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ABSTRACT

Numerical models are one of the most important theoretical tools in atmospheric research, and the development
of numerical techniques specifically designed to model the atmosphere has been an important discipline for
many years. In recent years, stochastic numerical models have been introduced in order to investigate more
fully Hasselmann’s suggestion that the effect of rapidly varying ‘‘weather’’ noise on more slowly varying
‘‘climate’’ could be treated as stochastic forcing. In this article an accurate method of integrating stochastic
climate models is introduced and compared with some other commonly used techniques. It is shown that particular
care must be used when the size of rapid variations in the ‘‘weather’’ depends upon the ‘‘climate.’’ How the
implementation of stochasticity in a numerical model can affect the detection of multiple dynamical regimes in
model output is discussed.

To illustrate the usefulness of the numerical schemes, three stochastic models of El Niño having different
assumptions about the random forcing are generated. Each of these models reproduces by construction the
observed mean and covariance structure of tropical Indo-Pacific sea surface temperature. It is shown that the
skew and kurtosis of an observed time series representing El Niño is well within the distributions of these
statistics expected from finite sampling. The observed trend, however, is unlikely to be explained by sampling.
As always, more investigation of this issue is required.

1. Introduction

Numerical stochastic models have recently become
rather common in weather and climate research. This is
seen by an online search of titles published by the Amer-
ican Meteorological Society: of 133 articles with the
word ‘‘stochastic’’ in the title (as of March 2002), more
than a fourth appeared in the last five years. The purpose
of using a stochastic climate model, of course, is to
represent rapidly varying processes that cannot be re-
solved on deterministic time scales but that are never-
theless necessary for an accurate depiction of a dynam-
ical system. Following Hasselmann’s (1976) suggestion
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that this might be done, stochastic numerical models
have been used to diagnose the dynamical behavior of
such multiscale physical systems as El Niño (e.g., Chang
et al. 1996; Thompson and Battisti 2000, 2001), the
response of midlatitude ocean dynamics to local weather
forcing (e.g., Alexander and Penland 1996), and storm-
track dynamics (Whitaker and Sardeshmukh 1998). Sto-
chastic parameterizations of unresolved processes in nu-
merical prediction models have also been investigated
as a way to improve estimates of predictability in en-
semble forecasts (Buizza et al. 1999; Palmer 2001). Giv-
en the large number of stochastic modeling studies, we
hope the authors of them will forgive us for not men-
tioning all of them here.

Dynamically consistent methods of stochastic param-
eterizations are not arbitrary but are dictated by the
dynamical form of the central limit theorem (CLT). The
CLT has been described elsewhere (Sardeshmukh et al.
2001a), and although we do not repeat that discussion
here, we remind the reader that a dynamically consistent
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parameterization cannot be devised without knowing
(or, at least, guessing) something about the real spectral
properties of the process to be parameterized. That is,
application of the central limit theorem requires an ex-
plicit estimation of the temporal covariance properties
both of the macroscopic system to be investigated and,
somewhat counterintuitively, the perturbing influence
one wishes to treat as white noise. Practical details may
be found in Khasminski’i (1966), Majda et al. (1999),
and Sardeshmukh et al. (2001a). An oceanographic ex-
ample may be found in Penland (1985).

In this article, we assume that the researcher has al-
ready applied the CLT, has been satisfied that the time
scales of the multiscale system allow a dynamically con-
sistent stochastic parameterization in terms of white
noise, has derived the appropriate stochastic differential
equations (SDEs) to be integrated in the numerical mod-
el, and has decided which set of calculus rules is re-
quired by the physical system at hand. Generally speak-
ing, if a system is smooth enough to allow application
of the CLT, it is likely that the traditional rules of Rie-
mann calculus apply. That is, when the stochastic pa-
rameterization is meant to represent a continuous, highly
chaotic system such as turbulent eddy feedbacks in fluid
flow, familiar rules of calculus are appropriate and are
called ‘‘Stratonovich.’’ Another set of calculus rules
(‘‘Itô’’ calculus) is obeyed by systems that are only
approximately continuous. Rainfall, which falls in in-
dividual drops but is nevertheless parameterized with a
differential equation, may be an example of an Itô sys-
tem. Whether a system should be modeled as Itô or
Stratonovich depends on what modelers would do with
an infinite amount of computer resources. If, in such an
idealistic case, we would start off with differential equa-
tions of motion and not need any randomness at all
because we could temporally resolve all chaotic inter-
actions, we would choose Stratonovich calculus in the
numerical model with realistic time steps. If, at infini-
tesimal time scales, we could resolve the delay between
one occurrence of a random process and the next, we
might choose Itô calculus to solve the differential-equa-
tions representing that process in our numerical model.
Please note that the appropriate calculus is decided by
the continuity properties of the real system and not by
those of our numerical discretization of it. If the real
system is microscopically continuous (i.e., Stratono-
vich), we have to cheat the discrete numerical model
into acting as though it were continuous.

