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Abstract

Let F be a Reebless, �nite depth foliation in a closed 3-manifold with negatively curved fundamental

group. Such foliations exist whenever the second homology is non trivial. We show that the leaves in the

universal cover extend continuously to the sphere at in�nity, hence the limit sets are continuous images of

the circle. This follows from a more general general result, which proves the continuous extension property

whenever a foliation in such 3-manifolds is almost transverse to a quasigeodesic pseudo-Anosov 
ow. This

applies to other classes of foliations, including a large class of foliations where all leaves are dense and in�nitely

many examples with one sided branching. One key technical tool is a detailed understanding of asymptotic

properties of almost pseudo-Anosov singular 1-dimensional foliations in the leaves of F lifted to the universal

cover.

We also analyse general properties of such 
ows and prove that given a general pseudo-Anosov 
ow in a

closed 3-manifold, then the orbit space in the universal cover is a plane which can be naturally compacti�ed

to a closed disk. The boundary is called the ideal boundary of the pseudo-Anosov 
ow (negatively curved

fundamental group not needed for this). If the fundamental group is negatively curved and the 
ow is

quasigeodesic then any section of the orbit map extends to a continuous map of the closed disk. The map

restricted to the ideal boundary is a group invariant Peano curve. If in addition there is a foliation which

is almost transverse to the quasigeodesic pseudo-Anosov 
ow, then the ideal map of the pseudo-Anosov 
ow

encodes all the maps of the individual circles at in�nity of leaves of the foliation. It parametrizes the limit set

of every leaf of the foliation, giving a global description of all limit sets. Finally we show that all such ideal

maps are �nite to one and completely charaterize points which have the same image under these maps.

1 Introduction

A 2-dimensional foliation in a 3-manifold is called Reebless if it does not have a Reeb component: a

foliation of the solid torus so that the boundary is a leaf and the interior is foliated by plane leaves

spiralling towards the boundary. As such the boundary leaf does not inject in the fundamental group

level and is compressible. Novikov [No] showed that Reebless foliations and the underlying manifolds

have excellent topological properties. This result was extended by Rosenberg [Ros], Palmeira [Pa]

and many others.

The goal of this article is to analyse geometric properties of foliations. Let F be a Reebless

foliation in M3 with negatively curved fundamental group. Reebless implies that M is irreducible

[Ros]. In this article we will not make use of Perelman's fantastic results [Pe1, Pe2, Pe3], which if

con�rmed imply that the manifold is hyperbolic. Reebless foliations exist for instance whenever M
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is irreducible, orientable and the second homology of M is not trivial [Ga1, Ga3]. They also exist in

much more generality by work of Roberts [Ro1, Ro2, Ro3], Thurston [Th5] and many others.

Let M3 be closed, irreducible with negatively curved fundamental group. The universal cover is

canonically compacti�ed with a sphere at in�nity (denoted by S2

1
), with compacti�cation a closed

ball [Be-Me]. The covering transformations act by homeomorphisms in the compacti�ed space. Let eF
be the lifted foliation to the universal cover fM . The leaves of eF are topological planes [No] and they

are properly embedded. Hence they only limit in the sphere at in�nity. For hyperbolic manifolds, the

relationship between objects in hyperbolic 3-space (isometric to fM) and their limit sets in the sphere

at in�nity is central to the theory of such manifolds [Th1, Th2, Mar]. The same is true if �1(M) is

negatively curved. There is a metric in M so that all leaves of F are hyperbolic (that is constant

curvature �1) [Ca] and so the universal cover of each leaf of F is isometric to the hyperbolic plane

(H2). The continuous extension question asks whether these leaves extend continuously to the sphere

at in�nity, that is: given the inclusion map from a leaf F of eF to fM is there a continuous extension

to a map F [ @1F to fM [ S2

1
? Here @1F is the ideal boundary of F which is homeomorphic to a

circle. In that case the restriction of the map to @1F expresses the limit set of F as the continuous

image of a circle, showing it is locally connected.

In a seminal work, Cannon and Thurston [Ca-Th] proved that such is the case when F is a

�bration over the circle. Previously Thurston had showed that the manifold is hyperbolic when the

monodromy of the �bration is pseudo-Anosov [Th1, Th3, Th4]. Since the fundamental group of a

leaf of F is a normal subgroup of the fundamental group of M , then every limit set of a leaf of eF is

the whole sphere. In this way they produced many examples of group invariant Peano curves.

We now describe an extremely important class of foliations. A foliation is proper if the leaves

never limit on themselves � this is in the foliation sense and it means that a suÆciently small

transversal to a given leaf only meets the leaf in a single point. In particular leaves are not dense.

In a proper foliation there are compact leaves which are said to have depth 0. The depth of a leaf

is inductively de�ned to be i (for �nite i) if i � 1 is the maximum of the depths of leaves in the

(foliation) limit set of the leaf. A foliation has �nite depth if it is proper and there is a �nite upper

bound to the depths of all leaves.

Gabai proved that whenever a compact 3-manifold M is irreducible, orientable and the second

homology groupH2(M;@M;Z) is not trivial, then there is a Reebless �nite depth, foliation associated

to each non trivial homology class [Ga1, Ga3]. The foliation is directly associated to a hierarchy of

the manifold and as such is strongly connected with the topological structure of the manifold. These

results had several fundametal consequences for the topology of 3-manifolds [Ga1, Ga2, Ga3].

Subsequently Gabai and Mosher showed [Mo3] that any Reebless �nite depth foliation in a closed,

atoroidal 3-manifold admits a pseudo-Anosov 
ow � which is almost transverse to it. Roughly a 
ow

is pseudo-Anosov if it has transverse hyperbolic dynamics � even though it may have �nitely many

singularities. It has stable and unstable two dimensional foliations which in general are singular.

The term almost transverse means that one may need to blow up one singular orbit (or more) into a

�nite collection of joined annuli to make the 
ow transverse to the foliation. See detailed de�nitions

and comments in section 2. Under the atoroidal condition Thurston [Th1, Th3] proved that M is in

fact hyperbolic.

These pseudo-Anosov 
ows almost transverse to �nite depth foliations in hyperbolic 3-manifolds

are quasigeodesic [Fe-Mo]. This means that 
ow lines are uniformly eÆcient in measuring distance in

relative homotopy classes, or equivalently, uniformly eÆcient in measuring distance in the universal

cover. This was �rst proved by Mosher [Mo1, Mo2] for a class of 
ows transverse to some examples

of depth one foliations obtained by handle constructions. A foliation (perhaps singular) is quasi-

isometric if its leaves are uniformly eÆcient in measuring distance in the universal cover. There
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are no non singular 2 dimensional quasi-isometric foliations in closed 3-manifolds with negatively

curved fundamental group [Fe2]. As for singular foliations the situation is quite di�erent and there

are examples. The stable/unstable singular foliations of the quasigeodesic 
ows above may be quasi-

isometric [Fe8] and may not [Mo3, Fe8]. If both the stable and unstable foliations are quasi-isometric

and the 
ow is actually transverse (as oppposed to being almost transverse) to the �nite depth

foliation then we proved [Fe8] that F has the continuous extension property. We also showed that

some depth one foliations satisfy both of these requirements.

Our �rst result proves the continuous extension property for all Reebless �nite depth foliations in

hyperbolic 3-manifolds. There are no restrictions on the depth of the foliation, or about transversality

of the 
ow or quasi-isometric behavior of the pseudo-Anosov foliations.

Theorem A � Let F be a Reebless �nite depth foliation in M3 closed hyperbolic. Then F has the

continuous extension property. In particular the limit sets of the leaves are all locally connected.

This shows that any hyperbolic 3-manifold with non trivial second homology has such a foliation

with the continuous extension property. Notice that conjecturally any closed, hyperbolic 3-manifold

has a �nite cover with positive �rst Betti number, which would imply there would always be a

foliation with the continuous extension property in a �nite cover.

The continuous extension property has also been proved for another class of foliations: A foliation

is uniform if any two leaves in the universal cover are a bounded distance apart � the bound depends

on the individual leaves. Thurston [Th5] proved that uniform foliations are very common. If in

addition �1(M) is negatively curved, then Thurston [Th5] proved that there is a pseudo-Anosov


ow transverse to F . From this it is easy to prove that the 
ow has quasi-isometric stable/unstable

foliations. In this case it also easily implies that the foliation F has the continuous extension property.

The arguments are a very clever generalization of the �bering situation.

Theorem A above is an immediate consequence of the following much more general result:

Theorem B � Let F be a Reebless foliation in M3 closed, with negatively curved fundamental

group. Suppose that F is almost transverse to a quasigeodesic pseudo-Anosov 
ow. Then F has the

continuous extension property. Therefore the limits sets of leaves of eF are locally connected.

This also implies the following:

Corollary C � There are in�nitely many examples of foliations with all leaves dense which have

the continuous extension property. Many of these have one sided branching. These are not uniform

foliations.

Foliations with all leaves dense can be obtained for example starting with �nite depth foliations

and doing small perturbations � keeping it still almost transverse to the same pseudo-Anosov 
ow.

They are constructed carefully by Gabai [Ga3], providing in�nitely many examples with dense leaves

to which theorem C applies. In fact whenever a foliations F satis�es the hypothesis of theorem B,

then any F 0 suÆciently close to F will also be transverse to the same 
ow. By theorem B again, F 0

will have the continuous extension property.

A foliation is R-covered if the leaf space of eF is homeomorphic to the real numbers. Equivalently

this leaf space is Hausdor�. A foliation which is not R-covered has branching, that is there are non

separated points in the leaf space. This leaf space is oriented (being a simply connected, perhaps

non Hausdor� 1-manifold) and there is a notion of branching in the positive or negative directions.

If it branches only in one direction the foliation is said to have one sided branching. Foliations with

one sided branching with all leaves dense and transverse to suspension pseudo-Anosov 
ows (which

are quasigeodesic) were constructed by Meigniez [Me]. This provides in�nitely many examples to
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which theorem C applies.

Theorem B can potentially be widely applicable because of the abundance of pseudo-Anosov


ows almost transverse to foliations: Thurston proved this for �brations [Th4]. It is also true for

R-covered foliations [Fe9, Cal1] and Calegari proved it for foliations with one sided branching [Cal2],

minimal foliations [Cal4] and many other foliations [Cal4]. One main problem is to analyse the

geometry of these pseudo-Anosov 
ows, in particular to decide whether they are quasigeodesic. By

theorem B this would imply the continuous extension property for the corresponding foliations.

The quasigeodesic property of � is de�nitely weaker than the stable and unstable foliations being

quasi-isometric, but it still has useful properties. In order to prove theorem B, one analyses the

topological structure of the pseudo-Anosov 
ow. Let �1 be the original pseudo-Anosov 
ow almost

transverse to F . To make the 
ow transverse to F one needs in general to blow up a collection of

singular orbits into a collection of 
ow saturated annuli so that each boundary is a closed orbit of

the new 
ow �. The blown up 
ow is called an almost pseudo-Anosov 
ow. If e� is the lifted 
ow to

the universal cover fM and O is its orbit space, then O is homeomorphic to the plane R2 [Fe-Mo] �

this is true for pseudo-Anosov and almost pseudo-Anosov 
ows. When one blows up some singular

orbits into a collection of joined annuli, the stable/unstable singular foliations also blow up. The two

new singular foliations �s;�u are everywhere transverse to each other except at the singularities and

the blown up annuli. The blown up annuli are part of both singular foliations. Since F is transverse

to the blown up foliations, then the stable/unstable foliations �s;�u induce singular 1-dimensional

foliations in leaves of F and eF . The behavior of this is described in the following result:

Theorem D � Let F be a Reebless foliation in M3 closed. Let �1 be a pseudo-Anosov 
ow almost

transverse to F and let � be a corresponding almost pseudo-Anosov 
ow transverse to F . Let �s;�u

be the stable/unstable 2-dimensional foliations of � and e�s; e�u the lifts to fM . Given F leaf of eF , lete�s
F ;
e�u
F be the induced singular 1-dimensional foliations in F . Then for every ray l in a leaf of e�s

F ore�u
F , it limits in a single point of @1F . If the stable/unstable foliations e�s; e�u of � have Hausdor�

leaf space, then the leaves of e�s
F ;
e�u
F are uniform quasigeodesics in F , the bound is independent of

the leaf. In general the leaves of e�s
F ;
e�u
F are not quasigeodesic but any non Hausdor�ness (of saye�s

F ) is associated to a Reeb annulus in a leaf of F and when projected to M it either projects to or

spirals to a Reeb annulus. The set of ideal points of leaves of e�s
F is dense in @1F and similarly fore�u

F . Finally if two rays of the same leaf of e�s
F limit to the same ideal point in @1F then the leaf is

not singular and the region in F bounded by the leaf projects in M to a set in a leaf of F which is

either contained in or asymptotic to a Reeb annulus.

For this result one does not need negatively curved fundamental group or any metric properties

of the 
ow. Theorem D is one of the main technical results used in the proof of theorem B. We

stress that in all the previous results concerning the continuous extension property this was also a

crucial property on which the whole analysis hinged. In these other situations, the analysis of leaves

of e�s
F ;
e�u
F was either trivial or substantially simpler. The proof here works in complete generality.

It uses the denseness of contracting directions for foliations as proved by Thurston [Th6] when he

introduced the universal circle for foliations � even though we do not directly use the universal circle

here. The basic idea is: if any ray does not limit in a single point then it limits in a non trivial

interval of @1F and we zoom into this interval and analyse the situation in the limit. This is actually

the easiest statement to prove in theorem D. The facts about rays with same ideal point and non

Hausdor�ness are much trickier, but they will be essential in the analysis of theorem B. The results

of theorem D are also used in other contexts, for example to analyse rigidity of pseudo-Anosov 
ows

almost transverse to a given foliation. This will be explored in a future article.

The proof of theorem B has 2 parts: given a leaf F of eF , one �rst constructs an extension to the
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ideal boundary and then show it is continuous. To de�ne the extension, one uses the foliations e�s
F ;
e�u
F

as they hopefully de�ne a basis neighborhood of an ideal point p of F . The best situation is that

the corresponding leaves of e�s; e�u de�ne basis neighborhoods of unique points in S2

1
, hence de�ning

the image of p. There are several diÆculties here: �rst the leaves of e�s
F ;
e�u
F are not quasigeodesics,

so much more care is needed. Another problem is that the foliations e�s; e�s in general do not have

Hausdor� leaf space. This keeps recurring throughout the proof. A further diÆculty is that if

intersections with a leaf F of eF escape, it does not mean that the corresponding stable/unstable

leaves in fM escape compact sets. Consequently there are several cases to be analysed.

Another fact that is important for the analysis of theorems B and D is the following: Let � be

the projection map from fM to O. A leaf of eF intersects an orbit of e� at most once de�ning an

injective projection of F to �(F ). The projection �(F ) is equal to O if and only if the foliation is

R-covered. An important problem here is to determine the boundary �(F ) as a subset of O. This

turns out to be a collection of subsets of stable/unstable leaves in O. This result is di�erent than

what happens for pseudo-Anosov 
ows transverse to foliations and its proof is much more delicate.

The second part of the article deals with global issues relating the overall structure of pseudo-

Anosov 
ows with the geometry of the foliation. Given a general pseudo-Anosov 
ow � with orbit

space O we �rst show there is a natural compacti�cation of O with an ideal circle:

Theorem E � Let � be a pseudo-Anosov 
ow inM3 closed, with orbit space O of the lifted 
ow e� infM . Then there is a natural compacti�cation of O with an ideal boundary @O which is homeomorphic

to a circle and so that the union D = O [ @O is homeomorphic to a closed disk. The fundamental

group �1(M) acts naturally on this compacti�cation. The same holds for almost pseudo-Anosov


ows: if �� is an almost pseudo-Anosov 
ow associated to � and O� its orbit space, then O is a

natural retraction of O� and @O� is naturally homeomorphic to @O.

In this result we do not assume that �1(M) is negatively curved or metric properties of 
ow lines.

The singular foliations e�s; e�u in fM induce one dimensional foliations Os;Ou in O and these are

used to de�ne the ideal points of O. An ideal point is de�ned to be a sequence of chains of segments

and rays in Os;Ou. The chains have to be what is called \convex" and for technical purposes we

require the chains to be nested. There is an extended analysis of ideal points and the topology of D

� the proof that D is homeomorphic to a closed disk is quite involved. We notice that Calegari and

Dun�eld [Ca-Du] previously showed that if � is a pseudo-Anosov 
ow, then �1(M) acts nontrivially

on a circle. This is a very important results with fundamental consequences for the existence question

for pseudo-Anosov 
ows in 3-manifolds [Ca-Du]. Their construction is very di�erent than ours. They

consider the space of ends of the leaf space of say e�s. They show that the space of ends is circularly

ordered and then maps injectively to a circle. By collapsing complementary intervals one gets an

action in S1. This is much weaker than producing a nice, natural compacti�cation of O. For

example, consider sequences of O, escaping compact sets in O and so that all points are in the same

stable leaf. As seen in the leaf space the points do not go into any end, but they should have a

convergent subsequence in a compacti�cation of O. Here we show much more, producing an actual

compacti�cation of the orbit space as a closed disk. In addition this compacti�cation is naturally

associated with the stable and unstable foliations of the 
ow.

With additional metric hypothesis we obtain the following results:

Theorem F � Let � be a quasigeodesic pseudo-Anosov 
ow in M3 closed, with negatively curved

fundamentalgroup. Then for any section � : O ! fM of the orbit map, there is a continuous extension

to � : D ! fM [ S2

1
. The map � restricted to @O is independent of the section and it is a group

invariant Peano curve. The same holds for almost pseudo-Anosov 
ows: let �� an associated almost
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pseudo-Anosov 
ow, with orbit space O�. Then it is a quasigeodesic 
ow [Fe-Mo] and the map from

@O� to S2

1
is the same as the one de�ned for �.

This generalizes Cannon-Thurston's result for suspensions and pseudo-Anosov 
ows transverse to

uniform foliations. Given the detailed construction of the ideal points of O, the proof of theorem F is

very short. It does use some additional properties of quasigeodesic pseudo-Anosov 
ows. We remark

that Calegari [Cal4] has recently proved that if � is a quasigeodesic 
ow in M3 closed, hyperbolic,

then there is a group invariant Peano curve associated to it. His methods are completely di�erent

than those used in this article. Our methods in particular give information about the limit sets of

leaves of foliations satisfying the hypothesis of theorem B and also on the set of identi�cations of

ideal points of � and foliations as described below.

If in addition to these metric properties of the 
ow, there is a transverse foliation to the 
ow we

use this global map to encode information about all ideal maps of leaves. First we have a general

result:

Theorem G � Let F be a foliation in M3 closed. Suppose that F is almost transverse to a pseudo-

Anosov 
ow �1 and transverse to a corresponding almost pseudo-Anosov 
ow �. Given leaf F of eF
the projection �(F ) to the orbit space of e� has a well de�ned ideal boundary BF which is the closure

of �(F ) in D intersected with @O � or the set of ideal points of �(F ). There is a circularly weakly

monotone map cF from BF to @1F , which is surjective and is also injective except for identifying

endpoints of complementary intervals of BF in @O. The same is true for almost pseudo-Anosov


ows.

This means that the ideal circle of the pseudo-Anosov 
ow maps surjectively and continuously

to the circle at in�nity of an arbitrary leaf of eF . Using this we obtain a general description of the

ideal maps of leaves of foliations:

Theorem H � Let F be a Reebless foliation in M3 closed, with �1(M) negatively curved. Suppose

that F is almost transverse to a quasigeodesic pseudo-Anosov 
ow �1 and transverse to the corre-

sponding almost pseudo-Anosov 
ow �. For each leaf F of eF let 'F : @1F ! S2

1
be the ideal map

associated to the continuous extension of F as shown in theorem B. Let � : @O ! S2

1
be the ideal

map associated to � (or �1). Then each ideal map 'F is encoded by � in the following way: Let

cF : BF ! @1F be the surjective map described in theorem G. For each q in BF and p = cF (q) in

@1F then

'F (p) = 'F Æ cF (q) = �(q)

In other words �jBF
= 'F Æ cF .

In this way the single ideal map � encodes all the information of the ideal maps 'F of individual

leaves F of eF and all the limit sets of leaves of eF . This is an extremely nice global picture!

The map � : @O ! S2

1
has image the whole sphere and consequently is not injective. The

topological tools developed here completely determine the identi�cations of this map:

Theorem I � Let � be a quasigeodesic pseudo-Anosov 
ow in M3 closed, with �1(M) negatively

curved. Then the ideal map � : @O ! S2

1
of theorem F is �nite to one. Suppose p; q are distinct

points in @O with same image. Then p; q are ideal points of rays l; r in stable or unstable leaves in

O. In addition l; r are connected by a �nite chain of leaves so that consecutive leaves are either no

separated from each other or have rays which are \asymptotic".

The term asymptotic will be de�ned in detail and is what is called a \perfect �t" [Fe4, Fe6]. This

result helps us to determine the ideal point indeti�cations for limit sets of foliations.
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Theorem J � Let F be a Reebless foliation in M3 closed, with �1(M) negatively curved. Suppose

that F is transverse to a quasigeodesic almost pseudo-Anosov 
ow �. Let F be a leaf of eF , 'F the

ideal map of F and � the ideal map of �. Then 'F : @1F ! S2

1
is a �nite to one map. In addition

if u; v in @1F with same image under 'F , then there are p; q in @O with cF (p) = u; cF (q) = v and

'(p) = '(q). The points u; v are ideal points of rays in leaves of e�s
F or e�u

F which are connected by

a chain of perfect �ts in F .

In many situations, for example if there are no freely homotopic closed orbits of �, or the leaf

spaces of e�s; e�u are Hausdor�, then there no asymptotic rays or perfect �ts. In that case the only

identi�cations of 'F come from being ideal points in rays of the same leaf of e�s
F or e�u

F and similarly

for �. This gives much more information.

We expect similar results to theorems F, G, H, I and J to hold in the setting of the universal

circle of the foliation. This will be pursued in a future article [Fe12].

The article is organized as follows: In the next section we present basic de�nitions and results

concerning pseudo-Anosov 
ows and almost pseudo-Anosov 
ows. In section 3 we analyse the set

�(F ) for leaves in the universal cover. In sections 4 and 5 we analyse the singular foliations e�s
F ;
e�u
F

and asymptotic properties of their leaves, proving theorem D. In section 6 we prove the continuous

extension property, theorem B. In the next section we produce a compact�cation of the orbit space

O as a closed disk � theorem E. In section 8 we produce the group invariant Peano curves, theorem

F. In section 9 we show the global encoding of the limit sets using the Peano curves, proving theorem

H. In section 10 we analyse the identi�cation of ideal points of leaves or the Peano map proving

theorems I and J. In the �nal section we comment on general relationships between foliations and

Kleinian groups.

2 Preliminaries: Pseudo-Anosov 
ows and almost pseudo-Anosov 
ows

Let � be a 
ow on a closed, oriented 3-manifold M . We say that � is a pseudo-Anosov 
ow if the

following are satis�ed:

- For each x 2M , the 
ow line t! �(x; t) is C1, it is not a single point, and the tangent vector

bundle Dt� is C0.

- There is a �nite number of periodic orbits f
ig, called singular orbits, such that the 
ow is

\topologically" smooth o� of the singular orbits (see below).

- The 
owlines are tangent to two singular transverse foliations �s;�u which have smooth leaves

o� of 
i and intersect exactly in the 
ow lines of �. These are like Anosov foliations o� of the singular

orbits. This is the topologically smooth behavior described above. A leaf containing a singularity

is homeomorphic to P � I=f where P is a p-prong in the plane and f is a homeomorphism from

P �f1g to P �f0g. In a stable leaf, f contracts towards towards the prongs and in an unstable leaf

it expands away from the prongs. We restrict to p at least 2, that is, we do not allow 1-prongs.

- In a stable leaf all orbits are forward asymptotic, in an unstable leaf all orbits are backwards

asymptotic.

Basic references for pseudo-Anosov 
ows are [Mo1, Mo3].

Notation/de�nition: The singular foliations lifted to fM are denoted by e�s; e�u. If x 2 M let

W s(x) denote the leaf of �s containing x. Similarly one de�nes W u(x) and in the universal coverfW s(x);fW u(x). Similarly if � is an orbit of � de�ne W s(�), etc... Let also e� be the lifted 
ow to fM .

We review the results about the topology of e�s; e�u that we will need. We refer to [Fe6, Fe8] for

detailed de�nitions, explanations and proofs. The orbit space of e� in fM is homeomorphic to the

plane R2 [Fe-Mo] and is denoted by O �= fM=e�. Let � : fM ! O �= R2 be the projection map. If L
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Figure 1: a. Perfect �ts in fM , b. A lozenge, c. A chain of lozenges.

is a leaf of e�s or e�u, then �(L) � O is a tree which is either homeomorphic to R if L is regular, or

is a union of p-rays all with the same starting point if L has a singular p-prong orbit. The foliationse�s; e�u induce 1-dimensional foliations Os;Ou in O. Its leaves are �(L) as above. If L is a leaf ofe�s or e�u, then a sector is a component of fM � L. Similarly for Os;Ou. If B is any subset of O, we

denote by B �R the set ��1(B). The same notation B �R will be used for any subset B of fM : it

will just be the union of all 
ow lines through points of B.

De�nition 2.1. Let L be a leaf of e�s or e�u. A slice of L is l�R where l is a properly embedded copy

of the reals in �(L). For instance if L is regular then L is its only slice. If a slice is the boundary

of a sector of L then it is called a line leaf of L. If a is a ray in �(L) then A = a �R is called a

half leaf of L. If � is an open segment in �(L) it de�nes a 
ow band L1 of L by L1 = � �R. Same

notation for the foliations Os;Ou of O.

If F 2 e�s and G 2 e�u then F and G intersect in at most one orbit. Also suppose that a leaf

F 2 e�s intersects two leaves G;H 2 e�u and so does L 2 e�s. Then F;L;G;H form a rectangle in fM
and there is no singularity in the interior of the rectangle [Fe8]. There will be two generalizations

of rectangles: 1) perfect �ts = rectangle with one corner removed and 2) lozenges = rectangle with

two opposite corners removed. We will also denote by rectangles, perfect �ts, lozenges and product

regions the projection of these regions to O �= R2.

De�nition 2.2. ([Fe6, Fe8]) Perfect �ts - Two leaves F 2 e�s and G 2 e�u, form a perfect �t if

F \ G = ; and there are half leaves F1 of F and G1 of G and also 
ow bands L1 � L 2 e�s and

H1 � H 2 e�u, so that the set

F 1 [H1 [ L1 [G1

separates M and forms an a rectangle R with a corner removed: The joint structure of e�s; e�u in R

is that of a rectangle with a corner orbit removed. The removed corner corresponds to the perfect of

F and G which do not intersect.

We refer to �g. 1, a for perfect �ts. There is a product structure in the interior of R: there are

two stable boundary sides and two unstable one. An unstable leaf intersects one stable boundary

side (not in the corner) if and only if it intersects the other stable boundary side (not in the corner).

We also say that the leaves F;G are asymptotic.

De�nition 2.3. ([Fe6, Fe8]) Lozenges - A lozenge is a region of fM whose closure is homeomorphic to

a rectangle with two corners removed. More speci�cally two points p; q form the corners of a lozenge

if there are half leaves A;B of fW s(p);fW u(p) de�ned by p and C;D half leaves of fW s(q);fW u(q) so
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that A and D form a perfect �t and so do B and C. The region bounded by the lozenge is R and it

does not have any singularities. The sides are not contained in the lozenge, but are in the boundary

of the lozenge. See �g. 1, b.

There are no singularities in the lozenges, which implies that R is an open region in fM . There

may be singular orbits on the sides of the lozenge and the corner orbits.

Two lozenges are adjacent if they share a corner and there is a stable or unstable leaf intersecting

both of them, see �g. 1, c. Therefore they share a side. A chain of lozenges is a collection fCig; i 2 I,

where I is an interval (�nite or not) in Z; so that if i; i+ 1 2 I, then Ci and Ci+1 share a corner, see

�g. 1, c. Consecutive lozenges may be adjacent or not. The chain is �nite if I is �nite.

De�nition 2.4. Suppose A is a 
ow band in a leaf of e�s. Suppose that for each orbit 
 of e� in A

there is a half leaf B
 of fW u(
) de�ned by 
 so that: for any two orbits 
; � in A then a stable leaf

intersects B� if and only if it intersects B
. This de�nes a stable product region which is the union

of the B
. Similarly de�ne unstable product regions.

The main property of product regions is the following: for any F 2 e�s, G 2 e�u so that (i) F\A 6=

; and (ii) G \A 6= ;; then F \G 6= ;. There are no singular orbits of e� in A.

We abuse convention and call a leaf L of e�s or e�u is called periodic if there is a non trivial

covering translation g of fM with g(L) = L. This is equivalent to �(L) containing a periodic orbit of

�. In the same way an orbit 
 of e� is periodic if �(
) is a periodic orbit of �.

We say that two orbits 
; � of e� (or the leaves fW s(
);fW s(�)) are connected by a chain of lozenges

fCig; 1 � i � n, if 
 is a corner of C1 and � is a corner of Cn.

If C is a lozenge with corners �; 
 and g is a non trivial covering translation leaving �; 
 invariant

(and so also the lozenge), then �(�); �(
) are closed orbits of e� which are freely homotopic to the

inverse of each other.

Theorem 2.5. [Fe6, Fe8] Let � be a pseudo-Anosov 
ow in M3 closed and let F0 6= F1 2 e�s.

Suppose that there is a non trivial covering translation g with g(Fi) = Fi; i = 0; 1. Let �i; i = 0; 1 be

the periodic orbits of e� in Fi so that g(�i) = �i. Then �0 and �1 are connected by a �nite chain of

lozenges fCig; 1 � i � n and g leaves invariant each lozenge Ci as well as their corners.

A chain from �0 to �1 is called minimal if all lozenges in the chain are distinct. Exactly as proved

in [Fe4] for Anosov 
ows, it follows that there is a unique minimal chain from �0 to �1 and also all

other chains have to contain all the lozenges in the minimal chain.

