M)3), as well as their derivatives in z: AW , EW ,27

B(W, W ). The result follows promptly for AW and AWz (for the latter, it suffices
to observe that ∆Wz is in L∞(R+; L2(M)3)). The result is also easy for EW and29

(EW )z . The lemma is proven.

Having established the properties of F̃ and Ṽ0, we now show the existence and31

uniqueness of solutions of (3.6)–(3.8) which will imply the main result, the existence
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and uniqueness of solutions of (3.3)–(3.5). Note also that, when W = 0, Eqs. (3.6)–1

(3.8) are the same as (3.3)–(3.5) and (2.18)–(2.19) so that, in fact, the following
theorem is a generalization of Theorem 2.2.3

Theorem 3.2. There exists a unique solution Ũ of (3.6)–(3.8) such that

Ũ and Ũz ∈ C([0, t1]); H) ∩ L2(0, t1; V ), ∀ t1 > 0. (3.11)5

Proof. For the existence of solutions, the proof of this theorem as well as that
of Theorem 2.2 is based on the obtention of formal a priori estimates which are7

established by assuming enough regularity on Ũ .
(a) We start with the a priori estimates concerning Ũ and continue in point (b)9

with the a priori estimates concerning Ũz .
We take the scalar product of (3.6) with Ũ in the duality between V and V ′11

and, taking (2.16) into account we find:

1
2

d

dt
|Ũ |2H − a(Ũ , Ũ) + b(Ũ , W, Ũ) + b(W, W, Ũ) + e(Ũ , Ũ) = (F̃ , Ũ)H .13

We now take into account the coercivity of a + e (see (2.15)) and this yields:

1
2

d

dt
|Ũ |2H + c1‖Ũ‖2 ≤ |F̃ |V ′‖Ũ‖ + |b(Ũ , W, Ũ)| + |b(W, W, Ũ)|.15

Since

b(Ũ , W, Ũ) =
∫
M

ũ
∂W

∂x
· ŨdM +

∫
M

w
∂W

∂z
· ŨdM,

17

the first term of b(Ũ , W, Ũ) can be estimated as:∣∣∣∣
∫
M

ũ
∂W

∂x
· ŨdM

∣∣∣∣ ≤ |ũ|L4 ·
∣∣∣∣∂W

∂x

∣∣∣∣
L2

· |Ũ |L4 ≤ c

∣∣∣∣∂W

∂x

∣∣∣∣
L2(M)

|Ũ |H‖Ũ‖

≤ c1

4
‖Ũ‖2 + c′1‖W‖2|Ũ |2L2(M),

where the c′i continue to denote various positive constants.
The second term of b(Ũ , W, Ũ) is estimated as follows:∣∣∣∣

∫
M

w(Ũ)
∂W

∂z
· ŨdM

∣∣∣∣ ≤ |w(Ũ )|L2(M)

∣∣∣∣∂W

∂z

∣∣∣∣
L4(M)

|Ũ |L4(M)

≤ c′2‖Ũ‖3/2 ·
∣∣∣∣∂W

∂z

∣∣∣∣
1/2

L2

∥∥∥∥∂W

∂z

∥∥∥∥
1/2

|Ũ |1/2
H

≤ c1

4
‖Ũ‖2 + c′3

∣∣∣∣∂W

∂z

∣∣∣∣
2

L2

∥∥∥∥∂W

∂z

∥∥∥∥
2

|Ũ |2H .
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We have now to estimate b(W, W, Ũ) as follows:

|b(W, W, Ũ)| =
∣∣∣∣
∫
M

u� ∂W

∂x
· ŨdM +

∫
M

w� ∂W

∂z
· ŨdM

∣∣∣∣
≤ c′4|u�|L4

∣∣∣∣∂W

∂x

∣∣∣∣
L2

|Ũ |L4 + |w�|L4

∣∣∣∣∂W

∂z

∣∣∣∣
L2

|Ũ |L4

≤ c′5‖W‖2|Ũ |1/2
H ‖Ũ‖1/2

≤ c1

4
‖Ũ‖2 + c′6‖W‖8/3|Ũ |2/3

H ,

where W = (u�, v�, w�).1

Taking into account all the above estimates, we find:

d

dt
|Ũ |2H + c1‖Ũ‖2 ≤ g1|Ũ |2H + g2, (3.12)3

where g1 and g2 are the following functions:

g1 = g1(t) = c′3

∣∣∣∣∂W

∂z

∣∣∣∣
2

L2

∥∥∥∥∂W

∂z

∥∥∥∥
2

+ c′6‖W‖8/3,

g2 = g2(t) = c′6‖W‖8/3 + |F̃ |2V ′ .

We classically derive from (3.12) that

The norms of Ũ in L∞(0, t1; H) and L2(0, t1; V )
are bounded in terms of the data, ∀ t1 > 0.

(3.13)
5

(b) We now continue with the a priori estimates concerning Ũz. For that purpose,
we differentiate (2.1a), (2.1b) and (2.1e) with respect to z and then multiply these
equations by uz, wz and κρz respectively, and integrate over M. By adding the
resulting equations, we find (compare to (3.6)):

1
2

d

dt
|Ũz|2H + a(Ũz, Ũz) + e(Ũz, Ũz) + b(Wz , Ũ , Ũz)

+ b(Ũ , Wz , Ũz) + b(Ũz, W, Ũz) + b(Ũz, Ũ , Ũz)

+ b(Wz, W, Ũz) + b(W, Wz, Ũz) = (F̃z , Ũz)H .

Using (2.10), (2.15) (coercivity of a + e), (2.16), and the Schwarz inequality, we
find:

1
2

d

dt
|Ũz|2H + c1‖Ũz‖2 ≤ c0|F̃z |V ′‖Ũz‖ + |b(Wz , Ũ , Ũz)| + |b(Ũ , Wz, Ũz)|

+ |b(Ũz, W, Ũz)| + |b(Ũz, Ũ , Ũz)| + |b(Wz , W, Ũz)|
+ |b(W, Wz, Ũz)|. (3.14)
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We can now estimate the trilinear terms from the right-hand side of (3.14) as
follows:

•|b(Wz, Ũ , Ũz)| =

∣∣∣∣∣
∫
M

u�
z

∂Ũ

∂x
· Ũz dM + w�

z

∂Ũ

∂z
Ũz dM

∣∣∣∣∣
=
∣∣∣∣
∫
M

u�
zŨxŨzdM−

∫
M

u�
xŨzŨz dM

∣∣∣∣
≤ c′7

∫
M

|Wz||Ũx||Ũz| dM + c′7

∫
M

|Wx||Ũz|2dM

≤ c′8|Wz|L4 |Ũx|L2 |Ũz|L4 + c′8|Wx|L2 |Ũz|2L4

≤ c′9‖Wz‖|Ũx|L2 |Ũz|1/2
L2 ‖Ũz‖1/2 + c′9|Wx|L2 |Ũz|L2‖Ũz‖

≤ c1

12
‖Ũz‖2 + c′10‖Wz‖4/3|Ũx|4/3

L2 |Ũz|2/3
L2 + c′11|Wx|2L2 |Ũz|2L2 .

We then estimate the following term:1

•|b(Ũ , Wz, Ũz)| =
∣∣∣∣
∫
M

ũ
∂Wz

∂x
· Ũz dM +

∫
M

w(Ũ )
∂Wz

∂z
· Ũz dU

∣∣∣∣ . (3.15)

The first term of (3.15) can be bounded in the following way:∣∣∣∣
∫
M

ũ
∂Wz

∂x
· Ũz dM

∣∣∣∣ ≤
∫
M

|ũ| · |Wxz| · |Ũz| dM ≤ |ũ|L4 |Wxz|L2 |Ũz|L4

≤ c′12|Ũ |1/2
H ‖Ũ‖1/2‖Wz‖ · |Ũz|1/2‖Ũz‖1/2

≤ c1

12
‖Ũz‖2 + c′13|Ũ |2/3

H ‖Ũ‖2/3‖Wz‖4/3|Ũz|2/3.