The important issue here is that we are not free to
choose which calculus is appropriate for a given project.
Itô calculus is often appropriate in data assimilation pro-
jects where the noise is due to independent, discrete
errors, and, indeed, the Stratonovich integral does not
even exist in some nonlinear filtering projects (Jazwin-
ski 1970). Alternatively, incorrect application of the Itô
integral to a physically Stratonovich system is likely to
produce skewed results.

It is, at least in principle, possible to transform a

Stratonovich differential equation into an Itô equation
and vice versa. Consider the following general Strato-
novich SDE:

dx 5 F(x, t)dt 1 G(x, t) + dW, (1a)

where x is the stochastic process of interest, t is time,
W is a vector of independent Wiener processes (Gar-
diner 1985; Penland 1996), F(x, t) is a vector function
of x and t, and Gia, an element of the matrix G(x, t),
is a function of x and t and multiplies the ath Wiener
process. In accordance with standard mathematical no-
tation, the symbol + denotes that integration over the
Wiener process is to be performed in the sense of Stra-
tonovich. Equation (1a) is equivalent to the following
Itô SDE:

]G1 jadx 5 F (x, t) 1 G dt 1 G dW .O Oj j ia ja a5 62 ]xia51 a51i

(1b)

The first summation term in Eq. (1b) is called the
‘‘noise-induced drift’’ or the ‘‘Itô correction’’ and, if
G(x, t) is known and easily differentiated, it is easy to
transform the description of a physical system in one
calculus to the description of that same physical system
in the other. Unfortunately, this transformation is gen-
erally impossible to effect in practice, underscoring the
necessity of deciding in advance which calculus is ap-
propriate for the physical system to be simulated. Note
that the equations are equivalent if G is independent of
x, that is, if the system is an ‘‘additive noise process.’’

Rather than reproduce the rules of Itô calculus here,
we refer the reader to one of the many excellent text-
books (e.g., Arnold 1974; Gardiner 1985; Kloeden and
Platen 1992) on the subject. Stratonovich calculus, we
repeat, follows the familiar rules of Riemann. The prob-
lem for the numerical modeler of a stochastic system is
that standard deterministic algorithms for integrating
differential equations may converge to neither one nor
the other if, indeed, they converge at all (Rümelin 1982).
Compounding the problem is the fact that an inappro-
priate integration scheme can yield results that look rea-
sonable, agree with physical intuition, and yet be com-
pletely—or, worse, partially—spurious. The only way
out of this depressing state of affairs is to use only those
numerical schemes that have been proven to converge
to one or the other physically realizable calculus. A
collection of well-researched stochastic integration
schemes is found in the textbook by Kloeden and Platen
(1992, KP92 hereafter).

It is unlikely that climate researchers will rewrite
complex numerical models in order to incorporate prop-
erly sanctioned numerical schemes for stochastic inte-
gration. Simply adding a stochastic term to existing
computer code, on the other hand, may introduce large
undetectable errors, including the possibility of spurious
dynamical regimes. The most desirable situation, then,
seems to be for mathematicians to examine extant cli-
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mate models and devise legitimate methods of stochastic
integration that require a minimum of revising the com-
puter code. The motivation of this article was to find a
numerical scheme by which stochastic forcing could be
introduced into a barotropic vorticity model. This model
is, perhaps, the simplest meteorologically relevant nu-
merical model, but many of the numerical issues in-
volved in making it stochastic are also relevant to the
most complex general circulation models (GCMs). Fur-
ther, the stochastic barotropic model has versions that
are simple enough for the mean response to be evaluated
analytically, thus allowing verification of numerical
techniques. Several such schemes have recently been
developed by Ewald and Temam (2003a,b, ET03, mean-
ing the pair of articles, hereafter). However, even the
simple barotropic vorticity model is too complex to ex-
hibit in isolation each of the numerical issues we wish
to illustrate, and, besides, it does not show off all the
advantages of the newly developed scheme. For this
reason, we have chosen two very simple systems to
introduce two of the schemes introduced in ET03 to the
meteorological community. The first, a one-dimensional
genic model (Horsthemke and Lefever 1984), describes
a dynamical system with a finite range of values and
two stable, noise-induced dynamical regimes. This ex-
ample shows the ability of an explicit scheme (called
ET03a hereafter) to reproduce the stationary probability
distribution function (pdf ) of a system whose multiple
regimes result from the state-dependent stochastic forc-
ing. The second example consists of a univariate dif-
fusion equation with constant deterministic forcing and
stochastically varying damping. An implicit scheme
(called ET03b hereafter) is exhibited here, echoing the
structure of the barotropic vorticity equation. The func-
tional form of the stationary pdf is known in both ex-
amples, allowing easy verification of the techniques.
Although both examples presented here are Stratonovich
systems, we provide guidance in the modeling of Itô
systems as well.