The main result concerning non Hausdor� behavior in the leaf spaces of e�s; e�u is the following:

Theorem 2.6. [Fe6, Fe8] Let � be a pseudo-Anosov 
ow in M3. Suppose that F 6= L are not

separated in the leaf space of e�s. Then F is periodic and so is L. Let F0; L0 be the line leaves of F;L

which are not separated from each other. Let V0 be the sector of F bounded by F0 and containing L.

Let � be the periodic orbit in F0 and H0 be the component of (fW u(�)��) contained in V0. Let g be a

non trivial covering translation with g(F0) = F0, g(H0) = H0 and g leaves invariant the components

of (F0 � �). Then g(L0) = L0. This produces closed orbits of � which are freely homotopic in M .

Theorem 2.5 then implies that F0 and L0 are connected by a �nite chain of lozenges fAig; 1 � i � n,

consecutive lozenges are adjacent. They all intersect a common stable leaf C. There is an even

number of lozenges in the chain, see �g. 2. In addition let BF;L be the set of leaves non separated

from F and L. Put an order in BF;L as follows: Put an orientation in the set of orbits of C contained

in the union of the lozenges and their sides. If R1; R2 2 BF;L let �1; �2 be the respective periodic

orbits in R1; R2. Then fW u(�i) \ C 6= ; and let ai = fW u(�i) \ C. We de�ne R1 < R2 in BF;L if

a1 precedes a2 in the orientation of the set of orbits of C. Then BF;L is either order isomorphic to
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Figure 2: The correct picture between non separated leaves of e�s.

f1; :::; ng for some n 2 N; or BF;L is order isomorphic to the integers Z. In addition if there are

Z; S 2 e�s so that BZ;S is in�nite, then there is an incompressible torus in M transverse to �. In

particular M cannot be atoroidal. Also if there are F;L as above, then there are closed orbits �; � of

� which are freely homotopic to the inverse of each other. Finally up to covering translations, there

are only �nitely many non Hausdor� points in the leaf space of e�s.

Notice that BF;L is a discrete set in this order. For detailed explanations and proofs, see [Fe6, Fe8].

Theorem 2.7. ([Fe8]) Let � be a pseudo-Anosov 
ow. Suppose that there is a stable or unstable

product region. Then � is topologically conjugate to a suspension Anosov 
ow. In particular � is

non singular.

Proposition 2.8. Let ' be a (topological) Anosov 
ow so that every leaf of its stable foliation e�s

intersects every leaf of its stable foliations e�u. Then ' is topologically conjugate to a suspension

Anosov 
ow. In particular M �bers over the circle with �ber a torus and Anosov monodromy.

Proof. This result is proved by Barbot [Ba1] when ' is a smooth Anosov 
ow. That means it is C1

and it has also strong stable/unstable foliations and contraction on the level of tangent vectors along

the 
ow. Here we only have the weak foliations and orbits being asymptotic in their leaves. With

proper understanding all the steps carry through to the general situation.

Lift to a �nite cover where �s;�u are transversely orientable. A cross section in the cover projects

to a cross section in the manifold (after cut and paste following Fried [Fr]) and so we can prove the

result in the cover.

First, the 
ow ' is expanding: there is � > 0 so that no distinct orbits are always less than � away

from each other. Inaba and Matsumoto then proved that this 
ow is a topological pseudo-Anosov


ow [In-Ma]. The main thing is the existence of a Markov partition for the 
ow. This implies that

if F is a leaf of e�s which is left invariant by g, then there is a closed orbit of ' in �(F ) and all orbits

are asymptotic to this closed orbit. Similarly for e�u.

What this means is the following: consider the action of �1(M) in the leaf space of e�s which is

the reals. Hence we have a group action in R. Let g in �1(M) which �xes a point. There is L ine�s with g(L) = L. So there is orbit 
 of e' with g(
) = 
. Let U be the unstable leaf of e' with 


contained in U . Then g(U) = U . If g is associated to the positive direction of 
 then g acts as a

contraction in the set of orbits of U with 
 as the only �xed point. Since every leaf of e�u intersects

every leaf of e�s then the set of orbits in U is equivalent to the set of leaves of e�s. This implies the

important fact:

Conclusion - If g is in �1(M) has a �xed point in the leaf space of e�s then it is of hyperbolic type

and has a single �xed point.

Using this topological characterization Barbot [Ba1] showed that G = �1(M) is metabelian, in

fact he showed that the commutator subgroup [G;G] is abelian. In particular �1(M) is solvable.
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This used only an action by homeomorphisms in R satisfying the conclusion above. Barbot [Ba1]

also proved that the leaves of �s;�u are dense in M .

Plante [Pl1], showed that if F a minimal foliation in �1(M) solvable then F is transversely aÆne:

there is a collection of charts fi : Ui ! R2 � R, so that the transition functions are aÆne in the

second coordinate. Using this Plante [Pl1, Pl2] constructs a homomorphism

C : �1(M) ! R

which measures the logarithm of how much distortion there is along an element of �1(M). This is a

cohomology class. Every closed orbit 
 of ' has a transversal fence which is expanding - this implies

that C(
) is positive. Plante then refers to a criterion of Fried [Fr] to conclude that ' has a cross

section and therefore it is easily seen that ' is topologically conjugate to a suspension Anosov 
ow.

This �nishes the proof of the proposition.

We now describe almost pseudo-Anosov 
ows.

De�nition 2.9. Given a pseudo-Anosov 
ow �1 in a closed 3-manifold, then � is an almost pseudo-

Anosov 
ow associated to �1 if � is obtained from �1 by blowing some singular orbits of �1 into

a collection of 
ow annuli. Speci�cally if 
 is such a singular orbit of �1, then it blows up into a

connected collection of annuli fAi; 1 � i � ng, each of which is 
ow invariant. The collection is

embedded and the annuli have disjoint interiors. In each annulus the boundary components are closed

orbits of � isotopic to 
 as oriented orbits. In the interior of each annulus all orbits are forward

asymptotic to one boundary component and backwards asymptotic to the other one. There is a blow

down map � : M ! M , homotopic to the identity and isotopic to the identity in the complement

of the Ai and sending each connected collection of Ai into a periodic orbit of �1. The map � sends

orbits of � to orbits of �1 preserving orientation.

The reason for considering almost pseudo-Anosov 
ows is as follows. All of the constructions of

pseudo-Anosov 
ows transverse to foliations are in fact constructions of a pair of laminations� stable

and unstable � which are transverse to each other and to the foliation [Th4, Mo3, Fe9, Cal1, Cal2].

The intersection of the laminations is oriented producing a 
ow in this intersection. One then

collapses the complementary regions to the laminations to produce transverse singular foliations and

a pseudo-Anosov 
ow.

The transversality problem occurs in this last step, the blow down of complementary regions. In

certain situations, for example for �nite depth foliations, one cannot guarantee total transversality

after the blow down. We brie
y explain a possible problem. Mosher's construction [Mo3] of 
ows

(almost) transverse to foliations is done inductively on the depth of the leaves (starting with the top

depth leaves), associated to a sutured manifold hierarchy and the ensuing foliations construction of

Gabai. At each step there is a foliation which is partially tangent/transverse to the boundary and

also two laminations (stable/unstable) which are transverse to each other and to the foliation. There

is a 
ow in the intersection of the laminations and a 
ow direction in \periodic" leaves, since all

orbits in say a stable leaf are forward asymptotic. The next step topologically involves glueing two

subsurfaces in the boundary in the construction of the foliation and laminations/
ow.

One of the problems that can easily happen is the following. Suppose the glueing is done along

surface S and after the glueing there are closed orbits �; � of the 
ow, which are oriented isotopic

to the same simple closed curve of S and are in opposite sides of S, see �g. 3.

In the resulting pseudo-Anosov 
ow, �; � will be (oriented) freely homotopic to each other. By

theorem 2.5 when lifted to fM they are connected by a �nite chain of lozenges. This forces the

existence of another closed orbit �1 which is freely homotopic to the inverse of � (in the opposite
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Figure 3: Obstruction to transversality.

corner of a lozenge in fM). The problem is there is no guarantee such an orbit �1 will be produced in

the inductive process. In order to �x that, then in the collapsing step Mosher collapses � and � into a

single orbit. This allows for the collapsed 
ow to be pseudo-Anosov. Unfortunately the transversality

is lost locally near this region of S. There may be more collapsing forced by the inductive process.

In order to recover the transversality, in this particular case one blows up the collapsed orbit into an

embedded annulus, with boundaries �; � and puts a 
ow going from one orbit to the other, crossing

S in the correct direction. Since other collapsings may be forced we may have a collection of annuli

which are joined together and collapse to a single periodic orbit.

We still denote by �s;�u the stable/unstable laminations of an almost pseudo-Anosov 
ows.

They are transverse to each other except at the blown up annuli. The same notation is used fore�s; e�u, etc..

The objects perfect �ts, lozenges, product regions, etc.. all make sense in the setting of almost

pseudo-Anosov 
ows: they are just the blow ups of the same objects for the corresponding pseudo-

Anosov 
ows. Since the interior of these objects does not have singularities, the blow up operation

does not a�ect these interiors. There may be singular orbits in the boundary which get blown into

a collection of annuli. All the results in this section still hold for almost pseudo-Anosov 
ows, with

the blow up operation. For example if F;L in e�s are not separated from each other, then they are

connected by an even number of lozenges all intersecting a common stable leaf. Since parts of the

boundary of these may have been blown into annuli, there is not a product structure in the closure

of the union of the lozenges, but there is still a product structure of e�s; e�u in the interior.

3 Projections of leaves of eF to the orbit space

Let � be an almost pseudo-Anosov 
ow which is transverse to a foliation F . An orbit of e� intersects

a leaf of eF at most once � because the leaves of eF are properly embedded and e� is transverse toeF . Hence the projection � : F ! �(F ) is injective. We want to determine the set of orbits a leaf ofeF intersects � in particular we want to determine the boundary @�(F ). As it turns out, @�(F ) is

composed of a disjoint union of slice leaves in Os;Ou.

Since � is transverse to F , there is � > 0 so that if a leaf F of eF intersects an orbit of e� at

p then it intersects every orbit of e� which passes � near p and the intersection is also very near p.

To understand @�(F ) one main ingredient is that when considering pseudo-Anosov 
ows, then 
ow

lines in the same stable leaf are forward asymptotic. So if F intersects a given orbit in a very future

time then it also intersects a lot of other orbits in the same stable since in future time they converge.

In the limit this produces a stable boundary leaf of �(F ). The blow up operation disturbs this: it is

not true that orbits in the same stable leaf of an almost pseudo-Anosov 
ow are forward asymptotic:

when they pass arbitrarily near a blow up annulus the orbits are distorted and their distance can

increase enormously. This is the key diÆculty in this section. Hence we �rst analyse the blow up

operation more carefully.

Notation � Given � an almost pseudo-Anosov 
ow, let �1 be a corresponding pseudo-Anosov 
ow
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associated to �. The term fW s(x) will denote the stable leaf of e� or e�1, where the context will make

clear which one it is.

Recall that � : fM !M denotes the universal covering map.

We will start with �1 and understand the blow up procedure. The blown up annuli come from

singular orbits. The lift annuli are the lifts of blown up annuli to fM . Their projections to O are called

blown segments. If L is a blown up leaf of e�s or e�u the components of L minus the lift annuli are

called the prongs. A quarter associated to an orbit 
 of e�1 is the closure of a connected component

of fM � (fW u(
) [fW s(
)). Its boundary is a union of 
 and half leaves in the stable and unstable

leaves of 
. We will be interested in a neighborhood V of 
 in this quarter which projects to M near

the closed orbit �(
). We will understand the blow up in the projection of a quarter. Glueing up

di�erent quarter gives the overall picture of the blow up operation. In the projected quarter �(V ) in

M there is a cross setion to the 
ow �1. The orbits across the cross section are determined by which

stable and unstable leaf they are in. The return map on the stable direction is a contraction and an

expansion in the unstable direction. Any contraction is topologically conjugate to say x! x=2 and

an expansion is conjugate to x! 2x. Hence the local return map is topologically conjugate to

�
1=2 0

0 2

�

a linear map. The whole discussion here is one of topological conjugacy. The 
ow is conjugate

to (x; y; 0) ! (2�tx; 2ty; t). Think of the blow up annulus as the set of unit tangent vectors to 


associated to the quarter region. The 
ow in the annulus is given by the action of DVt on the tangent

vectors. It has 2 closed orbits (the boundary ones corresponding to the stable and unstable leaves).

The other orbits are asymptotic to the stable closed orbit in negative time and to the unstable closed

orbit in positive time. This makes it into a continuous 
ow in this blown up part. See detailed

explanation in [Fr] or [Ha-Th] (Fried, Handel-Thurston). For future reference recall this fact that

in a blow up annulus the boundary components are orbits of the 
ow and in the interior the 
ow

lines go from one boundary to the other without a Reeb annulus picture (there is a cross section to

the 
ow in the annulus). Do this for each quarter region that is blown up. One can then glue up

the 2 sides of the appropriate annuli because they are all of the same topological picture (using the

standard model above). This describes the blown up operation in a quarter. There is clearly a blow

down map which sends orbits of the blown up 
ow � to orbits of �1 and collapses connected unions

of annuli into a single p-prong singular orbit.

We quantify these: let � very small so that any two orbits of �1 which are always less than �

apart in forward time, then they are in the same stable leaf. Let Z the union of the singular orbits

of �1 which are blown up. Let �0 << � and let U be the �0 tubular neighborhood of Z. Let U 0 (resp.

U) be the �0=2 (resp. �0) tubular neighborhood of Z. Choose the blow up map to be the identity in

the complement of U 0, that is the blown up annuli are also contained in U 0. The blow down map is

then an isometry of the Riemannian metric outside U 0. Choose the blow down to move points very

little in U 0. Isotope F so that it is transverse to the 
ow �. We are now ready to analyse @�(F ).

Proposition 3.1. Let F in eF . Then �(F ) is an open subset of O. Any boundary component of �(F )

is a slice of a leaf of Os or Ou. If it is a slice of Os, then as �(F ) approaches l, the corresponding

points of F escape in the positive direction. Similarly for unstable boundary slices.

Proof. First notice that since F is transverse to e� then �(F ) is an open set. Hence @�(F ) is

disjoint from �(F ). The important thing is to notice that the metric is the same outside the small

neighborhood U 0 of the blown up annuli. If two points are in the same stable leaf, then their orbits

under the blow down 
ow �1 are asymptotic in forward time. The same is true for �, for big enough
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time if the point is outside U . This is because the points of the corresponding orbits of �1 will be

both outside U 0 � this is the reason for the construction of two neighborhoods U 0; U . The following

setup will be used in all cases.

Setup � Let v in @�(F ) and vi in �(F ) with vi converging to v. Let pi in F with �(pi) = vi and let

w in fM with �(w) = v. Let D be any small disk in fM transverse to e� with w in the interior of D.

For i big enough vi is in �(D) so there are ti real numbers with pi = e�ti(wi) and wi are in D. As v

is not in �(F ), then jtij grows without bound. Without loss of generality assume up to subsequence

that ti !1. We will prove that there is a slice leaf L of fW s(w) so that �(L) � �(F ) and F goes up

as it \approaches" L. The stable/unstable leaves here are those of the almost pseudo-Anosov 
ow

and they may have blown up annuli.

Case 1 � Suppose that w is not in a blown up leaf.

First we show that we can assume no wi is in fW s(w). Otherwise up to subsequence assume all

wi are in fW s(w). The orbits through wi and w start out very close and aside from the time they

stay in ��1(U) they are always very close. Let B be the component of the intersection of F with

the 
ow band from e�R(wi) to e�R(w) in the stable leaf fW s(w), which contains pi. Then B does not

intersect e�R(w) so it has to either escape up or down. If it escapes down it will have to intersect

a small segment from wi to w and hence so does F . For i big enough wi is arbitrarily near w, so

transversality of F and � then implies that F will intersect e�R(w) near w, contradiction see �g. 4,

a.

We now consider the case that B escapes up. If the forward orbit through w is not always in

��1(U) then at those times outside of ��1(U) it will be arbitrarily close to e�R(wi) and transversality

implies again that F intersects e�R(w). If the forward orbit of w always stays in ��1(U) the same

happens after the blow down so the blow down orbit is in the stable leaf of the singular orbit which

is being blown up. This does not happen in case 1.

We can now assume that all vi are in a sector of Os(v) with l the boundary of this sector and

L = l �R, the line leaf of fW s(w) which is the boundary of this sector.

Let now q in l. We will show that q is in @�(F ) so l � @�(F ). There is a segment [q; v] contained

in l. Choose x in L with �(x) = q. Let � be a segment in fW s(w) transverse to the 
ow lines and

going from x to w. Let xi converging to x and xi in fW s(wi). We can do that since all wi are in the

same sector of fW s(w). Choose segments �i from xi to wi in fW s(wi) and transverse to the 
owlines

of e� in fW s(wi).

Claim � For every orbit 
 of e� intersecting �i in y then 
 intersects F in e�s(y) where s converges

to 1 as i!1.

Suppose there is a0 > 0 so that for some i0 then

e�[a0;ti](wi) � ��1(U) for all i � i0

Then e�[a0;1)(w) is contained in the closure of ��1(U). As seen before this implies that w is in a

blown up stable leaf, which is not the hypothesis of case 1. Therefore up to subsequence, there are

arbitrary big times si between 0 and ti so that e�si(wi) is not in �
�1(U). Hence e�R(xi) is very close

to e�si(wi) and since F cannot escape up or down then F intersects e�R(xi). Hence the segment

[�(xi); vi] of O
s(v) is contained in �(F ) and so [x; v] is contained in the closure of �(F ). Also the

time s so that e�s(y) hits F goes to 1, hence [x; v] cannot intersect �(F ) � else there would be

bounded times where it intersects F , by transversality. We conclude that [x; v] � @�(F ), hence

l � @�(F ) as desired. If there is a sequence zi in F escaping down with �(zi) converging to a point
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Figure 4: a. A strangling neck is being forced, b. A slice in a leaf of Os or Ou. xi = �(zi).

in l, then by connectedness there is one intersecting a compact middle region � this would force an

intersection of F with l �R which is impossible.

This �nishes the proof of case 1. In this case we proved there is a line leaf l of �(L) with

l � @�(F ) and F escapes up as �(F ) approaches l.

Case 2 � w is in a blown up leaf, but F does not intersect a lift annulus in fW s(w).

Refer to the setup above. As before we �rst show we can assume wi are not infW s(w). Otherwise,

up to subsequence assume all wi are in fW s(w). Since F does not intersect lift annuli in fW s(w), then

wi are all in prongs of fW s(w). Up to subsequence we can assume they are all in the same prong C offW s(w) which has boundary an orbit 
 of e�. It follows that w is in 
. All the orbits in C are forward

asymptotic to 
, even in the blown up situation. The strangling necks analysis of case 1 shows that

F will be forced to intersect e�R(w). This cannot occur.

Hence assume all vi are in a sector of Os(v) bounded by a line leaf l. Let L be l � R. Let q

be a point in l and choose x; �; xi and �i as in the proof of case 1. Choose a small disc D which is

transverse to e� and has � in its interior. For i big enough then D intersects lift annuli only in fW s(x).

This is because the union of the blown annuli forms a compact set in M , so either � intersects a lift

annulus, in which case there is no other lift annulus nearby or D is entirely disjoint from lift annuli.

From now on the arguments of case 1 apply perfectly. This shows that �(L) is contained in �(F ),

it is disjoint from �(F ) and so it is @�(F ) and F escapes up as it approaches L. This �nishes the

proof of case 2.

Now we need to understand what happens when F intersects a lift annulus in general. We

separate that in a special case. We need the following facts before addressing this case. A lift

annulusW through b is contained in fW s(b) and fW u(b) so there is not stable/unstable 
ow directions

in W . However there are still such directions in @W , because one attracts nearby orbits of e� in

W and the other one repels nearby orbits in W . In this generalized sense the �rst one is stable

and the second one is unstable. In this sense if a is in an endpoint of a blown segment, then all

local components of Os(a)� a;Ou(a)� a near a are either generalized stable or unstable. With this

understanding there is an even number of such components and they alternate between generalized

stable and unstable. Some local components of Os(a) � a are also local components of Ou(a) � a

if they are blown segments. One key thing to remember is that generalized stable and unstable

alternate.

Case 3 � Suppose that F intersects some lift annulus A contained in fW s(u1).

Then F does not intersect both boundary orbits of A. Otherwise we could collapse �(A) to a

single orbit, still keeping � transverse to F . Hence either F \A is contained in the interior of A or

it intersects only one boundary leaf.

Assume without loss of generality that F escapes up in one direction. This de�nes an orbit 
 of
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e� with a = �(
) in @�(F ). The orbit 
 has to be in the boundary of the lift annulus A. This is

because an interior orbit is asymptotic to both boundary orbits and hence would intersect F . We

now look at the picture in O. Consider the stable leaf Os(a). Notice that �(F ) intersects �(A).

From the point of view of 
, orbits in A move away from 
 in future time, that is A is an unstable

direction from 
. This means that �(A) is generalized unstable as seen from a. It follows that there

are two generalized stable sides of Os(a) one on each side of �(A) which are the closest to �(A).

Choose one side, start at a and follow along Os(a) either through blown segments and eventually

into a prong in Os(a) so as to produce a piece of a line leaf of Os(a) in that direction. This path is

regular on the side associated to �(A) and de�nes a half leaf l1 of O
s(a). Similarly de�ne l2 in the

other direction, see �g. 4, b. Let l be the union of l1 and l2. Then l is a slice leaf of O
s(a) but is not

a line leaf since �(A) is in Os(a) and is not in l.

Claim � l is contained in @�(F ) and F escapes positively as �(F ) approaches l.

Let b in l1 with b not in blown segment, that is, b in a prong. Choose bi in O
u(b), with bi ! b

and in that component of O � l. Let D be an embedded disc in fM which is transverse to e� and

projects to O to a neighborhood of the arc � in l1 from a to b. Let yi in D with �(yi) = bi, yi ! y

with �(y) = b. Assume that y is not in ��1(U). Choose b so that it is not in the unstable leaf of

one singular orbit, hence fW u(y) does not contain lift annuli. In addition choose yi so that fW s(yi)

does not contain lift annuli either.

Choose points uj in F \ A so that �(uj) = aj converges to a. For each j the set �(F ) contains

a small neighborhood Vj of �(uj) with Vj converging to a when j converges to in�nity. The leaves

Os(bi) are getting closer and closer to l1 and �(A). For j �xed there is i big enough so that Os(bi)

intersects Vj. Let

zi 2 F \fW s(yi) with �(zi) 2 Vj

here i depends on j. Let zi = e�ti(ri) with ri in D. By choosing j and i converging to in�nity we

get that �(zi) converges to a and we can ensure that the arc of D \ fW s(yi) between ri and yi is

converging to an arc � of fW s(a) \D with �(�) = �. We can also choose Vj small enough so that ti
converges to in�nity.

The orbits e�R(yi); e�R(ri) are very close in the forward direction as long as they are outside

��1(U). Since fW s(yi) does not contain lift annuli then for times s converging to in�nity e�s(yi)

is not in ��1(U). Consider the 
ow band C in fW s(yi) between e�R(ri) and e�R(yi). The leaf F

intersects e�R(ri) in e�ti(ri) with ti converging to in�nity. Then an analysis exactly as in case 1

considering strangling necks and the arcs B in that proof, shows that F \fW s(yi) cannot escape up

down before intersecting e�R(yi).

Suppose that F escapes down before intersecting e�R(yi). We show that this is impossible. Since

F \fW s(yi) has points zi in the forward direction from D and points in the backwards direction from

D it follows that F \fW s(yi) must intersect D in at least a point qi. Up to subsequence we may

assume that qi converges to q in fW s(y). This will be an iterative process. Let u1 = q. It is crucial

to notice that in the 
ow band of fW s(y) between e�R(y) and 
 the 
ow lines tend to go closer to 
,

that is, either they project to closed orbits freely homotopic to �(
) or they are asymptotic to one

of these orbits moving closer to 
. We now consider the component of F \fW s(y) containing u0 and

follow it towards 
. This component does not intersect 
 and by the above it can only escape down

in fW s(y). As it escapes down it produces points ci in fW s(ri) and as before produces points c0i in D,

which up to subsequence converge to c in D \ F . By construction c is not u1 and its orbit is closer

to 
. Let u2 = c. We can iterate this process. Notice the ui cannot accumulate in D, or else all
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the corresponding points of F are in a compact set of fM . On the other hand the process does not

terminate. This produces a contradiction.

The contradiction shows that in fact the arc �(C) is in �(F ) which implies that � = �(�) is

contained in �(F ). As the time to hit F from D grows with i, this shows that �(F ) does not

intersect � and hence � is contained in @�(F ). As b is arbitrary this shows that l � @�(F ) and F

escapes up as �(F ) approaches l. This �nishes the analysis of case 3.

Case 4 � w is in a blown up stable leaf and F intersects some lift annulus A in fW s(w).

The di�erence from case 3 is that in case 3 we obtained a slice boundary l of �(F ) � but in our

situation we do not yet know if it contains �(w) and whether it is a stable or unstable. Here we

prove it is a stable slice and it contains �(w).

Recall the setup: v = �(w) is in @�(F ) and there are vi in �(F ) with vi converging to v and

with pi in (vi�R)\F . Also pi = e�ti(wi) with wi converging to w in fM and ti converging to in�nity.

Let � be the blown segment �(A).

The analysis of case 3 shows that �(F ) contains the interior of �(A). Suppose �rst that v is in

�. Then v is in the boundary of � and by case 3 again F escapes up or down when �(F ) approaches

a slice which contains v. If it escapes up, then the slice is a stable slice and we obtain the desired

result in this case. We now show that F does not escape down. Let l be the unstable slice in

@�(F ) associated to this. Then l cuts in half a small disk neighborhood of v in O. The set �(F )

intersects only one component of the complement, the one which intersects �. As F escapes down

when �(F ) approaches l, then for all points in �(F ) near enough v the corresponding point in F

is 
ow backwards from D. This contradicts the fact that ti is converging to in�nity. Therefore F

cannot escape down as it approaches l.

We can now assume that v is not in �. By changing � if necessary assume that � is the blown

segment in Os(v) intersected by �(F ) which is closest to v. Let z be the endpoint of � separating

the rest of � from v in Os(v).

We �rst show that z is not in �(F ). Suppose that is not the case and let b the intersection point

of z�R and F . Since � is the last blown segment of Os(v) between � and v intersected by �(F ) and

�(F ) contains an open neighborhood of z, it follows that v is in a prong B of Os(v) with endpoint

z. Let � be the component of F \ fW s(b) containing b. Since F does not intersect v � R then it

escapes. As the region between b �R and z �R is a prong, then F cannot escape up. As seen in

the arguments for case 3, F cannot escape down either. This shows that z cannot be in �(F ).

It follows that F escapes either up or down as �(F ) approaches z. Suppose �rst that it escapes

up. Then we are in the situation of case 3 and we produce a stable slice l in @�(F ) with F going

up as �(F ) approaches l. If v is not in l then l separates v from �(F ). This contradicts vi in �(F )

with vi converging to v. Hence v is in l with F escaping up as �(F ) approaches l. This is exactly

what we want �nishing the analysis in this case.

The last situation is F escaping down in A as �(F ) approaches z. By case 3 there is a slice

leaf l in Ou(z) with l contained in @�(F ) and F escaping down as �(F ) approaches l. We want to

show that this case cannot happen. Notice that the blown segments of Os(z) are exactly the same

as the blown segments of Ou(z). The sets Os(z);Ou(z) di�er exactly in the prongs and as they go

around the collection of blown segments. The collection of all prongs in Os(z);Ou(z) also alternates

between stable and unstable as it goes around the union of the blown segments.

Suppose �rst that v is in l. This contradicts F escaping down and ti !1. Finally suppose that

v is not in l. We claim that in this case l separates v from �(F ). Let � be the path in Os(v) from

z to v. If � only intersects l in z, then the separation property follows because l1 and l2 contain the

local components of Os(z)[Ou(z)� z which are closest to �(A). This was part of the construction

of l in case 3. Here the � is generalized stable at z and l1; l2 are generalized unstable at p. The path
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from z to v in Os(v) cannot start in � or l1 or l2, hence l separates �(F ) from v.

If on the other hand � \ l = Æ is not a single point, then it is a union of blown segments. Let u

be the other endpoint of Æ. By regularity of l1 and l2 on the �(F ) side it follows that each blown up

segment in Æ has 
ow direction away from z. Hence Æ is generalized stable at u. Therefore the closest

component of Os(u) [ Ou(u) � u on the �(F ) side is generalized unstable and that is contained in

l. In this case it also follows that l separates v from �(F ). As seen before this is a contradiction.

This �nishes the proof of proposition 3.1

This has an important consequence that will be used extensively in this article.

Proposition 3.2. Let F in eF and L in e�s or e�u. Then the intersection F \ L is connected.

Proof. By transversality of F and �, the intersection C = �(F ) \�(L) is open in �(L). Supppose

there are 2 disjoint components A;B of C. Then there is v in @A with v separating A from B. There

are vi in A with vi converging to v. By the previous proposition F escapes up or down in A �R

as �(F ) approaches v. Assume wlog that F escapes up. Then there is a slice leaf l of Os(v) with

l � @�(F ) and F escapes up as �(F ) approaches l. Since l and �(F ) are disjoint then B is disjoint

from l. In addition v separates B from A in �(L). It follows from the construction of the slice l

as being the closest to A, that l separates A from B. Hence �(F ) cannot intersect B, contrary to

assumption. This �nishes the proof.

4 Asymptotic properties in leaves of the foliation

Let � be an almost pseudo-Anosov 
ow transverse to a foliation F with hyperbolic leaves. Let

�s;�u be the singular foliations of �. Given leaf F of eF let e�s
F ;
e�u
F be the induced one dimensional

singular foliations in F . In this section we study asymptotic properties of rays in e�s
F . First we

mention a result of Thurston [Th5] concerning contracting directions, which for convenience we state

for 3-manifolds:

Theorem 4.1. (Thurston) Let F be a codimension one foliation with hyperbolic leaves in M3 closed.