The second term of (3.15) requires a different treatment for the integrals in the
vertical and, respectively, the horizontal direction:∣∣∣∣

∫
M

w(Ũ )WzzŨz dM
∣∣∣∣ ≤

∫ L1

0

|w(Ũ)|L∞
z
|Wzz |L2

z
|Ũz|L2

z
dx

≤ c′14

∫ L1

0

|Ũx|L2
z
|Wzz |L2

z
|Ũz|L2

z
dx

≤ c′15|Ũx|L2(M)|Wzz|L2(M)||Ũz|L2
z
|L∞

x

≤ c′16|Ũx|L2(M) ‖Wz‖ ‖Ũz‖
≤ c1

12
‖Ũz‖2 + c′17‖Ũ‖2‖Wz‖2.

Here and below, L2
x is L2(0, L1) and L2

z is L2(−L3/2, L3/2). We also used the fact3

that in dimension one, we have the Sobolev embedding H1
x ⊂ L∞

x , which implies:

|Ũ |L∞
x (L2

z) ≤ c|Ũ |H1
x(L2

z) ≤ c‖Ũ‖.5
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The third and fourth trilinear functional forms from the right-hand side of (3.14)
are now estimated as follows:

• |b(Ũz, W, Ũz)| =
∣∣∣∣
∫
M

ũz
∂W

∂x
· Ũz dU +

∫
M

w̃z
∂W

∂z
· Ũz dM

∣∣∣∣
≤ c|Wx|L2 |Ũz|L2‖Ũz‖ + c|Ũx|L2 |Wz |1/2‖Wz‖1/2|Ũz|1/2

L2 ‖Ũz‖1/2

≤ c1

12
‖Ũz‖2 + c′18|Wx|2L2 |Ũz|2L2 + c′19|Ũx|4/3

L2 |Wz |2/3
L2 ‖Wz‖2/3

+ c′20|Ũx|4/3
L2 |Wz |2/3

L2 ‖Wz‖2/3|Ũz|2L2 ,

and

• |b(Ũz, Ũ , Ũz)| =

∣∣∣∣∣
∫
M

ũz
∂Ũ

∂x
· Ũz dM +

∫
w̃z

∂Ũ

∂z
· Ũz dM

∣∣∣∣∣
≤ c′21|Ũx|L2 |Ũz|L2‖Ũz‖
≤ c1

12
‖Ũz‖2 + c′22|Ũx|2L2 |Ũz|2L2 .

We also find:

• |b(Wz, W, Ũz)| =
∣∣∣∣
∫
M

u�
x

∂W

∂x
· ŨzdM +

∫
M

w�
z

∂W

∂z
· Ũz dM

∣∣∣∣
≤ c′23

∫
M

|Wx| |Wz | |Ũz|dM

≤ c′24|Wx|L2 |Wz |1/2
L2 ‖Wz‖1/2|Ũz|1/2

L2 ‖Ũz‖1/2

+ c′24|Wz |L2 |Wz |1/2
L2 ‖Wz‖1/2|Ũz|1/2

L2 ‖Ũz‖1/2

≤ c1

12
‖Ũz‖2 + c′25(|Wx|4/3

L2 |Wz|2/3
L2 + |Wz |2L2)‖Wz‖2/3|Ũz|2/3

L2

≤ c1

12
‖Ũz‖2 + c′25(|Wx|4/3

L2 |Wz|2/3
L2 + |Wz |2L2)‖Wz‖2/3(1 + |Ũz|2H).

