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Abstract. In this article, maximum principles are derived for a suitably modified
form of the equation of temperature for the primitive equations of the atmosphere;
we consider both the limited domain case in Cartesian coordinates and the flow of
the whole atmosphere in spherical coordinates.

Introduction. The primitive equations of the atmosphere and of the ocean have
been studied, from the mathematical viewpoint, in Lions, Temam, and Wang ([6],
[7]; see also [8], [9]) for the coupling of the atmosphere and the ocean. Concerning
the equations of temperature, the classical methods used for the maximum principle
apply to the temperature equation for the ocean but they seemingly do not apply
to the temperature equation for the atmosphere.

This does not appear to be due to a mathematical technicality but rather to
a difference of structure of the equations, the water being incompressible and the
air being compressible. On physical grounds, it was suggested to us to consider
a modified temperature equation for the atmosphere, namely the equation for the
potential temperature θ, whose definition is recalled below. We have been able, in
this way, to derive the desired estimates.

The aim of this article is to introduce the potential temperature equation and to
derive L∞ estimates for θ (which provide, afterwards, positivity and L∞ estimates
for the classical temperature T ). The article is organized as follows: in Section
1, we recall the primitive equations of the atmosphere (PEs) and introduce the
potential temperature and the corresponding equations. In Section 2, we provide
the weak formulation of the PEs in a limited domain (with suitable, physically
reasonable boundary conditions), and we establish the existence of weak solutions.
Then, maximum principles are established in Section 3 by a combination of the
truncation (Stampacchia) method for the positivity and classical methods for the
L∞ bound. In Section 4, we describe the similar results for the whole atmosphere
and present the changes in the proofs which are necessary in this case.
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The second author (RT) wishes to thank Joe Tribbia for suggesting that he
consider the potential temperature and for introducing him to the thermodynamics
of the atmosphere.

1. The Primitive Equations of the Atmosphere. In this section, we recall the
primitive equations and the associated boundary conditions for a limited region of
the atmosphere. We also introduce the potential temperature and the corresponding
equation.

1.1. The primitive equations. We first recall the equation of temperature for
the atmosphere (see [10], beginning on p.71):

cp
dT

dt
−
RT

p
ω =

dQ

dt
+D. (1.1)

In this equation, T is the actual atmospheric temperature; p, the pressure, is used

as the vertical coordinate; and ω =
dp

dt
is the vertical velocity in the pressure coor-

dinate system. Both cp and R are constants (the specific heat of the atmosphere at
constant pressure and the gas law constant, respectively), and Q is the heat applied
to the system.

In (1.1), D represents a dissipation term. As in [6], we choose D = LTT (see
below), and we arrive at the following modification of equation (1.1):

cp
dT

dt
−
RT

p

dp

dt
− LTT = QE , (1.2)

where
d

dt
=

∂

∂t
+ v · ∇ + ω

∂

∂p
,

LT = µT∆ + νT

∂

∂p

[

( gp

RT̄

)2 ∂

∂p

]

.

Here, T̄ (p) is the average temperature over the isobar with pressure p; see footnote
2 following equation (1.12) of [8]. We will need to make the assumption that there
exist positive constants T̄ ∗ and T̄∗ such that 0 < T̄∗ ≤ T̄ ≤ T̄ ∗. Both ∇ and ∆
are applied only in the horizontal direction. We consider p to have values from p0

somewhere high in the atmosphere to p1 near the earth’s surface; i.e., p = p0 is an
isobar in the high atmosphere, p = p1 is an isobar slightly above the earth and the
oceans, and we study the dynamics of the atmosphere in the region 0 < p0 ≤ p ≤ p1.

We then introduce the potential temperature defined as

θ = T

(

p0

p

)
R
cp

. (1.3)

It is important here to observe that

cp
dT

dt
−
RT

p

dp

dt
= cp

(

p

p0

)
R
cp dθ

dt
. (1.4)

Substituting θ for T , we transform (1.2) into

cp
dθ

dt
− µT∆θ − νT

(

p0

p

)
R
cp ∂

∂p

[

( gp

RT̄

)2 ∂

∂p

(

(

p

p0

)
R
cp

θ

)]

= QE . (1.5)

In this article, we will primarily be concerned with the temperature equation in
this form.
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Using θ, we arrive at the following formulation for the PEs (compare to (1.33)
in [6]):















































































∂v

∂t
+ (v · ∇)v + ω

∂v

∂t
+ f(k × v) + ∇Φ

−µV∆v − νV

∂

∂p

[

( gp

RT̄

)2 ∂v

∂p

]

= 0

∂Φ

∂p
+
R

p

(

p

p0

)
R
cp

θ = 0

∇ · v +
∂ω

∂p
= 0

cp
∂θ

∂t
+ cp(v · ∇)θ + cpω

∂θ

∂p
− µT∆θ

−νT

(

p0

p

)
R
cp ∂

∂p

[

( gp

RT̄

)2 ∂

∂p

((

p

p0

)

θ

)]

= QE

(1.6)

1.2. Boundary conditions. We will consider equations (1.6) in a parallelepiped
M over the earth’s surface, M = M × (p0, p1), where M is a horizontal isobar in
M. We partition the boundary of M as:

∂M = Γi ∪ Γu ∪ Γ̀ ,

where Γi = M × {p = p1} corresponds to the “interface” with the ocean or the
earth’s surface, Γu = M × {p = p0} (the “upper surface”) is the boundary in the
high atmosphere, and Γ̀ = ∂M × (p0, p1) (the “lateral surface”) is the vertical
boundary.

We will use the following physically reasonable boundary conditions:






























































ω = 0 on Γu ∪ Γi,
∂v

∂n
= 0 on Γu,

ω = gω on Γ̀ ,
∂v

∂n
= αV(v∗ − v) on Γi,

v = gv on Γ̀ ,

θ = gθ on Γ̀ ,
∂θ

∂n
= αT(θ∗ − θ) −

R

pcp
θ on Γu ∪ Γi.

(1.7)

Here, gv, gθ, gω, v∗, and θ∗ are given functions. Note also that the boundary
equation on Γu∪Γi, when written in terms of T rather than θ, is the classical Robin

type equation
∂T

∂n
= αT(T∗ − T ), with θ∗ and T∗ related by (1.3).

2. The Existence of Solutions. In this section, we provide the weak formulation
of equations (1.6) supplemented by the boundary conditions (1.7) and show how to
prove the existence of weak solutions to these equations.