Among the important issues of introducing new nu-
merical schemes is whether or not it can play a useful
role in solving meteorological problems. We demon-
strate the usefulness of these schemes by investigating
whether or not the observed skew and kurtosis in the
distribution of sea surface temperatures (SSTs) in the
El Niño region of the Pacific is indicative of nonlinear
dynamics, or if the observed statistics may be explained
by sampling. Using a linear inverse model (LIM) of
Indo-Pacific SST (Penland and Magorian 1993; Penland
and Matrosova 1994; Penland and Sardeshmukh 1995),
we generated synthetic SST time series for that region
using linear dynamics driven by additive Gaussian white
noise. By construction, this model reproduces the co-
variance structure of the observed SSTs. However, sig-
nificant skew and kurtosis (Wilks 1962) in the obser-
vations would suggest the existence of nonlinear dy-
namics or, at least, a state-dependent variance of the
stochastic forcing, that is, multiplicative noise. In this

study, we present results from an ensemble of models
using additive and multiplicative stochastic forcing
showing that the sampled skew and kurtosis of an ob-
served El Niño time series [specifically, that correspond-
ing to the leading empirical orthogonal function (EOF)
of tropical Indo-Pacific SST] are well within the dis-
tribution of the sampled statistics obtained when the
dynamical assumptions of LIM are numerically mod-
eled. However, while the size of the sampled trend of
the observed time series is insignificant at the 5% level,
it is indeed significant at the 10% level, suggesting an
external source of deterministic forcing.

The article is constructed as follows: Section 2 in-
troduces ET03a and ET03b and relates them to the bar-
otropic vorticity model. Section 3 compares the per-
formance of ET03a with another commonly used Stra-
tonovich stochastic integrator through consideration of
the stochastic genic model. An example using ET03b
is introduced in section 4. We also show in section 4
what happens when stochasticity is naively introduced
and numerically integrated using algorithms valid in the
deterministic case. The integration schemes are then em-
ployed in section 5 to investigate the significance of
skew, kurtosis, and trend in an El Niño time series. The
article ends with a discussion of stochastic integration,
differences between the schemes introduced here and
other commonly used integration schemes, how the
physical problem dictates choice of calculus, and the
relevance all this has to climate modeling.

2. Two stochastic integration schemes

Consider a stochastic differential equation that may be
interpreted in the sense of either Itô or Stratonovich:

dx 5 F(x, t)dt 1 G(x, t)dW. (2)

For many years, the standard integration techniques
used by physical scientists to integrate Eq. (2) have been
the Euler method if the system is Itô or additive and
the Heun method if the system is Stratonovich (Rümelin
1982; KP92). For a time step D, the Euler method con-
verges to Itô calculus with global error of order D1/2.
The Heun method, which is a second-order Runge–Kut-
ta method, has been shown by Rümelin (1980, 1982)
to converge to Stratonovich calculus with a one-time-
step error of order D1/2 or D, depending on the structure
of the noise. At first glance this is good news; it appears
that the scheme that may be more accurate is appropriate
to the calculus we might most often require, and even
if we require Itô calculus we can use the more accurate
scheme if G(x, t) is simple enough to apply the Itô
correction. Unfortunately, as discussed by KP92, the
Heun scheme does not converge regularly with D; that
is, the results do not improve uniformly with decreasing
time step. In practical problems this disadvantage ne-
gates any increase in formal accuracy.

There does exist an algorithm, the Mil’shtein scheme
(Mil’shtein 1974; KP92), which with suitable modifi-
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cations converges to the desired stochastic calculus with
error of order D. Both Itô and Stratonovich versions of
this scheme require analytical evaluation of the Itô cor-
rection and so were quite difficult to implement for a
complicated G(x, t) until KP92 published discretized
variants of them. However, these discretized variants
are very computer intensive, requiring multiple evalu-
ations of the integrand.

The ET03a method of integrating Eq. (2) is much
more efficient for complicated, multidimensional inte-
grands, and also converges with error of order D. The
method is as follows: Let {zgn} be random numbers
sampled independently at time tn from a centered Gauss-
ian distribution with variance equal to D. Then, the pro-
cess x is updated from time tn to time tn11 as

x (t )i n11

5 x (t ) 1 F (x, t )Di n i n

1 G (x, t )O lg n
lgm

3 [G (x 1 a ê ÏD, t ) 2 G (x, t )]I /(a ÏD)im l l n im n (gm),n l

1 G (x, t )z , (3)O ig n gn
g

where ê l is a unit vector corresponding to the component
xl. As in the Mil’shtein scheme (KP92),

2I 5 (z 2 D)/2(g ,g ),n gn (4a)

for Itô calculus and
2I 5 z /2(g ,g ),n gn (4b)

for Stratonovich calculus. For g ± m, the stochastic
cross terms may be approximated as in KP92 (section
5.8) or Gaines and Lyons (1994) to retain accuracy of
order D. This, however, can be complicated. If some-
what larger error can be tolerated, then, as in the
Mil’shtein scheme for either Itô or Stratonovich cal-
culus, we approximate

I 5 z z /2.(g ,m),n gn mn (4c)

The vector parameter a has units and magnitude of
x/ and allows the modeler to accommodate the dis-Ït
cretized derivatives with respect to {xl} in the Itô cor-
rection to the physical problem at hand.

