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1. INTRODUCTION

In G. N. Mil’shtein’s paper [1], first published in 1974, the author introduced the scheme now
named for him:

x� n�1 � x� n � �a(tn, x� n) �
1

2
�(tn, x� n)

��

�x
(tn, x� n)��t � ��tn, x� n��Wn (1)

�
1

2
��tn, x� n�

��

�x
�tn, x� n���Wn�

2,

which can be used to approximate the solution to the one-dimensional Itô stochastic differential
equation

dxt � a�t, xt�dt � ��t, xt�dWt. (2)

He then proved that his scheme converges in the root-mean-square sense with order O(�t).
Much work has since been done in this area, and many different schemes have been proposed

(see [2] and [3] for a detailed analysis of many such schemes). However, these schemes use
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methods largely different from that originally used by Mil’shtein. In this article, we see that
Mil’shtein’s original method can also be used to prove the convergence of other schemes.

In this article, we study two schemes. The first is a backward Mil’shtein scheme. That is, we
alter Mil’shtein’s scheme by making it implicit in the deterministic term. The second scheme is
a finite difference scheme. In it, we alter Mil’shtein’s scheme by replacing the derivative of �
by a finite difference. This is sometimes useful, for example, if the calculation of the derivative
of � is numerically intensive, or if � itself is only known empirically (e.g., from tables).

2. A BACKWARD MIL’SHTEIN SCHEME

We consider the stochastic differential equation

dxt � �a�xt� � ���xt����xt��dt � ��xt�dwt, x �t0� � x0, (3)

where the stochastic integral is taken in the sense of Itô. We note that, for instance, if � � 1
2

,
this is equivalent to the stochastic differential equation

dxt � a�xt�dt � ��xt� � dwt, x �t0� � x0, (4)

where now the stochastic integral is taken in the sense of Stratanovich.
In this section, we would like to consider an implicit scheme where x� (t0) � x0 and the x� (tk�1)

are recursively given as the solutions to

x� �tk�1� � x� �tk� � a�x� �tk�1���t � ��x� �tk���wk (5)

� ��x� �tk�����x� �tk����1�wk
2 � �2�t�;

here �1 and �2 are constants to be determined later. For simplicity in notation, in what follows,
we will write x�k for x� (tk) and a�k for a(x�k), etc.

2.1. Numerical Realization of the Backward Scheme

We see that we will need a method to solve the equation

x̂k � x� k � a�x̂k�t � �� kw � �� k�� �k��1w
2 � �2t�, (6)

for x̂k � x̂k(t, w). For this purpose, we see that

a�x̂k� � a�x� k � a�x̂k�t � �� kw � �� k�� �k��1w
2 � �2t�� (7)

� a�x� k� � a��x� k��a�x̂k�t � �� kw � �� k�� �k��1w
2 � �2t��

�
1
2

a	�x� k��a�x̂k�t � �� kw � �� k�� �k��1w
2 � �2t��

2

� O�t3, t2w, tw2, w3�
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� a� k � a� �ka�x̂k�t � a� �k�� kw � a� �k�� k�� �k��1w
2 � �2t�

�
1
2

a� 	k�� k
2w2 � O�t2, tw, w3�

� a� k � a� �ka� kt � a� �k�� kw � a� �k�� k�� �k��1w
2 � �2t�

�
1
2

a� 	k�� k
2w2 � O�t2, tw, w3�.

Therefore, instead of the scheme (5) above, we will consider the following scheme, which
agrees with (5) at order O(t2, tw, w3) (namely, its order of accuracy):

x� k�1 � x� k � a� k�t � a� �ka� k�t2 � a� �k�� k�w�t (8)

� a� k�� k�� �k��1�w2 � �2�t��t �
1
2

a� 	k�� k
2�w2�t

� �� k�w � �� k�� �k��1�w2 � �2�t�.

2.2. One-step Approximation

We note, as in [1], that the random process {x, w}, where x is the solution to the Itô equation
(3), has the infinitesimal generator L given by

Lf �t, x, w� �
�f

�t
� �a�t, x� � ���t, x����t, x��

�f

�x
(9)

�
1

2
�2�t, x�

�2f

�x2 � ��t, x�
�2f

�x�w
�

1

2

�2f

�w2 .