2.1. Mathematical setting and weak formulation. We define the function
spaces

Vv =

{

v = (v1, v2) ∈ H1(M)2
∣

∣

∣

∣

γ0v|Γ̀ = 0,

∫ p1

p0

∇ · v dp = 0

}

,

Vθ =
{

θ ∈ H1(M)
∣

∣ γ0θ|Γ̀ = 0
}

,

V = Vv × Vθ.
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Here, γ0 : H1(M) → H
1
2 (∂M) is the trace operator. Notationally, we will write

u = (v, θ), û = (v̂, θ̂), ũ = (ṽ, θ̃), etc., for elements u, û, ũ of V .
We define the inner products on Vv , Vθ, V , as follows:

((v, v̂)) =

∫

M

∇v · ∇v̂ dM +

∫

M

∂v

∂p
·
∂v̂

∂p
dM,

((θ, θ̂)) =

∫

M

∇θ · ∇θ̂ dM +

∫

M

∂θ

∂p
·
∂θ̂

∂p
dM,

((u, û)) = ((v, v̂)) + ((θ, θ̂)).

These products are equivalent to the standard H1-inner products on these spaces,
and with the norms

‖v‖ = ((v, v))
1
2 , ‖θ‖ = ((θ, θ))

1
2 , ‖u‖ = ((u, u))

1
2 ,

the spaces Vv and Vθ are closed subspaces of H1(M)2 and H1(M).
We use single parentheses and norms for the L2-inner products and norms, e.g.,

(v, v̂) =

∫

M

v · v̂ dM, |θ| =

(∫

M

θ2 dM

)
1
2

.

To obtain the weak formulation of (1.6) and (1.7), we make the following obser-
vations:

In view of the first equation of (1.7) and the third equation of (1.6), we have

ω(p) = −

∫ p1

p

∂ω

∂p
(p′) dp′ =

∫ p1

p

∇ · v(p′) dp′, (2.1)

for any v ∈ Vv , whence the condition
∫ p1

p0

∇ · v dp = ω(p1) − ω(p0) = 0

appearing in the definition of Vv .
Also, writing Φs = Φ|p=p1

for the value of Φ at the earth’s surface, we have

Φ(p) = Φs −

∫ p1

p

∂Φ

∂p
dp′

= Φs +

∫ p1

p

R

p′

(

p′

p0

)
R
cp

∇θ dp′, (from the second equation of (1.6)).

Thus,

∇Φ(p) = ∇Φs +

∫ p1

p

R

p′

(

p′

p0

)
R
cp

∇θ dp′,

and, for v̂ ∈ Vv
∫

M

∇Φs · v̂ dM =

∫

Γ̀

Φsnh · v̂ d Γ̀ −

∫

M

Φs∇ · v̂ dM

=

∫

M

Φs

∂ω̂

∂p
dM

=

∫

Γu∪Γi

Φsnp · ω̂ dΓu ∪ Γi −

∫

M

∂Φs

∂p
ω̂ dM.

= 0.
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Thus, we have
∫

M

∇Φ · v̂ dM =

∫

M

(

∫ p1

p

R

p′

(

p′

p0

)
R
cp

∇θ dp′

)

· v̂ dM. (2.2)

Now, we note that, for v, v̂ ∈ Vv ,

−µV

∫

M

∆v · v̂ dM− νV

∫

M

∂

∂p

[

( gp

RT̄

)2 ∂v

∂p

]

· v̂ dM

= µV

∫

M

∇v · ∇v̂ dM + νV

∫

M

( gp

RT̄

)2 ∂v

∂p
·
∂v̂

∂p
dM

− µV

∫

Γ̀

∇vnh · v̂ dΓ̀ − νV

∫

Γu∪Γi

( gp

RT̄

)2 ∂v

∂p
· npv̂ dΓu ∪ Γi

= µV

∫

M

∇v · ∇v̂ dM + νV

∫

M

( gp

RT̄

)2 ∂v

∂p
·
∂v̂

∂p
dM

− νV

∫

Γi

( gp

RT̄

)2

αV(v∗ − v) · v̂ dΓi.

(2.3)

Similarly, for θ, θ̂ ∈ Vθ,

−µT

∫

M

∆θ · θ̂ dM− νT

∫

M

(

p0

p

)
R
cp ∂

∂p

[

( gp

RT̄

)2 ∂

∂p

(

(

p

p0

)
R
cp

θ

)]

θ̂ dM

= µT

∫

M

∇θ · ∇θ̂ dM− µT

∫

Γ̀

nh · ∇θ θ̂ dΓ̀

+ νT

∫

M

( gp

RT̄

)2 ∂

∂p

(

(

p

p0

)
R
cp

θ

)

∂

∂p

(

(

p0

p

)
R
cp

θ̂

)

dM

− νT

∫

Γu∪Γi

( gp

RT̄

)2

np ·
∂

∂p

(

(

p

p0

)
R
cp

θ

)

(

p0

p

)
R
cp

θ̂ dΓu ∪ Γi

= µT

∫

M

∇θ · ∇θ̂ dM + νT

∫

M

( gp

RT̄

)2 ∂θ

∂p

∂θ̂

∂p
dM

− νT

∫

M

(

g

cpT̄

)2

θθ̂ dM− νT

∫

Γu∪Γi

( gp

RT̄

)2

αT(θ∗ − θ)θ̂ dΓu ∪ Γi.

(2.4)

In view of equations (2.1)-(2.4), we make the following definition:

Definition 2.1. For u = (v, θ), û = (v̂, θ̂), ũ = (ṽ, θ̃) ∈ V , we set






































av(v, v̂) = µV

∫

M

∇v · ∇v̂ dM + νV

∫

M

( gp

RT̄

)2 ∂v

∂p
·
∂v̂

∂p
dM,

aθ(θ, θ̂) = µT

∫

M

∇θ · ∇θ̂ dM + νT

∫

M

( gp

RT̄

)2 ∂θ

∂p

∂θ̂

∂p
dM

−νT

∫

M

(

g

cpT̄

)2

θθ̂ dM,

a(u, û) = av(v, v̂) + aθ(θ, θ̂).

(2.5)



























bv(v, v̂, ṽ) =

∫

M

(

(v · ∇)v̂ + ω
∂v̂

∂p

)

· ṽ dM,

bθ(v, θ̂, θ̃) = cp

∫

M

(

(v · ∇)θ̂ + ω
∂θ̂

∂p

)

θ̃ dM,

b(u, û, ũ) = bv(v, v̂, ṽ) + bθ(v, θ̂, θ̃),

(2.6)
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where ω =
∫ p1

p
∇ · v dp′.


























ec(v, v̂) =

∫

M

f(k × v) · v̂ dM,

eΦ(θ, v̂) =

∫

M

∫ p1

p

(

R

p′

(

p′

p0

)
R
cp

∇θ

)

dp′ · v̂ dM,

e(u, û) = ec(v, v̂) + eΦ(θ, v̂).

(2.7)























dv(v, v̂) = νV

∫

Γi

( gp

RT̄

)2

αV(v∗ − v) · v̂ dΓi,

dθ(θ, θ̂) = νT

∫

Γu∪Γi

( gp

RT̄

)2

αT(θ∗ − θ)θ̂ dΓu ∪ Γi,

d(u, û) = dv(v, v̂) + dθ(θ, θ̂).