Then for every x in any leaf F of eF and every � > 0 there is a dense set of geodesic rays of F

starting at x such that: for any such ray r there is a transversal � to eF starting at x so that any

leaf L intersecting � and any y in r, then the distance between y and L is less than �. If there is

not a holonomy invariant transverse measure whose support contains �(F ) then one can show that

the directions are actually contracting, that is: if y escapes in r then the distance between y and L

converges to 0. Finally if �(F ) is not closed one can choose the � above to have x in the interior.

There is a carefully written published version of this result in [Ca-Du]. The directions above where

distance to nearby L goes to 0 are called contracting directions. The other ones where distance is

bounded by � are called � non expanding directions. We �rst prove a preliminary result:

Theorem 4.2. Let � be a pseudo-Anosov 
ow almost transverse to a foliation F in M3 closed with

F having hyperbolic leaves. Suppose there is a leaf L of eF and l a ray in a leaf of e�s
L so that l does

not limit in a single point in @1L. Then F is an R-covered foliation. Similarly for rays of e�u
L

Proof. We assume at the start that F is not R-covered. Let � positive so that if p in fM is less than

� from a leaf F of eF , then the 
ow line through p intersects F less than 2� away from p. Let l be

a ray in e�s
L. Because F and � are transverse, L is properly embedded in fM and leaves of e�s are

properly embedded, it follows that l is a properly embedded ray in L. Therefore it can only limit in

@1L. Suppose that l limits on 2 points a0; b0 in @1L. Fix p a basepoint in L.
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Since l limits in a0; b0, there are compact arcs li of l with endpoints which converge to a0; b0
respectively in L[ @1L and so that the distance from li to p in L converges to in�nity. Also we can

assume that the li converges to a segment v in @1L, where v connects a0; b0. This is in the Hausdor�

topology of closed sets in L [ @1L, which is a closed disk.

The key idea is to bring this situation to a compact part of fM . Choose a sequence pi a bounded

distance from points in lki so that that pi converges to a point a in the interior of v. The bound

depends on the sequence. Up to subquence assume that there are convering translations gi in �1(M)

so that gi(pi) converges to a point p0 in fM .

We claim that the set of points obtained as above projects to a sublamination of F . Clearly if

gi(pi) converges to p0 and q is in the same leaf L0 of eF as p, then the distance from p0 to q is �nite

and there are qi in L with dL(qi; pi) bounded and gi(qi) converging to q. Also qi converges to a in

@1L. In addition if a sequence of such limits cj converges to c0 then a diagonal process shows that

c0 is also obtained as a single limit. This proves the claim. We extract a minimal sublamination L.

A leaf F of eF is isometric to the hyperbolic plane. A wedge W in F with corner b and ideal set

an interval B � @1F is the union of the rays in F from b with ideal point in B. The angle of the

wedge is the angle that the boundary rays of W make at b. For any such sequence pi as above, then

the visual angle at pi subintended by the arc v in @1L grows to 2�. Therefore the angle of wedge

with corner pi and ideal set @1L� v converges to 0. This is called the bad wedge.

Assume up to subsequence that gi(pi) is converging to p0 in a leaf L0 of eF and that the directions

of the bad wedges with corners gi(pi) in gi(L) are converging to the direction r0 of L0. Let c be the

ideal point of r0 in @1L0.

Suppose �rst that �(L0) is not compact � we shall see brie
y that this is in fact always the

case. Thurston's theorem shows that the set of two sided contracting directions (or � non expanding

directions) in L0 is dense in @1L0. We will use these to transport a lot of the structure of e�s
L0

to

nearby leaves. Choose s0; s1 to be rays in L0 de�ning contracting directions (or � non expanding

directions) very near r0 so that together they form a small wedge W in L0 with corner p0. There is

an interval of leaves near L0 so that any such leaf V is less than � away from s0; s1. Then a 
ow line

of e� through any point in s0 or s1 intersects V less than 2� away. So s0 
ows to a curve in V , where

we can assume it has geodesic curvature very close to 0, if � is suÆciently small. It is therefore a

quasigeodesic with a well de�ned ideal point. The same happens for s1 and the 
ow images u0; u1 of

s0; s1 in V de�ne a generalized wedge W 0 in V . The ideal points e0; e1 of u0; u1 are close and bound

an interval I which is almost all of @1gi(L).

By construction gi(l) is a ray which limits in an interval of @1gi(L) which contains I in its interior

if i is big enough. There are then subarcs �j of gi(l) with endpoints aj ; bj in u0; u1 respectively so

that aj converges to e0 and bj converges to e1 and �j converges to I, see �g. 5. Here i is �xed and

j varies. Since aj ; bj are in u0; u1 then they 
ow (by e�) to points in L0. The images in L0 are in

the same leaf of e�s. By proposition 3.2 these images are in the same leaf of e�s
L0
. Hence the whole

segment �j 
ows into L0.

The point p0 
ows into p0 in gi(L) under the 
ow. The arc �j together with subarcs or u0; u1
from aj ; bj to p

0 bound a disc Dj in gi(L). The arguments above show that the boundary of Dj 
ows

into L0 producing a curve in L0 bounding a disc Bj . The segments of e� connecting points in @Dj

to points in @Bj produce an annulus Cj. Then Dj [Cj [Bj is an embedded sphere in fM and hence

bounds an embedded ball. Since orbits of e� are properly embedded in fM , it follows that all orbits

of e� intersecting Dj will also intersect Bj. Hence there is product 
ow in this ball. Since this is true

for all j then the union of the Dj 
ows into L0. The union of the Dj is the closure of gi(L) �W 0.

The image is contained in the closure of L0 �W in L0 � call the closure J .

We claim that the image is in fact J . All the �j are in the same leaf of e�s and hence all their
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Figure 5: Transporting the structure between leaves gi(L) and L0.


ow images in L0 also are. Since rays of e�s
L0

are properly embedded in L0 then when j converges

to in�nity the images of �j in L0 escape compact sets. This shows the claim. Therefore the 
ow

produces a homeomorphism between the closure of L0 �W and the closure of gi(L) �W 0. Clearly

the same is true for any leaf in the interval associated to the contracting (non expanding) directions

s0; s1. In particular we have the following conclusions:

Conclusion � In any limit leaf L0 with a limit direction r0 of bad wedges the following happens:

Let c be the ideal point of r0 and A a closed interval of @1L0 � fcg. Then there is a leaf l of e�s
L0

with compact subsegments li so that the endpoints of li converge to the endpoints a; b of A and

li converges to A. In particular li escapes compact sets. There are also subsegments vi with both

endpoints converging to a and so that vi converges to sets in @1L0 which contain A. Finally for

suÆciently near leaves there is a wedge in L0 which forms a product 
ow region with these nearby

leaves.

To get the second assertion above just follow l beyond the endpoint of li near b until it returns

near a again. As a preliminary step to obtain theorem 4.2 we prove the following:

Lemma 4.3. Either F is R-covered or for any limit gi(pi) converging to p0, the distinguished di-

rection of the bad wedge associated to gi(pi) converges to a single direction at p0. In the second case

this direction varies continuously with the leaves in eL.
Proof. Suppose there are subsequences qi; pi converging to points in (interior) v with gi(pi); hi(qi)!

p0 2 L0 2 eF , but the directions of the wedges converge to r0; r1 distinct geodesic rays in L0. We will

�rst show that there is an interval of leaves of eF so that the 
ow e� is a product 
ow in this region.

Using the limit direction r0 we produce a wedge W in L0 so that the closure of L0�W is part of

a product 
ow region with nearby leaves of eF . Using the other limit direction r1 we produce a 
ow

product region associated to another wedge region W� disjoint from W � p0. Together they produce

a global product structure of the 
ow in a neighborhood of L0.

This shows that there is a neighborhood N of L0 in the leaf space of eF so that the 
ow is a

product 
ow in N . In particular there is no non Hausdor�ness of eF in this neighborhood. This is a

very strong property as we shall see below. It implies a global product structure of the 
ow.

Notice that the structure of e�s
gi(L)

in gi(L)�W 0 
ows over to L0. In particular there are many

rays of e�s
L0

which do not have a single limit in @1L0. This implies that �(L0) is not compact. This

is because Levitt [Le] proved that given any singular foliation with prong singularities in a closed

hyperbolic surface R, then the rays of the lift to eR all have unique limit points in the ideal boundary.

This shows that the minimal lamination L is not a compact leaf and hence it has no compact leaves.
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Consider the neighborhood N as above. Consider the translates g(N) where g runs through all

elements of the fundamental group. Let P be the component of the union containing N . It is easy

to see that the set P is precisely invariant: if g is in �1(M) and g(P ) intersects P then g(P ) is equal

to P . In addition F restricted to P has leaf space homeomorphic to R because of the product 
ow

property. We are assuming that N is open.

Suppose �rst that P is not all of fM , hence @P is a non empty collection of leaves of eF . Let C
be the projection of P to M . Then C is open, saturated by leaves of F . Notice that g(P ) does not

intersect @P for any g in �1(M) for otherwise g(P ) intersects P and so g(P ) = P . It follows that

�(@P ) is disjoint from C hence C is a proper open, foliated subset of M .

Dippolito [Di] developed a theory of such open, saturated subsets. Let C be the metric completion

of C. There is an induced foliation in C, which we will also denote by F . Then

C = V [

n[
1

Vi

where V is compact and may be all of C. Each nonempty Vi is an I-bundle over a non compact

surface with boundary, so that F is a foliation transverse to the I-�bers. Each component of the

intersection @Vi\V is an annulus (or Moebius band) with induced foliation transverse to the I �bers.

In our situation with � transverse to the 
ow, if V is not C, we can choose V big enough so that

the 
ow is transverse to F in each Vi and induces an I-�bration there.

Consider a component R of @C with lift eR a subset of @P . Suppose �rst that R is closed. We

show this is impossible, basically using holonomy. Parametrize the leaves of eF in P as Ft; 0 < t < 1

with t increasing with 
ow direction. A leaf in the boundary of P which is the limit of leaves in P

which are limiting from the positive side above has to be the limit of Ft as t goes to 0: Suppose that

S is in the boundary of P and there are xi in Fti with ti converging to t0 > 0 and xi convergint to x

in S. Then S and Ft0 are not separated from each other. For i big enough the 
ow line through xi
will intersect S and therefore this 
ow line will not intersect Ft0 . This contradicts the fact that Fto
and Fti have a 
ow product structure.

Suppose then that eR is a limit of Ft where t converges to 0. Suppose �rst that R is compact.

Suppose there are ti converging to 0 so that Fti are in
eL. Then since L is a closed subset of M it

follows that eR is in eL and so R is in L. But R is closed, contradicting the fact that L has no closed

leaves. There is then a > 0 which is the smallest a so that Fa is in eL � notice that eL has leaves in

P . For any g in �1(R) then g(N) \N is not empty hence g(N) = N . It follows that g(Fa) = Fb for

some b. If b is not a then by taking g�1 if necessary we may assume that b < a. But as Fb is in eL,
this contradicts the de�nition of a. Hence g(Fa) = Fa for any g in �1(R). This implies that �(Fa) is

a closed surface, again contradiction.

We conclude that R is not compact, hence it eventually enters some Vi (the point here is that V

is not C). The 
ow restricted to any component of @Vi \ C goes from one component to the other

in the annulus. This implies that all �(Ft) intersect this annulus. There is then a leaf B of L which

enters Vi. Going deeper and deeper in this non compact I-bundle will produce a limit point which

is not in C. This shows the very important fact that L is not contained in C and therefore

E = L \ (M � C) 6= ;

In addition E is not equal to L since L has leaves in C and (M � C) is closed. Hence E is a non

trivial, proper sublamination of L. This contradicts the fact that L is a minimal lamination.

This shows that the assumption P 6= fM is impossible. Hence P = fM , which implies the 
ow e�
produces a global product picture of eF and in particular F is R-covered.
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This shows that if F is not R-covered, then the limits of the bad wedges are unique directions

in the limit leaves. It also shows that they vary continuously from leaf to leaf, for otherwise one

obtains bad wedges in very near leaves which have de�nitely separated directions. The same proof

above then applies. This �nishes the proof of lemma 4.3

Continuation of the proof of theorem 4.2

We continue the proof of the theorem, assuming that F is not R-covered. By the previous lemma

we know that limit directions of bad wedges are unique and they vary continuously in leaves of eL.
These unique directions are distinguished in their respective leaves.

We �rst show that any complementary region of L (if any) is an I-bundle with a product 
ow.

Lift to a double cover if necessary to assume that M is orientable. Assume this is the original

foliation F , 
ow �, etc.. Let Z be a leaf of eL. Since Z has a distinguished ideal point, then the

fundamental group of �(Z) can be at most Z. Since there is a transverse 
ow and M is orientable

this implies that �(Z) is either a plane or an annulus.

Let U be a complementary region of L with boundary leaves R1; R2; R3, etc.. As explained before

the completion of U has a compact thick part and the non compact arms which are in thin, I-bundle

regions. Suppose �rst that R1 is a plane. There is a big disk D so that R1 �D is contained in the

thin arms and 
ows across U to another boundary components of U . By connectedness it 
ows into

a single boundary component R2 of U . Then @D 
ows into a curve 
 in R2 which is null homotopic

in M . The 
ow segments in M produce an annulus C in the completion of U . Since F is Reebless

then 
 bounds a disk D0 in R2 and so R2 is a plane. The union D [ C [D0 is an embedded sphere

in M which bounds a ball B. Since orbits of e� are properly embedded in fM , it follows that the 
ow

has to a product 
ow in B as well. This shows that 
ow is a product in the completion of U .

Suppose now that each Ri is an annulus. Let F be a lift of R1 to fM with F in the boundary

of a component eU of ��1(U). In R1 there are two disjoint open annuli A1; A2 contained in the thin

arms so that B = R1 � (A1 [ A2) is a closed annulus in the core. Then A1; A2 
ow into two annuli

leaves R2; R3 in the boundary of U . Lifting to F = eR1 we see leaves of e�s
F limiting in an interval of

@1F with very small complement (near the distinguished ideal point of F ). This implies they will

have points in the lifts eA1; eA2 of A1; A2 to F . This shows that eA1; eA2 are in the same leaf of eF .
This implies that R2 = R3. In the same way a half of the in�nite strip eB 
ows into eR2. Since B is

compact, then all of B 
ows into R2. This implies that the region U is an I-bundle. It is also easy

to show that the 
ow is a product in this I-bundle.

This implies that we can collapse this complementary region along 
ow lines to completely elim-

inate it. This is because even in the universal cover we are eliminating product regions of the 
ow

and the asymptotic behavior is stil preserved in the remaining regions. This can be done to all

complementary regions and therefore we can assume there are no complementary regions, that is

L = F or that F is minimal.

Suppose now that F is not R-covered. Let F1; F2 be leaves of eF which are not separated from

each other. Consider leaves F of eF which are very close to points in both F1 and F2. As stated in

the conclusion in the beginning of the proof of this theorem, there is a wedge of F which 
ows into

F1 and similarly for F2. Hence there are half planes E1; E2 of F which 
ow into F1; F2. As F1; F2

are not separated this implies that E1; E2 are disjoint. Fix a point w in F and a big enough radius

r so that the disk D of radius r around w intersects both E1; E2. Again as seen in the conclusion

above there is an arc l in a leaf of e�s
F so that both endpoints of l are outside D and in E1 and so

that l is entirely outside D and as seen from p the visual measure of l is almost 2�. This implies that

l intersects E2. Since the endpoints of l are in E1, which 
ows to F1, then proposition 3.2 implies

that the whole arc l 
ows into F1. The points of l in E2 will also 
ow to F2. This is a contradiction.
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This contradiction shows that F has to be R-covered and �nishes the proof of theorem 4.2

Theorem 4.4. Let F be an R-covered foliation and � be a pseudo-Anosov 
ow almost transverse

to F . Then � is in fact transverse to F . In addition for any leaf F of eF and for any ray l in e�s
F it

converges to a unique ideal point in @1F .

Proof. If � is not transverse to F , let �� be an almost pseudo-Anosov 
ow which is transverse to F

and is a blow up of �. There is 
ow annulus A of �� with closed orbits 
1; 
2 in the boundary, so

that A blows down to a single orbit of �.

The foliation induced by F in A has leaves which spiral to at least one boundary component

� which they do not intersect. Lifting this picture to the universal cover one obtains an orbit ofe��

which does not intersect every leaf of eF . This means that the 
ow e��

is not regulating for eF
[Th2, Th4]. We also say that �� does not regulate F . In [Fe11] we analysed a similar situation

and proved the following: if 	 is a pseudo-Anosov 
ow transverse to an R-covered foliation and 	

is not regulating, then 	 is an R-covered Anosov 
ow. The same arguments work with an almost

pseudo-Anosov 
ow transverse to an R-covered foliation. This shows that �� is anR-covered Anosov


ow and has no (topological) singularities. In particular �� is equal to �, that is the original 
ow is

already transverse to F . This proves the �rst assertion of the theorem.

Assume by way of contradiction that there is L0 in e�s and l in e�s
L0 which does not converge to

a single point in @1L
0. As in the proof of theorem 4.2 we construct a minimal sublamination L of

F such that: for every L in eL there is an ideal point u in @1L so that for every closed segment J

in @1L� fug there is a ray l of e�s
L which has subsegments limiting to J .. As shown in the proof of

theorem 4.2, L cannot be a compact leaf.

Suppose �rst that every leaf of F is a plane. Then Rosenberg [Ros] proved that M is the 3-

dimensional torus T 3. This manifold is a Seifert �bered space. In this case Brittenham [Br1] proved

that an essential lamination is isotopic to one which is either vertical (a union of Seifert �bers) or

horizontal (transverse to the �bers). So after isotopy assume L has one of these types. If L has a

vertical leaf B, then geometrically it is a product of the reals with the circle. Hence it is an Euclidean

leaf and in the universal cover it has polynomial growth of area. If L has a horizontal leaf B, then

because the �bration is a product, there is a projection to a T 2 �ber, which distorts distances by a

bounded amount. Again the same growth properties hold. But the leaves of F are hyperbolic, which

is a contradiction. We conclude that M cannot be T 3.

Let then F in eL with �(F ) not simply connected. Let g in �1(M) non trivial with g(F ) = F

and � be the axis of g in F . At least one ideal point of �, call it u, is not the direction of a �xed

limit of bad wedges. Then as explained before there is a ray l of e�s
F and segments li of l, bounded

by ai; bi both points in �, so that li escapes compact sets and converges to a non trivial segment in

@1F . We may assume that li \ � = fai; big and also that all li are in the same side of �. Let e0 be

the translation length of g in F .

If the distance from ai to bi along � is bigger than e0 then this produces a contradiction as follows:

There is an integer n so that gn(ai) is in the open segment (ai; bi) of � and and gn(bi) is outside of

the closed segment [ai; bi]. Since the arc li only intersects � in ai; bi, then li, together with [ai; bi]

bounds a closed disk in F and gn(ai) is in (ai; bi). But g
n(bi) is outside and g

n(li) is also on this side

of �, so this produces a transverse self intersection of e�s
F . If g

n(li) is contained in the leaf v which

contains li, then gn(v) = v and this produces in�nitely many singularities in v, which is impossible.

Hence gn(li) is not in v and the transverse intersection is impossible. The same arguments deal with

the case that li intersects � in other points besides ai; bi.

We conclude that the distance in � from ai to bi is bounded. Up to subsequence we may assume

there are integers ni so that gni(ai) converges to a0 and gni(bi) converges to b0, both limits in � of
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course. Since the lengths of gni(li) are converging to in�nity, it follows that a0; b0 are not in the same

leaf of e�s
F . By proposition 3.2 it follows that a0; b0 are not in the same leaf of e�s. But for each i,

the pair of points gni(ai); g
ni(bi) is in the same leaf of e�s. This implies that the leaf space of e�s is

not Hausdor�.

First of all this implies that � is regulating for F , for otherwise the aforementioned result from

[Fe11] shows that � is an R-covered Anosov 
ow � in particular e�s has Hausdor� leaf space. Also

by theorem 2.6 the fact that e�s has non Hausdor� leaf space implies that there are closed orbits �; �

of � so that � is freely homotopic to the inverse of �. Let h be a covering translation associated

to � and e�, e� lifts of �; � to fM which are left invariant by h. Without loss of generality assume

that h acts in e� sending points forwards. As � �= ��1 this implies that h acts on e� taking points

backwards. But since both of them intersects all leaves of eF (by the regulating property) then as

seen from e� the translation h acts increasingly in the leaf space of eF , with opposite behavior when

considering e�. This is a contradiction, which shows that this cannot happen. This �nishes the proof

of theorem 4.4.

Remark - Group invariance and compactness ofM are both essential here. For example start with a

nicely behaved singular foliation of H2, so that all rays converge. It could be a foliation by geodesics

or for instance the lift of the stable singular foliation associated to a suspension. Fix a base point p.

Now rotate the leaves at a distance d of p by an angle d. In this situation all rays limit in all points

of @1L, in fact they spiral inde�nitely into it. Another operation is to �x a ray through p and then

distort the rest more and more one way and the other way. Here we have the leaves getting closer

and closer to segments in @1F which are complementary to the ideal point associated to the ray.

5 Properties of leaves of e�s
F ;
e�u
F and their ideal points

In this section � is an almost pseudo-Anosov 
ow transverse to a foliation F . As in the previous

section there is no restriction on M here. In the previous section we proved that for any ray r of

a leaf of e�s
F or e�u

F , then it has a unique ideal point in @1F . The notation for this ideal point will

be r1. We now analyse further properties of leaves of e�s
F and their ideal points. Analogous results

hold for e�u
F .

First we want to show that if E is a �xed leaf of e�s (or e�u) then the ideal points in @1F of

rays of E \ F vary continuously with F . In order to do that we �rst put a topology on the union

of ideal boundaries of an interval of leaves. Let p in F leaf of eF and � a transversal to eF with p

in the interior. For any L in eF intersecting � , the ideal boundary is in 1-1 correspondence with the

unit tangent bundle to L at � \ L: ideal points correspond to rays in L starting at L \ � . This is a

homeomorphism. This puts a topology in

A = [ f@1L j L \ � 6= ;g

making it into an annulus homeomorphic to [ fT 1

q
eF ; q 2 �g as a subspace of the unit tangent bundle

ofM . This topology inA is independent of the choice of transversal � . The following de�nition/result

is proved in [Fe9] or [Cal1].

De�nition 5.1. (markers) Given a foliation F by hyperbolic leaves of M3 closed, then there is � > 0

so that: Let v be a geodesic ray in a leaf F so that it is associated to a contracting (or � non expanding

direction of F . For any leaf L suÆciently near F , then all the points of v 
ow into L and de�ne a

curve denoted by vL. Then vL has a unique ideal point denoted by aL. The union m of the aL is
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Figure 6: Leaf in wedge de�ned by markers.

called a marker and is a subset of A = [ f@1Lg. Then m is an embedded curve in A in the topology

de�ned above.

In addition the markers are dense in A in the following sense: Let z in @1F and ai; bi in @1F

which are in markers associated to contracting (non expanding) directions on a �xed side of F .

Suppose that the sequence of open intervals (ai; bi) in @1F contains z and converges to z as i

converges to in�nity. Let �i; �i be the markers in that side of @1F containing ai; bi respectively.

Let Li in eF be a sequnence of leaves converging to F and on that side of F so that @1Li intersects

both �i and �i. In the annulus A of circles at in�nity, consider the rectangle Ri bounded by (ai; bi)

in @1F , the parts of �i; �i between @1F and @1Li and the small segment in @1Li bounded by

@1Li \ �i and @1Li \ �i. Then the sets Ri converge to z as i converges to in�nity. This is proved

in [Fe9].

From now on the � is chosen small enough to also satisfy the conclusions of the de�nition above

and also that any set in fM of diameter less than 10� is in a product box of eF and e�. Given a curve �

in a leaf F with starting point p and limiting on a unique point q in @1F , let �
� denote the geodesic

ray of F with same starting and ideal points.

Lemma 5.2. Let E be a leaf of e�s and p the starting point of the ray r of E \ F . Assume that r

does not have any singularity. For any L near F , then E \L has a ray rL which is near r. The ideal

points of rL in @1L vary continuously with L in the topology of A de�ned above.

Proof. We do the proof for say the positive side of F . We consider r without singularity or else we

would have to check the 2 exterior rays in e�s
F emanating from p. We can always get a subray of r

which has no singularities.

Let u = r1. Choose contracting (or � non expanding) directions in both sides of u, with ideal

points very close to u. Let them be de�ned by geodesic rays r0; r1 starting at p. There is � a small


ow segment starting at p and in that side of F so that for any L intersecting � , then L is asymptotic

to F along the r0; r1 rays, or at least always � � from F . Hence r0; r1 
ow along e� to L. Let s0; s1
be the 
ow images in L. The � is also chosen small enough so that s0; s1 have geodesic curvature

very small (this � depends only on M and F). In particular the curves s0; s1 are a small bounded

distance (depending only on �) from the corresponding geodesic arcs s�
0
; s�

1
. Let the ideal points of

s0; s1 in @1L be denoted by v0; v1 and let JL be the small closed interval in @1L bounded by v0; v1.

Then v0; v1 are in the markers associated to r0; r1 respectively and so they vary continuously with

L.

Consider � = E \ L and the rays l of � starting at � \ L and containing some points which 
ow

back to points in r. It may be that � has singularities � even if r does not � but there are only

�nitely many such rays. We want to prove that the ideal point of any such is in JL. As the rectangles

Ri de�ned above converge to u in A this will prove the continuity property of the lemma.

Choose d > 0 so that outside of a disk D of radius d in F , then r is in the small wedge W of F

de�ned by r0; r1, see �g. 6. Choose � small enough so that if L intersects � , then the entire disk D



x5. Properties of leaves of e�s
F ;
e�u
F and their ideal points 26

is � near L. Let V be the closure in F of W �D. The boundary @V consists of subrays of r0; r1 and

an arc in @D. Therefore all points in @V are less than � from L and 
ow to L under e� with image

a curve 
. This curve contains subrays of s0; s1 and it is properly embedded in L. Points of F near

@V also 
ow to L so there is a unique component U of L� 
 which has some points 
owing back to

points in V . We want to show that the ray l is eventually contained in U .

Let rinit be the subarc of r between p and the last point c0 of r in D. As p and c0 
ow into L,

then proposition 3.2 shows that the entire arc rinit 
ows into L and let Æ be its image in L. As r is

singularity free, then so is Æ and hence Æ is contained in any ray l of E \L in that direction. After c0
the curve r enters V and so l must enter U after Æ. If after that the ray l exits U then it must cross

@U = 
 in some point, call it c1. But c1 
ows back to F and one can apply proposition 3.2 again in

the backwards direction to show that c1 has to 
ow to a point in r. This contradicts the choice of

c0.

This shows that l is eventually entirely contained in U and therefore l1 is a point in JL. This

shows the continuity property as desired and �nishes the proof of the lemma.

Now we have a property which will be crucial to a lot of our analysis.

Proposition 5.3. Suppose that F is not topologically conjugate to the stable foliation of a suspension

Anosov 
ow. Then the set of ideal points of rays of e�s
F is dense in @1F .

Proof. Suppose that there is F in eF so that the set of ideal points in e�s
F is not dense in @1F . Let J

be an open interval in @1F free of such ideal points. Choose pi in F , pi converging to a point in J .

The visual angle of J as seen from pi converges to 2�, so the complementary wedge Wi with corner

pi has angle which converges to zero. Up to subsequence assume that gi(pi) converges to p0 in a leaf

L of eF and the small wedges gi(Wi) converge to a geodesic ray s in L with ideal point z.

Claim � In L all the rays of e�s
L converge to z.

Suppose there is x di�erent from z which is an ideal point of a ray r in e�s
L. Then r is contained infW s(c0) for some c0 in fM and for gi(F ) suÆciently near L then fW s(c0) intersects gi(F0). Any ray offW s(c0)\ gi(F ) which is near r will have ideal point near x in the topology of corresponding annulus

A of ideal circles near @1L. This is a consequence of the previous lemma. But gi(Wi) converges to

r in this topology of A, so the sets gi(@1F � J) converge to z in A. There are no ideal points of

leaves of e�s
gi(F )

in gi(J). This contradicts the fact that the ideal points above are very near x and

proves the claim.

The proof of the proposition is similar to that of theorem 4.2. As in that theorem consider the

set of possible limits gi(pi) as above. This projects to a lamination in M and let L be a minimal

sublamination. The claim shows that each leaf of eL has a distinguished ideal point towards which

all rays of e�s
L converge. The arguments in the claim also prove that if � is a transversal to eF , then

the ideal points of leaves of eL intersecting � vary continuously in the corresponding ideal annulus.

Because of the distinguished ideal point property, then each leaf of L has fundamental group at most

Z. If needed lift to a double cover so that all leaves of F are orientable. Hence a leaf of L is either

a plane or an annulus.

Consider a complementary component U of L and a boundary leaf A of U . If A is a plane then

as in the proof of theorem 4.2, the region U is an I-bundle over A and the 
ow � is a product in U .

This region can be collapsed away.

Suppose now that A is an annulus. Assume that 
ow lines through A 
ow into U . Again we want

to show that U is a product region. As in the proof of theorem 4.2 let A1; A2 be two noncompact,

disjoint annuli in A with A�(A1[A2) a compact annulus and A1; A2 contained in the thin, I-bundle
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region. Then A1; A2 
ow entirely into leaves B and C in @U . Suppose �rst that B;C are di�erent.

Lift to the universal cover to produce lifts eU; eA; eA1; eA2; eB; eC. Then eA1; eA2 are disjoint half planes

of eA which 
ow positively respectively into eB and eC. Let g be the generator of the isotropy group

of eA, which has �xed points in z; x where z is the distinguished ideal point in eA. The argument will

show there is a leaf in e�s
eA
which also has ideal point in x, contradiction.