The last trilinear form in (3.12) is estimated as follows, using again a different
treatment for the vertical and horizontal directions:

• |b(W, Wz, Ũz)| =
∣∣∣∣
∫
M

u� ∂Wz

∂x
· Ũz dM +

∫
M

w� ∂Wz

∂z
· Ũz dM

∣∣∣∣
≤
∫
M

|u�| |Wxz| |Ũz| dM +
∫ L1

0

|w�|L∞
z
|Wzz |L2

z
|Ũz|L2

z
dx

≤ c′26|W |1/2
L2 ‖W‖1/2‖Wz‖|Ũz|1/2

L2 ‖Ũz‖1/2

+ c′27|Wx|L2(M)|Wzz |L2(M) ||Ũz|L2
z
|L∞

x

≤ c1

12
‖Ũz‖2 + c′28|W |2/3

H ‖W‖2/3‖Wz‖4/3(1 + |Ũz|2H)

+ c′29‖W‖2‖Wz‖2.

Gathering all the above estimates, we find:1

d

dt
|Ũz|2L2 + c1‖Ũz‖2 ≤ g3(t)|Ũz|2L2 + g4(t),
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where

g3(t) = c′′1{‖Wz‖4/3|Ũx|4/3
L2 + |Wx|2L2 + |Ũ |2/3

H ‖Ũ‖2/3‖Wz‖4/3

+ |Wz|2L2‖Wz‖2/3 + |Wx|4/3
L2 |Wz |2/3

L2 ‖Wz‖2/3 + |Ũx|2L2

+ |W |2/3
H ‖W‖2/3‖Wz‖},

and

g4(t) = c′′2{|F̃z |2V ′ + ‖Wz‖4/3|Ũx|4/3
L2 + |Ũ |2/3

H ‖Ũ‖2/3‖Wz‖4/3 + ‖Ũ‖2‖Wz‖2

+|Wz|2L2‖Wz‖2/3 + |Wx|4/3
L2

|Wz|2/3
L2 ‖Wz‖2/3 + |W |2/3

H ‖W‖2/3‖Wz‖4/3

+ ‖W‖2‖Wz‖2}.
From the assumption on F and W (see Lemma 3.1) and the previous estimates1

on Ũ , we know that g3 and g4 belong to L1(0, t1), for every t1 > 0, and that we can
bound the norms of these functions in L1(0, t1) in terms of the data. Hence, using3

the Gronwall lemma, we find

The norms of Ũz in L∞(0, t1; H) and
L2(0, t1; V ) are bounded in terms of the data, ∀ t1.

(3.16)
5

(c) Existence of solutions
Using the Galerkin method based on the suitable Fourier series expansions (in V7

and H), and repeating the calculations leading to (3.13) and (3.16), we classically
obtain a solution Ũ of (3.6)–(3.8) such that9

Ũ and Ũz ∈ L∞(0, t1; H) ∩ L2(0, t1; V ), ∀ t1 > 0.

Passing then from L∞(0, t1; H) to C([0, t1]; H) as stated in (3.11) can be made using11

classical techniques (see e.g. [15, 17]).
(d) To conclude the proof of Theorem 3.2, we need to show the uniqueness of Ũ .13

For that purpose, let Ũ1 and Ũ2 be two solutions of (3.6)–(3.8) and let Ũ =
Ũ1 − Ũ2. Subtracting the corresponding equations (3.6)–(3.7) from each other, we15

find

dŨ
dt + AŨ + B(W, Ũ ) + B(Ũ , W ) + B(Ũ1, Ũ) + B(Ũ , Ũ2) + EŨ = 0,

Ũ(0) = 0.
(3.17)

17

We take the scalar product of (3.17) with Ũ , and use (2.15)–(2.17). We find

1
2

d

dt
|Ũ |2H + c1‖Ũ‖2 = −b(Ũ , W + Ũ2, Ũ)

≤ c′′3

∣∣∣∣∣∂(W + Ũ2)
∂x

∣∣∣∣∣
L2

|Ũ |H‖Ũ‖ + c′′4 |Ũx|L2

×
∣∣∣∣∣∂(W + Ũ2)

∂z

∣∣∣∣∣
1/2

L2

∥∥∥∥∥∂(W + Ũ2)
∂z

∥∥∥∥∥
1/2

|Ũ |1/2
H ‖Ũ‖
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≤ c1

2
‖Ũ‖2 + c′′5

∣∣∣∣∣∂(W + Ũ2)
∂x

∣∣∣∣∣
2

L2

|Ũ |2H + c′′6

×
∣∣∣∣∣∂(W + Ũ2)

∂z

∣∣∣∣∣
H

∥∥∥∥∥∂(W + Ũ2)
∂z

∥∥∥∥∥ |Ũ |H .