(2.8)

Thus, we arrive at the weak formulation of (1.6) supplemented with the boundary
conditions (1.7), namely:























To find u(t) ∈ V + gu, where gu = (gv , gθ), such that
(

∂v

∂t
, v̂

)

+ cp

(

∂θ

∂t
, θ̂

)

+ a(u, û) + b(u, u, û) + e(u, û)

− d(u, û) = (QE , θ̂), for all û ∈ V .

(2.9)

2.2. Some bounds and inequalities. In order to establish the existence of solu-
tions u to (2.9), we need some basic bounds and inequalities.

Lemma 2.1. For v, v̂, ṽ ∈ H1(M)2, θ, θ̂ ∈ H1(M), we have

i) |av(v, v̂)| ≤ µV|∇v| · |∇v̂| + νVc1

∣

∣

∣

∣

∂v

∂p

∣

∣

∣

∣

·

∣

∣

∣

∣

∂v̂

∂p

∣

∣

∣

∣

,

ii) av(v, v) ≥ µV|∇v|
2 + νVc2

∣

∣

∣

∣

∂v

∂p

∣

∣

∣

∣

2

,

iii) |aθ(θ, θ̂)| ≤ µT|∇θ| · |∇θ̂| + νTc1

∣

∣

∣

∣

∂θ

∂p

∣

∣

∣

∣

·

∣

∣

∣

∣

∂θ̂

∂p

∣

∣

∣

∣

+ νTc3|θ| · |θ̂|,

iv) aθ(θ, θ) ≥ µT|∇θ|
2 + νTc2

∣

∣

∣

∣

∂θ

∂p

∣

∣

∣

∣

2

− νTc3|θ|
2,

v) bv(v, v̂, v̂) = 0, if v ∈ Vv,

vi) |bv(v, v̂, ṽ)| ≤ |v| · ‖∇v̂‖L∞(M) · |ṽ|,
vii) bθ(v, θ, θ) = 0, if v ∈ Vv,

viii) |bθ(v, θ, θ̂)| ≤ |v| · ‖∇θ‖L∞(M) · |θ̂|,
ix) |dv(v, v̂)| ≤ νVαVc1|v∗ − v|L2(∂M) · ‖v̂‖,

x) dv(v, v) = νV

∫

Γi

( gp

RT̄

)2

αVv∗ · v dΓi − νV

∫

Γi

( gp

RT̄

)2

αV|v|
2 dΓi,

where νV

∣

∣

∣

∣

∫

Γi

( gp

RT̄

)2

αVv∗ · v dΓi

∣

∣

∣

∣

≤ νVαVc1|v∗|L2(∂M) · ‖v‖,

and νV

∫

Γi

( gp

RT̄

)2

αV|v|
2 dΓi ≥ νVαVc2‖v‖

2,

xi) |dθ(θ, θ̂)| ≤ νTαTc1|θ∗ − θ|L2(∂M) · ‖θ̂‖,

xii) dθ(θ, θ) = νT

∫

Γu∪Γi

( gp

RT̄

)2

αTθ∗θ dΓu ∪ Γi − νT

∫

Γu∪Γi

( gp

RT̄

)2

αTθ
2 dΓu ∪ Γi,

where νT

∣

∣

∣

∣

∫

Γu∪Γi

( gp

RT̄

)2

αTθ∗θ dΓu ∪ Γi

∣

∣

∣

∣

≤ νTαTc1|θ∗|L2(∂M) · ‖θ‖,
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and νT

∫

Γu∪Γi

( gp

RT̄

)2

αTθ
2 dΓu ∪ Γi ≥ νTαTc2‖θ‖

2,

xiii) |ec(v, v̂)| ≤ c4|v| · |v̂|,
xiv) ec(v, v) = 0,
xv) |eΦ(θ, v)| ≤ c5|θ| · |∇v|, if v ∈ Vv,

where c1 =

(

gp1

RT̄∗

)2

, c2 =
( gp0

RT̄ ∗

)2

, c3 =

(

gp1

p0cpT̄∗

)2

, c4 = ‖f‖L∞, and

c5 = 2(p1 − p0)
R

p0

(

p1

p0

)
R
cp

.

Proof. Since (i)-(iv), (vi), (viii)-(xiii) are clear, we omit the proofs of these.
For (v), we see that

b(v, v̂, v̂) =

∫

M

(

(v · ∇)v̂ + ω
∂v̂

∂p

)

· v̂ dM

=
1

2

∫

M

(v · ∇)|v̂|2 + ω
∂

∂p
|v̂|2 dM

=
1

2

∫

M

∇ · (|v̂|2v) − |v̂|2(∇ · v) + ω
∂

∂p
|v̂|2 dM

=
1

2

∫

Γ̀

nh · (|v̂|
2v) dΓ̀ −

1

2

∫

M

|v̂|2(∇ · v) dM

+
1

2

∫

Γu∪Γi

ω|v̂|2 dΓu ∪ Γi −
1

2

∫

M

∂ω

∂p
|v̂|2 dM

= 0,

since the boundary terms are zero and ∇ · v +
∂ω

∂p
= 0; the proof of (vii) is similar.

For (xiv), k × v ⊥ v, so that (k × v) · v = 0.
For (xv), we see that

eΦ(θ, v) =

∫

M

(

∫ p1

p

R

p′

(

p′

p0

)
R
cp

∇θ dp′

)

· v dM

=

∫

M

∇

(

∫ p1

p

R

p′

(

p′

p0

)
R
cp

θ dp′

)

· v dM

=

∫

Γ̀

(

∫ p1

p

R

p′

(

p′

p0

)
R
cp

θ dp′

)

nh · v dΓ̀

−

∫

M

(

∫ p1

p

R

p′

(

p′

p0

)
R
cp

θ dp′

)

∇ · v dM

= −

∫

M

(

∫ p1

p

R

p′

(

p′

p0

)
R
cp

θ dp′

)

∇ · v dM,

since the boundary term is zero. Now,

(

∫ p1

p

R

p′

(

p′

p0

)
R
cp

θ dp′

)2

≤ (p1 − p0)

(

R

p0

(

p1

p0

)
R
cp

)2
∫ p1

p0

θ2 dp′,
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and so

|eΦ(θ, v)| ≤ (p1 − p0)
1
2
R

p0

(

p1

p0

)
R
cp
∫

M

(
∫ p1

p0

θ2 dp′
)

1
2

∇ · v dM

≤ 2(p1 − p0)
1
2
R

p0

(

p1

p0

)
R
cp
(∫

M

(∫ p1

p0

θ2 dp′
)

dM

)
1
2
(∫

M

|∇v|2 dM

)
1
2

≤ 2(p1 − p0)
R

p0

(

p1

p0

)
R
cp

|θ| · |∇v|.

2.3. Existence of solutions. We prove the following theorem about the existence
of solutions to (2.9).

Theorem 2.2. For any u0 sufficiently regular, there exists a solution u to (2.9)
satisfying u(0) = u0.