From a point in eA1 draw a geodesic segment of eA to a point in eA2. Let p be the �rst point of this

segment which does not 
ow positively into eB. Then �(p) is in the boundary of �( eB). Also points
in the segment near p 
ow to eB in positive time, hence there is a slice leaf l of Os(�(p)) which is in

the boundary of �( eB). Notice that every point in l is a limit of points in �(B) on that side. The

set (l�R) intersects eA in at least p: if l is contained in �( eA) then it generates a properly embedded

copy of the reals in a leaf s of e�s
eA
otherwise the part that is contained in �( eA) also does. Every

point of s is a limit of points that 
ow positively into eB. Therefore no point in s can 
ow positively

in eC or else we would have points 
owing both in eB and eC.
This shows that the leaf s of e�s

eA
is a bounded distance from the axis r of g. Iterate s by powers

of g acting with z as an expanding �xed point. The iterates gn(s) with n > 0 are all distinct. Either

they are all nested or they are disjoint. If they are not nested since they all have to be in a bounded

distance neighborhood of the axis of g and have both endpoints in z, then eventually they will have

two points which are far along the leaf, but close in eA. By Euler characteristic reasons, this would

force a center or one prong singularity, which is impossible. Hence they are nested, increasing and

they limit to a leaf of e�s
eA
which has ideal limit points in z and x. This is a contradiction. This shows

that B = C. In fact the same arguments show that all of the points in A 
ow into B, since that

happens for the complement of a compact annulus in A and then the arguments above apply here.

Hence U is a product region. Therefore we can collapse F to a minimal foliation.

As in theorem 4.2 we can then show that F is R-covered. Suppose this is not the case and let

F1; F2 be non separated leaves. Let Li in eF leaves converging to both F1; F2. Let u1; u2 be the

distinguished ideal points in @1F1; @1F2 respectively. Let a1; b1 be points in @1F1 very near u1
and on opposite sides of u1 and which are in markers associated to contracting or � non expanding

directions in F1 associated to the Li side. Let r1 be the geodesic in F1 with ideal points a1; b1.

Similarly for F2 producing a2; b2; r2. For i big enough Li is at most � far from all points in r1; r2.

Therefore r1 
ows (by e�) into a curve s1 in Li and r2 
ows into s2. This implies that s1; s2 are

disjoint in Li. Also s1 has ideal points a
0

1
; b0

1
which are in markers containing a1; b1 respectively (this

is using a transversal to eF through a point in F1). Similarly s2 has ideal points a0
2
; b0

2
in markers

containing a2; b2 (using transversal to eF through a point in F2). As s1; s2 are disjoint then a0
1
; b0

1
do

not link a0
2
; b0

2
in @1Li, see �g. 7.

The ideal point a0
1
cannot be in a marker to @1F1 and to @1F2 at the same time since they are

non separated leaves. Hence the points a0
1
; b0

1
; a0

2
; b0

2
are all distinct. Let J1 be the interval of @1Li
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bounded by a0
1
; b0

1
and not containing the other points and similarly de�ne J2. For simplicity we are

ommitting the dependence of J1; J2 on Li (or on i). Now consider E a leaf of e�s intersecting F1.

Then E \ F1 has a ray with ideal point u1, which is in the interval (a1; b1) of @1F1. The proof of

lemma 5.2 shows that if Li is close enough to F1 then the ideal points of the corresponding rays of

(E \ Li) have to be in J1. In the same way using F2 one shows that the distinguished ideal point

has to be in J2. Since J1; J2 are disjoint, this is a contradiction. This shows that F is R-covered.

Since F is R-covered then theorem 4.4 implies that � can be chosen to be a pseudo-Anosov 
ow.

Also as F is R-covered we can choose a transversal � intersecting all the leaves of eF . This shows
that the union of all the circles at in�nity has a natural topology making it into a cylinder A. This

situation of R-covered foliations is carefully analysed in [Fe9]. The fundamental group of M acts in

A by homeomorphisms. The union of the distinguished ideal points of leaves of the distinct leaves

of eF is a continuous curve � in A which is group invariant.

Suppose �rst that F admits a holonomy invariant transverse measure. Since F is minimal then

the transverse measure has full support. Under these conditions Imanishi [Im] proved that M �bers

over the circle with �ber a closed surface. In addition F is approximated arbitrarily near by a a

�bration. The pseudo-Anosov 
ow is also transverse to these nearby �brations and so the same

situation occurs for the �brations: there is a global invariant curve in the cylinder at in�nity. Since

now there are compact leaves, this is impossible.

We conclude that there is no holonomy invariant transverse measure. Therefore Thurston's

theorem shows the existence of contracting directions and not just � non expanding directions. So

the markers are associated to contracting directions. If � intersects a marker m, that corresponds to

a direction in a leaf of eF which is contracting. Under the 
ow e� this gets re
ected in the contracted

leaves nearby, that is the marker is contained in �. Since F is minimal and � is �1(M) invariant,

this shows that the entire curve � is a marker associated to contracting directions. The results from

[Fe9] apply here, in particular lemma 3.17 through proposition 3.21 of [Fe9]: they show that no other

direction in eF (outside of �) is a contracting direction. By Thurston's theorem again, there would

be a holonomy invariant transverse measure, contradiction.

Therefore � has no contracting directions. The same analysis of [Fe9] now shows that for any leaf

F in eF and every direction other than the distinguished direction, then it is a contracting direction.

In fact it is a contracting direction with any other leaf of the foliation.

This is a very interesting situation. Let aF be the distinguished ideal point of F leaf of eF .
Consider a one dimensional foliation in fM whose leaves are geodesics in leaves F of eF and which

have one ideal point aF . Let e� be the 
ow which is unit speed tangent to this foliation and moves

towards the ideal point aF .

This is a 
ow in fM . Clearly in each leaf of eF , it is a smooth 
ow. If qi in Li of eF converge to

q in L, then the geodesics of Li with ideal point aLi converge to the geodesic through q in L with

ideal point aL. This is because the ideal points aF vary continuously with F and qi converges to q

� this is the local trivialization of the union of the circles at in�nity using the tangent bundles to a

transversal. Hence e� varies continuously.
Since � is group invariant, this induces a 
ow in M , which is tangent to the foliation F . Clearly

it is smooth along the leaves of F and usually just continuous in the transverse direction.

This 
ow is a topological Anosov 
ow: the stable foliation is just the original foliation F . The

unstable foliation: Let p in leaf L of eF , let 
 be the 
ow line of e� through p. Then 
 has positive

ideal point aL and negative ideal point v. As explained above v is in a marker m which is associated

to a contracting direction and so that m intersects all ideal circles. For each F in eF , let mF be the

intersection of m and @1F . Let 
F be the geodesic in F with ideal points aF and mF . Let Ep be

the union of these 
F . Then all orbits of e� in Ep are backwards asymptotic by construction. By
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construction the Ep are either disjoint or equal as p varies in fM and they form a group invariant

foliation in fM . This is the unstable foliation. Hence � is a topologically Anosov 
ow. Notice that in

the universal cover every stable leaf intersects every unstable leaf and vice versa.

By proposition 2.8 it follows that � is topologically conjugate to a suspension Anosov 
ow. The

foliation F is then topologically conjugate to the stable foliation of this 
ow. This �nishes the proof

of this proposition.

Remark � The hypothesis is necessary. Suppose that F is the stable foliation of a suspension

Anosov 
ow, � so that it is transversely orientable. Perturb the 
ow slightly so that 
ow lines are

still tangent to the original unstable foliation of �. The new 
ow, call it � is transverse to F , it

has the same unstable foliation as � but di�erent stable foliation. The 
ow � is not regulating for

F . The intersections of leaves of e�s with leaves F of eF are all horocycles with the same ideal point

which is the positive ideal point of 
ow lines in F . So the ideal points of rays of leaves of e�s
F are

not dense in @1F . Notice these leaves are not quasigeodesics in F either. This example is studied

in detail in section 7 of [Fe11].

Now we want to study metric properties of slices of leaves of e�s
F . The best metric property such

leaves could have is that they are quasigeodesic: this means that length along the curve is at most a

bounded multiplicative distortion of length in the leaf F of eF [Th1, Gr, Gh-Ha, CDP]. If the bound

is k then we say the curve is a k-quasigeodesic. Since F is hyperbolic this would imply that such

leaves (the non singular ones) are a bounded distance from true geodesics. Very unfortunate for us,

this is not true in general. But there are still some good properties.

Let Hs be the leaf space of e�s and Hu be the leaf space of e�u. Clearly since Hs may be non

Hausdor�, it could be that some e�s
F does not have Hausdor� leaf space. This easily would imply that

the slices of e�s
F are not uniformly quasigeodesic [Fe2]. This in fact occurs, see Mosher [Mo1, Mo3].

Still it could be that given a ray in e�s
F , it is a quasigeodesic � with the quasigeodesic constant

depending on the particular ray. We are not able to prove this and we cannot conjecture what

happens in generality. But we are able to prove a weaker property, which will be enough for our

purposes. If r is a ray in a leaf of e�s
F , recall that r

� is the unique geodesic ray in F with same

starting point as r and same ideal point. We would like to prove that r; r� are a bounded distance

apart, but we do not know if that is true. But we can prove the following important property:

Lemma 5.4. There is Æ0 > 0 so that for any F in eF and any ray r in a leaf of e�s
F , then given any

segment of length Æ0 in r�, there is a point in this segment which is less than Æ0 from r in F . That

implies that r� is in the neighborhood of radius 2Æ0 of r in F .

Proof. This means that r� � N2Æ0(r) in F . We do not know if the converse holds. Suppose the

lemma is not true. Then there are Fi leaves of eF , ri rays of e�s
Fi

and pi in r�i so that B2i(pi) (in Fi)

does not intersect ri. There is one side of r
�

i in Fi so that ri goes around that side, see �g. 8, a. Let

qi inside a half disk of B2i(pi) with Bi(qi) tangent to r
�

i and @B2i(pi), see �g. 8, a.

As usual up to subsequence there are gi in �1(M) with gi(qi) converging to q0 in L leaf of eF and

so that the geodesic segments �i from gi(qi) to gi(pi) in Fi converge to a geodesic ray s in L. Choose

two markers with points u0; u1 in @1L very close to s1 and on opposite sides of it. The markers

are associated to the side of L where the gi(Fi) are limiting to. Let s0; s1 be the geodesic rays of L

starting at q0 and with ideal points u0; u1. For i big enough gi(Fi) is � close to both s0 and s1 and

so these two rays 
ow (under e�) to curves s0
0
; s0

1
in gi(Fi). The ideal points u

0

0
; u0

1
of s0

0
; s0

1
are in the

markers above.

For i big enough the ray gi(ri) has a subray which goes around gi(Bi(qi)) in gi(Fi) and has ideal

point in the small segment of @1gi(Fi) de�ned by u0
0
; u0

1
, see �g. 8, b. Since s0

0
; s0

1

ows back to L
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Figure 8: a. Limits of points, b. Going around disks in Fi, c The picture in L.

this �gure 
ows back to L producing a ray li of e�s
L which goes around a big disk in L centered at

q0 and has ideal point in the small segment bounded by u0; u1, see �g. 8, c. As i goes to in�nity,

these li escape to in�nity in L because bigger and bigger disks in gi(Fi) 
ow to L. This implies that

there is no ideal point of a ray of e�s
L outside the small segment of @1L bounded by u0; u1. This

contradicts the previous proposition that such ideal points are dense in @1L.

This �nishes the proof of the lemma.

Lemma 5.5. The limit points of rays of e�s
F vary continuously in @1F except for the non Haus-

dor�ness in the leaf space of e�s
F .

Proof. Suppose that pi converges to p in F , with respective rays ri converging to the ray r of e�s
F . Let

l be the leaf of e�s
F through p. Up to subsequence assume the ri are all in the same sector of l de�ned

by p and that they form a nested sequence of rays. Then the ideal ponts (ri)1 form a monotone

sequence in @1F . Perhaps some ideal points are the same. If (ri)1 does not converge to r1 there

is an interval v in @1F , between the limit and r1. Since the ideal points are dense in @1F , there

is w leaf of e�s
F with w1 in v. Therefore there is l0 not separated from l with ri converging to l0 as

well. In this fashion we can go from l to l0. This shows that if there is no leaf of e�s
F non separated

from l in that side and in the direction the rays ri go, then the limit points vary continuously.

We analyse a bit further the non Hausdor�ness. In the setup above there are subrays of ri with

points converging to a point in l0 and we can restart the analysis with l0 instead of l. If there are

�nitely many leaves non separated from l and l0 we can assume that l; l0 are consecutive. Then they

have subrays which share an ideal point. If m is the last leaf non separated from l; l0 in the direction

the rays ri go to, then there is a ray � of m so that there are subrays of ri with points converging to

a point in � and (ri)1 converges to �1. If there are in�nitely many such leaves non separated from

l, then we can order them as fljg; j 2 N all in the direction the rays ri go to. The ideal points of

lj form a monotone sequence in @1F which converge to a point u in @1F . The arguments above

show that (ri)1 converges to u.

Our next goal is to analyse the non Hausdor�ness in the leaf space of e�s
F and identi�cation of

ideal points. We want to understand when can two ideal points of the same leaf of e�s
F be identi�ed.

A Reeb annulus is an annulus A with a foliation so that the boundary components are leaves and

every leaf in the interior is a topological line which spirals towards the two boundary components

in the same direction. In the universal cover the lifted foliation does not have Hausdor� leaf space.

The lifted foliation to the universal cover is called a Reeb band. A spike region in a leaf F of e�s is

a closed e�s
F saturated set E so that there are �nitely many boundary leaves which are line leaves of
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e�s
F . The ideal points of consecutive rays in the boundary are the same, otherwise they are distinct

(like an ideal polygon). In addition the region is a bounded distance from the ideal polygon with

these vertices. The bound is not universal in eF . There is an ideal point z of E so that every leaf in

the interior of E has both ideal points equal to z. In addition the leaves in the interior are nested.

Finally, the �nitely many leaves in the boundary are all non separated from each other and they are

limits of the interior leaves.

Proposition 5.6. Let E be a leaf in eF and � a slice of a leaf �0 of e�s
E. Suppose that both ideal

points of � are the same. Then � is contained in a spike region B of E. In addition either B projects

to a Reeb annulus in a leaf of F or for any two consecutive rays in @B, the region between them

projects to a set asymptotic to a Reeb annulus in a leaf of M .

Proof. Let � be a slice as above with ideal point x� in @1E. Let C be the region bounded by � in

E which only limits in x. We may assume that � is a line leaf of �0, since any prong of �0 which

enters C will have ideal point x. We will show that the region C as it approaches x, projects to a

set in M which limits to a Reeb annulus in a leaf of F . The process will be done in a series of steps.

The proof of this proposition is very long with several intermmediate results and lemmas.

Choose z0 in � and let e1; e2 be the rays of � de�ned by z0. Let �� be the geodesic ray of E

starting at z0 and with ideal point x. Then �� is in contained in the 2Æ0 neighborhood of e1 or e2,

where Æ0 is the constant of lemma 5.4. It follows that we can choose pi; qi in e1; e2 respectively with

pi; qi converging to x in E [ @1E and also dE(pi; qi) < 4Æ0. Let ei
1
be the subray of e1 starting at

pi and ei
2
the subray of e2 starting at qi. As usual up to subsequence there are gi in �1(M) with

gi(pi), gi(qi) converging to p0, q0 respectively, where p0; q0 are points in a leaf F of eF . Then gi(E)

converges to F and perhaps other leaves as well.

For i big enough the 
owlines of e� through gi(pi); gi(qi) go through to ui and vi in F . Also

ui ! p0; vi ! q0. If the leaf of e�s
F through p0 contains q0 then for i big enough the arcs in leaves

of e�s
F from ui to vi will have bounded length and bounded diameter. The same will happen for the

arcs of of gi(�) between gi(pi) and gi(qi), contradiction. Hence p0; q0 are not in the same leaf of e�s
F .

Let l be the leaf of e�s
F through p0 and r be the one through q0. Let L;R leaves of e�s containing

l and r respectively. Since the intersection of a leaf of e�s with F is connected, then L and R are

distinct and also are not separated from each other in the leaf space of e�s.

The �rst goal is to show that we can choose l; r line leaves of e�s
F as above so that they also share

an ideal point. Let �i be a ray in the leaf of e�s
F through ui starting at ui and containing points in

the 
owlines through to the ray gi(e
i
1
). Similarly let 
i be a subray in the same leaf starting at vi and

associated to the ray gi(e
i
2
). Let C1 (resp. C2) be the collection of line leaves of e�s

F that �i (resp.


i) converges to, including the ray of l (resp. r). Let C be the collection of all line leaves of e�s
F

which are non separated from l; r. Then C contains C1 and C2. For any element � in C it is contained

in a leaf B(�) of e�s. All of the B(�) are not separated from each other, and they are in the set of

leaves B of e�s non separated from both L;R. By theorem 2.6, the set B has a linear order, making

it order isomorphic to either Z or a �nite set. This induces an order in C where we can choose this

so that an arbitrary element of C1 is bigger than any element in C2.

If there are �nitely many elements in C1 let l
0 be the last one and let �1 be the ideal point of the

ray of l0 corresponding to the direction of the rays �i. Otherwise the ideal points of the leaves in C1
form a weakly monotone sequence in @1F and let �1 be the limit of this sequence. Similarly de�ne

�2 associated to r, see �g. 9, a. The �rst thing to prove is the following:

Lemma 5.7. �1 = �2.
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Figure 9: a. Non Hausdor�ness in the limit, b. Showing �1 = �2.

Proof. Suppose by way of contradiction that this is not true. Choose 2 markers very near �1 bounding

an interval J1 in @1F with �1 in the interior and similarly choose markers near �2 and interval J2 so

that J1; J2 are disjoint. Let W1 be the wedge of F centered at a point x0 with ideal set J1 and W2

the wedge of F centered also at x0 with ideal set J2. For i big enough both boundaries of W1 and

W2 
ow into gi(E).

Suppose �rst that there is a last leaf l0 in C1. Then l0 has a ray which is eventually contained in

a strictly smaller subwedge W 0

1
of W1 � since its ideal point is �1. Now choose a big disk D of F

centered in x0 . Let N1 be the closure of W1�D. Choose D big enough so that l0 enters N1 through

@D and is then entirely in W 0

1
. For i big enough �i will be close to l

0 for a long distance. By lemma

5.5 the ideal points of �i converge to �1 as i converges to in�nity, since l
0 is the last leaf non separated

from l in that side. The ideal point is in the limit set of the subwedge W 0

1
. If the rays �i keep exiting

W1 then since they are trapped by l0 and �i0 (for some i0), they will have to intersect a compact

part of @W1. Then the sequence f�ig has additional limits besides the leaves in C1, contradiction.

Therefore for big enough i, the �i enters N1 through @D and stays in N1 from then on.

We want to get the same result when C1 is in�nite. In that case let f�j ; j 2 Ng be the leaves in

C1 ordered with same ordering as in C1 and �1 = l. Since these leaves are non separated from each

other then they cannot accumulate anywhere in F and the leaves �j escape compact sets as j grows.

The ideal points of �j are also converging to �1. By density of ideal points of e�s
F in @1F the leaves

�j cannot be getting closer to non trivial intervals in @1F . This implies that there is j0 so that for

j � j0; �j is very close to �1 in F [ @1F

and so contained in W 0

1
. Now an argument entirely similar as in the case C1 �nite implies that for i

big enough then �i has subrays entirely contained in N1. The same holds for 
i producing subrays

entirely contained in the corresponding set N2 � the disk D may need to be bigger to satisfy all

these conditions.

There is a1 > 0 and i0 so that for i � i0 then except for the initial segment of length a1 then �i
is entirely contained in N1 and similarly for 
i and N2. Choose k0 big enough so that D is � close

to gk(E) for any k � k0. Then D 
ows in gk(E) and so do @W1; @W2. For i bigger than both i0; k0
the ray �i 
ows into the ray gi(e

i
1
) (notice these do not have singularities). The ray gi(ei

1
) has to

be in the generalized wedge which is bounded by the image of @W1 in gi(E). Similarly for 
i. This

argument is done in lemma 5.2. These two generalized wedges have disjoint ideal sets in @1gi(E).

Therefore gi(e
i
1
) and gi(e

i
2
) do not have the same ideal points. This is a contradiction because e1; e2

have the same ideal point in @1E.

This proves that �1 = �2.

Continuation of the proof of proposition 5.6
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The fact �1 = �2 implies that the ideal points of �i; 
i are all the same and equal to �1. Let

� = �1. Let � be the geodesic ray in F starting at x0 with ideal point �. Since (�i)1 = (
i)1 = �,

then lemma 5.4 implies that for z in � far enough from p0, there are bi(z) in �i and ci(z) in 
i both

of which are less than 2Æ0 away from z in F . This is for any i in N. So up to subsequence we assume

bi(z) converges to b(z) and similarly ci(z) converges to c(z). By de�nition of C1 the point b(z) has

to be in one of the leaves of C1 and similarly for c(z).

Lemma 5.8. There is one element � of C1 which has ideal point �.

Proof. If there are �nitely elements in C1 then the last one satis�es this property. Suppose then there

are in�nitely many elements in C1. As z varies in �, then so does b(z). If there are z escaping in �

so that b(z) is in the same element � of C1 then � has an appropriate ray with ideal point �. In this

case we are done.

Otherwise we can �nd zk in � converging to � so that b(zk) are in leaves �i(k) of C1 which are

all distinct. We can choose zk so that the i(k) increases with k. In the same way we have c(zk) in

elements of C2. Let

Bk = fW s(b(zk)); Ck = fW s(c(zk)); both in B

Recall that B is the set of leaves of e�s non separated from both L;R. Since the length from b(zk) to

c(zk) in F is bounded by 4Æ0, then up to subsequence assume �(b(zk)); �(c(zk)) converge in M . For

i; k big enough there is hik covering tranlation so that hik(b(zi)) is very close to b(zk) and hik(c(zi))

is very close to c(zk). Suppose i >> k, let h = hik for simplicity. Then Bk has a point b(zk) very

close to h(b(zi)) 2 h(Bi) and similarly for c(zk) in Ck very close to h(c(zi)) 2 h(Ci). Since Bk is non

separated from Ck and similarly for h(Bi); h(Ci), then the only way this can happen is that

h(Bi) = Bk; h(Ci) = Ck

This implies that h sends the set of leaves non separated from Bi; Ci to itself, that is h acts on the

set C and therefore acts on B as well. Notice that Bk < Bi in the order of B because i > k and

Ck � Ci (the Ck could be all the same, but if they are not then they decrease in the order). Since

h(Bi) = Bk then h acts as a decreasing translation in the ordered set B. But since h(Ci) = Ck then

h acts as a non decreasing translation. These two facts are incompatible.

This implies that we have to have at least one element in C1 with ideal point �. The same happens

for C2. This �nishes the proof of the lemma.

Since �i also converges to � we can rename the objects and assume that l = � and p0 is a point

in l. This changes the points pi in the ray e1. Similarly do the same thing in the other direction.

We state this conclusion:

Conclusion � There are pi; qi in e1; e2 respectively, escaping these rays, so that dE(pi; qi) < 4Æ0 and

there are covering translations gi so that: gi(pi) converges to p0, gi(qi) converges to q0, both in F

and in rays l; r of e�s
F . Also l; r converge to the same ideal point � in @1F .

We will continue this perturbation approach. We want to show that the region in F \between" l

and r projects to a Reeb annulus of F in M . Let then zi in l converging to � and wi in r converging

to �, so that dF (zi; wi) is always less than 4Æ0. Up to subsequence assume there are hi covering

translations with

hi(zi)! z0; hi(wi)! w0
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Notice that hi(L); hi(R) are non separated from each other and hi(L)! fW s(z0); hi(R)! fW s(w0).

The argument in the previous lemma then implies that hi(L) = hj(L); hi(R) = hj(R) for all i; j at

least equal to some i0. Discard the �rst i0 terms and postcompose hi with (hi0)
�1 (that is (h�1

i0
Æhi)),

to assume that hi(L) = L; hi(R) = R for all i. So the hi are all in the intersection of the isotropy

groups of L and R. This group is generated by a covering translation h. Therefore there are ni
with hi = hni . Since hi(zi) ! z0 and the fzi; j i 2 Ng do not accumulate in fM then jnij ! 1.

In addition since L;R are not separated from each other, then h preserves each individual line leaf,

slice and possible lift annulus of L.

Up to subsequence and perhaps taking the inverse of h, assume that ni converges to 1. If

h(F ) = F , then since h(L) = L this produces a closed leaf in �(F ). Similarly h(R \ L) = R \ L

so produces another closed leaf in F and together bound an annulus with a sequence of leaves

converging to the boundary leaves. By Euler characteristic reasons, there can be no singularities

inside the annulus, so we conclude that the annulus in �(F ) has a Reeb foliation.

Let H be the leaf space of eF . This is a one dimensional manifold, which is simply connected,

but usually not Hausdor� [Ba2]. The element h acts on H. An analysis of group actions on simply

connected non Hausdor� spaces was done in [Ro-St] or [Fe10]. One possibility is that h acts freely

in H. Then h has an axis � in H which is invariant under h. In general this axis is not properly

embedded, see [Fe10]. Since all the hni(F ) intersect a common transversal, then F has to be in the

axis of h and hn(F ) converges to a collection of non separated leaves. In this case we get that F �

and h(F �) are non separated from each other.

The other situation is that h has �xed points in H. In general the set of �xed points of H is not

a closed set, but the set of points z in H so that z and h(z) are not separated in H is a closed subset

Z of H. None of the images of F under h can be in Z, so F is in a component of H � Z. Then h

permutes these components. In addition h preserves an orientation in H � since F is transversely

orientable. Since hni(F ) all intersect a common transversal then they have all to be in the same

component U of H� Z. Let i0 be the smallest positive integer so that hi0(U) = U . It follows that

all ni are multiples of i0. The leaf F
� is in the boundary of the component U and hi0(F �) = F �.

The only remaining case to be analysed is that h acts freely and hn(F ) converges to F � with

h(F �) non separated from F �. In this particular case we prove this is not possible, that is:

Claim � h(F �) = F �.

Suppose this is not true. The leaves h(F �); F � are not separated in H2. This implies that �(F �)

and �(h(F �)) are disjoint subsets of O, see �g. 10. Therefore there are boundary leaves separating

them. But L intersects both F � and h(F �) as L intersects F and is invariant under h. Therefore

both �(F �) and �(h(F �)) intersect the same stable leaf �(L).

Suppose that there is a stable boundary component of �(F �) separating it from �(h(F �)). Then

it has to be a slice of �(L) as this set intersects both of them. It would not be a line leaf of

�(L). But as remarked before, h leaves invariant all the slices, line leaves and lift annuli of L and

this contradicts �(h(F �)) being disjoint from �(F �). This implies there is an unstable boundary

component of �(F �) separating it from �(h(F �)), see �g. 10.

In the same way �(R) intersects both �(F �) and �(h(F �)). Let Li = fW s(ui). Recall from the

beginning of the proof of proposition 5.6 that ui; vi are points in F with ui converging to p0 in L

and vi converging to q0 in R. Then �(Li) converges to �(L) [ �(R) (maybe other leaves as well).

So �(Li) intersects �(F
�) and �(h(F �)) for i big enough. The intersection of �(Li) with at least

one of �(F �) or �(h(F �)) cannot be connected, see �g. 10. This contradicts propostion 3.2. This

contradiction implies that h(F �) = F � and proves the claim.

So far we have proved the following: in any case there is i0 a positive integer so that if f = hi0
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Figure 10: Contradiction in the orbit space O.

then f(F �) = F �. As f(L) = L then f(F � \ L) = F � \ L and similarly f(F � \ R) = F � \ R. This

produces an annulus B in �(F �) with a Reeb foliation. The region of F � bounded by F � \ R and

F � \L bounds a band B which is a bounded distance from a geodesic in F � and projects to a Reeb

annulus in a leaf of F .

But to prove proposition 5.6, we really want these facts for F and not just F �. This turns out

to be true: �(E) has points converging to �(F ) and �(F ) has points converging to an annulus in

�(F �). Since the annulus is compact, it turns out the second step is unnecessary. This depends on

an analysis of holonomy of the foliation F near the annulus in �(F �) as explained below.

Claim � The point �(p0) of �(F ) is in the boundary of a Reeb annulus of F contained in �(F ).

This implies that F = F �.

The point z0 is in F � \ L. Then �(z0) is in �(F � \ L) = � which is a closed curve since hi0

leaves invariant both F � and L and their intersection is connected. Previous arguments in the proof

imply that for i big enough hi(zi) is in the same local sheet of e�s as z0. Hence the points �(zi) are

in W s(�(z0)) = �(L) and converge to �(z0). This shows that �(F \ L) is asymptotic to � in the

direction corresponding to the projection of the direction of escaping zi in the ray of F \L. Namely

� has contracting holonomy (of F) in the side the �(zi) are converging to and eventually �(zi) is in

the domain of contraction of �.

This means that the direction of F associated to the ideal point � is a contracting direction

towards F �. The rays in the leaves F �\L; F �\R in F � are a bounded distance from a geodesic ray

in F � with same ideal point. The contraction above implies that the corresponding rays F \L; F \R

of F are also a bounded distance from a ray in F with ideal point �.

Now recall the points pi in E. We have gi(pi) very close to p0 in the leaf l of e�s
F . Also �(l) is

eventually in a region contracting towards a Reeb annulus of F . Hence if i is big enough the gi(pi)

will also be in this region. The leaf through �(pi) will be contracted towards the Reeb annulus in

that direction. This implies that the limit of the �(pi) is already in a Reeb annulus, consequently

the limit of the gi(pi) is already in a Reeb band.