We then have the following Taylor expansion for the semigroup

Et0,x0,w0f �t0 � t, x �t0 � t�, w �t0 � t�� (10)

� f �t0, x0, w0� � Lf �t0, x0, w0�t �
1
2

L2f �t0, x0, w0�t2 � O�t3�,

when f, a, and � satisfy suitable conditions.
We note also the formula

L �f � g� � Lf � g � f � Lg � Sf � Sg, (11)

where

Sf �t, x, w� � ��t, x�
�f

�x
�

�f

�w
. (12)
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Therefore we have that

L�2 � 2� � L� � �S� �2, (13)

L2�2 � 2�L� �2 � 2� � L2� � 2S� � �LS� � SL� � � �S2� �2. (14)

We now consider the function

�k�t, x, w� � x � xk � x� k � a� kt � a� �ka� kt
2 � a� �k�� kwt (15)

� a� k�� k�� �k��1w
2 � �2t�t �

1
2

a� 	k�� k
2w2t

� �� kw � �� k�� �k��1w
2 � �2t�.

Then, we see that

L�k � 
a� k � 2a� ka��kt � a��k�� kw � a� k�� k�� �k��1w
2 � �2t� � �2a� k�� k�� �kt �

1
2

a� 	k�� k
2w2 � �2�� k�� �k

� �a � ����� � a� k�� k�� �k�1t �
1
2

a� 	k�� k
2t � �1�� k�� �k,

S�k � � � a� �k�� kt � 2�1a� k�� k�� �kwt � a� 	k�� k
2wt � �� k � 2�1�� k�� �kw,

L2�k � 
2a� ka��k � 2�2a� k�� k�� �k � �1a� k�� k�� �k �
1

2
a� 	k�� k

2 � �a � �����
�

�x
�a � �����

�
1

2
�2

�2

�x2 �a � ����� � �1a� k�� k�� �k �
1

2
a� 	k�� k

2,

SL�k � �
�

�x
�a � ����� � a� �k�k � 2�1a� k�� k�� �kw � a� 	k�� k

2w,

LS�k � 
a��k�� k � 2�1a� k�� k�� �kw � a� 	k�� k
2w � �a � ������� �

1
2

�2�	,

S2�k � ��� � 2�1a� k�� k�� �kt � a� 	k�� k
2t � 2�1�� k�� �k.

Therefore, we will have

�k
2�tk�1 � tk, xk�1 � xk, wk�1 � wk� � �xk�1 � x� k�1�

2,

�k
2�0, 0, 0� � �xk � x� k�

2,

L�k
2�0, 0, 0� � 2�xk � x� k���ak � a� k� � ���k��k � ��1 � �2��� k�� �k�� � ��k � �� k�

2,
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L2�k
2�0, 0, 0� � 2��ak � a� k� � ���k��k � ��1 � �2��� k�� �k��

2 � 2�xk � x� k��
2a� ka��k � 2(�1

� �2)a� k�� k�� �k � a� 	k�� k
2 � (ak � ��k��k)

�

�x
(a � ����)k �

1

2
�k

2
�2

�x2 (a � ����)k� � 2��k � �� k�

	 ��k

�

�x
(a � ����)k � 2a��k�� k � (ak � ��k��k)��k �

1

2
�k

2�	k� � ��k��k � 2�1�� k�� �k�
2.

We now note that we will have equations such as

ak � a� k � a��
��xk � x� k�,

for some 
 between xk and x�k. Therefore, if we set �1 � � � �2 � 1
2

and define the mean-square
errors �k

2 � E(xk 
 x�k)
2, we can take the expectation of (10) for t � tk�1 
 tk, x � xk�1 
 xk,

and w � wk�1 
 wk to arrive at

�k�1
2 � �k

2 � C1�k
2�t � C2�k�t2 � C3�t3. (16)

Remark 1. The constants Ck above depend on uniform bounds on a�, ��, (���)�, etc., so we
must assume that a and � have the necessary bounds on these derivatives. More specifically, in
this case it suffices to have Ck � Ck(�a�C4, ���C4). It is also necessary that �k

2 satisfy (10). For this,
we note that the formula

Et0, x0,w0 f �t0 � t, x �t0 � t�, w �t0 � t�� (17)