Proof. We will have use for an à priori estimate obtained by setting û = u− gu in
(2.9), where u is a certain solution, so that u = û+ gu:

1

2

d

dt
|v̂|2+

cp
2

d

dt
|θ̂|2 + av(v̂, v̂) + aθ(θ̂, θ̂) + eΦ(θ̂, v̂)

= (QE , θ̂) + dv(v̂, v̂) + dθ(θ̂, θ̂) − av(gv , v̂) − aθ(gθ, θ̂)

− bv(v̂, gv, v̂) − bv(gv, gv, v̂) − bθ(v̂, gθ, θ̂) − bθ(gv, gθ, θ̂)

− ec(gv, v̂) − eΦ(gθ, v̂) + dv(gv , v̂) + dθ(gθ, θ̂) −
(∂gv

∂t
, v̂
)

−
(∂gθ

∂t
, θ̂
)

.

(2.10)
Therefore, by using Lemma 2.1, we have

1

2

d

dt
|v̂|2 +

cp
2

d

dt
|θ̂|2 + µV|∇v̂|

2 + νVc2

∣

∣

∣

∂v̂

∂p

∣

∣

∣

2

+ µT|∇θ̂|
2 + νTc2

∣

∣

∣

∂θ̂

∂p

∣

∣

∣

2

+ νVαVc2‖v̂‖
2 + νTαTc2‖θ̂‖

2

≤ ξ,

(2.11)

where

ξ = νTc3|θ̂|
2 + c5|θ̂| · |∇v̂| + |QE | · |θ̂| + νVαVc1|v∗|L2(∂M) · ‖v̂‖

+ νTαTc1|θ∗|L2(∂M) · ‖θ̂‖ + µV|∇gv| · |∇v̂| + νVc1

∣

∣

∣

∂gv

∂p

∣

∣

∣
·
∣

∣

∣

∂v̂

∂p

∣

∣

∣

+ µT|∇gθ| · |∇θ̂| + νTc1

∣

∣

∣

∂gθ

∂p

∣

∣

∣
·
∣

∣

∣

∂θ̂

∂p

∣

∣

∣
+ νTc3|gθ| · |θ̂|

+ ‖∇gv‖L∞ · |v̂|2 + ‖∇gv‖L∞ · |gv| · |v̂| + cp‖∇gθ‖L∞ · |v̂| · |θ̂|

+ cp‖∇gθ‖L∞ · |gv| · |θ̂| + c5|gθ| · |∇v̂| + c4|gv| · |v̂|

+ νVαVc1|v∗ − gv|L2(∂M) · ‖v̂‖ + νTαTc1|θ∗ − gθ|L2(∂M) · ‖θ̂‖

(2.12)
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≤ νTc3|θ̂|
2 +

3c25
2µV

|θ̂|2 +
µV

6
|∇v̂|2 +

1

2
|QE |

2 +
1

2
|θ̂|2

+
νVαVc

2
1

c2
|v∗|

2
L2(∂M) +

νVαVc2
4

‖v̂‖2 +
νTαTc

2
1

c2
|θ∗|

2
L2(∂M)

+
νTαTc2

4
‖θ̂‖2 +

3µV

2
|∇gv|

2 +
µV

6
|∇v̂|2 +

νVc
2
1

2c2

∣

∣

∣

∂gv

∂p

∣

∣

∣

2

+
νVc2

2

∣

∣

∣

∂v̂

∂p

∣

∣

∣

2

+
µT

2
|∇gθ|

2 +
µT

2
|∇θ̂|2 +

νTc
2
1

2c2

∣

∣

∣

∂gθ

∂p

∣

∣

∣

2

+
νTc2

2

∣

∣

∣

∂θ̂

∂p

∣

∣

∣

2

+
νTc3

2
|gθ|

2 +
νTc3

2
|θ̂|2 + ‖∇gv‖

2
L∞ · |v̂|2

+
1

2
‖∇gv‖

2
L∞ · |gv|

2 +
1

2
|v̂|2 +

1

2
|v̂|2 +

cp
2

2
‖∇gθ‖

2
L∞ · |θ̂|2

+
1

2
|gv|

2 +
cp

2

2
‖∇gθ‖

2
L∞ · |θ̂|2 +

3c25
2µV

|gθ|
2 +

µV

6
|∇v̂|2

+
c24
2
|gv|

2 +
1

2
|v̂|2 +

νVαVc
2
1

c2
|v∗ − gv|

2
L2(∂M) +

νVαVc2
4

‖v̂‖2

+
νTαTc

2
1

c2
|θ∗ − gθ|

2
L2(∂M) +

νTαTc2
4

‖θ̂‖2.

Then (2.11) and (2.12) give us

d

dt
|v̂|2 + cp

d

dt
|θ̂|2 + µV|∇v̂|

2 + νVc2

∣

∣

∣

∂v̂

∂p

∣

∣

∣

2

+

µT|∇θ̂|
2 + νTc2

∣

∣

∣

∂θ̂

∂p

∣

∣

∣

2

+ νVαVc2‖v̂‖
2 + νTαTc2‖θ̂‖

2

≤ K1 +K2|θ̂|
2 +K3|v̂|

2,

(2.13)

where the Ki’s are constants depending on the data.
Hence,

d

dt
(|v̂|2 + cp|θ̂|

2) ≤ K1 +K4(|v̂|
2 + cp|θ̂|

2),

and

d

dt

(

e−K4t(|v̂|2 + |θ̂|2)
)

≤ K1e
−K4t.

Thus,

|v̂(t)|2 + cp|θ̂(t)|
2 ≤ eK4t(|v̂(0)|2 + cp|θ̂(0)|2) +K1

∫ t

0

eK4(t−s) ds. (2.14)

Then, by integrating (2.14) from 0 to t1, we obtain

‖v̂‖2
L2(0,t1;L2(M)) + cp‖θ̂‖

2
L2(0,t1;L2(M))

≤ (|v̂0|
2 + |θ̂0|

2)

∫ t1

0

eK4t dt+K1

∫ t1

0

∫ t

0

eK4(t−s) ds dt. (2.15)
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Also, by integrating (2.13) from 0 to t1, we see that

|v̂(t1)|
2 + cp|θ̂(t1)|

2 + µV

∫ t1

0

|∇v̂(s)|2 ds+ νVc2

∫ t1

0

∣

∣

∣

∂v̂(s)

∂p

∣

∣

∣

2

ds

+ µT

∫ t1

0

|∇θ̂(s)|2 ds+ νTc2

∫ t1

0

∣

∣

∣

∂θ̂(s)

∂p

∣

∣

∣

2

ds

+ νVαVc2

∫ t1

0

‖v̂(s)‖2 ds+ νTαTc2

∫ t1

0

‖θ̂(s)‖2 ds

≤ |v̂0|
2 + cp|θ̂0|

2 + tK1 +K2‖v̂‖
2
L2(0,t1;L2(M)) +K3‖θ̂‖

2
L2(0,t1;L2(M)).

(2.16)
Thus, in view of (2.15) and (2.16), we can bound each of ‖∇v̂‖L2(0,t1;L2(M)),

∥

∥

∥

∥

∂v̂

∂p

∥

∥

∥

∥

L2(0,t1;L2(M))

, ‖∇θ̂‖L2(0,t1;L2(M)),

∥

∥

∥

∥

∂θ̂

∂p

∥

∥

∥

∥

L2(0,t1;L2(M))

, ‖v̂‖L2(0,t1;V ), ‖θ̂‖L2(0,t1;V ),

‖v̂‖L∞(0,t1;L2(M)), and ‖θ̂‖L∞(0,t1;L2(M)) by quantities depending only on the data.