As shown above, ET03a is useful in many contexts.
However, most global models in meteorology involve
an implicit scheme. For example, a version of the bar-
otropic vorticity equation (Sardeshmukh and Hoskins
1988) is

d§
45 2= · (y§) 1 S 2 rj 2 k¹ j, (5)

dt

where § is the total vorticity, j is the relative vorticity,
y is the horizontal velocity, S is the Rossby wave source,
r is the Newtonian damping, and k is the diffusion co-
efficient. Defining F as 2= · (y§) and casting Eq. (5) in
terms of spherical harmonics, we have

mdz n(n 1 1)n m m m m5 2F 1 S 2 rj 2 k j , (6)n n n n2[ ]dt ae

where ae is the radius of the earth. Note that this equation
is at least two-dimensional since the spherical harmonics
are complex, and we revert to our usual notation of
indicating vectors in bold face in what follows. The
deterministic version of this equation is usually inte-
grated numerically, first using a leapfrog step, followed
by an implicit step, as in Sardeshmukh and Hoskins
(1988). The stochastic analog of this procedure follows
here.

First, let us simplify the notation in Eq. (5) in such
a way that the following will also hold for similar types
of equations. Let a1 5 2F 1 S and a2 5 2rj 2 k¹4j.
We now consider a stochastic differential equation of
the form

dj 5 [a (t, j ) 1 a (t, j )]dt 1 G(t, j )dW. (7)1 2

The implicit leapfrog scheme of Ewald and Temam
(2003a,b) with time step D is as follows:

j (t ) 5 j(t ) 1 2a (t , j(t ))D 1 M (j(t ))1 n12 n 1 n11 n11 n n

1 M (j(t )), (8a)n11 n11

j(t ) 5 j (t ) 1 2a (t , j(t ))D, (8b)n12 1 n12 2 n12 n12

with the ith component of the vector Mn defined as

]G (y, t )im nM (y) 5 G (y, t ) IOin lg n (g,m)]ylgm l

1 G (y, t )z , (8c)O ig n gn
g

and with zgn and I(g ,m)n defined above. In Eq. (8c), as in
the explicit case, the derivative with respect to the ar-
gument yl is estimated as

]G (y, t )im n

]yl (8d)
G (x 1 a ê ÏD, t ) 2 G (x, t )im l l n im n

5 ,
a ÏDl

with the parameter al having units and magnitude of
yl/ .ÏD

3. Example 1: The explicit scheme

The explicit ET03a scheme is well illustrated using
a version of the stochastic genic model (Arnold et al.
1978; Horsthemke and Lefever 1984):

dx 5 [½ 2 x]dt 1 sx(1 2 x) + dW, (9)

where the symbol + denotes that stochastic integration
is to be performed in the sense of Stratonovich and
where s is a scalar parameter. The stationary probability
density of this system is

21 21 21 21 2p (x) 5 Nx (1 2 x) exp[2x (1 2 x) /s ], (10)s
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FIG. 1. (a) Probability density function estimated from numerically
integrating the genic model [Eq. (9)] using the Heun method with
different time steps. Heavy solid line denotes the theoretical pdf.
Heavy dotted line: D 5 0.1; dot–dash: D 5 0.05; open squares: D
5 0.01; open circles: D 5 0.005; light dotted line: D 5 0.001; filled
circles: D 5 0.0005; and filled squares: D 5 0.0001. (b) As in (a),
but using the ET03a.

which is always normalizable in the interval [0, 1] with
the normalization constant

2 21 2N 5 ½ exp(2/s )K (2/s )o (10b)

involving the modified Bessel function Ko. For s 2 , 4,
ps is unimodal with a single maximum at xe 5 0.5. For
s 2 . 4, ps is bimodal, with maxima at x6 5 0.5[1 6
(1 2 4/s 2)1/2] and one minimum at xe. Note that without
any stochastic forcing the bimodality would not exist.

We consider a system with a very shallow minimum
by choosing s 5 2.75. Equation (9) was numerically
integrated using the Heun method for a variety of time
steps D between 0.0001 and 0.1. The integration was
begun using an initial condition of x 5 xe, and, after a
suitable spinup to allow the integration to forget the
initial condition, 100 000 samples separated by a sam-
pling interval of tsamp 5 0.1 were recorded. Gaussian
random deviates were generated using a Box–Mueller
algorithm (Press et al. 1992) applied to uniformly dis-
tributed random numbers obtained from a Mersenne
twister (Matsumoto and Nishimura 1998). The resulting
stationary pdf is compared with Eq. (10) in Fig. 1a. The
procedure was repeated using ET03a with a 5 1 [Eqs.
(3) and (4b)] and the resulting pdf from that calculation
is shown in Fig. 1b. The divergence of the Heun-inte-
grated solution from the true solution at small time steps
is clear. Even worse, this divergence is not systematic
as D inreases or decreases.