It now follows that �(F ) = �(F �). That means that the second perturbation procedure (from

points in F to points in F �) in fact does not produce any new leaf. This implies that up to covering

translations then the leaf E is asymptotic to F in the direction of the ideal point x� in @1E. Let V

be the region of E bounded by � with ideal point x�. Then outside of a compact part it is very near

a Reeb band in F and so has no singularity of the foliation e�s
E. By Euler characteristic reasons it

follows that V has no singularities in the compact part also. So far we proved the following:

Conclusion � Let � be a slice of e�s
E with two rays converging to the same ideal point x� of @1E

and V is the region of E bounded by �. Then � is a line leaf of e�s
E in the V side and V has no
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Figure 11: a. li converging to non separated leaves eL; eZ ; eY ; eR of e�sE, b. Nested families and identi�cations

of ideal points.

singularities in the interior. Also �(V ) is either contained in or asymptotic to a Reeb annulus in a

leaf of F and so E is asymptotic to a Reeb band in a leaf F in the direction x�.

Continuation of the proof of proposition 5.6.

What we want to prove is that in E itself the region V is contained in the interior of a spike

region. Notice it is not true in general that �(V ) is contained in a Reeb annulus, only that it is

asymptotic to a Reeb annulus. For instance start with a leaf of F having a Reeb annulus and blow

that into an I-bundle. Then produce holonomy associated to the core of the Reeb annulus. Then

one produces Reeb bands asymptotic to but not contained in Reeb annuli.

Since V is asymptotic to the Reeb band in F , it turns out that (after rearranging by covering

translations) that E intersects both L and R leaves of e�s. Their intersection produces two leaves

eL; eR of e�s
E which are not separated from each other and which have the same ideal point x�. There

are then leaves li of e�s
E all with ideal point x� and which converge to eL [ eR. This follows from the

fact that in F the same is true and E is asymptotic to F in that direction, plus the connectivity of

the intersection of E with leaves of e�s.

Now the sequence li can converge to other leaves as well, all of which will be non separated from

eL; eR. The set of limits is an ordered set and the any other leaf is between eL and eR. By theorem

2.6 there are only �nitely many of them. We refer to �g. 11, a, where for simplicity we consider

there are 4 leaves in the limit: eL; eY ; eZ ; eR contained in leaves L;Z; Y;R of e�s. These leaves of e�s

are non separated from each other and form an ordered set. Let � be the region of E which is the

union of the region bounded by all the li plus the boundary leaves, which are non separated from

eL; eR. Clearly every leaf in the interior has ideal point x� and has no singularity. We want to show

that � is a spike region.

Any two consecutive leaves of @� in this ordering will have rays with same ideal point and leaves

li converging to them. This situation is important on its own and is analysed in the following

proposition:

Proposition 5.9. Suppose v1; v2 are non separated leaves in e�s
G for some G leaf of eF . Suppose

there are no leaves non separated from v1; v2 in between them. Then the corresponding rays of v1; v2
have the same ideal point in @1G. In addition they are a bounded distance from a geodesic ray of G

with same ideal point. In M this region either projects to or is asymptotic to a Reeb annulus.

Proof. We do the essentially the same proof as in the case of leaves of e�s
G with same ideal points,

except that we go in the direction of the non Hausdorfness. Because there are no non separated

leaves in between v1; v2, then the corresponding rays have the same ideal point. Choose wi; yi in

these rays of v1; v2 and escaping towards the ideal point and so that dG(wi; yi) is less than 4Æ0. We
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do the limit analysis using fi(wi); fi(yi) converging in fM . Because v1; v2 are non separated it follows

that fi(wi); fj(wj) are in the same stable leaf (of e�s) for i; j big enough. Hence we can readjust so

that they are all in the same stable leaf and similarly for fi(yi). The same arguments as before show

that that region of G between v1; v2 projects in M to set in a leaf of F which is either contained in

or asymptotic to a Reeb annulus. The results follow. In general nothing can be said about the other

direction in the leaves v1; v2: in particular it does not follow at all that the other rays of v1; v2 have

to have the same ideal point.

Given this last proposition then for any two consecutive rays in @E it follows that they are a

bounded distance from a geodesic ray in E. All that is needed to show that E is a spike region is to

prove that the ideal points of the rays in the boundary are distinct except for consecutive rays.

Suppose there are other identi�cations of ideal points of leaves in the boundary of E . Then there

is at least one line leaf � in the boundary of E so that � has identi�ed ideal points. Our analysis

so far shows that � is in the interior of another region similar to the one constructed above so that

all leaves have just one common ideal point. Since the li limit on � , then the ideal point of � has

to be x�. In addition the leaves in this new region have to be nested. But if the li together with �

are a nested family of leaves of e�s
F , then the � is outside the li hence the region in E bounded by

� enclosed the whole region E , see �g. 11, b. There is at least one other leaf � 0 in @E . The same

arguments we used for � can be applied to � 0. But it is impossible that the li are also nested with

the � 0, see �g. 11, b.

This shows that the ideal points of E are distinct except as mandated by consecutive rays. In

addition any line leaf in the boundary of E has distinct ideal points and rays which are a bounded

distance from geodesic rays. It follows that the whole leaf is a bounded distance from a geodesic in

E. This shows that E is a spike region. This �nishes the proof of proposition 5.6.

Finally in the case e�s has Hausdor� leaf space one can say much, much more about metric

properties of leaves of e�s
F :

Proposition 5.10. Suppose that � is an almost pseudo-Anosov 
ow transverse to a foliation F with

hyperbolic leaves. Suppose that e�s has Hausdor� leaf space. Then there is k0 > 0 so that for any F

leaf of e�s, then the slice leaves of e�s
F are uniform k0 quasigeodesics.

Proof. If there is a leaf F of eF and a slice leaf of e�s
F with only one ideal point, then the proof of

proposition 5.6 shows that there are leaves of e�s non separated from each other. This is impossible.

Suppose now that for any integer i, there are xi in fM , xi in leaves Fi of eF with xi in line leaves

li of e�s
Fi

with distance from xi to l
�

i in Fi going to in�nity. Here l�i is the geodesic in Fi with same

ideal points as li. Up to covering translations assume xi converges to x. Also assume all xi are in

the same sector of e�s de�ned by x. Since li converges to l, the arguments in lemmas 5.5 and 5.2

would show that the ideal points of l are the same. This was just disproved above.

Given that, the line leaves are within some global distance a0 of the respective geodesics in their

leaves. It is well known that these facts imply that the slice leaves of e�s
F are uniform quasigeodesics.

For a proof of this well known fact see for example [Fe-Mo].

6 Continuous extension of leaves

The purpose of this section is to prove theorem B: the continuous extension property for leaves

of foliations which are almost transverse to quasigeodesic pseudo-Anosov 
ows in 3-manifolds with

negatively curved fundamental group.
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To start suppose that � is an almost pseudo-Anosov 
ow which is transverse to a foliation F in

a general closed 3-manifold M . Given leaf F of eF we �rst introduce geodesic \laminations" in F

coming from e�s
F ;
e�u
F . We only work with the stable foliation, similar results hold for the unstable

lamination. Assume that a leaf l of e�s
F is not singular. If both ideal points are the same let l� be

empty. Otherwise let l� be the geodesic with same ideal points as l. If l is singular, then no line leaves

of l have the same ideal point by proposition 5.6. For each line leaf e of l let e� be the corresponding

geodesic. Let l� be their union. Let now � sF be the union of these geodesics of F . Leaves of e�s
F do

not have transverse intersections and therefore the same happens for leaves of � sF .

Suppose that e�s
F has non separated leaves l; v which are not in the boundary of a spike region.

Then there are li converging to l [ v (and maybe other leaves as well), but l�i does not converge to

l� or v�. Notice none of the limit leaves can have identi�ed ideal points, because then they would be

in the interior of a spike region (proposition 5.6) and have a neighborhood which is product foliated.

Let � sF be the closure of � sF . Then � sF is a geodesic lamination in F . Similarly de�ne �uF , �
u
F . In a

complementary region U of � sF associated to non Hausdor�ness, there is one boundary component

which is added (a leaf of � sF ��
s
F ) and which is the limit of the l�i as above. All of the other boundary

leaves of the region are associated to the non separated leaves of e�s
F and are in � sF .

Lemma 6.1. The new leaves in � sF (that is those in � sF - � sF ) come from non Hausdorfness of e�s
F .

Proof. Let ei in � sF converging to e not in � sF . Then choose li line leaves in e�s
F with ei = l�i . Given

u a point in e, there is ui in l�i very close to u. Then there are pi in li which are 2Æ0 close to ui. Up

to subsequence assume that pi converges to p0 and let l be the line leaf of e�s
F that the sequence li

converges to. Then l�i does not converge to l
� so we have a non Hausdor� situation: li converging to

l and other leaves as well and l� is the added leaf associated to this non Hausdorfness. This �nishes

the proof of the lemma.

Lemma 6.2. The complementary regions of � sF are ideal polygons associated to singular leaves and

non Hausdor� behavior of e�s. If �1(M) is negatively curved then these complementary regions are

�nite sided ideal polygons.

Proof. Let x be in a complementary region U of � sF . Let e be a leaf in the boundary @U . Suppose

�rst that e is an actual leaf of � sF , which comes from a line leaf l of e�s
F . It may be that l is a singular

leaf which is singular on the x side. In that case x is in the region U . Otherwise l is not singular on

the side containing x and we may assume there are li leaves of e�s
F on that side with li converging to

l. If the ideal points of li converge to that of l then eventually l�i separates x from e and x is not in

the complementary region U � impossible. Hence the ideal points of li do not converge to @e and

there is non Hausdorfness and a complementary region in that side of l. Then x needs to be in this

complementary region (which is U) and e is a boundary leaf of U which comes from a line leaf of � sF .

Suppose now that e is an added leaf. There are li leaves of e�s
F with ei = l�i converging to e on the

side opposite to x, otherwise x is not in U . Then li converges to more than one leaf of e�s
F producing

non Hausdor� behavior and a complementary region with e in its boundary. The x is in the region

associated to this non Hausdor� behavior, so the complementary region must be U .

If there is a complementary region of � sF with in�nitely many sides then it is associated to non

Hausdor� behavior and so there are leaves li of e�s
F converging to in�nitely many distinct leaves ofe�s

F . Then there is L leaf of e�s which is non separated from in�nitely many other leaves. Theorem

2.6 implies that there is a Z � Z subgroup of �1(M) and hence �1(M) is not negatively curved,

contradiction. This �nishes the proof.
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We now turn to the continuous extension property. A preliminary analysis of the continuous

extension property was done in [Fe8] in the case that �s;�u where quasi-isometric singular foliations,

F is a �nite depth foliation, and � is a pseudo-Anosov transverse to F . Under these conditions it was

shown in [Fe8] that leaves of e�s
F ;
e�u
F are uniform quasigeodesics in their respective leaves F . Here

we are analysing a much more general situation: in particular there are examples where e�s; e�u have

non Hausdor� leaf space [Mo3, Fe8] and so e�s
F ;
e�u
F can have non Hausdor� leaf space, immediately

implying that their leaves cannot be uniform quasigeodesics. In addition the results here apply to

general foliations, for instance to foliations with dense leaves, foliations with one sided branching,

etc.. The main theorem is:

Theorem 6.3. Let F be a foliation in M3 closed, with �1(M) negatively curved. Suppose that F is

almost transverse to a pseudo-Anosov 
ow �0 and transverse to an associated almost pseudo-Anosov


ow �. Then for any leaf F of eF , the inclusion map 	 : F ! fM extends to a continuous map

	 : F [ @1F ! fM [ S2

1

The map 	 restricted to @1F , gives a continuous parametrization of the limit set of F , which is then

locally connected.

Proof. The proof is done in two steps: �rst we de�ne an extension and then we show that it is

continuous.

First we need to review some facts about quasigeodesic almost pseudo-Anosov 
ows. If 
 is an

orbit of e� then it is a quasigeodesic has unique distinct ideal points 
� and 
+ in S2

1
corresponding

to the positive and negative 
ow directions [Th1, Gr, Gh-Ha, CDP]. Hence given x in fM de�ne

�+(x) = 
+; ��(x) = 
�; �+(x) 6= ��(x);

where 
 is the e� 
owline through x. If L is a leaf of e�s or e�u and a is a limit point of L in S2

1
,

then there is an orbit 
 of e� contained in L with either 
� = a or 
+ = a, that is, any limit point of

L is a limit point of one of its 
ow lines [Fe8]. Also any such L in e�s is Gromov negatively curved

[Gr, Gh-Ha, Fe8] and has an intrinsic ideal boundary @L consisting of a single forward ideal point and

distinct negative ideal points for each 
ow line [Fe8]. The set L[@1L is a natural compacti�cation of

L in the Gromov sense. The inclusion � : L! fM extends to a continuous map � : L[@L! fM [S2

1
.

This all follows from the fact that � is quasigeodesic. If L is in e�s there is a unique distinguished

ideal point denoted by L+ in S2

1
which is the forward limit point of any 
ow line in L. Finally if in

addition �s is a quasi-isometric singular foliation, then the extension � is always a homeomorphism

into its image, but this is not true if �s is not quasi-isometric. Similarly for L in e�u.

Throughout the proof we �x a unique identi�cation of fM [ S2

1
with the closed unit ball in R3.

The Euclidean metric in this ball induces the visual distance in fM [ S2

1
. Then diam(B) denotes

the diameter in this distance for any subset B of fM [ S2

1
. A notation used throughout here is the

following: if A is a subset of a leaf F of eF , then A is its closure in F [ @1F .

We now produce an extension 	 : @1F ! S2

1
.

Case 1 � Suppose that v in @1F is not an ideal point of a ray in e�s
F or in e�u

F .

Since �1(M) is negatively curved, then complementary regions of � sF are �nite sided ideal poly-

gons. Hence there are ei in �
s
F so that fei[@eig; i 2 N de�ne a neighborhood basis of v (in F [@1F )

and feig forms a nested sequence. Here @ei are the ideal points of ei in @1F . We say that the feig

de�ne a neighborhood basis at v. Assume that no two ei share an ideal point � possible because of

hypothesis. If ei is in �
s
F � � sF then it is the limit of leaves in � sF and by adjusting the sequence above

we can assume that ei is always in � sF . Let li in
e�s
F with l�i = ei and Li leaves of e�s with li � Li.
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Figure 12: a. Obstruction to intersections of leaves, b. The case of F escaping up.

Similarly there are ci in �
u
F de�ning a neighborhood basis of v. Up to subsequence we may assume

that e1; c1; e2; c2, etc.. are nested and none of them have any common ideal points (in F [@1F ) and

ci is in �uF . Let bi in
e�u
F with b�i = ci and Bi leaves of e�u with bi � Bi.

Claim � Both Li and Bi escape in fM .

Notice ei \ cj = ; for any i; j. If li \ bj is non empty with j > i, then the nesting property above

implies that bi+1; bi+2; :::; bj all have to intersect. Since there is a global upper bound on the number

of prongs of leaves of e�s; e�u, this can happen for only �nitely many times. Up to taking a further

subsequence we may assume that all the li; bj are disjoint. At this point we need the following result:

Lemma 6.4. Let L leaf of e�s, B leaf of e�u and F leaf of eF so that F intersects both L and B:

l = L \ F; b = F \B. Suppose that b and l are disjoint in F . Then L does not intersects B in fM .

Proof. Suppose not. Recall that �(L);�(B) are �nite pronged, non compact trees and they intersect

in a compact subtree. The union is also a �nite pronged tree. In addition �(L \ B) is connected.

The sets �(l);�(b) are disjoint in this union. Let x be a boundary point of �(l) which is either in

�(L \B) or separates �(L \B) from �(l) in this union, see �g. 12, a.

Let 
 = x�R, an orbit of e�. The �rst possibility is that F escapes up as �(F ) approaches x.

Then 
 is a repelling orbit with respect to the �(l) side, see �g. 12, b and 
 is in the boundary of

a lift annulus A. This means that �(l) is a generalized unstable prong from the point of view of x.

By proposition 3.1 there is a stable slice r of Os(x) with r contained in @�(F ) and F escapes up as

�(F ) approaches r, see �g. 12, a. The two sides of r are the closest generalized prongs to �(l) on

either side of �(l). This implies that r separates �(b) from �(F ) see �g. 12, a. Then �(b) cannot

be contained in �(F ), contradiction.

The second option is that F escapes down as �(F ) approaches x along �(l). Here there is a slice

r of Ou(x) with r contained in @�(F ) and the closest to �(l) on both sides of �(l). Either �(b) � r

or r separates �(b) from �(F ). In any case �(b) does not intersect �(F ), again a contradiction.

This �nishes the proof of the lemma.

The lemma shows that Li \Bj is empty for any i; j, and they form nested sequences of leaves infM . Suppose that the sequence fLig does not escape compact sets. Then there is L in e�s which is a

limit of Li (and possibly other leaves as well). Let � be an orbit in L which is not in a lift annulus.

Then fW u(�) is transverse to L in � and hence intersects Li for i big enough. Since the Li; Bj are

nested this would force fW u(�) to intersect Bj for j big enough, contradiction. It follows that both

Li and Bj escape compact sets as i; j !1.

Let r be a geodesic ray in F with ideal point v. For each i, there is a subray of r contained

in the component of F � li which is in a small neighborhood of v. Hence 	(r) has a subray which

is contained in the corresponding component Vi of fM � Li. These components Vi form a nested
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sequence. The ray 	(r) can only limit in the limit set of Vi. We need the following lemma which

will be a key tool throughout the proof.

Lemma 6.5. (basic lemma) Let fZig be a sequence of leaves or line leaves or slices or any 
ow

saturated sets in leaves of either in e�s or e�u (not all leaves Zi need to be in the same singular

foliation). If the sets Zi escape compact sets in fM , then up to taking a subsequence Zi converges to

a point in S2

1
.

Proof. Let Yi be the leaf of e�s or e�u which contains Zi. Up to subsequence assume Yi 2 e�s. The

statement is equivalent to diam(Zi) converges to 0. Otherwise up to subsequence we can assume

diam(Zi) > a0 for some a0 and all i and hence no subsequence can converge to a single point in S2

1
.

Then there is pi in Zi with visual distance from pi to (Yi)+ is bigger than a0=2. Notice that (Yi)+
is a point in Zi. Let 
i the orbit of e� through pi. If (
i)� is very close to (
i)+ = (Yi)+ then the

geodesic with these ideal points has very small visual diameter. Since 
i is a global bounded distance

from this geodesic [Gr, Gh-Ha, CDP], the same is true for 
i contradiction to the choice of pi. Hence

the geodesic above intersects a �xed compact set in fM and so does 
i. This contradicts the fact that

Zi escape compact sets in fM and �nishes the proof.

We claim that the limit sets of Vi above shrink to a single point in S2

1
. The limit sets form a

weakly monotone decreasing sequence, because the Li are nested and so are the Vi. If the limit set

does not have diameter going to zero, then there are points in the limit set of Li which are at least

2Æ1 apart for some �xed Æ1 > 0. By the previous lemma the Li cannot escape compact sets in fM ,

contradiction. Since the limit sets of Vi shrinks to a point in S2

1
, let 	(v) be this point. Clearly

	(r) limits to this point and so does 	(r0) for any other geodesic ray r0 in F with ideal point v.

Case 2 � Suppose that v is an ideal point of a leaf of e�s
F or e�u

F .

Let l be a ray in say e�s
F which limits on v and r a geodesic ray on F with ideal point v. Then l

is contained in L leaf of e�s. Either �(l) escapes in �(L) or limits to a point x in �(L).

Consider the �rst case. Then in the intrinsic geometry of L, the ray l converges to the positive

ideal point of L, hence in fM[S2

1
, the image 	(l) converges to L+. In the other option let � = x�R,

an orbit of e�. As l escapes in F then in L it either escapes up or down. If it escapes down then it

converges to the negative ideal point of � in L [ @1L and hence 	(l) converges to ��. Otherwise

l escapes up in L as �(l) approaches x. In this case � is in the boundary of a lift annulus and l

converges to the positive ideal point in L[ @1L and so 	(l) converges to L+ again. Let 	(v) be the

limit point in any case.

Every point in r it is 2Æ0 close to a point in l in F , hence the limit of 	(r) in fM [S2

1
is the same

as that of l. If l0 is another ray of e�s
F or e�u

F converging to p, then it will have points boundedly close

to r which escape in l0 and therefore 	(l0) has the same ideal point in S2

1
. Therefore 	(v) is well

de�ned.

This �nishes the construction of the extension of 	 to @1F .

Proof of continuity of the extension �

Case 1 � v is not an ideal point of a ray in e�s
F or e�u

F .

Let r be a geodesic ray in F with ideal point v. Recall the extension construction. There are

li in e�s
F shrinking to v in F [ @1F and similarly bi in e�u

F , assumed to be nested with the li. Let

fl�i g de�ne a neighborhood basis of v in F [ @1F . Let Li in e�s with li � Li, and bi � Bi 2 e�u

as in the construction case 1. Then as seen in the construction, the Li; Bi escape in fM . Let Ui be

the component of F � li containing a subray of r and Vi the component of fM � Li containing Ui.
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Notice that 	(Ui) � Vi. Let now z in U i with the closure taken in F [ @1F and V i the closure of

Vi in fM [ S2

1
. Then U i is a neighborhood of v in F [ @1F . If z is in 	(U i) then using either of

the constructions in the extension part shows that z is a limit of points in 	(Ui) � Vi. As seen in

the construction arguments the diameter of V i in the visual distance is converging to 0. Hence we

obtain continuity of 	 at v. This �nishes the proof in this case.

Case 2 � v is an ideal point of a ray of e�s
F or e�u

F .

This case is considerably more complicated, with several possibilities.

Case 2.1 � v is an ideal point of e�s
F but not of e�u

F (or vice versa).

Suppose the �rst option occurs. There is l ray in e�s
F with ideal point v. We may assume that l

is not in a leaf of e�s
F with same ideal points. Otherwise we can choose l to be one of the boundary

leaves of the corresponding spike region. Since v is not an ideal point of e�s
F , there are gi line leaves

in e�u
F de�ning a basis neighborhood system at v. Let gi be contained in Gi leaves of e�u. Let L ine�s containing l. If Gi escapes in fM as i ! 1, then as seen in case 1, we are done. Let then Gi

converge to the �nite set of leaves

V = H1 [H2:::: [Hm leaves of e�u

We can assume that Gi \ l is not empty for all i.

Case 2.1.1 � Suppose that L intersects V, say L \H1 6= ;.

Then l escapes down as �(l) approaches �(L \H1). Otherwise L \H1 is in the boundary of a

lift annulus A and l has a subray contained in this lift annulus. But then A is also contained in the

unstable leaf fW u(L \H1) and so Gi cannot intersect l, contradiction. As l escapes down in L, then

the ideal point of 	(l) is (L \H1)� which is equal to (H1)�, the negative ideal point of H1.

Since the values of 	(p) for p in @1F are obtained as limits of values in 	(F ), then we only need

to show that if zk is in F and zk converges to p as k !1, then 	(zk) converges to 	(p). Suppose

this is not the case.

By taking a subray if necessary, we may assume that l does not intersect a lift annulus and

hence it is transverse to the unstable foliation e�u
F in F . Parametrize the leaves of e�u

F intersected

by l as fgt; t 2 R+g, contained in Gt 2 e�u (by an abuse of notation think of the Gi as a discrete

subcollection of the Gt; t 2 R+). Let

U =
[
t>0

Gt

No gt (or leaf of e�u
F ) has ideal point v in @1F . This implies that gt escapes compact sets in F as

t ! 1 and the ideal points of gt converge to v on either side of v. If ideal points do not converge

to v then since ideal points of leaves of e�u
F are dense in @1F , there will be leaf g in the limit of the

gt. Then since �1(M) is negatively curved there can only be �nitely many leaves in the limit and

consecutive leaves share an ideal point, because of the denseness again. It would then follow that

some limit leaf has to have ideal point v, contradiction.

Up to subsequence assume that all of the elements of the sequence fzkg are either entirely

contained in U or disjoint from U .

Situation 1 � Suppose that zk is not in U for any k.

Since zk is very close to p in F [@1F and gt converges to v in F [@1F when t!1, then there

are t; s with zk between gt and gs (in F ). Notice zk is not in any of them. Now there is a unique

time tk so that exactly at that time 	(zk) switches from being in one side of Gt in fM to the other
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Figure 13: a. Line leaf separating points, b. Non separated leaf separating points.

(equivalently compare the z and gt in F ). In particular, either there is a line leaf Ltk of Gtk which

separates 	(zk) from all the other Gt, see �g. 13, a, or there is a leaf Ltk non separated from Gtk

with 	(zk) either in Ltk or Ltk separates 	(zk) from all Gt, see �g. 13, b. This can be seen in the

leaf space of e�u, which is a non Hausdor� tree [Fe10, Ga-Ka, Ro-St].

Claim � In the Gromov-Hausdor� topology of closed sets of fM [S2

1
, the sets Ltk converge to (H1)�

as k !1.

If Ltk is a line leaf of Gtk , then (Ltk)� = (Gtk )�. If Ltk is not separated from Gtk then also

(Ltk)� = (Gtk)�. This is because there are Ei leaves of e�u with Ei converging to Ltk [Gtk . So there

are xi; yi in Ei with xi ! x; yi ! y and x 2 Ltk ; y 2 Gtk . Then

��(xi) ! ��(x) = ��(Ltk); ��(yi) ! ��(y) = ��(Gtk) and ��(xi) = ��(yi):

The last equality occurs because xi; yi are in the same unstable leaf Ei. Therefore (Ltk)� converges

to (H1)� when k !1. Suppose that Ltk does not converge to (H1)� in fM [ S2

1
. Since

(Ltk)� converges to (H1)�;

then lemma 6.5 shows that Ltk does not escape compact sets in fM . Up to subsequence there are uk

in Ltk with uk converging to u in fM . The �rst possibility is that the Ltk are subsets of the leaves

Gtk . This implies that e�R(u) is in the limit of the sequence of leaves Gtk (in fM), so it is contained

in V. The second possibility is Ltk non separated from Gtk so Ltk is between Gtk�1 and Gtk+1 hence

u is again in the limit of the Gt so u is in V. The leaves Hj in V are non singular in the side the Gt

are limiting on, so there is a neighborhood of u on that side of Hj which has no singularities hence

the uk will be in U for k big enough. This contradicts the hypothesis in this case.

This shows that Ltk converges to (H1)� in fM [ S2

1
. Also Ltk either contains 	(zk) or separates

it from a base point in fM . It follows that 	(zk) converges to (H1)�, which is what we wanted to

prove. This �nishes the analysis in situation 1.

Situation 2 � For all k assume that 	(zk) is in U .

Let tk with 	(zk) in Gtk , hence zk is in Gtk \ F = gtk . Then (	(zk))� = (Gtk)� converges to

(H1)�. Assume up to taking a subsequence that 	(zk) converges to q di�erent from (H1)�. As

above, up to subsequence assume e�R(	(zk)) converges to e�R(z). Since 	(zk) is in Gtk then z is in

V, say z is in Hj. Let p = �(z). At this point notice that F does not intersect any leaf Hi in V. If it

did, say in w then F intersects the nearby leaves Gt (for any t big enough) near w. This would imply

F \Gt = gt does not escape compact sets in F , contradiction. Therefore �(p) is in @�(F ). Let xk
in gtk \ l. Then �(xk) converges to a point in �(H1 \ L). There are segments bk in F \Gtk = gtk
from xk to zk. Then �(bk) converges to a ray in �(H1) and a ray in �(Hj) � Ou(p) and possibly

other unstable leaves. Then there is a ray in Ou(p) contained in @�(F ). This implies that F escapes
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down as �(F ) approaches this ray of �(Hj). Hence 	(zk) is getting closer to z� which is (Hj)�,

which is also equal to (H1)�. This is what we wanted to prove anyway.

This �nishes the proof of case 2.1.1, that is, when L intersects V.

Lemma 6.6. Let A in e�u, B in e�s satisfying: there are Ri leaves of e�u intersecting B with Ri

converging to A and Ri \B escaping compact sets in B. Then A� is equal to B+.

Proof. Since Ri converges to A then (Ri)� converges to A�. Also Ri intersects B so (Ri)� =

(Ri \ B)�. As Ri \ B escapes compact sets in B then in the intrinsic geometry of B, the Ri \ B

converges to the positive ideal point of B. This implies that (Ri\B)� converges to B+. This implies

the result.

Case 2.1.2 � L does not intersect V.

Then �(l) escapes in �(L) and so 	(l) converges to L+. By the previous lemma, this is also

equal to (H1)�. From this point on, the proof is the same as in case 2.1.1. This �nishes the proof of

case 2.1.

Case 2.2 � v is an ideal point of both e�s
F and e�u

F .

Case 2.2.1 � For any ray l of e�s
F and e of e�u

F with l1 = e1 = v, then l does not intersect e.

Let l0; e0 be rays as above. We may assume that l0; e0 do not have any singularities. Parametrize

the leaves of e�s
F intersecting e0 as flt; t � 0g where lt \ e

0 converges to v in F [ @1F as t converges

to in�nity.

Since l0 limits on v and is disjoint from e0, then l0 is on a side de�ned by e0. We will prove

continuity of 	 at v from the other side of e0. The point pt = lt \ e
0 disconnects lt. For simplicity we

only consider those lt with lt � Lt 2 e�s and Lt non singular. Let l1t be the component of (lt � pt) in

the e0 side union with pt. Let l
2

t be the other component of (lt � pt) union with pt, see �g. 14, a.

The l1t are rays (here we use Lt non singular - but this is just a technicality) and (l1t )1 are not

equal v by hypothesis. They cannot escape compact sets of F since l0 with ideal point v is on that

side of e0. Hence as t converges to in�nity l1t converges to a leaf l of e�s
F with a ray (also denoted by

l) with ideal point v and maybe some other leaves as well. The leaf l either shares a subray with l0

or separates l0 from e. Let e0 � E leaf of e�u and l � L, leaf of e�s.

Case 2.2.1.1 � l2t escapes in F as t!1.

Let bt be the ideal point of l
2

t . Then bt 6= v. Let L2

t be the union of e�R(pt) and the component

of Lt � e�R(pt) containing l
2

t . If L
2

t escapes in
fM , then the arguments in case 1 show continuity of

	 at v in the side of e0 not containing l0.