Now that we have the above à priori estimates, we can proceed with the proof
of the theorem. The proof uses the Galerkin method, and since this method is
standard, we will just present an outline of the proof.

Let ψj = (ψv
j , ψ

θ
j ), for j = 1, 2, . . . be a complete orthonormal basis in V . Then

we look for approximate solutions um(t) =
∑m

j=1 gjm(t)ψj which satisfy, with um =

(vm, θm):














(

∂vm

∂t
, ψv

j

)

+ cp

(

∂θm

∂t
, ψθ

j

)

+ a(um, ψj) + b(um, um, ψj) + e(um, ψj)

−d(um, ψj) = (QE , ψ
θ
j ), for j = 1, 2, . . . ,m,

(um(0), ψj) = (u0, ψj), for j = 1, 2, . . . ,m.

(2.17)

Solving for um is then just solving a system of differential equations for the gjm.
It is easy to see that the à priori estimates above apply as well to each um, so that

the um are all in a subset of L∞(0, t1;L
2(M))∩L2(0, t1;V ) bounded independently

of m. We are then able to pass to the limit using standard compactness methods
and we obtain a solution u to (2.9).

Remark 2.1. Since p is bounded from below away from 0 (p ≥ p0 > 0) and from
above (p ≤ p1), the properties of θ are the same as those of T in [6], as one can
expect.

3. Maximum Principles. In this section, we will establish maximum principles
for T , or, what is the same thing, for θ. First, we will use the truncation method of
Stampacchia to establish the positivity of θ. Then we will use a classical method
to bound θ from above.

3.1. Positivity. We use Stampacchia’s method to show positivity of θ. We make,
as is usual, the following additional hypotheses on the appropriate boundary con-
ditions, forcing terms, and initial conditions:



















QE ≥ 0,

gθ ≥ 0,

θ∗ ≥ 0,

θ0 ≥ 0.

(3.1)

We have the following theorem:
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Theorem 3.1. Under the assumptions (3.1), any solution u = (v, θ) to (2.9)
satisfies θ(t) ≥ 0, for all t ∈ [0, t1]. Consequently, T (t) ≥ 0, for all t ∈ [0, t1].

Proof. We decompose θ = θ+ − θ− into its positive and negative parts. We then
multiply the equation for θ in (2.9) by −θ−, and integrate over M. The following
terms appear.

• The first term is

cp

∫

M

∂

∂t
θ · (−θ−) dM =

cp
2

d

dt

∫

M

|θ−|
2 dM.

• Then, we have the term

cp

∫

M

(

(v · ∇)θ + ω
∂θ

∂p

)

· (−θ−) dM

= cp

∫

M

(v · ∇)
(θ2−

2

)

+ ω
∂

∂p

(θ2−
2

)

dM

= cp

∫

∂M

(v, ω) · n
(θ2−

2

)

d(∂M) − cp

∫

M

(

∇ · v +
∂ω

∂p

)(θ2−
2

)

dM,

and this term vanishes, since, on Γu∪Γi, (v, ω) ·n = ±ω = 0; on Γ̀ , θ = θg ≥ 0

so that θ− = 0; and in all of M, ∇ · v +
∂ω

∂p
= 0.

• The horizontal dissipation term for θ reads

µT

∫

M

∆θ · θ− dM

= µT

∫

Γ̀

nh · ∇θ θ− dΓ̀ − µT

∫

M

∇θ · ∇θ− dM

= µT

∫

M

|∇θ−|
2 dM,

since, as before, θ− = 0 on Γ̀ .
• The vertical dissipation term for θ reads

νT

∫

M

(

p0

p

)
R
cp ∂

∂p

[

( gp

RT̄

)2 ∂

∂p

(

(

p

p0

)
R
cp

θ

)]

θ− dM

= νT

∫

M

(

p0

p

)
R
cp

θ−

( gp

RT̄

)2 ∂

∂p

(

(

p

p0

)
R
cp

θ

)∣

∣

∣

∣

∣

p1

p=p0

dM

− νT

∫

M

( gp

RT̄

)2 ∂

∂p

(

(

p

p0

)
R
cp

θ

)

∂

∂p

(

(

p0

p

)
R
cp

θ−

)

dM

= I − J.
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Now,

I = νT

∫

M

(

p0

p

)
R
cp

θ−

( gp

RT̄

)2 ∂T

∂p

∣

∣

∣

∣

∣

p1

p=p0

dM

= νT

∫

M

(

p0

p

)
R
cp

θ−

( gp

RT̄

)2 ∂T

∂p

∣

∣

∣

∣

∣

p=p1

−

(

p0

p

)
R
cp

θ−

( gp

RT̄

)2 ∂T

∂p

∣

∣

∣

∣

∣

p=p0

dM

= νT

∫

M

θ−

( gp

RT̄

)2

αT(θ∗ − θ)

∣

∣

∣

∣

p=p1

+ θ−

( gp

RT̄

)2

αT(θ∗ − θ)

∣

∣

∣

∣

p=p0

dM

= νT

∫

M

( gp

RT̄

)2

αT(θ∗θ− + θ2−)

∣

∣

∣

∣

p=p1

+
( gp

RT̄

)2

αT(θ∗θ− + θ2−)

∣

∣

∣

∣

p=p0

dM

≥ 0,

since θ∗ ≥ 0. Also,

J = νT

∫

M

( gp

RT̄

)2
[

(

p

p0

)
R
cp ∂θ

∂p
+ θ

R

p0cp

(

p

p0

)
R
cp

−1
]

·

[

(

p0

p

)
R
cp ∂θ−

∂p
−
p0R

p2cp

(

p0

p

)
R
cp

−1

θ−

]

dM

= νT

∫

M

( gp

RT̄

)2
[

∂θ

∂p
+ θ

R

pcp

]

·

[

∂θ−
∂p

− θ−
R

pcp

]

dM

= νT

∫

M

( gp

RT̄

)2
[

θ2−

(

R

pcp

)2

−

(

∂θ−
∂p

)2
]

dM.

Therefore, we have

νT

∫

M

(

p0

p

)
R
cp ∂

∂p

[

( gp

RT̄

)2 ∂

∂p

(

(

p

p0

)
R
cp

θ

)]

θ− dM

≥ νT

∫

M

( gp

RT̄

)2
[

θ2−

(

R

pcp

)2

−

(

∂θ−
∂p

)2
]

dM.

• The final term is simply

−

∫

M

QEθ− dM ≤ 0.