It does appear in Fig. 1 that, in this case, the Heun
method may provide a more accurate pdf than ET03a
at larger time steps. The problem, of course, is that for
an arbitrary physical problem one cannot know in ad-
vance what size time steps Heun requires in order to
give results within a specified error tolerance, or even
if such time steps exist. With ET03a, any loss of ac-
curacy with decreasing time step may be traced to
round-off error rather than to a problem endemic to the
scheme itself.

It is the univariate nature of our example and the fact
that the constant coefficients in Eq. (9) are of order one
that caused us to choose a 5 1. The strength of a
becomes most apparent in multivariate cases involving
variables obeying complicated evolution equations and
whose tendencies are of different orders of magnitude.
Then, it has been shown by ET03 that expensive matrix
calculations can be replaced by a constant vector a.

4. Example 2: The implicit scheme

We give an example of using the implicit ET03b by
considering a simple type of forced diffusion equation:

dx
25 (k 2 r)x 1 F. (11)

dt

In Eq. (11), k and F are constant while r has a stochastic
component, r 5 ro 1 rsh, where h is white noise. More
precisely,

rdt 5 r dt 1 r dW.o s (12)

The corresponding Fokker–Planck equation is easily
solved for the stationary pdf:

b21 2p (x) 5 Nx exp(22F/r x),s s (13a)

where
2 2b 5 2(k 2 r )/r ,o s (13b)

and where the normalization constant
2 2bN 5 (2F/r ) /G(2b)s (13c)

involves the Gamma function G. Note that b , 0 if Eq.
(11) has a stable stationary solution. For F . 0, ps(x)
is unimodal with x confined to the positive real axis and
ps(0) 5 0.

In our experiment, we take k 5 0.1, ro 5 20.51, rs
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FIG. 2. Probability density function estimated from integrating Eq.
(11). Heavy solid line denotes the theoretical pdf. Filled circles denote
the ET03b scheme using a 5 1. Crosses denote ET03b scheme using
a 5 0.5. Light solid line denotes the traditional method.

5 0.5, and F 5 0.5. We define a1 5 F and a2 5 (k2 2
ro)x. The integration is begun at the peak of ps at xp 5
0.862 with a time step of D 5 0.005. We again spin the
model up enough to forget the initial condition, after
which 10 000 samples are recorded at a sampling in-
terval of tsamp 5 0.1. Two values of the parameter a, a
5 1, and a 5 0.5, were considered. As shown in Fig.
2, the agreement between the theoretically determined
pdf and the pdf estimated from each of these simulations
is excellent.

One may ask how this result differs from a naive
application of an implicit scheme as follows:

x (t ) 5 x(t ) 1 2a (t , x(t ))D, (14a)1 n12 n 1 n11 n11

x(t ) 5 x (t ) 1 2a (t , x(t ))D, (14b)n12 1 n12 2 n12 n12

where, now,
2a 5 [k 2 (r 1 r h)]x,2 o s (14c)

and where h is a Gaussian random number with zero
mean and unit variance. The initial condition, time step,
spinup time, etc., are all chosen to be the same as in
the experiment with ET03b. The pdf resulting from this
integration (Fig. 2) is highly peaked around the deter-
ministic steady state at xd 5 1 rather than at the true
peak at xp 5 0.862, an error of 16%. More severe are
a large underestimation of the standard deviation, which
is about an order of magnitude too small, and an over-
estimation of the maximum probability density, which
is a factor of about 8.7 too large. Naive use of Runge–
Kutta schemes, either of order two or of order four,
yields similar results (not shown).

5. Example 3: Application to El Niño

There are two basic approaches to developing a sto-
chastic numerical model of El Niño: forward modeling
and inverse modeling. In the forward modeling ap-

proach, one takes the primitive equations of the ocean
(Lions et al. 1992) or, better, the coupled equations of
the ocean–atmosphere system (Lions et al. 1993, 1995)
and applies a systematic scaling theory (the CLT) as
proposed by Majda et al. (1999). The alternative ap-
proach, which is what we adopt here, is to assume a
basic dynamical form for the propagation equations, es-
timate those equations from data, and then use dynam-
ical restrictions on the observed statistics to verify
whether or not the basic dynamical assumptions hold.
This was the approach taken by Penland and Magorian
(1993), Penland and Sardeshmukh (1995), and others,
who assumed a simple stable, linear process driven by
additive white noise as their model of tropical Indo-
Pacific SSTs. They tested their assumptions with a rather
stringent statistical criterion called the ‘‘tau test,’’ which
was shown to be consistent with the observations.