Now assume that L2

t converges to R1[ :::[Rm leaves of e�s with union R. Notice F may intersect

some of these leaves or not. If �(	(pt)) does not escape in �(E0), then one of the Ri, call it R1, is a

leaf intersecting E0. As seen in the arguments for case 2.1.1, F escapes up in this direction so 	(pt)

converges to (R1)+. If �(	(pt)) escapes in �(E0), then lemma 6.6 shows that 	(pt) also converges

to (R1)+. This is equal to (Rj)+ for any j.

Suppose there are tk ! 1 and zk in l2tk with 	(zk) not converging to (R1)+. Here there is no

need to assume that Ltk is non singular. Up to subsequence assume 	(zk) converges to another point

q of fM [ S2

1
. Then up to subsquence e�R(zk) converges to e�R(z) and hence z is in R, say in Ri.

Then e�R(zk) are near e�R(z) and since a ray of �(Ri) is in @�(F ), then this is stable boundary.

So F escapes up as �(F ) approaches �(z) and hence 	(zk) converges to (Ri)+. This is equal to

(R1)+. The arguments of Case 2.1.1, situation 1 then show continuity of 	 at v on this side of e0.

This �nishes the analysis of case 2.2.1.1.
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Figure 14: a. Convergence on one side, b. Case 2.2.1.2 - intersection of leaves.

Case 2.2.1.2 � The l2t limit to r in F as t!1.

Choose the leaf r with a ray which has ideal point v. Then the leaves r; l are not separated from

each other in the leaf space of e�s
F . Proposition 5.6 shows that the region bounded by these rays of

r; l with ideal point v projects in M to a set asymptotic to a Reeb annulus. It follows that in F

this region is a bounded distance from a geodesic ray with ideal point v. Now we restart the process

with the ray r of e�s
F instead of e0 of e�u

F . Let fbt; t � 0g be a parametrization of the leaves of e�u
F

through the corresponding points xt of r. If the components of (bt � xt) on the side opposite of e0

escapes compact sets in F , then the analysis of case 2.2.1.1 shows continuity of 	 at v in that side

of r. Since r and e0 are a bounded distance from each other in F , this shows continuity of 	 at v on

that side of e0.

Otherwise this process keeps being repeated. Let A0 = L, A1 be the leaf of e�s containing r. If

the process above does not stop, we keep producing Ai in e�s, so that they all disjoint and Ai is non

separated from Ai+1. By theorem 2.6 up to covering translations there are only �nitely many leaves

of e�s which are not separated from some other leaf of e�s. There is then m > n and h covering

translation with h(An) = Am. Let f be the generator of the joint stabilizer of A0; A1. This is non

trivial by theorem 2.6. Then f preserves all the prongs of A1 and therefore leaves invariant all the

Ai. Hence h
�1fh(An) = An and so h�1fh = fa for some integer a. This implies there is a Z�Z in

�1(M), see detailed arguments in [Fe10]. This is a contradiction.

There is then a last leaf ly (of e�s
F or e�u

F ) obtained from this process. The arguments of case

2.2.1.1 show continuity of 	 at v on the other side of ly. The region between e0 and ly is composed of

a �nite union of regions between non separated rays of e�s
F or e�u

F . They are all a bounded distance

from a geodesic ray with ideal point v, so the whole region also satis�es this property. It follows that

this region can only limit in 	(v) as well and this proves continuity of 	 at v in that side of e0.

An entirely similar analysis shows continuity of 	 at v from the side of l0 not containing e0.

What remains to be analysed is the region of F between the rays l0 and e0. Whenever there is non

Hausdorfness involved, this region is a bounded distance (the bound is not uniform) from a geodesic

rays with ideal point v. This is not the case a priori if there is no non Hausdorfness involved. In

this case the region between l0 and e0 may not have bounded thickness in F and hence it is unclear

whether its image under 	 can only limit in 	(v). We analyse this case now.

In this last case parametrize the leaves of e�u
F intersecting the ray l of e�s

F as fet j t � 0g. Since

lt converges to l, then for big enough t, the leaves lt; et intersect � let ut be their intersection point,

see �g. 14, b. Now de�ne l�t to be the component of lt � ut intersecting e and e�t the component of

et � ut intersecting l. Since e
0 is on that side of l, the et cannot escape and converge to a leaf e ofe�u

F with an ideal point v. Let e � E leaf of e�u.

Recall that Lt is the leaf of e�s containing l�t and similarly let Et be the leaf of e�u containing et.

Let L�t be the component of Lt � e�R(ut) containing l�t and similarly de�ne E�

t . In this remaining
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case the l�t escape in F and so do the e�t . Hence �t = l�t [futg[e
�

t de�nes a shrinking neighborhood

system of v in F [ @1F . Consider the set

Bt = L�t [
e�R(ut) [E

�

t

We want to show that Bt converges to L+ in the topology of closed sets of fM [ S2

1
.

First consider L�t \ E which intersects F in (l�t \ e). If L�t \ E does not escape compact sets in

E then it limits to an orbit 
 contained in a leaf H of e�s. Then L;H are not separated from each

other. But for t big enough then Et is near enough E and will intersect H as well. This contradicts

Et\L is not empty and L;H non separated. Hence L�t \E escapes in E and similarly E�

t \L escapes

in L. Hence L;E form a perfect �t. This implies that L+ = E�. Also 	(e) limits to E� and 	(l)

limits to L+ = E�.

The set L
�

t contains (L
�

t \E)+ and this converges to E� when t!1. This is because (L�t \E)

escapes in E. If L
�

t does not converge to E� in fM [ S2

1
, then we �nd tk ! 1 and xk 2 L�tk with

xk converging to x not equal to E�. Since (xk)+ = (Ltk)+ converges to E�, then up to subsequence

assume e�R(xk) converges to e�R(z) for some z in fM . Then z is in a leaf H of e�s which is non

separated from L.

The leaf H does not intersect F , because l�t escapes in F by hypothesis in this �nal situation. It

follows that �(H) has a ray contained in @�(F ) and so this is stable boundary of �(F ). Hence F

escapes up as �(F ) approaches �(H) and consequently 	(xk) limits to H+ = L+� = E� � which

is what we wanted anyway. This shows that L
�

t converges to E� in fM [ S2

1
.

Analysing the sets E�

t in the same manner we obtain that E
�

t converges to L+ as t!1 as well.

This implies that Bt converges to L+ = 	(v). Since Bt \ F = �t and the �t de�ne a neighborhood

basis of v in F [ @1F , this shows continuity of 	 at v. This �nishes the proof of case 2.2.1.2 and

hence of case 2.2.1.

Case 2.2.2 � There are rays l of e�s
F and e of e�u

F starting at u0 and having the ideal point v.

We will �rst prove continuity on the side of e not containing a subray of l. There will be an

iteration of steps. Before we start the analysis we want to get rid of some problems as described

now. Suppose that there are �0; �0 leaves of e�s
F (or leaves of e�u

F ) which have non separated rays

converging to v in @1F and on that side of e. Suppose there are in�nitely many of these on that

side of e. Let them be �i; �i and Gi in e�s containing �i. Each region B between �0 and any �i is a

bounded distance from a geodesic ray in F with ideal point v. The image 	(B) then can only limit

in 	(v). If the Gi do not escape in fM then they converge to a leaf G of e�s. Let A be an unstable leaf

intersecting G tranversely. For i big enough then A intersects Gi transversely, which is impossible,

as it would intersect �i and �i and these are not separated. Hence the the Gi escapes in fM . Then

as seen in case 1, there is continuity of 	 at v in that side of �1.

Another situation is when there are leaves �i in that side of e with two rays with ideal point

v. Then they are in the interior of a spike region B with one boundary g with ideal point v. If

there are in�nitely many of these, where none of the �i are nested with each other, then let Gi in e�s

containing �i. As in the previous paragraph, the Gi have to escape in fM and we have continuity in

that side of �1.

Therefore we can assume there are only �nitely many occurrences of spike regions or non separated

leaves with ideal point on this side of e. If there is any of these let e0 be the last ray in that side

coming from such occurrences. Otherwise let e0 be the ray given e by the hypothesis in this case.

For simplicity assume that e0 is a ray in e�u
F , the other case being similar. Let e0 � E0 2 e�u.

Parametrize the ray of e0 as fpt j t � 0g with pt converging to v as t ! 1. Let lt be the leaf

of e�s
F through pt and Lt in e�s with lt � Lt. If Lt escapes fM as t!1 then as seen before we have
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Figure 15: Some limits in F , b. The picture in fM .

continuity of 	 at v in that side of e0. So now suppose that Lt converges to A1 [ ::::Am, leaves ofe�s. This case is considerably more involved, with several possibilities.

Claim � 	(e0) converges to (Ai)+ (notice the (Ai)+; 1 � i � m are all equal).

If E0 intersects some Ai, say A1, then as seen in case 2.1.1, F escapes positively along 	(e0) as

�(F ) approaches A1. This implies that 	(e0) converges to (E0 \ A1)+ = (A1)+. If E0 does not

intersect any Ai then 	(e0) converges to (E0)� = (A1)+. This proves the claim.

Let l1t be the component of (lt�pt) in the side of e0 we are considering. We are really interested in

the behavior for t!1, so we may assume pt is not singular and there is only one such component.

Suppose �rst that no l1t has a ray with ideal point v and that l1t escapes in F as t!1. In this

case it is easy to show continuity of 	 at v and in this side of e0: Suppose there are xi in l1ti with

ti ! 1 and 	(xi) 6! (Ai)�. Since (xi)+ converges to (Ai)+ then up to subsequence assume that

(xi)� ! b 6= (Ai)+. Up to subsequence e�R(xi) ! e�R(x). Then x is in some Ai say x 2 A2. But

F escapes positively as �(F ) approaches �(A2), so 	(xi) ! (Ai)+, as we wanted. Then as in case

2.1.1 this implies continuity.

There are 2 other options: 1) There is no t with l1t with an ideal point v and l1t does not escape

in F ; and 2) There is t with l1t having ideal point v. These two options interact and intercalate in

appearance as explained below:

Situation 1 � There is no t with l1t with ideal point v and l1t does not escape in F .

There could be several leaves of e�s
F in the limit of l1t as t ! 1 but there is a single leaf, call it

g with ideal point v. If there is more than one such leaf with ideal point v, then there would have

to be one with two rays with ideal point v. This leaf would be in a spike region and it is separated

from any other leaf in e�s
F , contradiction. Let g be contained in a leaf G of e�s.

Parametrize the ray g as fqt j t � 0g, with qt ! v as t!1. Let st be the unstable leaf of e�u
F

through qt. Let s1t be the component of (st � qt) on the side of g opposite to e0 and s2t the other

component. Then s2t cannot have ideal point v: for t big enough it intersects l1t , see �g. 15, a. Then

s2t converges to e0. By hypothesis there are no more occurrences of non separated leaves of e�s
F with

ideal point v on that side of e0, which implies that s1t cannot limit to a leaf of e�u
F at t!1 (it would

distinct but non separated from e0). Hence the s
1

t have to escape compact sets in F . If s1t does not

have an ideal point at v for any t, then the previous analysis shows continuity of 	 at v in that side

of g. As in case 2.2.1.2 if B is the region between g and e0 then 	(B) can only limit in 	(v).

Hence assume there is some t0 so that s
1

t0
has ideal point v, see �g. 15, a. Then for t bigger than

t0 all ideal points of s1t are v. Let s1t0 be contained in a leaf S of e�u and st contained in St leaf ofe�u. Since



x6. Continuous extension of leaves 48

l1t ! g; s2t ! e0 when t!1;

then Lt ! G; St ! E0; when t!1:

It follows that E0; G form a perfect �t, see �g. 15, b. Hence (E0)� = G+. If �(s
1

t0
) is a ray in �(S)

then 	(s1t0) converges to S�. But �(s
1

t0
) also converges to

	(v) = (E0)� = G+ = (G \ S)+:

Let 
0 = G \ S, an orbit of e� in G. The above equations imply that

(
0)+ = (G \ S)+ = 	(v) = S� = (
0)�;

which is a contradiction. Hence �(s1t ) is not a ray and has an endpoint x1 in �(S). Let 
1 = x1�R.

Let H = e�s(
1). But F does not intersect H. If F escapes down as �(F ) approaches x1, then

	(v) = (
1)�. But then

(
0)� = (
1)� = 	(v) = (
0)+

contradiction. This implies that F escapes up as �(F ) approaches x1. Hence �(H) has a ray in

@�(F ). Therefore 	(s1t ) limits to (
1)+. This implies that (
0)+ = (
1)+, where 
0; 
1 are distinct

orbits of e� in the same unstable leaf S. This is dealt with by the following theorem proved in [Fe7]:

Theorem 6.7. ([Fe7]) Let � be a quasigeodesic almost pseudo-Anosov 
ow in M3 with �1(M)

negatively curved. Suppose there is an unstable leaf V of e�u and di�erent orbits �0; �1 in V with

(�0)+ = (�0)+. Then C0 = e�s(�0); C1 = e�s(�1) are both periodic, invariant under a nontrivial

covering translation f , and the periodic orbits in C0; C1 are connected by an even chain of lozenges

all intersecting V .

Remark � This result is case 2 of theorem 5.7 of [Fe7]. In that article the proof is done for

quasigeodesic Anosov 
ows in M3 with �1(M) negatively curved. The proof goes verbatin to the

case of pseudo-Anosov 
ows. The singularities make no di�erence. By the blow up operation, the

same holds for almost pseudo-Anosov 
ows.

The theorem implies that G;H are in the boundary of a chain of adjacent lozenges all intersecting

S. The �rst lozenge, call it C has one stable side contained in G and an unstable side D1 which

makes a perfect �t with G. Suppose �rst D1 is in the side of S opposite to E0, see �g. 16, a. The

other unstable side of C is a leaf D2 which intersects G on the other side of S. Hence G is some

Sc with c > t0. Then Sc \ F = sc is a leaf of e�u
F and 	(sc) has ideal point 	(v). Notice that

�(sc) (which is contained in �(F )) escapes in �(F ) � otherwise it would produce stable/unstable

boundary in �(F ) before it hits �(H) and �(F ) could not limit on �(H), impossible. Hence 	(sc)

limits to (Sc)� which is equal to 	(v). Then

(Sc \G)� = (Sc)� = 	(v) = G+

which contradicts the orbit Sc \G being a quasigeodesic.

It follows that the perfect �ts with G occurs in the E side of S, see �g. 16, b. Here �(H);�(D1)

are contained in the boundary of �(F ). We now look at the region B in F bounded by st0 = S \ F

and e0 = E0 \ F .

Claim 1 � The image 	(B) can only limit in 	(v).
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Figure 16: Perfect �t with G in the side opposite to E0, b. Perfect �t in the E side.

The region 	(B) is contained in the region E of fM which is bounded by E;D1 (maybe other

unstable leaves non separated from D1 as well), H and S, see �g. 16, b. Notice that F does not

intersect D1 or any leaf non separated from D1 which is beyond D1. Otherwise b0 = (D1 \ F ) is

contained in B and non separated from e0, so it would have both ideal points v. Then it would

be contained in the interior of a spike region and could not be non separated from another leaf �

impossible. On the other hand since �(H) has a line leaf in the stable boundary of �(F ), then

�(D1) has a line leaf in the unstable boundary of �(F ). Hence F escapes down as �(F ) approaches

�(D1).

Let zk in B escaping in F and hence converging to v in @1F . Suppose that 	(zk) does not

converge to 	(v). Given that zk escapes F and the structure of the region E , it follows that up

to subsequence either fW u(zk) converges to D1 or fW s(zk) converges to H. Suppose that fW s(zk)

converges to H. In that case (zk)+ converges to H+ = 	(v). Then as seen before if (zk)� does not

converge to 	(v) we can assume up to subsequence e�R(zk) converges to e�R(z). Then z is in a leaf

non separated from H and since 	(zk) has to be in E then z can only be in H. As F escapes up

as �(F ) approaches �(H) then 	(zk) converges to H+ = 	(v). The case fW u(zk) converges to D1

leads to e�R(zk) converging to e�R(z) with z in unstable leaf non separated from D1. As F escapes

down as �(F ) approaches these unstable leaves, then 	(zk) converges to (D1)� = 	(v). Since this

works for any subsequence of zk, then 	(zk) has to converge to 	(v) always. This proves claim 1.

Let G0 = G. Notice that G is periodic and connected to H by an even chain of lozenges. We

consider the ray st0 = S \ F which has ideal point v. Parametrize it as fzt j t � 0g. Let yt be the

leaf of e�s
F through zt and y1t the component of (yt � zt) in the side opposite to e0. The ray st0 has

the same behavior as the original ray e0. Hence we obtain continuity in that side of st0 unless y1t
converges to a leaf � of e�s

F with ideal point v. Let G1 in e�s with � � G1. Then G1 is non separated

from H, see �g. 16, b and therefore connected to it by a chain of lozenges. It follows that G1 is

connected to G0 by a chain of lozenges. As in the proof of claim 1, the region B1 of F between e0
and (F \G1) has image 	(B1) which can limit only in 	(v).

We restart the process with g1 = G1 \ F instead of g. The leaves of e�u
F through points of g1

already converge to the unstable leaf (D3\F ) of e�u
F (D3 is depicted in �g. 16, b). The leaf (D3\F )

cannot be non separated from any other leaf of e�u
F in that side of (D3 \ F ). It follows that the

unstable leaves intersected by g1 escape in F . The only case to be analysed is that some of these

unstable leaves have ideal point v. This brings the process exactly to the situation of some s1t of
e�u
F

having ideal point v as described before (it was s1t0). So this would produce H1 of e�s with similar

properties as H. This process can now be iterated. As in claim 1 the region of F between gi and

gi+1 maps to fM to a region which can only limit in 	(v).

We show that this process has to stop. Otherwise produce Gi leaves of e�s which are all connected

to G0 by a chain of lozenges. The Gi are all non separated from some other leaf of e�s, Hence there
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are Gi; Gj which project to the same stable leaf in M . There is a covering translation h taking Gi

to Gj . If f is a generator of the isotropy group of G0 leaving all sectors invariant, then it leaves

invariant all lozenges in any chain starting in G0 so leaves invariant all the Gi. As before this leads

to h�1fh = fn for some n in Z and to a Z� Z in �1(M). This is disallowed. Therefore the process

�nishes after say j steps and we obtain continuity of 	 at v in that side of gj = Gj \ F . As seen

above the region between st0 and gj maps by 	 into a region that can only limit in 	(v). This proves

continuity of 	 at v in that side of e0. This �nishes the analysis of situation 1.

Situation 2 � There is l1t0 with ideal point v.

Recall the setup before the analysis of situation 1. Let fut j t � 0g be the collection of unstable

leaves intersected by the ray l1t0 . The analysis is extremely similar to the analysis of situation 1,

which shows all cases produce continuity in the �rst step except when ut converges to a leaf u ofe�u
F with ideal point v. Then consider the stable leaves intersecting u. The analysis of situation 1

shows continuity unless there is stable leaf with ideal point v. From now on the analysis is exactly

the same as in situation 1, with unstable replaced by stable and vice versa.

So far we proved continuity of 	 at v from the side of e0 opposite to l. The same works for the

other side of l, producing l0 with similar properties as e0. We now must consider the regions between

e0 and e, between e and l and between l and l0.

First consider the region between e and e0, which occurs only when they are distinct. This implies

that the ray e0 is a bounded distance from a geodesic ray in F with ideal point v. Let f�t j t � 0g

be a parametrization of the stable leaves of e�s
F through e. Let �1t be the component of (�1t � e) in

the side of e we are considering. If some �1t has ideal point v then both ideal points of �t are v and

�t is inside a spike region. The same is true for e and so e is a bounded distance from a geodesic ray

in F with ideal point a. Hence the region between e and e0 is a bounded distance from a geodesic

ray and we are �nished in this case.

The remaining case to be analysed here is that �1t has no ideal point v. Then �
1

t does not escape

F as t!1, because e0 is in that side of e. So �1t converges to a leaf � which has ideal point v. Now

consider a parametrization f�t j t � 0g of the unstable leaves intersected by �. Then �t converges to

the leaf e. If it converges to some other leaf, then e is a bounded distance from a geodesic ray in F

and we are done. Otherwise it must be that some �t has ideal point v. Therefore we exactly in the

setup analysed in situation 1 above.

This shows continuity of 	 for the region between e and e0 and similarly for the region between

l and l0.

Finally we analyse the region B between e and l. First notice there is no singularity in the interior

of B. Otherwise there would be a line leaf in B and hence a leaf with both endpoints v. It would

have to be part of a spike region and the spike region does not have any singularities in its interior.

Parametrize the leaves of e�u
F through l as fes j s � 0g and similarly those of e�s

F through e as

flt j t � 0g. Let L;Lt leaves of e�s with l � L; lt � Lt and similarly de�ne E;Et. There are 2

possibilities:

1) Product case � Any lt intersects every es and vice versa.

Equivalently e�s
F ;
e�u
F de�ne a product structure in the region B bounded by l0 and e0. If the Lt

escapes in fM as t!1, then there is a stable product region de�ned by a segment in L0. But then

theorem 2.7 implies that � is topologically conjugate to a suspension, contradiction. It follows that

the Lt converge to H1 [ :::Hm as t ! 1. Since the lt are stable leaves, it follows that F escapes

up as �(F ) appraches �(Hi). This implies that 	(e) limits to (Hi)+ which is then equal to 	(v).

Similarly Es converges to V1 [ :::Vn and F escapes down as �(F ) approaches �(Vj). Hence 	(l)
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limits to (Vj)� = 	(v). If some Hi intersects some Vj , then

(Vj \Hi)+ = (Hi)+ = 	(v) = (Vj)� = (Vj \Hi)�;

contradiction. Let now fzkg be a sequence in B converging to v. The product structure implies that

up to subsequence we may assume that either fW s(zk) converges to Hi or fW u(zk) converges to Vj .

This is analysed carefully in Claim 1 above, which shows that 	(zk) must converge to 	(v). This

shows continuity of 	 when restricted to the region B.

2) Non product case.

There are t; u > 0 with lt\eu = ;. Consider one such u. Let a be the in�mum of t with lt\eu = ;.

Now let b be the in�mum of u with la\eu = ;. Then la\eb = ;, but for any 0 � t < a and 0 � u < b

one has lt \ eu 6= ;. Since la \ eb = ;, then La \Eb = ;. It follows that La; Eb form a perfect �t, see

�g. 17, a. If �(la) does not escape in �(La), then there would be unstable boundary of �(F ) in the

limit and that would keep F from intersecting Eb, contradiction. Hence �(la) escapes in �(La) and

�(eb) escapes in �(Eb). Hence 	(la) limits to (La)+ and 	(eb) limits to (Eb)�. Also la; eb limit to

v in @1F .

Let pt = lt \ e. If �(pt) escapes in �(E), then 	(e) converges to E�. Notice that 	(e) converges

to 	(v) so:

E� = 	(v) = (La)+ = (La \E)+

contradiction. It follows that e�R(pt) converges to e�R(x) with x in E. Also F has to escape up as

�(F ) approaches �(x) � same as in Situation 1 above. Hence 	(e) limits to x+. So

x+ = 	(v) = (La)+ = (pa)+

Let X = fW s(x). Then x; pa are in 2 distinct orbits of E with the same positive ideal point. Therefore

theorem 6.7 implies that La;X are connected by an even chain of lozenges all intersecting E. Let C

be the �rst lozenge. It has a stable side in La and one unstable side, call it D1 which makes a perfect

�t with La. Suppose �rst that D1 is in the component of fM � E opposite to Eb. Then the other

unstable side of C, call it D2 has to intersect La in the other side of E. Then D2 must be some Et,

let it be Eb0 , see �g. 17, a. Then �(eb0) has to escape in �(Eb0) or else one produces stable boundary

to �(F ) and �(F ) cannot limit to �(x) contradiction. Hence 	(eb0) converges to 	(v) and also to

(Eb0)�. But then

(Eb0 \ La)� = (Eb0)� = 	(v) = (Eb)� = (La)+

again a contradiction.

This implies that D1 is on the side of E containing Eb, see �g. 17, b.

If there are only 2 lozenges in the chain from L1 to X, then D1 also makes a perfect �t with X.

Otherwise there are D2; :::;Di all non separated from D1 and so that Di makes a perfect �t with X

and the Dj are all in the boundary of the chain of lozenges. As seen in claim 1 above, F cannot

intersect any Dj (1 � j � i), but all �(Dj) are contained in the unstable boundary of �(F ). Also F

escapes down as �(F ) limits to �(Dj). The set �(X) also has a line leaf which is a stable boundary

of �(F ) and F escapes up when �(F ) approaches �(X).

The same discussion applies to L, so there is y in L, Y = fW u(y) with �(Y ) having a line leaf in

the unstable boundary of �(F ) and F escapes down accordingly. There are C1; :::; Cn leaves in e�u,

all non separated from each other and in the boundary of the lozenges in the chain from Eb to Y so
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Figure 17: a. Reaching before, b. Reaching at the exact time.

that C1 makes a perfect �t with Eb and Cn makes a perfect �t with Y , see �g. 17, b. Finally �(Cj)

has a line leaf in the stable boundary of �(F ) and F escapes up accordingly.

Let E be the region in fM bounded by

E; L; X; Y; C1; :::; Cn; D1; :::;Di

Then E \ F is exactly the region B bounded by the rays e and l. Let zk in B escaping to v. Then

the region E shows that up to subsequence one of the following must occur:

1) fW s(zk) converges to either X or C1. The analysis of claim 1 above shows that 	(zk) converges

to either X+ or (C1)+ both of which are equal to 	(v).

2) fW u(zk) converges to either Y or D1. Here 	(zk) converges to either Y� or (D1)� both of

which are equal to 	(v).

In any case this shows continuity of 	 in the region B. This �nishes the non product case.

This �nishes the proof of theorem 6.3, the continuous extension theorem.

7 Ideal boundaries of pseudo-Anosov 
ows

Let � be a pseudo-Anosov 
ow. The orbit space O of e� (the lifted 
ow to fM) is homeomorphic to

R2 [Fe-Mo]. We want to show there is a natural compacti�cation of O with an ideal circle @O called

the ideal boundary of the pseudo-Anosov 
ow. We will also show that D = O[@O is homeomorphic

to a closed disk. In addition covering translations of fM , acting in O extend to an action in O [ @O

by homeomorphisms, which are group equivariant. This holds for general pseudo-Anosov 
ows in

3-manifolds � no metric (or atoroidal) assumptions on M or on the 
ow �. In the next section we

specialize to �1(M) being negatively curved and � being a quasigeodesic 
ow. We will show that

any section of O in fM of the orbit map of e� extends to a continuous map from D to fM [ S2

1
. The

analysis here will apply equally well to almost pseudo-Anosov 
ows.

Before we give the formal de�nition of the ideal points of O we will give an idea of what they

should be. This is done by analysing some examples. The �rst examples are the R-covered Anosov


ows and they have to be treated di�erently.

For every ray l of a leaf of Os or Ou let l1 denote its ideal point. This will be a point in D.

Given g in �1(M) it acts in fM and sends 
ow lines of e� to 
ow lines and hence acts in O. It also

preserves the foliations e�s; e�u;Os;Ou.

1) Ideal boundary for R-covered Anosov 
ows. The product case.

Recall the picture of product Anosov 
ow [Fe3, Ba1]: every leaf of Os intersects every leaf of Ou

and vice versa. Every ideal point of a ray in Os or Ou should be a point of @O and they are all
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Figure 18: Ideal points for product R-covered Anosov 
ow, the dots represent the 4 special points, b. The

picture in skewed case.

distinct. Furthermore there are 4 additional ideal points corresponding to escaping quadrants in O,

see �g. 18, a. The quadrants are bounded by a ray in Ou and a ray in Os which intersect only in

their common starting point (or �nite endpoints). In this case it is straightforward to put a topology

in D so that it is a closed disk and covering transformations act in the extended object. If �s;�u are

both transversely orientable, then: any covering translation g �xes the 4 distinguished points. It is

associated to a periodic orbit if and only if �xes 4 additional ideal points: if x in O with g(x) = x,

then g �xes the ideal points of rays of Os(x);Ou(x). When �s;�u are not transversely orientable,

there are other restricted possibilities.

Since we want to de�ne a topology in D using only the structure of e�s; e�u in fM , then a neigh-

borhood basis of the ideal points has to be determined by sets in O. A distinguished ideal point p

has a neighborhood basis determined by (say nested) pairs of rays in Os;Ou intersecting at their

common �nite endpoint and so that the corresponding quadrants \shrink" to p. For an ordinary

ideal point p, say a stable ideal point of a ray in Os(x), we can use shrinking strips: the strips are

bounded by 2 rays in Os and a segment in Ou connecting the endpoints of the rays. The unstable

segment intersects the original stable ray of Os(x) and the intersections escape in that ray and also

shrink in the transversal direction. Already in this case this leads to an important concept:

De�nition 7.1. A chain in O is either a leaf of Os or Ou or a �nite collection l1; :::ln of arcs and

two rays of Os or Ou so that l1 and ln are rays in Os or Ou, the other li are �nite arcs, for i 6= j, li
intersects lj if and only if ji� jj = 1 and only in their �nite endpoint and li are alternatively in Os

and Ou. The number n is the length of the chain.

In the product R-covered case, the exceptional ideal points need neighborhoods basis formed by

chains of length 2 and all the others need chains of length 3. Notice that the de�nition of chains

implies that it cannot close back up and bound a compact region in O.

2) R-covered Anosov 
ows � skewed case.

Topologically O is homeomorphic to (0; 1) � R, a subset of the plane, so that stable leaves

are horizontal segments and unstable leaves are segments making a constant angle 6= �=2 with the

horizontal, see �g. 18, b. A leaf of Os does not intersect every leaf of Ou and vice versa [Fe3, Ba1].

Here again the ideal points of rays de�ne ideal points in O. However as is intuitive from the picture,

rays of Os;Ou which correspond to leaves of e�s and e�u which form a perfect �t should de�ne the

same ideal point of O. In addition to these ideal points of rays in Os or Ou, there should be 2

distinguished ideal points � one from the \positive" direction and one from the \negative" direction.