Collecting all these terms, we find

cp
2

d

dt
|θ−|

2 + µT

∫

M

|∇θ−|
2 dM + νT

∫

M

( gp

RT̄

)2
(

∂θ−
∂p

)2

dM

≤ νT

∫

M

(

g

cpT̄

)2

θ2− dM.

(3.2)

Thus,
d

dt
|θ−|

2 ≤ c|θ−|
2, where c =

2νTg
2

cp3T̄ 2
∗

. Therefore, |θ−(t)|2 ≤ ect|θ−(0)|2, and

since θ−(0) = 0, we obtain θ− ≡ 0.
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3.2. Upper bounds. In this section we establish a uniform upper bound for θ
using a classical maximum principle method. For this, we will need to make more
explicit the θ-equation in (1.6) and calculate the derivatives in the νT-term. We
find:

νT

(

p0

p

)
R
cp ∂

∂p

[

( gp

RT̄

)2 ∂

∂p

(

(

p

p0

)
R
cp

θ

)]

= α
∂2θ

∂p2
+ β

∂θ

∂p
+ γθ, (3.3)

where






























α = νT

( gp

RT̄

)2

≥ 0,

β = α

(

2

p
−

2

T̄

∂T̄

∂p
+

2R

pcp

)

,

γ = α

(

(

R

pcp

)2

+
R

p2cp
−

2

T̄

∂T̄

∂p

R

pcp

)

.

(3.4)

As in (1.12) of [8], we assume that

R

(

RT̄

cp
− p

∂T̄

∂p

)

= c2 = constant. (3.5)

Using this, we may rewrite β as

β = α
2

p

(

1 +
c2

RT̄

)

≥ 0, (3.6)

and γ as

γ = α

(

R

p2cp

(

1 +
2c2

RT̄

)

−

(

R

pcp

)2
)

. (3.7)

Thus, we have γ∗ ≤ γ ≤ γ∗, where we have set γ∗ = −νT

(

gp

RT̄∗

)2(
R

p0cp

)2

and

γ∗ = νT

(

gp1

RT̄∗

)

R

p2
0cp

(

1 +
2c2

RT̄∗

)

.

We may therefore rewrite the θ-equation of (1.6) as

cp
dθ

dt
− µT∆θ − α

∂2θ

∂p2
− β

∂θ

∂p
− γθ = QE. (3.8)

If we set θ̃ = e−λtθ, where λ > 0 will be specified later, then (3.8) yields

cp
dθ̃

dt
− µT∆θ̃ − α

∂2θ̃

∂p2
− β

∂θ̃

∂p
+ (λ − γ)θ̃ = QEe

−λt. (3.9)

Consider a solution to (3.9) from time t = 0 to time t = t1, with global maximum

θ̃max at some point x ∈ M× [0, t1]. We consider the following cases:

• x /∈ ∂(M× [0, t1]), that is, x is in the interior of M× [0, t1].

In this case, since θ̃ has a maximum at x, we see that
dθ̃

dt
= 0, ∆θ̃ ≤ 0,

∂2θ̃

∂p2
≤ 0, and

∂θ̃

∂p
= 0 at x. Thus, at x, (3.9) becomes

(λ− γ)θ̃max ≤ ‖QE‖L∞e−λt,

Therefore, provided we choose λ ≥ 2γ∗, we may write

θ̃ ≤ θ̃max ≤
‖QE‖L∞e−λt

γ∗
. (3.10)
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• x is at time t = 0.
In this case, we simply bound θ̃ by the initial condition,

θ̃ ≤ ‖θ̃0‖L∞ = ‖θ̃|t=0‖L∞ . (3.11)

• x is at time t = t1, but in not on ∂M.

In this case, we have
dθ̃

dt
≥ 0, ∆θ̃ ≤ 0,

∂2θ̃

∂p2
≤ 0, and

∂θ̃

∂p
= 0 at x, and (3.9)

becomes

(λ− γ)θ̃max ≤ ‖QE‖L∞e−λt,

and thus, using again λ ≥ 2γ∗, we see that

θ̃ ≤ θ̃max ≤
‖QE‖L∞e−λt

γ∗
. (3.12)

• x is in Γu ∪ Γi, for some time t ∈ (0, t1].

Then, at x,
∂θ̃

∂n
≥ 0, and we have the boundary condition

∂θ

∂n
= αT(θ∗ − θ) −

R

pcp
θ,

which in terms of θ̃ at the point x is

∂θ̃

∂n
= αTθ̃∗ −

(

αT +
R

pcp

)

θ̃max.

Thus,

θ̃ ≤ θ̃max ≤
αT‖θ̃∗‖L∞

αT + R
p1cp

. (3.13)

• x is in Γ̀ , for some time t ∈ (0, t1].
Then, we have simply

θ̃ ≤ θ̃max ≤ ‖gθ̃‖L∞, (3.14)

where gθ̃ = e−λtgθ.

So, in any case, we can bound θ̃max by a certain function of the data, namely,

θ̃max ≤ K = max

{

‖QE‖L∞

γ∗
, ‖θ̃0‖L∞ ,

αT‖θ̃∗‖L∞

αT + R
p1cp

, ‖gθ̃‖L∞

}

, (3.15)

or, as well,

θ̃max ≤ K = max

{

‖QE‖L∞

γ∗
, ‖θ0‖L∞ ,

αT‖θ∗‖L∞

αT + R
p1cp

, ‖gθ‖L∞

}

, (3.16)

since the L∞-norms of θ̃0, θ̃∗, and gθ̃ are bounded by those of θ0, θ∗, and gθ.
Therefore, we have the following theorem, where we have used λ = 2γ∗:

Theorem 3.2. If u = (v, θ) is a solution to (2.9) on the interval [0, t1] and all of

the data QE, θ0, θ∗, and gθ are uniformly bounded, then we can bound θmax, the

maximum value of θ, by

θmax ≤ Ke2γ∗t1 . (3.17)

That is, we may bound the maximum value of T by

Tmax ≤

(

p1

p0

)
R
cp

Ke2γ∗t1 .
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Remark 3.1. There is some flexibility in the modelling of the dissipation term D
in (1.1), and the choice D = LTT is not the only one which is used (see a discussion
about this in [12]). Hence, assume that we replace the fourth equation of (1.6) by

cp
∂θ

∂t
+ cp(v · ∇)θ + cpω

∂θ

∂p
− µT∆θ −

∂

∂p

(

α(θ, p)
∂θ

∂p

)

+ γθ = QE , (3.18)

with α, γ ≥ 0; more hypotheses on α and γ would be needed to guarantee existence,
but the emphasis here is not on existence of solutions. If we also assume that (3.1)
holds and furthermore that QE = 0, then we can prove a stronger form of (3.17)
with no growth in time, namely, for all t ≥ 0,

0 ≤ θ ≤ K ′ = max {‖θ0‖L∞, ‖θ∗‖L∞ , ‖gθ‖L∞} . (3.19)