Any model of tropical Indo-Pacific SST should re-
produce the contemporaneous and lagged statistics of
the observations. At issue is whether the skew toward
warm SST observed in most El Niño indices precludes
the stochastic model (LIM) of El Niño advanced by
Penland and Sardeshmukh (1995). As in previous stud-
ies, we consider tropical Indo-Pacific sea surface tem-
peratures in the area 308N–308S, 308E–708W from the
Comprehensive Ocean–Atmosphere Data Set (COADS;
Woodruff et al. 1993). In agreement with our current
forecasting method (Penland et al. 2003), we consolidate
these data onto a 48 3 108 grid, subject them to a 3-
month running mean, remove the 1950–2000 climato-
logical annual cycle, and project them onto the leading
17 EOFs containing approximately two-thirds of the
variance. The leading EOF of these data is dominated
by a classic El Niño pattern (not shown; see references
cited above), and the corresponding coefficient time se-
ries [principal component (PC)] explains 26% of the
SST anomaly variance. What we shall do here is com-
pare the statistics of a system with only additive noise
to systems with multiplicative noise to see if the data
support the more complicated assumptions.

Using COADS data between January–February–
March 1950 and October–November–December 2000
(i.e., 598 maps) processed as discussed above, a Green
function g(to) is evaluated at a representative lead time
of to 5 4 months:

21g(t ) 5 C(t )C (0),o o (15)

where C(t) is the covariance matrix of the SST anom-
alies at lead time t. In previous work, this Green func-
tion has been associated with the matrix exp(Lto), where
it has been assumed that the SST anomalies dT obey
the Langevin equation

ddT 5 L dT dt 1 S dW. (16)

We call g(to) a Green function since, for the system
described by Eq. (16), the most probable prediction of
dT(t) at lead time t given an initial condition dT(0) is
g(t) dT(0). Obviously, one need not recalculate the SST
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covariance structure for any t different from to to make
a prediction; rather one exploits the eigenstructure of
g(to) to estimate L and, thus, g(t) (Penland 1989). With
a data-derived estimate for L, one estimates the matrix
SST from the appropriate fluctuation–dissipation rela-
tion (FDR) as follows:

T TLC(0) 1 C(0)L 1 SS 5 0. (17)

Note that the matrix S can be diagnosed from Eq. (17)
only up to an arbitrary unitary matrix; however, any of
these nonunique matrices S employed in a numerical
model will provide the observed contemporaneous and
lagged covariance statistics of dT.

If we confine ourselves to considering predictions
most accurate in the least squares sense, there is an
alternative interpretation to g(t). If dT obeys a Strato-
novich multiplicative Langevin equation

ddT 5 LdTdt 1 AdTdW 1 SdW1 2 (18)

rather than Eq. (16), then we may interpret the Green
function as exp([L 1 0.5A2]to) (e.g., Sardeshmukh et
al. 2001a). The corresponding FDR for this system is
evaluated by taking second moments of the Fokker–
Planck equation (e.g., Penland and Matrosova 1994):

T2 2 T(L 1 0.5A )C(0) 1 C(0)(L 1 0.5A ) 1 SS
T1 AC(0)A 5 0. (19)

Now, one may estimate the combination (L 1 0.5A2)
from data [Eq. (15)], and, hence, the combination [SST

1 AC(0)AT] from Eq. (19). However, it is possible to
isolate A only in special cases. Thus, we choose two
reasonable but arbitrary models for A. First, since at
small lead times the covariance of the prediction error
is proportional to [SST 1 AC(0)AT] [Eq. (19); appendix
A of Penland and Matrosova (1994)], we estimate A by
regressing the t 5 1 month prediction error incurred
during the training period onto the verification. Note
that we are not trying to judge the prediction skill of
the model; we are still trying to obtain best estimates
of parameters. We then subtract A2/2 from the matrix
logarithm of the Green function to estimate the deter-
ministic feedback matrix L. The additive noise matrix
SST is diagnosed from the residual of the FDR [Eq.
(19)]. We call this multiplicative model 1 (MM1).

Our second model of A assumes that the multipli-
cative noise comes from random components in the
damping. That is, if ba is the a th eigenvalue of L, and
ua, va are its corresponding eigenvector and adjoint,
respectively, we assume Eq. (18) has the form

TddT 5 LdTdt 1 u(Reb)v dTdW 1 SdW . (20)1 2

In Eq. (20), u is the matrix, the a th column of which
is an eigenvector ua of L; v is the corresponding matrix
of adjoints; and Re b is the diagonal matrix, the a th
diagonal element of which is Re(ba) of L. Note that this
diagonal matrix is negative definite, hence, its identi-
fication with the damping. In this case A and L are

estimated simultaneously from the data and, again, the
additive noise matrix is diagnosed from the residual of
the FDR. This is multiplicative model 2 (MM2).