� f �t0, x0, w0� � Lf �t0, x0, w0�t �
1
2

L2f �t0, x0, w0�t2

�
1

2 �
t0

t0�t

�t0 � t � h�2Et0, x0,w0L
3f �h, x �h�, w �h��dh

holds whenever f, Lf, L2f, and L3f are uniformly bounded. To see that this is true for
f � �k

2, we can apply a smooth cutoff function. That is, define 
n � �n(�k
2) � �k

2, where
�n is a smooth real function such that

��n�s� � 1, for �s� � n � 1,
�n�s� � 0, for �s� � n,
�n�s� � �0, 1�, for n � 1 � �s� � n.

(18)

Then, each 
n satisfies (33), and we achieve the desired result by allowing n 3 �.

Remark 2. We note that if we only consider the equation (10) up to order �t, we will obtain
the similar equation

�k�1
2 � �k

2 � C1�k
2�t � C2�t2. (19)

However, this requires only that �1 
 �2 � � with no requirement that �1 � 1
2

. That
is, we can be more flexible in our choice of �1, but, as we will see in Remark 3, we
will pay a price in order of convergence.
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2.3. Approximation on the Entire Interval

We shall now see what estimate we obtain for the mean-square error for the entire interval [t0,
t0 � T], using the previous one-step estimates. This is the analogue of the argument of
Mil’shtein.

If we define the additional sequence �k by �0 � �0 � 0 and

�k�1
2 � �k

2 � C1�k
2�t � C2�k�t

2 � C3�t3, (20)

we see that the �-sequence is monotone increasing and supplies an upper bound for the
�-sequence. Also, since �0 � 0, either �K � �t2, where tK � t0 � T, or there is some k0 such
that �k0

� �t2, but �k0�1 � �t2. In this case, we see that, for k � k0

�k�1
2 � �k

2�1 � �C1 � C2 � C3��t�, (21)

so that

�K
2 � �k0

2 �1 � �C1 � C2 � C3��t��K
k0� (22)

� �t2�1 � �C1 � C2 � C3��t�K

� C�t2.

In all cases we see that the mean-square error over the entire interval is �K
2 � O(�t2).

Remark 3. If we again have only that �1 
 �2 � �, but not that �1 � 1
2

, as in Remark 2, a
similar argument will give us that �K

2 � O(�t). For instance, we can choose �1 � �2 � 0, and
� � 0, and although we have a rather slow convergence rate, we have the advantage that the
scheme no longer uses any derivative of �; if these are particularly difficult to calculate
numerically, this may result in overall computational savings.

3. A FINITE DIFFERENCE SCHEME

As noted in Remark 3, it sometimes happens that the derivative of � is difficult to calculate (e.g.,
when the function � is given by its values from tables). Here we propose to circumvent this
difficulty by replacing the derivative ��/�x in Mil’shtein’s scheme by a finite difference, and we
see how this affects the convergence and order of the scheme. For the sake of simplicity, we set
� � 0.

We use the scheme with time-step

x� k�1 � x� k � �� k�w � a� k�t �
1

4��t
�� k���x� k � ��t� � ��x� k � ��t����w2 � �t�. (23)

This leads us to define the functions
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�k�t, x, w� � x � xk � x� k � �� kw � a� kt �
1

4�t
�� k���x� k � �t� � ��x� k � �t���w2 � t�, (24)

and we find, after some calculation,

L�k
2�0, 0, 0� � 2�xk � x� k��ak � a� k� � ��k � �� k�

2

and

L2�k
2�0, 0, 0� � 2�ak � a� k�

2 � 2�xk � x� k��aka�k �
1
2

a 	k�k
2� � 2��k � �� k��a�k�k � ak��k

�
1
2

�k
2� 	k �

1
2

�� k�� 	k� � ��k��k � �� k�� �k�
2.

Therefore, in a manner analogous to the previous scheme, we have that L�k
2(0, 0, 0) � C1�k

2 and
L2�k

2(0, 0, 0) � C2�k, where Ck � Ck(�a�C 4, ���C 4). Hence, we again have the inequality

�k�1
2 � �k

2 � C1�k
2�t � C2�k�t2 � C3�t3, (25)

and so, as in section 2.3, we arrive at �K
2 � O(�t2).
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