This estimate can be obtained by using the Stampacchia version of the maximum
principle using truncations: we multiply (3.18) by (θ−K ′)+, integrate over M, and
integrate by parts using the Stokes formula. We arrive at a differential inequality
of the form

cp
d

dt
|(θ −K ′)+|

2 ≤ γ∗|(θ −K ′)+|
2,

with the same γ∗ as before; this implies, at all times t,

|(θ −K ′)+(t)|2 ≤ |(θ0 −K ′)+|
2e

−
γ∗t
cp ,

and the right-hand side of this last inequality vanishes since θ0 ≤ K ′ a.e.
Reinterpreting (3.18) in terms of T , we find a somewhat complicated expression

for D:

cp
∂T

∂t
+cp(v · ∇)T + cpω

∂T

∂p
−
Rω

p
T − µT∆T

−

(

p

p0

)
R
cp ∂

∂p

[

α(θ, p)

(

p0

p

)
R
cp ∂T

∂p

]

+

(

p

p0

)
R
cp ∂

∂p

[

β(θ, p)

(

p0

p

)
R
cp

T

]

+ γT =

(

p

p0

)
R
cp

QE (= 0),

where β(θ, p) =
R

pcp
α(θ, p).

4. The Primitive Equations on the Sphere. In this section, we will consider
the primitive equations on the whole sphere of the earth. Once we overcome the
difficulties related to the use of the geometrical tools, the results and the proofs
are very similar. Therefore, we will only emphasize the main differences with the
preceding results.

4.1. Mathematical setting. We consider first the mathematical and geometrical
setting necessary for the primitive equations on the sphere. We define S = Sa to be
the sphere with radius a in R

3. We will use the spherical coordinates λ, ϕ, r in R
3,

where λ is the latitude, ϕ is the longitude, and r is the radius. Thus, Sa = {r = a}.
We set M = S × (p0, p1), and T(q,r)M = TqS × Tr(p0, p1) = TqS × R is its

tangent space at the point (q, r). We have ∂M = Γi ∪ Γu, where Γi = S × {p1} and
Γu = S × {p0}.

The Riemannian metric for M defined for q ∈ S and r ∈ (p0, p1) reads

gM((q, r); (v, ω), (v̂, ω̂)) = gS(q; v, v̂) + ω · ω̂,
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where gS is the Riemannian metric for the sphere S. That is, we set

(gij) = a2





1 0 0
0 sin2 λ 0
0 0 1



 = gM

(

(λ, ϕ, r);
∂

∂xi

,
∂

∂xj

)

.

The unit vectors in TM are

eλ =
1

a

∂

∂λ
, eϕ =

1

a cosλ

∂

∂ϕ
, er =

1

a

∂

∂r
.

We now define some function spaces on M. Let C∞(M̄) be the space of all
smooth functions from M̄ into R, C∞(TM̄) be the space of all smooth vector
fields on M̄, C∞(S) be the space of smooth functions on S, C∞(TS) be the space
of smooth vector fields on S, and C∞(TM̄|TS) be the space of smooth functions
v : M̄ → TS with each v(λ, ϕ, r) ∈ T(λ,ϕ)S.

For v ∈ TS, we write v = vλeλ+vϕeϕ. Consider v, v̂ ∈ C∞(TS) and θ ∈ C∞(S).
Then we define the following operations on v, v̂, and θ:

∇vv̂ =
1

a

(

vλ ∂v̂
λ

∂λ
+

vϕ

cosλ

∂v̂λ

∂ϕ
+ vϕv̂ϕ tanλ

)

eλ

+
1

a

(

vλ ∂v̂
ϕ

∂λ
+

vϕ

cosλ

∂v̂ϕ

∂ϕ
− vϕv̂λ tanλ

)

eϕ,

∇vθ =
vλ

a

∂θ

∂λ
+

vϕ

a cosλ

∂θ

∂ϕ
,

grad θ =
1

a

∂θ

∂λ
eλ +

1

a cosλ

∂θ

∂ϕ
eϕ,

div v =
1

a cosλ

(

∂vλ

∂λ
+
∂vϕ

∂ϕ

)

,

∆θ =
1

a2 cosλ

(

∂

∂λ

(

cosλ
∂θ

∂λ

)

+
1

cosλ

∂2θ

∂ϕ2

)

,

∆v =
1

a2

(

∆vλ +
2 sinλ

cos2 λ

∂vϕ

∂ϕ
−

vλ

cos2 λ

)

eλ

+
1

a2

(

∆vϕ −
2 sinλ

cos2 λ

∂vλ

∂ϕ
−

vϕ

cos2 λ

)

eϕ.

Here, ∇vv̂ and ∇vθ are the covariant derivatives of v̂ and θ in the direction of v,
and ∆ is the Laplace-Beltrami operator on the sphere for the scalar function θ; for
the vector function v, ∆v denotes the Laplacian of v as defined by A. Lichnerowicz
[5], namely, for the sphere of radius a,

(∆v)i = −∇k∇kv
i −

1

a2
vi,

where ∇k and ∇k are the covariant and contravariant derivatives, respectively, in
the kth direction.1

Note that we have the following Stokes formula on the sphere:
∫

M

(−∆v) · v̂ dM =

∫

M

(

∇eλ
v · ∇eλ

v̂ + ∇eϕ
v · ∇eϕ

v̂ +
1

a2
v · v̂

)

dM.

1We recall that, for vector functions, and contrarily to the Cartesian case, there are several
nonequivalent definitions of the Laplacian of a vector function tangent to a manifold, and they
differ in the lower order terms.



MAXIMUM PRINCIPLES FOR THE PRIMITIVE EQUATIONS 359

We also consider the following inner products:

((v, v̂)) =

∫

M

(

∇eλ
v · ∇eλ

v̂ + ∇eϕ
v · ∇eϕ

v̂ +
∂v

∂r
·
∂v̂

∂r
+ v · v̂

)

dM

((θ, θ̂)) =

∫

M

(

grad θ · grad θ̂ +
∂θ

∂r
·
∂θ̂

∂r
+ θ · θ̂

)

dM.

Here we define

Vv =

{

v ∈ H1(TM̄|TS)

∣

∣

∣

∣

∫ p1

p0

div v dp = 0

}

,

Vθ = H1(M),

V = Vv × Vθ.

On the sphere, instead of (1.6), the primitive equations read















































































∂v

∂t
+ ∇vv + ω

∂v

∂p
+ f(k × v) + ∇Φ

−µV∆v − νV

∂

∂p

[

( gp

RT̄

)2 ∂v

∂p

]

= 0

∂Φ

∂p
+
R

p

(

p

p0

)
R
cp

θ = 0

div v +
∂ω

∂p
= 0

cp
∂θ

∂t
+ cp∇vθ + cpω

∂θ

∂p
− µT∆θ

−νT

(

p0

p

)
R
cp ∂

∂p

[

( gp

RT̄

)2 ∂

∂p

((

p

p0

)

θ

)]

= QE .