We first integrated Eq. (18) for 48 000 ‘‘months’’
using a time step of 1/(60 months) and using parameters
described in Penland et al. (2003). All numerical cal-
culations were performed in the 17-dimensional EOF
space. Initial conditions were chosen at the peak of the
marginal distribution at dT 5 0 and the model was spun
up for 1000 months. For this problem, differences in
sample paths resulting from integrations using the im-
plicit and explicit schemes were found to be negligible.
The two schemes yielded results similar to each other
in the multiplicative noise case as well.

The long time series was divided into 80 ensemble
members, each having a length of 600 months. This
number of ensemble members was chosen since it is
about the same size as ensembles used when investi-
gating the statistics of general circulation models (e.g.,
Compo et al. 2001). The same procedure was then ap-
plied to MM1 and MM2. By construction, each model
should reproduce the observed mean and covariance
structure, and this was verified from the model output.
The sample skew, kurtosis, and trend of the leading
numerically generated PC (PC1) were then evaluated
for each ensemble of each model. Histograms of the
resulting sample statistics are compared in Figs. 3–5,
with sample statistics from the observed PC1 indicated
by vertical lines on the graphs.

It is seen in Fig. 3 that the effect of the multiplicative
noise in both cases is to increase the values of skew
available to finite samples over what might be expected
when the noise is additive. Although the histograms are
roughly centered at 0 as they ought to be, the distribution
of sample skew is clearly narrower when the noise is
additive than it is in either of the multiplicative noise
cases. The sample skew of the observed PC1 (0.28) fits
comfortably within the distribution of sample skew for
any of the three stochastic models.

A similar story is told by the statistics of sample
kurtosis (Fig. 4); the values of kurtosis available to finite
samples from the multiplicative noise models is greatly
increased over those available to the additive noise mod-
el. Again, the sample kurtosis of the observed PC1
(0.14) fits comfortably within the distribution of sample
kurtosis for any of the three models. However, the true
kurtosis of the multiplicative noise models need not be
0 since these models allow large excursions away from
the mean ^dT& 5 0, and that appears to be the case for
MM2 in particular. Further, the distributions of sample
kurtosis for both of these multiplicative noise models
have a significant positive skew.

Figure 5 suggests that the type of noise does not play
much of a role in the shape of the distribution of sample
trends for the modeled PC1. It is interesting that repro-
ducing the sample trend in the observed PC1 (0.128
yr21) is unlikely in all three models. In the additive
noise model, only 7 of 80 cases have a trend with ab-
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FIG. 3. Histogram of sample skew estimated from 80 members of
an ensemble generated by a numerical stochastic model of El Niño:
(top) additive noise model; (center) MM1, and (bottom) MM2.

solute value greater than 0.128 yr21, so that by this
measure the observed trend in PC1 is significant at about
the 9% level. This result corroborates work performed
with D. Sun and T. Zhang (2003, personal communi-
cation).

6. Discussion

Many of the most divisive issues in the scientific
community involve disagreements about which dynam-
ical regimes constitute a correct description of various
geophysical systems, and most of the arguments are
based on numerical simulations. The issue concerning
the dynamical nature of El Niño has received a partic-
ularly large amount of attention; realistic-looking El
Niño–like behavior has been found in numerical models
with fixed-point (e.g., Moore and Kleeman 1997a,b;
Penland and Matrosova 1994; Thompson et al. 2000;
Penland et al. 2000), limit-cycle (e.g., Schopf and Sua-
rez 1988, 1990; Battisti 1988; Battisti and Hirst 1989;
Barnett et al. 1993; Syu et al. 1995; Blanke et al. 1997),
or chaotic (e.g., Münnich et al. 1991; Jin et al. 1994;
Tziperman et al. 1994) attractors. Given the irregular
nature of El Niño, some sort of stochastic forcing ap-
pears necessary in the fixed-point and limit-cycle sce-
narios and, in varying degrees of rigor, has already been
implemented in some numerical models of El Niño. As
we in this study and others (e.g., Sura and Penland 2002)
have shown, the choice of integration technique can
greatly affect the outcome of a stochastically forced
numerical model, and the variety of results possible in
different implementations of a single conceptual model
is frightening.

Another important issue in geophysics is whether the
atmospheric circulation supports distinct weather re-
gimes due to nonlinear dynamics (e.g., Charney and
DeVore 1979; Legras and Ghil 1985; Corti et al. 1999)
or whether the atmosphere is basically a linear dynam-
ical system supported by stochastic forcing (e.g., Farrell
1985, 1988; DelSole and Hou 1999; Whitaker and Sar-
deshmukh 1998). Again, numerical results are likely to
depend crucially on the choice of stochastic integration
techniques.