Again it is very easy to put a topology in D = O [ @O making it homeomorphic to a closed disk. In

addition covering translations act as homeomorphisms of this disk � a transformation without �xed

points in O �xes only the 2 distinguished ideal points in @O, one attracting and another repelling. If

a transformation has a �xed point in O, then it leaves invariant a leaf of Os or Ou. If this corresponds



x7. Ideal boundaries of pseudo-Anosov flows 54

to an orientation reversing element then there are only 4 �xed points in @O. Otherwise there are

in�nitely many �xed points, see [Fe3, Ba1].

A neighborhood basis of the distinguished ideal points can be obtained from leaves of Os or Ou

which escape in that direction (say positive or negative). In the case of non distinguished ideal points

we get sequences of chains of length 2 escaping every compact set and \converging" to this ideal

point, see �g. 18, b. More precisely if rays l; r of Os;Ou respectively form a perfect �t de�ning the

ideal point p, then choose xi in l converging to p, yi in r converging to p and the chain of length two

containing rays in the stable leaf through yi and the unstable leaf through xi (intersecting in zi, see

�g. 18, b).

3) Suspension pseudo-Anosov 
ows.

Here we assume it is really a singular 
ow (that is not an Anosov 
ow). The �ber is then an

hyperbolic surface and every orbit intersects the �ber. The orbit space O is then identi�ed with the

universal cover of the �ber which is metrically like the hyperbolic plane H2. In this case there is a

natural ideal boundary S1

1
� the circle at in�nity of H2. But his uses the metric structure on the

surface � in general we will not have a metric structure in O, so again here we want to de�ne @O

only using the structure of Os;Ou. Intuitively @O and S1

1
should be the same. From a geometric

point of view, there are some points of S2

1
which are ideal points of rays of leaves of Os or Ou.

Notice that in this case no distinct rays have the same ideal point [Bl-Ca, Th4]. This is not true

in general [Fe7]. But there are many other points. The foliations Os;Ou can be split into geodesic

laminations (of H2) which have only complementary regions which are �nite sided ideal polygons.

This implies that there always is a sequence of leaves li (in O
s or Ou) which is nested, escapes to

in�nity and \shrinks" to the ideal point p. So we can obtain all ideal points in this way.

At this point we are getting close to being able to de�ne an ideal point of O. First we analyse

the following situation: let l be a ray (say) in Os and assumed without singularity. Then take xi
in l, nested and escaping to the ideal point p in l. This p should be a point in @O. For simplicity

assume that the leaves gi of O
u through xi are non singular. We would like to say that these leaves

gi \de�ne" the ideal point p. If they escape in O, then that will be the case. However it is not always

true that they escape in O. If they do not escape in O, then they limit on a collection of unstable

leaves fhj j j 2 Jg � maybe in�nitely many. But there is one of them, call it h which makes a perfect

�t with l on that side of l. The perfect �t is the obstruction to leaves gi escaping in O. Consider

now ei stable (non singular) leaves intersecting h and escaping in the direction of the perfect �t with

l. Since l and e form a perfect �t, then for big enough i, the ei and gi intersect and form a chain

of length 2. If the ei now escape in O, this should de�ne the ideal point p, otherwise we iterate this

process. If this stops after a while we can always take chains of a �xed length. Otherwise as the

chains escape in O, then we use chains of bigger and bigger lengths, in order to cross over more and

more of the collection of perfect �ts emanating from l. Such a sequence of chains will be called a

standard sequence for the ray l of Os or Ou.

These sequences are enough to de�ne \neighborhood basis" of ideal points of O. We are now

ready to de�ne ideal points of O.

De�nition 7.2. (convex chains) A chain C in O is convex if there is a complementary region V of

C in O so that at any given corner z of C the local region of V determined by Os(z);Ou(z) is not

just a single sector. (notice that if z is non singular there are exactly 4 sectors. If z is a p-prong

point there are 2p sectors). Let U = O � (C [ V ). This region is the convex region of O associated

to the convex chain C. The de�nition implies that if U contains 2 endpoints of a segment in a leaf

of Os or Ou, then it contains the entire segment. This is why C is called convex.

De�nition 7.3. (equivalent rays) Two rays l; r of Os;Ou are equivalent if there is a �nite collection
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of rays li; 1 � i � n, alternatively in Os;Ou so that l = l0; r = ln and li forms a perfect �t with li+1

for all 1 � i < n. If n � 3 then for all 1 � i � n� 2 the leaves li and li+2 are non separated.

De�nition 7.4. (admissible sequences of chains) An admissible sequence of chains in O is a sequence

of convex chains Ci so that the associated convex regions Ui are nested and escape to in�nity in O.

In addition we require that for any i, the 2 rays at the ends of Ci are not equivalent.

Intuitively an ideal point of O is determined by an admissible sequence of chains. Two di�erenct

admissible sequences may de�ne the same ideal point, so we �rst need to determine when 2 such

sequences are equivalent, that is, they de�ne the same ideal point and then we need to de�ne a

topology in O[@O. At �rst one might think that any 2 sequences associated to (what we intuitively

think is) the same ideal point of O would have to be eventually nested with each other. This would

make it simple and nice. However it is easy to see that such is not the case. For example there are

sequences of chains so that one end ray is always in the same leaf and they just shrink on the other

side. One could then construct chains on the other side as well, making two disjoint sequences which

cannot be nested. We need a couple more ideas.

Given an admissible sequence fCi j i 2 Ng, since it escapes compact sets, there is a unique

component Ui of O � Ci denoted by eci which does not contain a �xed basepoint in O (if necessary

eliminate a few elements of the sequence or move the basepoint).

De�nition 7.5. Given two admissible sequences of chains C = fcig, D = fdig, we say that C is

smaller than D, denoted by C < D, if: for any i there is ki > i so that ecki � edi. Two admissible

sequences of chains C = fcig; D = fdig are equivalent and denoted by C �= D if there is a third

admissible sequence E = feig so that C < E and D < E.

The ideal points of O will be the equivalence classes of admissible sequences of chains. We have

to prove that �= is an equivalence class and several other properties. We should stress here that the

requirement that the chains are convex is fundamental for the whole discussion. It is easy to see

in the skewed R-covered Anosov case, then given any two distinct ideal points p; q on the \same

side" of the distinguished ideal points then the following happens: Let l; r be stable rays de�ning

p; q respectively. Then there is a sequence of chains that escape and contain subrays of both l and

r. The chains can be chosen to satisfy all the properties, except that they are convex. On the other

hand convexity does imply important properties as shown in the next lemma:

Lemma 7.6. (fundamental lemma) Suppose that � is not topologically conjugate to a suspension

Anosov 
ow. Let l; r be rays of Os or Ou, which are not equivalent. Then there is no pair of

admissible sequence of chains E = feig, F = ffig so that: eei \ efi 6= ; (for all i) and eei \ r 6= ;,efi \ l 6= ;, for all i.

Proof. We assume that both l and r are rays of Os, other cases are treated similarly. By taking

subrays if necessary we may assume that l; r are disjoint, have no singularities and miss a big compact

set around a base point in O. Join the initial points of l; r by an arc �0 missing a big compact set

to produce a properly embedded biin�nite curve � = l [ �0 [ r. Let V be the component of O � �

which misses the basepoint.

We �rst show that there is no admissible sequence of chains E = feig such that eei always intersects
l and r. This implies that the phenomenon described above (in the skewed Anosov 
ow case) for

non convex chains cannot happen for convex chains.

Suppose this is not true. Let Bi = eei [ ei. Notice �rst that Bi \ r is connected. Otherwise there

is a compact subarc r0 of r with @r0 in ei and the rest of r0 contained in O � Bi, see �g. 19, a.

Starting from an endpoint of r0 and moving along ei towards the other endpoint, the only way to
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Figure 19: a. Convexity implies connected intersection of r and Bi. b. All rays of ui stay in V forever. There

is a non convex switch at �.

intersect r again is if there is a non convex switch in ei, contradiction. This shows that Bi \ r is

connected. This also shows that eei is convex as stated in de�nition 7.2.

Notice that Bj \ r forms a nested family of sets in r. Since Bj escapes compact sets as j ! 1

and Bj \ r is connected it follows that Bj \ r is a subray of r for any j. If ei \ r contains a non

trivial segment, then by convexity again it follows that eei \ r = ; contradiction. It follows that ei
intersects r in a single point. Let u0i = Ou(ei \ r), the unstable leaf through the intersection. Up to

subsequence we may assume no two u0i are the same.

Since r has no singularities there are two components of u0i � (u0i \ r). There is only one of them

called ui which locally enters V , see �g. 19, b. There are two possibilities: the �rst is that some rays

of ui stay in V for all time. By taking another bigger i we may assume that all rays of ui stay in V

forever. In that case, in order for ei to reach l there must be a non convex switch in ei, impossible

see �g. 19, b. (the non convex switch is at �).

The other option is that all rays of ui exit V . One possibility here is that all ui intersect l. In

that case let zi be the part of ui between l and r. If the zi escapes compact sets, then the region

between l and r is an unstable product region as in de�nition 2.4. Theorem 2.7 then implies that � is

topologically conjugate to a product R-covered Anosov 
ow. This is disallowed by hypothesis. The

lemma fails for product R-covered Anosov 
ows. Hence the ui converges to a collection of leaves,

analysed below. Another possibility is that the ui does not intersect l. Since l obstructs the ui to

escape compact sets, it also follows that ui converges to a collection of leaves. Let u be one of the

limit leaves.

Consider the set of stable leaves non separated from u and in that side of r. By theorem 2.6

there are only �nitely many stable leaves between any given u and r, so we may assume that u is

the closest one. If u does not make a perfect �t with r, then when considering the stable leaves

intersected by u, they do not converge to r, but rather to some other stable leaf r0. The region

between r; r0 would then be a product region (since there are no leaves non separated from u in this

region). As seen above, this would imply � is topologically conjugate to a suspension Anosov 
ow,

contradiction. It follows that r; u form a perfect �t and so the rays r; u are equivalent.

Notice now u is a ray of Ou and we restart the proof. There is a convex polygonal curve from r

to u and so now we need to go from u to l. Notice there is a ray of u in V . Suppose �rst that the

other ray of u is also contained in V . This occurs for instance when all ui intersect l. The chains

feig escape compact sets in O and eventually have to cross over to the other side of u. Since they

have to intersect l later on, they will have to cross back to the l side of u again. This would force a

non convex switch, contradiction.

It follows that there is a ray of u exiting V . The same argument as above produces v1 a ray of

Os making a perfect �t with u and consequently non separated from r, see �g. 20, a. Now iterate

to obtain v2; ::: etc.. They are obviously nested and the sequence cannot limit on any leaf of Os;Ou,
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Figure 20: Producing a perfect �ts.

since vi; vi+2 are non separated from each other in the corresponding leaf space. Since they escape

O, eventually all rays of ui are in V and there is no convex chain to l, forcing a non convex switch.

This proves that no escaping sequence of convex chains can always intersect both l and r.

We now prove the more general result. For the general result assume r; l are as above and

E = feig; F = ffig are admissible sequences with eei\ efi 6= ;, r\eei 6= ;; l\ efi 6= ;. As before consider

the region V bounded by l; r and an arc connecting them. We go from r to l along ei and then fi.

The switches are all convex, except for a single one when it moves from ei to fi. Once a non convex

switch is used, then all subsequent switches have to be convex.

Consider the unstable leaf zi through ei \ r. If some zi has a ray which is entirely in V , then as

seen above for j > i all rays of zj which enter V must be entirely in V . This implies that there has

to be a non convex switch from ei to fi right in zi. On the other hand notice that if two rays of Ou

are equivalent, then they are connected by a chain of consecutively non separated leaves. Therefore

the rays never intersect the same unstable leaf. Since zi; zj intersect r it follows that they are not

equivalent. For k > j, then one has to spend a non convex switch at zk and then everything else

must be convex. In particular there must be one escaping sequence of convex chains intersecting zk
and zj . Since zk; zj are not equivalent, this is ruled out by the �rst part of the proof.

We conclude that all rays of zi which enter V actually exit V . We now mimic the proof of the

�rst part. The zi converge to a leaf z of Ou so that z forms a perfect �t with r. We can have a

convex chain from r to z and we restart the proof with z; l.

By the above arguments we can assume that we have not spent the non convex switch to go

from r to z and consequently ei intersects z. Let vi be the unstable leaf through ei \ z, see �g. 20.

Then zi; vi form a chain of length 2 connecting r; z. Suppose �rst that every vi (for i suÆciently big)

intersects l see �g. 20 b. If the region of vi between z and l escapes in O then we have a product

region of Os contradiction to � not being a product Anosov 
ow, by theorem 2.7.

Therefore the vi limit to a leaf v which we can choose to make a perfect �t with z, see �g. 20.

Since E;F are sequences which escape in O, then some ej crosses to the other side of v. Parts of ej
and fj form a chain that has to cross v back again, since it has to reach l. But that requires at least

2 non convex switches see �g. 20, b or �g. 19, a. However only one non convex switch is allowed by

the hypothesis.

We conclude that there is a vi not intersecting l. If there is some vi with a ray entirely in V then

as seen above we again produce a contradiction. The remaining option is that every ray of every vi
which enters V has to escape V . As before this produces a leaf v which makes a perfect �t with z.

Iterate this process, producing leaves equivalent to u. As seen in the �rst part of the proof, these

leaves have to escape O, producing a contradiction. This �nishes the proof of the lemma.

We now prove that �= is an equivalence relation.
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Lemma 7.7. �= is an equivalence relation for admissible sequences of chains.

Proof. Clearly �= is re
exive and symmetric. Suppose now that A = faig; B = fbig; C = fcig are

admissible sequences of chains and A �= B; B �= C. Then there is D = fdig with A < D; B < D

and E = feig with B < E; C < E. If for some i; j the edi and eej do not intersect this contradicts

B < D, B < E.

Claim � Fix j. Then either there is i with eai � eej or there is i with eci � edj .
Suppose not. Then for each i, then eai 6� eej and eci 6� edj. Clearly this implies that none of edi; eei

is contained in the other.

Let y1; y2 be the rays of dj and z1; z2 be the rays of ej . Since there is i with

ebi � eej \ edj = Z

then this last intersection is non compact and its boundary @Z has two rays which are contained in

y1[y2[z1[z2. If there are subrays of both rays in this boundary @Z which are contained in y1[y2,

then it follows that edj [ dj � (eej [ ej) is contained in a compact set in O, see �g. 21, a. Since the

sequence fedig; i 2N escapes compact sets in O, then there would be k with edk � eej . But then there

is i with eai � edk � eej and this would contradict the assumption in the proof.

It follows that one and only one boundary ray of eej \ edj must be contained in y1[y2 and one and

only one boundary ray is in z1 [ z2. This last fact also implies that if a boundary ray is contained

in y1 [ y2 then it cannot have a subray in z1 [ z2. Let lj be the boundary ray contained in z1 [ z2.

Then this ray is in eej [ ej and since it cannot have a subray contained in ej it follows that it has

a subray contained in eej . It also follows that the other ray of dj has to be eventually disjoint from

eej [ ej . Similarly there is a ray rj of dj contained in eej , see �g. 21, b.
Now consider i � j. Then

edi \ eej 6= ; and edi 6� eej
so the same analysis as above produces a ray of ej contained in edi. It can only be lj since the other

ray of ej is disjoint from dj [ edj , so certainly disjoint from di [ edi. It now follows that for any i � j

there is a subray of the �xed ray rj which is contained in eei. Similarly for any i � j there is a subray

of lj contained in edi.
The set edj \eej has boundary which contains subrays of the rays rj; lj . If rj; lj are equivalent then

because there is i with ebi � eej \ edj , the two rays of bi would be equivalent, contradiction. Therefore

rj ; lj are not equivalent. But for any i � j, then edi [ eei is a union of two convex regions containing

subrays of lj and rj (j is �xed!). This is now disallowed by the fundamental lemma 7.6. This proves

the claim.
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Suppose then there are in�nitely many j's so that for each one of them, there is i > j with

eai � eej . Then for any k there is one such j with j > k and so there is i > j with eai � eej � eek. This
means that A < E and so A �= C. The other option is there are in�nitely many j and for each such

j there is i � j and eci � edj . This now implies that C < D and again C �= A. This �nishes the proof

that �= is an equivalence relation.

Given these results we now de�ne the ideal points of O.

De�nition 7.8. A point in @O or an ideal point of O is an equivalence class of admissible sequences

of chains. Let D = O [ @O.

Given R, an admissible sequence of chains, let R be its equivalence class under �=.

Lemma 7.9. For any equivalence class R there are master sequences: An admissible sequence C

de�ning R is a master sequence for R, if for any B �= R, then B < C.

Proof. Intuitively the elements of this sequence approach the ideal points from \both sides".

Case 1 � Suppose that for any A = faig; B = fbig in R and for any i; j then eai \ebj 6= ;.

We claim that in this case any A �= R will serve as a master sequence. Let A �= R and let B �= R.

We want to show that B < A. Otherwise there is a �xed i so that for any j, ebj 6� eai. In case

1, ebj \ eai is not empty for any j. Since ebj escapes in O, so does ebj \ eai. The arguments of the

previous lemma show that eai cannot contain subrays of both rays in bj and in fact for j big enough,

then ebj contains a subray of a single ray of ai and no singular point. This implies that ai cuts ebj
into 2 convex regions: one contained in eai and the other (call it eb0j) disjoint from eai. It is essential
here that the intersection of ebj and eai does not contain a switch of ai, otherwise one of the cut up

regions in eai may well have a non convex corner. Let b0j be the boundary of
eb0j de�ning a sequence of

chains B0 = fb0jg. Clearly the sequence fb0jg is nested and escapes O when j ! 1. Because of the

conditions above, they are also convex and therefore B0 is an admissible sequence of chains. Clearly

B0 < B, hence B and B0 are equivalent and so in R. But eb0j \ eai (i �xed) is empty for j big enough.

This violates the hypothesis in case 1. This �nishes the proof in this case.

Case 2 � There are A;B in R and i so that eai; ebi are disjoint.
Let C be an admissible sequence with A < C; B < C. Notice that C is in R as well � since

A < C implies that A �= C. We claim that C is a master sequence for R. Let D �= A. Suppose that

D 6< C. Hence there is i so that for no j we have edj 6� eci. As in case 1, we can chop edj and produce

E = fejg so that eej is disjoint from eci. Up to deleting a few initial terms in the sequences we have

A �= B �= E and ea1;eb1; ee1 disjoint. Suppose without loss of generality that eb1 is between ea1 and ee1
� that is ee1 is on the eb1 side of ec1. Notice there is F = ffig with A < F; E < F . Since eai;ebi; eei are
all disjoint and eb1 is between eai and eci then: efi contains subrays of the rays of b1. But fi escapes

compact sets in O. The fundamental lemma 7.6 implies this is impossible. We conclude that C is a

master sequence for the equivalence class. This �nishes the proof of lemma 7.9.

Notice that by de�nition, for any 2 master sequences A;B for an equivalence class R, then both

A < B and B < A.

Lemma 7.10. Let p; q in @O. Then p; q are distinct if and only if there are master sequences

A = faig; B = fbig associated to p; q respectively with eai\ebj = ; for some i; j. Equivalently for some

other master sequences this is true for all i; j.
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Proof. (() Suppose that p = q. Let A;B be any master sequences associated to p = q. Then

since A;B are master sequences associated to the same equivalence class then A < B and B < A.

Therefore we can never have eai \ebj = ;. This is the easy implication.

()) Suppose that for any master sequences A = faig and B = fbig associated to p; q respectively

and any i; j then eai \ ebj 6= ;. Let A;B be such a pair and de�ne eci = eai \ ebi and let ci = @eci. Let
C = fcig. First of all ebi \ eaj can never be compact or else for some i0 > i then eaj \ebi0 = ;. Also the

rays in ci are subrays of rays of ai or bi.

Suppose �rst that there is i with the rays of ci equivalent. The rays are u; v and there is a

collection Y = fu0 = u; u1; :::; un = vg so that uk; uk+1 make a perfect �t for every k. Since fecjg is
nested, the rays of cj for j > i have to be in the collection Y. Up to subsequence we can assume

they are all subrays of �xed rays r; l. Notice that r 6= l, or else ebj \ eaj = ; for some j. Since r; l

are equivalent they cannot both be in aj (or in bj either). Hence up to renaming objects, aj has a

subray in r and bj has a subray in l, for all j > i, see �g. 22.

Let zj = aj \ l, xj = r \ bj. Then zj escapes in l and xj escapes in r. Therefore we can connect

zj ; xj by a �nite convex chain dj which extends aj; bj and their union is a convex chain ej . This

chain dj interpolates between aj ; bj , see �g. 22. Notice that aj has a subray of r so it goes to r, but

aj may reach r in a point di�erent than xj. If we just connect this to xj and then follow bj this will

produce a non convex switch in r. That is why we use the interpolating chain dj . Then the chains

ej are convex and one can construct the interpolating chain dj so that ej escapes compact sets as

j !1. Then E = fejg de�nes an admissible sequence of chains. It is easy to see that A < E and

B < E so that A �= B and p = q.

The remaining situation is that the rays of ci are not equivalent for any i. Then ci is a convex

chain, non empty and C is an admissible sequence. Also C < A; C < B, which implies that

A �= C �= B and p = q. This proves the lemma.

We now de�ne the topology in D = O [ @O.

De�nition 7.11. (topology in D = O [ @O) Let T be the collection of subsets U of D = O [ @O

satisfying the following two conditions:

(a) If x is in U \O, then there is an open set O in O with x 2 O � U .

(b) If p is in U \ @O and A = faig is any master sequence associated to p, then there is i0
satisfying two conditions: (1) eai0 � U \ O and (2) For any z in @O, if it admits a master sequence

B = fbig so that for some j0, one has ebj0 � eai0 then z is in U .

First notice that if the second requirement works for a master sequence A = faig with index i0,

then for any other master sequence C = fckg de�ning p, we can choose k0 with eck0 � eai0 . Then

eck0 � U . If q point of @O has a master sequence B = fbjg with
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ebj0 � ecj0 then ebj0 � eai0
so q is in U . Therefore (b) works for C instead of A with k0 instead of i0. So we only need to check

the requirements for a single master sequence.

Lemma 7.12. The collection of sets in T forms a topology in D = O [ @O.

Proof. Clearly D; ; are in T .

Consider unions. If fU�j� 2 Ag is a collection of sets in T , then let U be their union. If x is

in U and x is in O, there is open set O in O with x 2 O � U� for some index �, hence satisfying

condition (a). Let now p in U \@O. There is � 2 A with p 2 U�. Let A = faig be a master sequence

associated to p. There is i0 with

eai0 � U� \ O � U \ O � O:

In addition if q 2 @O and q has a master sequence B = fbjg and j0 with ebj0 � eai0 then q is in

U� � U . Hence this i0 works for U as well. This proves that U is in T .

Now consider intersections. Let U1; U2 be in T and U = U1 \ U2. Clearly U1 \ U2 \ O is open

in O. Let u 2 U1 \ U2 \ @O. Given a master sequence A = faig associated to u there is i1 with

eai1 � U1 and if q has master sequence B = fbjg with ebj0 � eai1 then q is in U1. Similarly considering

u 2 U2, there is index i2 satisfying the conditions for U2. Let i0 = max(i1; i2). Then eai0 is contained
in U1 and U2 (since eai are nested). If now q is in @O has a master sequence B = fbjg with ebj0 � eai0
for some j0 then q is in U1 and is in U2 by choice of i1; i2. Therefore q is in U . Hence U is in T .

We conclude that T is a topology in O [ @O.

Lemma 7.13. The set @O has a natural cyclic order.

Proof. Let p; q; r in @O distinct points. As shown in lemma 7.10, there are master sequences A =

faig; B = fbig; C = fcig associated to p; q; r respectively with ea1;eb1;ec1 disjoint. From a basepoint x

in O we can draw embedded arcs �; �; 
 from x to ea1;eb1;ec1 satisfying: the arcs are disjoint except

for the endpoint x. This de�nes a cyclic order on p; q; r. It is easy to see that this is independent

of the choice of master sequences (since they are all equivalent) and also choice of arcs. It is also

invariant under the action of �1(M) in O. This de�nes a natural cyclic order in @O.

De�nition 7.14. For any convex chain c there is an associated open set Uc of D: let ec be the

corresponding convex set of O ( if c has length 1 there are two possibilities). Let

U(c) = ec [ fx 2 @O j there is a master sequence A = faig with ea1 � ec g
It is easy to verify that U(c) is always an open set in D. In particular it is an open neighborhood

of any point in U(c) \ @O. The rays of c are equivalent if and only if U(c) is contained in O. The

notation U(C) will be used frequently from now on.

Lemma 7.15. D is Hausdor�.

Proof. Any two points in O are separated. If p; q are distinct in @O choose disjoint master sequences

A = faig and B = fbig. Let U(a1) be the open set of D associated to a1 and U(b1) associated to b1.

By de�nition U(a1) is an open neighborhood of p and likewise U(b1) for q. They are disjoint open

sets.

Finally if p is in O and q is in @O, choose U a neighoborhood of q as above so that U \ O does

not have p in its closure - always possible because master sequences are escaping sets. Hence there

are disjoint neighborhoods of p, q. This �nishes the proof.
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Our goal is to show that @O is homeomorphic to S1 and that D is homeomorphic to a closed

disk. We need a couple simple facts:

Lemma 7.16. For any ray l of Os or Ou, there is an associated point in @O. Two rays generate

the same point of O if and only if the rays are equivalent (as rays!).

Proof. Given a ray l consider a standard sequence associated to it. The description of standard

sequences was done just before the de�nition of of convex chains (de�nition 7.2). These sequences

de�ne an ideal point of O. It is clearly associated to the ray since every element in the convex chain

contains a subray of the original ray.

Two such points in @O are equivalent if there is a chain than contains subrays of both l; r. By

the fundamental lemma, this occurs if and only if the rays are equivalent.

The following result is very useful.

Lemma 7.17. Suppose that A = faig is an admissible sequence of chains and that all ai have a ray

in a �xed leaf l of Os or Ou. Then A is associated to the ideal point of l and A is not a master

sequence for this point.

Proof. Consider B = fbig, a standard sequence associated to l. Then for each i we claim that for

big enough j, then eaj � ebi. Suppose not and �x such i. Notice l contains a subray of aj . If eaj is
not contained in ebi then the other ray u of bi has a subray contained in eaj . The ray u is the ray

of bi in the eaj side. By construction of standard sequences, it follows that the rays u and l are not

equivalent. Notice then that eaj always contains a subray of u (as j varies), ebk always contains a

subray of l (as k varies) and eaj \ebk is never empty. Since u; l are not equivalent, this is disallowed

by the fundamental lemma. This is impossible.

We conclude that there is j with eaj � ebi and so A < B. Therefore A �= B and A is associated to

the ideal point of l. In addition A is not a master sequence because using B = fbjg we can cut ebj
along l and produce another admissible sequence in the other side of l, which is equivalent from A

and disjoint from A. Hence A cannot be a master sequence.

Lemma 7.18. Let A = faig be an admissible sequence de�ning a point p in @O. Then one of the

following mutually exclusive possibilities occurs:

(i) There are in�nitely many i and side rays li of ai which are equivalent to each other. Then p

is the ideal point of any of the li and A is not a master sequence for p.

(ii) There are only �nitely many sides which are equivalent to any given side and A is a master

sequence for p.

Proof. Suppose �rst that there are in�nitely many li contained in a ray l. As seen in the previous

lemma, this implies that p is associated to the ideal point of l and A is not a master sequence.

Next suppose there are in�nitely many li which are distinct but equivalent. Up to discarding a

few initial terms we can assume all li are equivalent. There is a ray l of a1 so that all li are equivalent

to l. Without loss of generality we can assume all li are in stable leaves vi of O
s. Then as the vi

are distinct, they escape compact sets of O as i ! 1. Also vi separates eai from a basepoint. Let

B = fbjg be a standard sequence associated to the ideal point of l. Then for any j, then chain bj
intersects only �nitely many of the fvi; i 2 Ng, so bj \ vi = ; for i big enough which implies that

eai � ebj . It follows that A < B and A is associated to the ideal point of l, or of lk for any k. As in the

previous lemma the sequence faig is in only one side of l and hence it cannot be a master sequence

for the ideal point of l.
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The other case is that there are only �nitely many sides equivalent to any given side. If A is not

a master sequence for p, then there is B an admissible sequence for the same point and B 6< A. As

in the proof of lemma 7.7 we can cut along rays of the chains to produce D = fdig so that edi\eai = ;

for i big enough. By hypothesis there is k > i so that ak does not have rays equivalent with rays

in ai. There is C admissible sequence for p with A < C; D < C and C a master sequence. But

eck will always have to contain subrays of the inequivalent rays ai and ak. The fundamental lemma

7.6 shows that eck cannot escape compact sets in O. This is a contradiction and shows that A is a

master sequence for p. This �nishes the proof of the lemma.

Lemma 7.19. The space D is �rst countable.

Proof. Let p be a point in D. The result is clear if p is in O so suppose that p is in @O. Let A = faig

be a master sequence associated to p. We claim that U(ai) is a neighborhood basis at p. Let U be

an open set containing p. By de�nition 7.11 there is i0 with eai0 � U and if z in @O admits a master

sequence B = fbig so that for some j0 then ebj0 � eai0 then z is in U . By the de�nition of U(ai0), it

follows that U(ai0) � U .

This shows that the collection U(ai); i 2 N forms a neighborhood basis at p.

More importantly we have the following:

Lemma 7.20. The space D = O [ @O is second countable.

Proof. We �rst construct a candidate for a countable basis. Since O is homeomorphic to R2 it has

a countable basis. For points in @O we proceed as follows: we claim that it suÆces to consider

admissible sequences where for every i the sides of bi are in periodic leaves. Let A = faig be a

master sequence associated to p. Consider a given i. If all sides of ai are in periodic leaves we are

done. Otherwise push them in slightly, that is, make the eai smaller. First we do this for the �nite

sides. The obstruction to pushing it in slightly, still intersecting the same adjacent sides is that there

is a singularity in this segment. But then this segment is already in a periodic leaf and we leave it as

is. We push a segment slightly to produce a chain bi. Do this for all i. Given i, then since aj escapes

in O with increasing j, then it is eventually in the region ebi, that is aj � ebi. We take a subsequence

of the original sequence bi to make it nested.