(4.1)

Here we have furthermore replaced the vertical variable r by the pressure variable
p as before.

The appropriate boundary conditions become:







































ω = 0 on Γu ∪ Γi,
∂v

∂n
= 0 on Γu,

∂v

∂n
= αV(v∗ − v) on Γi,

∂θ

∂n
= αT(θ∗ − θ) −

R

pcp
θ on Γu ∪ Γi.

(4.2)
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We redefine av , aθ, bv, and bθ from (2.5)-(2.8) as follows:


















































































av(v, v̂) = µV

∫

M

∇eλ
v · ∇eλ

v̂ + ∇eϕ
v · ∇eϕ

v̂ + v · v̂ dM

+νV

∫

M

( gp

RT̄

)2 ∂v

∂p
·
∂v̂

∂p
dM,

aθ(θ, θ̂) = µT

∫

M

grad θ · grad θ̂ dM + νT

∫

M

( gp

RT̄

)2 ∂θ

∂p

∂θ̂

∂p
dM

−νT

∫

M

(

g

cpT̄

)2

θθ̂ dM,

bv(v, v̂, ṽ) =

∫

M

(

∇vv̂ + w
∂v̂

∂p

)

· ṽ dM,

bθ(v, θ̂, θ̃) = cp

∫

M

(

∇v θ̂ + w
∂θ̂

∂p

)

θ̃ dM,

(4.3)

and with these new definitions, the weak formulation of (4.1) supplemented with
boundary conditions (4.2) is:























To find u(t) ∈ V , such that
(

∂v

∂t
, v̂

)

+ cp

(

∂θ

∂t
, θ̂

)

+ a(u, û) + b(u, u, û) + e(u, û)

− d(u, û) = (QE , θ̂), for all û ∈ V .

(4.4)

We have the following lemma corresponding to Lemma 2.1:

Lemma 4.1. For v, v̂, ṽ ∈ H1(M)2, θ, θ̃ ∈ H1(M), we have

i) |av(v, v̂)| ≤ cv1((v, v̂)),
ii) av(v, v) ≥ cv2‖v‖

2,

iii) |aθ(θ, θ̂)| ≤ cT1 ((θ, θ̂)),
iv) aθ(θ, θ) ≥ cT2 ‖θ‖

2 − νTc3|θ|
2,

v) bv(v, v̂, v̂) = 0, if v ∈ Vv,

vi) |bv(v, v̂, ṽ)| ≤ |v| · ‖∇θ‖L∞(M) · |ṽ|,
vii) bθ(v, θ, θ) = 0, if v ∈ Vv,

viii) |bθ(v, θ, θ̂)| ≤ |v| · ‖∇θ‖L∞(M) · |θ̂|,
ix) |dv(v, v̂)| ≤ νVαVc1|v∗ − v|L2(∂M) · ‖v̂‖,

x) dv(v, v) = νV

∫

Γi

( gp

RT̄

)2

αVv∗ · v dΓi − νV

∫

Γi

( gp

RT̄

)2

αV|v|
2 dΓi,

where νV

∣

∣

∣

∣

∫

Γi

( gp

RT̄

)2

αVv∗ · v dΓi

∣

∣

∣

∣

≤ νVαVc1|v∗|L2(∂M) · ‖v‖,

and νV

∫

Γi

( gp

RT̄

)2

αV|v|
2 dΓi ≥ νVαVc2‖v‖

2,

xi) |dθ(θ, θ̂)| ≤ νTαTc1|θ∗ − θ|L2(∂M) · ‖θ̂‖,

xii) dθ(θ, θ) = νT

∫

Γu∪Γi

( gp

RT̄

)2

αTθ∗θ dΓu ∪ Γi − νT

∫

Γu∪Γi

( gp

RT̄

)2

αTθ
2 dΓu ∪ Γi,

where νT

∣

∣

∣

∣

∫

Γu∪Γi

( gp

RT̄

)2

αTθ∗θ dΓu ∪ Γi

∣

∣

∣

∣

≤ νTαTc1|θ∗|L2(∂M) · ‖θ‖,

and νT

∫

Γu∪Γi

( gp

RT̄

)2

αTθ
2 dΓu ∪ Γi ≥ νTαTc2‖θ‖

2,

xiii) |ec(v, v̂)| ≤ c4|v| · |v̂|,
xiv) ec(v, v) = 0,
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xv) |eΦ(θ, v)| ≤ c5|θ| · |∇v|, if v ∈ Vv,

where c1 =

(

gp1

RT̄∗

)2

, c2 =
( gp0

RT̄ ∗

)2

, c3 =

(

gp1

p0cpT̄∗

)2

, c4 = ‖f‖L∞,

c5 = 2(p1 − p0)
R

p0

(

p1

p0

)
R
cp

, cv1 = max{µV, νVc1}, cT1 = max{µT, νTc1, νTc3},

cv2 = min{µV, νVc2}, and cT2 = min{µT, νTc2}.

Proof. We explicitly prove only (v) here, as the proofs of the other parts remain
substantially unchanged from before.

bv(v, v̂, v̂) =

∫

M

(

∇vv̂ + ω
∂v̂

∂p

)

· v̂ dM

=
1

2

∫

M

(

∇v|v̂|
2 + ω

∂|v̂|2

∂p

)

dM

=
1

2

∫

M

(

div (|v̂|2v) − |v̂|2div v + ω
∂|v̂|2

∂p

)

dM

= −
1

2

∫

M

|v̂|2
(

div v +
∂ω

∂p

)

dM +

∫

Γu∪Γi

|v̂|2ω
∣

∣

∣

p1

p=p0

dΓu ∪ Γi

= 0.

From this lemma, it is easy to prove, as before:

Theorem 4.2. For any u0 sufficiently regular, there exists a solution u to (4.4)
satisfying u(0) = u0.

4.2. Maximum principles. In the spherical case, the proofs of positivity and
boundedness are easier than in the previous case, since the lack of the vertical
boundary only simplifies matters.

Theorem 4.3. Under the assumptions










QE ≥ 0,

θ∗ ≥ 0,

θ0 ≥ 0,

any solution u = (v, θ) to (4.4) satisfies θ(t) ≥ 0, for all t ∈ [0, t1]. Consequently,

T (t) ≥ 0, for all t ∈ [0, t1], as well.

The proof is the same as in the previous case, except that any term involving
the vertical boundary Γ̀ is now absent, so we omit it here.

Theorem 4.4. If u = (v, θ) is a solution to (4.4) on the interval [0, t1], and all of

the data QE , θ0, θ∗ are uniformly bounded, then we can bound θmax, the maximum

value of θ, by

θmax ≤ Ke2γ∗t1 ,

where

K = max

{

‖QE‖L∞

γ∗
, ‖θ0‖L∞ ,

αT‖θ∗‖L∞

αT + R
p1cp

}

.

Again, the proof is the same as in the previous case, except that the case where
x, the point at which θ achieves its maximum, is on the vertical boundary Γ̀ is
absent, and so we again omit the proof.
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