Some may claim that the choice of integration al-
gorithm is not as important if the stochastic forcing is
additive, or if the stochastic forcing is red rather than
white. Even if the dynamical system is an additive noise
process, the stochastic forcing may still affect the mean
dynamics of a multivariate nonlinear system. Indeed,
this was the case in the numerical study by Sura and
Penland (2002). The effect of multiplicative red (rather
than white) noise on even a linear system can also be
important. For example, the analytical study by Sar-
deshmukh et al. (2001b) showed how red fluctuations
in the damping coefficient of a linearized barotropic
vorticity model caused the mean stationary state to have
a magnitude larger than the stationary state of the cor-
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FIG. 4. As in Fig. 3, but for the sample kurtosis. FIG. 5. As in Fig. 3, but for the sample trend.

responding deterministic model. In contrast, red fluc-
tuations in the background zonal velocity tended to
damp the mean state, but with a pattern that could not
completely cancel the effects of a stochastic damping.

In fact, the two results are related: white noise forcing
added to one component of a multivariate dynamical
system translates into multiplicative red noise forcing
of another component if the two components are related
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nonlinearly. We repeat: numerical results are likely to
be corrupted by improper integration techniques.

In this work, we do not merely demonstrate the ex-
istence of a dangerous situation, but also offer methods
for ameliorating it. These methods have been developed
with the architecture of current atmospheric models in
mind so that prohibitively extensive revision of those
models may be avoided. Both explicit and implicit
schemes have been presented and illustrated with simple
examples. Further, we have compared these schemes
with commonly used alternatives and shown how severe
the errors obtained with naive implementations can be.

It is natural to ask what advantages ET03 schemes
might have over earlier stochastic integration schemes
such as Heun and Mil’shtein. We have demonstrated the
superior convergence properties of ET03a compared to
Heun in our example with the genic models. Advantages
over Mil’shtein schemes are situation dependent. In par-
ticular, the Mil’shtein schemes require much more com-
putation if the system satisfies a complicated evolution
equation, particularly if that system is high dimensional.
The difference in computational effort is due to the fact
that Mil’shtein schemes generally require at least twice
as many evaluations of the evolution equation than do
the ET03 schemes. There is an exception: if the mul-
tiplicative noise enters the evolution equations in a lin-
ear manner, then ET03a turns out to be equivalent to
one of the Mil’shtein schemes. The ET03b scheme, in
contrast, differs from the Mil’shtein schemes in that
ET03b supports a division of the deterministic contri-
bution to the tendency into an explicit part as well as
an implicit part. The extension can be crucial if the entire
updating operator cannot be inverted. That would have
been the case in our El Niño model had we been obliged
to run a modified version of our EOF-filtered model in
geographical space. Finally, unlike Mil’shtein schemes,
the ET03b scheme allows a leapfrog step, thus obviating
the need to rewrite a large part of many existing climate
models.

Both ET03 schemes yielded similar results when ap-
plied to additive and multiplicative noise models of trop-
ical Indo-Pacific SST. The models do not support the
need to assume multiplicative noise in a stochastic mod-
el of El Niño, nor do they support a significant asym-
metry between warm and cold events as has been some-
times claimed in the literature (e.g., see the online dis-
cussion at http://www.ecmwf.int/products/forecasts/sea-
sonal/documentation/ch3.html). However, according to
both additive and multiplicative stochastic models of El
Niño, the observed trend in the leading principal com-
ponent of tropical Indo-Pacific SST anomalies during
the last 50 years is unlikely to be explained by sampling.
The possibility that deterministic external forcing may
be causing this trend is unavoidable, and further work
is clearly needed.

In spite of the fact that Hasselmann’s (1976) paper
appeared more than a quarter of a century ago, these
are still the early days of stochastic modeling in the

atmospheric sciences. In some part, that is because the
basic science of stochastic processes is still largely un-
explored, especially how to exploit those processes’
ability to represent deterministic, high-dimensional cha-
otic systems in a dynamically consistent manner. The
scientist’s need for numerical methods for treating high-
ly complex systems consisting of important interactions
between physical phenomena with widely different time
scales can offer the applied mathematician a rich variety
of unsolved problems. It is possible that the needs of
climate research may even play a role in guiding the
development of stochastic numerical analysis as a ma-
ture academic discipline, to the obvious advantage of
both disciplines.
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——, M. Flügel, and P. Chang, 2000: Identification of dynamical
regimes in an intermediate coupled ocean–atmosphere model. J.
Climate, 13, 2105–2115.

——, L. Matrosova, K. Weickmann, and C. Smith, 2003: Forecast
of tropical SSTs using linear inverse modeling (LIM). Exp. Long-
Lead Forecast Bull., 12. [Available online at http://www.iges.
org/ellfb/Mar03/penland/penland.htm.]

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
1992: Numerical Recipes in Fortran: The Art of Scientific Com-
puting. 2d ed. Cambridge, 963 pp.
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