Hence,1

d

dt
|Ũ |2H ≤ c′′



∣∣∣∣∣∂(W + Ũ2)

∂x

∣∣∣∣∣
2

L2

+

∣∣∣∣∣∂(W + Ũ2)
∂z

∣∣∣∣∣
L2

∥∥∥∥∥∂(W + Ũ2)
∂z

∥∥∥∥∥

|Ũ |2H . (3.18)

By the properties of W and Ũ , the function t → ‖W (t)+Ũ2(t)‖ is integrable. Then,3

(3.18), Ũ(0) = 0 and the Gronwall lemma imply that Ũ(t) = 0, ∀ t > 0.

Theorem 3.2 is thus proved and, as we have mentioned, this gives also a proof5

of Theorem 2.2.

We now conclude by restating Theorem 3.2.2 in terms of U for Eqs. (3.3) and7

(3.5), and this is the main result of this article, namely the existence and uniqueness
of solution of the 2D Primitive Equations with an additive white noise.9

Theorem 3.3. We consider the probability space (Ω,F ,P) and the process W =
W (t, ω) satisfying the hypotheses (3.1) and (3.2). We are given U0 ∈ H with U0z =11

∂U0/∂z ∈ L2(M)3 and F ∈ L∞(R+; H) with Fz = ∂F/∂z ∈ L∞(R+; L2(M)3).
Then, there exists a unique solution U of (3.3)–(3.5) (the 2D Primitive Equations13

with an additive white noise), such that

U and Uz ∈ C([0, t1]; H) ∩ L2(0, t1; V ), ∀ t1 > 0. (3.19)15

Remark 3.4. This remark concerns the interpretation of (3.3). First, we observe,
from the stochastic point of view, that (3.3) and (3.5) amount to the following,17

U(t) = U0 −
∫ t

0

[AU(s) +B(U(s), U(s)) +EU(s)−F (s)] ds +
∫ t

0

dW (s), (3.20)

where the last integral is an Ito integral. From the PDE point of view, (3.20) is valid
in V ′, for every t (or in H if the solution U enjoys additional regularity properties).
Hence, as in (2.22)–(2.24), the first component of (3.20) is equivalent in H−1(M)
(or L2(M) with more regularity), to:

u(t) +
∫ t

0

[
u

∂u

∂x
+ w

∂u

∂z
− 1

Ro
v +

1
Ro

∂p

∂x

]
ds

=
∫ t

0

(µv∆u + Fu)ds +
∫ t

0

dW (s) + φ, (3.21)

with φ = φ(x, t); as for (2.24) we can assume that φ = 0, by changing ps. Also19

there is no component of ps related to the underlined Ito integral if W is chosen
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as in (3.1) and (3.2). If we replace V by H−1(M)3 for the hypotheses on W , in1

particular, if instead of (3.1) and (3.2), we assume that

W (·, ω),
∂W

∂z
(·, ω) ∈ C(R+; H−1(M)3), P-a.e. ω ∈ Ω, (3.22)3

then p (∂ps/∂x) will contain a contribution from the white noise (the Ito integral)
and we have (since (I − P )u = 0):

∂ps

∂x
= (I − P )

∫ t

0

[
u

∂u

∂x
+ w

∂u

∂z
− 1

Ro
v − 1

Ro

∫ z

0

∂

∂x
ρ(x, z′, s) dz + µv∆u + Fu

]
ds

+
∫ t

0

dW (s). (3.23)
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