Given i, consider one ray l of bi and flt j t � 0g leaves of the same foliation as l, with lt converging

to l as t! 0. We want lt intersecting the side of bi adjacent to l. Note that this intersection of l and

the adjacent side is not a singular point, otherwise we would be done. If the lt converge to another

leaf (in ebi or not), this implies that l is in a periodic leaf and we are done. There is j > i so that l

is not a side of aj � otherwise A = fajg would not be a master sequence, by lemma 7.18. Choose j

big enough so that this is true. Then there is t suÆciently small so that lt separates l from aj. This

is true because lt does not converge to any other leaf besides l. Choose also one t for which lt is a

periodic leaf and change bi to have this ray in lt. With the new bi, there is aj with j big enough with

aj � ebi. Proceeding in this way we produce a master sequence B = fbig which is nested with A and

therefore de�nes the same ideal point of O. In addition all sides of bi are periodic, for every i.

Since each sequence has �nitely many elements and there are countably many periodic leaves,

there are countably many sets of the form bi as above. Hence there are countably many U(b) with

b some bi as above. The previous lemma shows that this collection forms a countable basis for the

points in @O. This �nishes the proof of the lemma.

Next we show that D is a regular space.

Lemma 7.21. The space D is a regular space.
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Proof. Let p be a point in D and V be a closed set not containing p. Suppose �rst that p is in O. Here

V c is an open set with x in V c, so there are open disks D1;D2 in O, so that p 2 D1 � D1 � D2 � V c,

producing disjoint neighborhoods D1 of p and (D2)
c of V .

Suppose now that p is in @O. Since p is not in the closed set V , there is an open set O containing

p and disjoint from V . Let A = faig be a master sequence associated to p. Then there is i0 so that

U(ai0) de�ned above is contained in O. Notice that the closure of eai0 in D is eai0 with ai0 plus the

two ideal points of the rays in ai0 . Clearly the closure in O is just adjoining ai0 . The 2 ideal points

of the rays of ai are clearly in the closure as any neighborhood contains a subray. Any other point

in @O, if in U(ai0) are are done, otherwise we �nd a master sequence disjoint from master sequences

of both ideal points of ai0 . Therefore they are not in the closure of eai0 .
Choose j big enough so that aj does not share any leaf with ai0 and that the rays of aj are

not equivalent to any ray of ai0 , again possible by lemma 7.18. If follows that the closure of eaj is
contained in U(ai0), hence

p 2 U(aj) � closure(eaj) � U(ai0) � V c

This proves that D is regular.

This implies that D is metrizable:

Corollary 7.22. The space D is metrizable.

Proof. SinceD is second countable and regular, a classical theorem of general topology� the Urysohn

metrization theorem (see [Mu] pg. 215) implies that D is metrizable.

Therefore in order to prove that D is compact it suÆces to show that any sequence in D has a

convergent subsequence. Still it is a bit tricky to get a handle on an arbitrary sequence of points in

O or in @O. We will analyse one case which seems very special, but which in fact implies the general

case without much additional work.

Lemma 7.23. Let f li j i 2 Ng be a sequence of slices in leaves of Os (or Ou). Suppose that for

each i the set O � li has a component Ci so that all Ci are disjoint and the Ci are linearly ordered

as seen from a basepoint in O. Then in D, the sequence Ci [ li converges to a point p in @O.

Proof. We assume that li is always in O
s, other cases are treated similarly. If the li does not escape

compact sets in O when i ! 1 then there are ik and zik in lik with zik converging to a point z.

Clearly the Cik cannot all be disjoint, contradiction. Therefore the flig escape in O and the Ci are

uniquely de�ned.

The order is de�ned as follows: Let x in O be a basepoint. For each i choose an embedded path


i from x to li. We can do this inductively so that the 
i are all disjoint except for x. The collection

f
ig now induces an order in flig.

The �rst situation is that there is an in�nite subsequence, which we assume is the original sequence

so that li are all non separated from each other. Here we state a useful lemma also for future use:

Lemma 7.24. If p is a point of @O associated to an in�nite collection of non separated leaves in Os

or Ou, then a master sequence is obtained with 2 elements in each chain as described below.

Proof. See �g. 23, a. Recall the structure of the set of in�nitely many non separated leaves of a

pseudo-Anosov 
ow, theorem 2.6. Let fzj ; j 2 Zg be the set of leaves non separated from each other

and ordered as in theorem 2.6. We can �nd pairs of rays aj ; bj , aj in Ou, bj in Os, with aj [ bj
intersecting only in their �nite boundary point and satisfying: aj [ bj escapes in O with j and aj ; bj
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Figure 23: a. In�nitely many non separated leaves converge to a single ideal point, b. A more interesting

situation.

are not equivalent. Also the aj intersects zj , see �g. 23, a. Let dj = aj [ bj, a convex chain and

D = fdjg. We can choose the aj ; bj so that the dj form a nested sequence. Then D is an admissible

sequence of chains and de�nes an ideal point p in @O. The collection D is also a master sequence

associated to p.

The fli; i 2 Ng forms a subcollection of a set of leaves non separated from each other. It follows

that we can �nd aj; bj as in the lemma and also for any i, li intersects aj where j goes to in�nity

with i. As in the lemma let dj = aj [ bj and D = fdjg. Then D is a master sequence converging to

a point p in @O. In addition given any j then for i big enough li is contained in edj. Hence li [ Ci

converges to p in D.

The second possible situation is that up to subsequence, then for any distinct i; j, the li is

separated from lj . The procedure will be to inductively choose a leaf gi so that the collection

fgig; i 2 N is nested and escapes compact sets in O. Hence it de�nes an ideal point of O and the

li [Ci will converge to it.

Fix x in O. Consider the slices b of Os which separate x from ALL of the li. Choose x so there is

at least one. The collection of slices is clearly ordered by separation properties so we can index then

as fb� j � 2 Ig where I is an index set. Put an order in I so that � < � if and only if b� separates b�
from x. Since the b� cannot escape O as � increases (they are bounded by all the li) then it limits to

a collection of leaves and there is a single leaf g which is either equal to some li0 or separates every

li from all other elements b�, see �g. 23, b. In the second case let g1 be the leaf g thus constructed.

The choice of g1 in the �rst case is more complicated. In the �rst case since li0 is separated from

any other li then no other leaf which is non separated from g is equal to some li. Hence for each i

there is a leaf hi non separated from g which separates li from l0.

Suppose there are in�nitely many distinct hi. Then as seen in situation one above the hi converge

to a point p in @O and by construction so do the li. This �nishes the proof in this case. The remaining

option is that there are only �nitely many distinct hi. In particular there is some h so that h = hi
for in�nitely many i. Let g1 be this h. Now we are going to restart the process, but we keep only

the li's separated from li0 by this h � which must be all li for i suÆciently big since the collection

fli; i 2 Ng is ordered. Now throw out the �rst leaf li still in the sequence and redo the process. This

iterative process produces fgj ; j 2 Ng which is a weakly monotone sequence of leaves, that is, it is

weakly nested. We explain the weak behavior. For instance in the �rst case, after throwing out l1
(or whatever �rst leaf was still present), it may be that only g1 is a slice which separates x from all

other li. In that case g2 = g1. So the gj may be equal, but they are weakly monotone with j.

If the fgj ; j 2 Ng escapes in O with j, then since each gj separates in�nitely many li from x we

quickly obtain that the li converge to a point in @O. Suppose then that the fgj ; j 2 Ng does not

escape O. The �rst option is that there are in�nitely many distinct gj . Up to taking a subsequence

assume all gj are distinct and let gj converge to H = [hk, a collection of stable leaves in Os. Then
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Figure 24: a. Forcing convergence on one side, b. The case that all gj are equal.

by construction, for each j0, the gj0 separates some li from x but for a bigger j, the gj does not

separate li from x, see �g. 24, a. Also, for each i there is some j so that gj separates li from x.

We analyse the case there are �nitely many line leaves of Os in H, the other case being similar.

As seen in theorem 2.6 the set of leaves in H is ordered and we choose h1 to be the leaf closest to

the li. Also there is a ray r of l which points in the direction of the li, see �g. 24, a. Let p be the

ideal point of r in @O. We want to show that li [ Ci converges to p.

Choose points vn in r converging to p. For each n then Ou(vn) intersects gj for j big enough �

since the sequence gj converges to H. Choose one such gj with j converging to in�nity with n. We

consider a convex set An of O bounded by a subray of r starting at vn, a segment in Ou(vn) between

h1 and gj for a suitable big gn and a ray in gn starting in gn \ O
u(vn) and going in the direction

of the li, see �g. 24, a. We can choose j so that the fAn; n 2 Ng forms a nested sequence. Let

an = @An. Since h1 is the �rst element of H it follows that fang escapes compact sets in O and

clearly it converges to p. For each n and associated j, there is i0 so that for i > i0 then gj separates

li from x. If follows that li [ Ci is contained in An and therefore li [ Ci converges to p in D. This

�nishes the proof in this case.

If H is in�nite let H = fhk; k 2 Zg with k increasing as hk moves in the direction of the li. Then

hi converges to a point p 2 O. A similar analysis as in the case that H is �nite shows that li [ Ci

converges to p in D. Use the convex chains aj [ bj as described in lemma 7.24.

The �nal case to be considered is that up to subsequence all gi are equal and let g be this leaf.

In particular no li is equal to g. This can certainly occur as shown in �g. 24, b. If we remove �nitely

many of the li, then g is still the farthest leaf separating x from all the remaining li.

Consider the collection of leaves C of Os non separated from g in the side containing the li. Put

an order in C with increasing corresponding with increasing i in li. Suppose there is h in C with

h > g in C and either h is equal to some lk or h separates some lk from g, see �g. 25, a. There are

only �nitely many leaves in C between g; h and since no li can go beyond g, it follows that there

is some h0 in C so that there are in�nitely many i with h0 separating g from li, see �g. 25, a. In

particular there is i0 so that h0 separates g from li for all i > i0. Hence the gj cannot be equal to g

for j big enough, contradiction.

It follows the all li are in the same component of O � C. For simplicity assume that C is �nite.

(The case where there are in�nitely many leaves non separated from g on that side is very similar

with proof left to the reader). Let h be the biggest element of C. Let r the ray of h associated to

the increasing direction of the the li and let p in @O be the ideal point of r. We want to show that

li converges to p.

Suppose that this is not true. Then there is some convex neighborhood A of p bounded by a

convex chain a, so that li is disjoint from A for all i, see �g. 25, b. This follows because li is

ordered. Consider the ray r1 of a in the side containing li. Suppose �rst this ray is in an unstable
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leaf. Consider all the stable leaves through r1. They cannot all intersect h because the ray of h and

r1 are not equivalent. In addition by going further intersecting r1 we �nd a stable leaf s intersecting

r1 so that s and h are not equivalent, see �g. 25.

We do the same analysis and �nd r2 stable leaf of Os intersecting s and does not have a ray

equivalent to r, see �g. 25, b. Now take h0 stable leaf very near h and in the li side. Because r2 and

r are not equivalent we can assume that h0 separates h from r2, see �g. 25, b. Suppose �rst that

some such h0 separates some li from h, see �g. 25, b. Then for all i big enough h0 does that and

so we obtain that gj would have eventually to move past h0 contradiction. The contradiction shows

that in this case the li are eventually in A and li [ Ci converges to p in D.

The remaining possibility is that for any such h0 then it does not separate h from any li. As h
0

gets closer and closer to h, it limits to a leaf f in C which is either equal to some li0 or separates

all li from g. In the second case the gj would have to eventually move beyond f and could not be

constant. In the �rst case either there is some f 0 separating in�nitely many li from g � again gj
would move beyond f 0 generating a contradiction or any f in C can only separate �nitely many li
from g. In this case it follows that C is in�nite and the sequence of leaves of C in this side of g

converges to an ideal point p of @O, see �g. 26. It follows that the li [ Ci converges to p, as seen

before.

This �nishes the proof of lemma 7.23.

The proof of lemma 7.23 was very involved because there are so many places the sequence flig

can slip through.

Proposition 7.25. The space D is compact.

Proof. Since D is metrizable, it suÆces to consider the behavior of sequences zi in D. Up to taking

subsequences there are 2 cases:

1) Assume the zi are all in O. If there is a subsequence of zi in a compact set of O we are done.

So assume that zi escapes compact sets in O. Let li be slice leaves of O
s with zi in li. Suppose there

is a subsequence lik converging to l and assume that all lik are in one sector of l or in l itself. A small

transversal to l intersects lik for k big enough and up to subsequence assume all zik are in one side

of that transversal. Suppose for simplicity there are only �nitely many leaves non separated from

l in that side. Let l0 be the last one in the side the zik are in and let p be the ideal point of l0 in
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that direction. The argument is similar to a previous one: let vn in l0 converging to p in D. Choose

a convex chain an made up of the ray in l0 starting in vn and converging to p, then the segment in

Ou(vn) from vn to Ou(vn)\ lik for apropriately big k and then a ray in lik starting in this point. As

before we can choose the an nested and converging to p in D. It follows that zik converges to p and

we are done in this case. The case of in�nitely many leaves non separated from l is treated similarly

as seen in the proof of lemma 7.23.

Suppose now that the sequence fli; i 2 Ng escapes compact sets in O. Fix a base point x in O

and assume that x is not in any li and de�ne eli to be the component of O � li not containing x.

Then eli escapes compact sets in O. If there is a subsequence lik so that lik is nested then this de�nes

an admissible sequence of convex chains (of length one) converging to an ideal point p.

Otherwise the has to be i1 so that it only has �nitely many i with eli � eli1 . Choose i2 > i1 witheli2 6� eli1 and hence eli2 \ eli1 = ; and also so that there are �nitely many i with eli � eli2 . In this way

we construct a subsequence ik; k 2 N with elik disjoint from each other. The collection of leaves

f elik j k 2 Ng

is obviously circularly ordered and if we remove one element of the sequence (say the �rst one) then

it is ordered. As such it can be mapped into Q in an order preserving way. Therefore there is another

subsequence (call it still lik) for which
elik is monotone. Now apply the previous lemma and obtain

that lik converges to a point p in @O and hence so does zik .

This �nishes the analysis of case 1.

Case 2 � Suppose the zi are in @O.

Here we will eventually use the analysis of case 1. We may assume that the points zi are distinct.

To start we can �nd a convex neighborhood bounded by a convex chain a1 so that U(a1) is a

neighborhood of z1 in D and also it does not contain any other zi. Otherwise there is a subsequence

of fzig which converges to z1. Then �nd a2 convex chain with U(a2) neighborhood of z2 in D

disjoint from U(a1) and not containing any other zi either. Inductively construct ai convex chains

with U(ai) neighborhood of ai in D and all U(ai) disjoint from each other. By taking smaller convex

neighborhoods we can assume that the U(ai) escapes compact sets inO as i!1. Up to subsequence

we may assume that the U(ai) forms an ordered set as seen with respect to a collection of disjoint

arcs (except for initial points) from x to ai. Let wi be a point in ai. Since ai escapes compact sets

in O we obtain by case 1 that there is a subsequence wik converging to a point p in @O. Consider a

master sequence B = fbjg associated to p. Let j be an integer. If for any i we have that eai 6� ebj , then
eaik has a point wik converging to p and also has points outside ebj . This contradicts the eaik being

all disjoint. Therefore eai � ebj for i big enough � this follows because the sequence eai is ordered.
It follows that wi converges to p. Therefore there is always a subsequence of the original sequence

which converges to a point in D.

This �nishes the proof of proposition 7.25, compactness of D.

We now prove a couple of additional properties of D.

Proposition 7.26. The space @O is homeomorphic to a circle.

Proof. The space @O is metrizable and circularly ordered. It is compact as a closed subset of a

compact space. We now show that @O is connected, no points disconnect the space and any two

points disconnect the space.

Let p; q be distinct points in @O. Choose disjoint convex neighborhoods U(a); U(b) of p; q

de�ned by convex chains a; b. There are ideal points in U(a) distinct from p, hence there is a point

in @O between p; q. Hence any \interval" in O is a linear continuun, being compact and satisfying
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the property that between any two points there is another point. This shows that @O is connected

and also that no point in @O disconnects it. In addition as @O is circularly ordered, then any two

points disconnect @O. By theorem I.11.21, page 32 of Wilder [Wi], the space @O is homeomorphic

to a circle.

We are now ready to prove that D is homeomorphic to a disk.

Theorem 7.27. The space D = O [ @O is homeomorphic to a closed disk D2.

Proof. This proof will use classical results of general topology, namely a theorem of Zippin charac-

terizing the closed disk D2, see theorem III.5.1, page 92 of Wilder [Wi].

First we need to show that D is a Peano continuun, see page 76 of Wilder [Wi]. A Hausdor�

topological space C is a Peano space if it is not a single point, it is second countable, normal, locally

compact, connected and locally connected. Notice that Wilder uses the term perfectly separable

(de�nition in page 70 of [Wi]) instead of second countable. If in addition C is compact then C is a

Peano continuun.

By proposition 7.25 our space D is compact, hence locally compact. It is also Hausdor� � lemma

7.15 � hence normal. By lemma 7.20 it is second countable and it is clearly not a single point. What

is left to show is that D is connected and locally connected.

We �rst show that D is connected. Suppose not and let A;B be a separation of D. Since @O

is connected (this is done in the proof of proposition 7.26), then @O is contained in either A or B,

say it is contained in A. Then B is contained in O. If B is not contained in a compact set of O

then there is a sequence of points in B escaping compact sets in O. As D is compact there is a

subsequence converging in D, which must converge to a point in @O, contradiction to A;B forming

a separation. It follows that there is a closed disk D in O with B contained in the interior of D.

Then D \A;D \B form a separation of D, contradiction.

Next we show that D is locally connected. Since O �= R2, then D is locally connected at every

point of O. Let p in @O and let W be a neighborhood of p in D. If A = faig is a master sequence

associated to p, there is i with U(ai) contained in W and U(ai) is a neighborhood of p in D. Now

U(ai) \ O = eai is homeomorphic to R2 also and hence connected. The closure of eai in D is U(ai).

Since

eai � U(ai) � U(ai)

then U(ai) is connected. This shows that D is locally connected and that D is a Peano continuun.

To use theorem III.5.1 of [Wi] we need the idea of spanning arcs. An arc in a topological space

X is a subspace homeomorphic to a closed interval in R. Let ab denote an arc with endpoints a; b.

If K is a point set, we say that ab spans K if K \ ab = fa; bg. We now state theorem III.5.1 of [Wi].

Theorem 7.28. (Zippin) A Peano continuun C containing a 1-sphere J and satisfying the following

conditions below is a closed 2-disk with boundary J :

(i) C contains an arc that spans J ,

(ii) Every arc that spans J separates C,

(iii) No closed proper subset of an arc spanning J separates C.

Here E separates C mean that C �E is not connected.

In our case J is @O. For condition (i) let l be a non singular leaf in Os or Ou. Then l has 2 ideal

points in O which are distinct. The closure l is an arc that spans @O. This proves (i).

We prove (ii). Let � be an arc in D spanning @O. Then � \O is a properly embedded copy of R

in O. Hence O� (� \O) has exactly two components A1; B1. In addition @O� (� \ @O) has exactly
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two components A2; B2 and they are connected, since @O is homeomorphic to a circle by proposition

7.26. If p is in A2 there is a connected neighborhood U of p in D which is disjoint from � � since � is

closed in D. Hence U \O is contained in either A2 or B2. This also shows that a neighborhood of p

in @O will also satisfy the same property. By connectedness of A2; B2, then after switching A1 with

B1 if necessary it follows that: for any p 2 A2 there is a neighborhood U of p in D with U \ � = ;

and U \O � A1. Similarly B2 is paired with B1. Let A = A1[A2 and B = B1[B2. The arguments

above show that A;B are open in D and therefore they form a separation of D� �. This proves (ii).

In addition since O � (� \ O) has exactly two components A1; B1 then � \ O is contained in

A1 \B1 and so � � A \B. It follows that no proper subset of � separates D. This proves property

(iii).

Now Zippin's theorem implies that D is homeomorphic to a closed disk. This �nishes the proof

of theorem 7.27.

Notice that �1(M) acts on O by homeomorphisms. The action preserves the foliations Os;Ou

and also preserves convex chains, admissible sequences, master sequences and so on. Hence �1(M)

also acts by homeomorphisms of D. The action has some nice properties: g in �1(M) has a �xed

point in O if and only if it is associated to a periodic orbit of the 
ow �. The action in @O also has

good properties.

The same holds for almost pseudo-Anosov 
ows:

Corollary 7.29. Let � be an almost pseudo-Anosov 
ow. Then O has a natural compacti�cation

to a closed disk.

Proof. Let �1 be the pseudo-Anosov 
ow obtained from �. The orbit space O1 of e�1 is obtained as

a blow down of the orbit space of e�. Going backwards from �1 to � produces blown up standard

sequences, master sequences, etc.. All the de�nitions concerning ideal boundary of O1 also work for

O producing a compacti�cation D. There is a natural blow down map from D to D1 which is a

homeomorphism in the boundary. Clearly all the constructions are group equivariant.

8 Quasigeodesic pseudo Anosov 
ows in M3 with �1(M) negatively curved

We will apply the results of the last section to study metric properties of 
ows. First we derive a

further property of ideal points of general pseudo-Anosov 
ows.

Proposition 8.1. Let � be a pseudo-Anosov 
ow in M3 closed. Let p be an ideal point of O. Then

one of the 3 mutually exclusive options occurs:

1) There is a master sequence L = flig where li are slices in leaves of Os or Ou.

2) p is an ideal point of a ray l of Os or Ou so that l makes a perfect �t with another ray of Os

or Ou. There are master sequences which are standard sequences associated to a ray in Os or Ou as

described before de�nition 7.2.

3) p is an ideal point associated to in�nitely many leaves non separated from each other. Then a

master sequence for p is obtained as shown in lemma 7.24.

Proof. Fix a basepoint x in O. Let A = faig be a master sequence de�ning p. Assume that x is not

in the closure of any eai. Each ai is a convex chain, ai = b1 [ :::bn where bi is either a segment or a

ray in Os or Ou. For simplicity we omit the dependence of the bj's on the index i.

Claim � For each i there is some bj as above, with bj is contained in a slice z of Os or Ou, so that

z separates x from eai.
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Figure 27: a. The case that xi is between some unstable leaves, b. The case xi escapes to one side.

For each j consider an endpoint y of bj. Suppose wlog that bj is in a leaf of Os. Since eai is a
convex chain, we can extend bj along O

s(y) beyond y and entirely outside eai. Here the hypothesis
that eai is convex is necessary, for otherwise at a non convex switch any continuation of bj along O

s(y)

beyond y would have to enter eai. Suppose that y is also in bj+1. If one encounters a singular point

in Os(y) (which could be y itself), then continue along the prong closest to bj+1. In this way we

construct a slice cj of O
s(y) with bj � cj . Notice that there is a component Vj of O � cj containingeai. By construction

n\
j=1

Vj = eai
Since x is not in eai, then there is j with x not in Vj and so cj separates x from eai. Let z be this slice
cj . This proves the claim.

Using the claim then for each i produce such a slice and denote it by li. Let eli be the component

of O � li containing eai. Up to subsequence assume all the li are in (say) Os. Since A is a master

sequence for p, we may also assume, by lemma 7.18, that all the li are disjoint from each other.

We now analyse what happens to the li. The �rst possibility is that the sequence flig escapes

compact sets in O. Then this sequence de�nes an ideal point of O. As eai � eli, it follows that L = flig

is an admissible sequence for p. Since A = faig is a master sequence for p, then given eai, there is
j > i with lj � eai. It follows that L = flig is also a master sequence for p. This is case 1) of the

possibilities.

Suppose from now on that for any master sequence A = faig for p and any li as constructed above,

then li does not escape compact sets. Then li converges to a set of leaves C = fckg; k 2 J � Z. This

is a family of leaves of Os non separated from each other. We assume C to be ordered as described

in theorem 2.6. Here J is either f1; :::k0g or is Z. Choose xi 2 bi = ai \ li. Hence xi converges to p

in D as i!1. For any y in C, then y 2 ck for some k and Ou(y) intersects li for i big enough in a

point denoted by y(i). Similarly for z in C de�ne z(i). This notation will be used for the remainder

of the proof.

Situation 1 � Suppose there are y; z 2 C so that for big enough i, xi is between y(i) and z(i) in li,

see �g. 27, a. Let z in cj0 , y in cj1 , with j0 � j1. If j0 = j1 then the segment ui of li between

z(i); y(i) converges to the segment in Os(z) between z and y. Then xi does not escape compact sets,

contradiction.

For any k the leaves ck; ck+1 are non separated from each other and there is a leaf e of Ou making

perfect �ts with both ck and ck+1. This de�nes an ideal point w of @O which is an ideal point of

equivalent rays of ck; ck+1 and e, see �g. 27, a. Consider the region D of O bounded by the ray of

cj0 de�ned by z and going in the y direction, the segment in Ou(z) from z to z(i), the segment ui
in li from z(i) to y(i), the segment in Ou(y) from y(i) to y, the ray in Os(y) de�ned by y and going
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towards the z direction and the leaves ck with j0 < k < j1 (this last set may be empty). By the

remark above, the only ideal points of D in @O, that is the set D \ @O (closure in D), are those

associated to rays of ck with j0 � k � j1. One such point is the w de�ned above. It follows that xi
converges to one of these and p is one of these points. So p is an ideal point of a ray of Os or Ou

which makes a perfect �t with another leaf. There is a master sequence which is a standard sequence

associated to p. This is case 2 of the proposition. Notice it is disjoint from case 1).

Situation 2 � For any y; z in C the xi is eventually not between the corresponding y(i); z(i).

Suppose �rst that C is an in�nite collection of non separated leaves. Let y 2 C. Then up to

subsequence the xi are in one side of y(i) in li, say in the side corresponding to increasing k in the

order of C (this is in fact true for the original sequence as xi converges in D). Let w be the ideal

point associated to in�nitely many non separated leaves as in lemma 7.24. Let gm = em [ fm and let

Gm = fgmg be a master sequence associated to w as in lemma 7.24. Fix m. Then xi is eventually in

egm. Therefore xi converges to w and w = p. Here we are in case 3). Notice all 3 cases are mutually

exclusive.

Finally suppose that C is �nite. We may assume that xi escapes in the positive direction, that is

y is in ck0 . Let w be the ideal point of that ray of ck0 . Let yn in ck0 converging to w. Let

yn(i) = Ou(yn) \ li

Fix n. Then eventually in i, the xi is in the component of Os(yn(i)) � yn(i) corresponding to the

ideal point w. Consider a master sequence de�ning w which is a standard sequence de�ning w so

that: it is arbitrary in the side of O � ck0 not containing xi and in the other side we have an arc in

Ou(yn) from yn to yn(i) and then a ray in li. Since ck0 is the biggest element in C, there is no leaf of

Os non separated from ck0 in that side. Hence the li cannot converge to anything on that side and

those parts of li escape in O. As the xi are in these subarcs of li then xi ! w in D and so p = w.

Let rn = Ou(yn). If rn escapes compact sets in O as n ! 1, then it de�nes a master sequence

for p and we are in case 1). Otherwise rn converges to some r making a perfect �t with ck0 and we

are in case 2).

This �nishes the proof of the proposition.

We now study metric properties of 
ows. Suppose that M3, closed has �1(M) negatively curved

and that � is a quasigeodesic pseudo-Anosov 
ow in M . Since fM is an R-bundle over O it is a

trivial bundle. Choose any continuous section � : O ! fM . We now prove that this section extends

continuously to a map also � : D ! fM [ S2

1
(by an abuse of notation, also denoted by �) and the

map restricted to @O is uniquely de�ned and group equivariant, providing a group invariant Peano

curve.

Theorem 8.2. Let � be a quasigeodesic pseudo-Anosov 
ow in M3 closed, with �1(M) negatively

curved. For any continuous section � : O ! fM , it extends to a continuous map � : D ! fM [ S2

1
.

The ideal map � : @O ! S2

1
is group equivariant and is uniquely determined by �.

Proof. Let � be a section of the bundle and let p in @O. We use the 3 cases from the previous

proposition.

Case 1 � There is L = flig master sequence for p with li slices in leaves of Os or Ou and li escaping

in O.

Suppose up to subsequence that li are all slices in Os. Then there are slices Li of e�s with Li
escaping in fM . The basic lemma (lemma 6.5) shows that Li shrinks in visual diameter. The closure

Li is taken in fM [ S2

1
. In addition Li also separates a set Bi in fM with fBig nested in i and Bi
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shrinking in diameter. Therefore in fM [ S2

1
, the sets Bi converge to a single point in S2

1
. This is

�(p). Any other master sequence is nested with this master sequence, so it will produce the same

limit �(p).

Case 2 � p is an ideal point of a ray l in Os or Ou.

Without loss of generality suppose that l � �(L) with L 2 e�s. Then since p is an ideal point

of l, it follows that �(l) converges to L+ � same arguments as in the proof of continuous extension

property for leaves of foliations � see the begining of case 2 of the extension construction. Let

�(p) = L+. Recall that L+ is the common positive ideal point of any 
ow line in L.

Case 3 � Suppose p is associated to in�nite branching.

Use a master sequence G = fgig, where gi = ei [ fi as in situation 2 of the previous proposition.

Let Ei = ei �R, Fi = fi �R and Gi = gi �R, all subsets of fM . Let Bi = egi �R. Then the Bi

are nested in fM . By the basic lemma, since fi escapes in O, then Fi shrinks in visual diameter infM [ S2

1
. The same same is true for Ei and hence for Gi and �nally Bi. Let �(p) be the limit of the

shrinking sequence Bi.

This de�nes an extension map � : D ! fM [ S2

1
. In cases 1) and 3) the de�nition of �(p) is

obtained using master sequences A = faig so that �(eai) is nested, has diameter converging to 0 and

converges to �(p). Recall the sets U(ai) which form a neighborhood basis of p in D � see de�nition

7.14 and lemma 7.19. The U(ai) are contained in the closure of eai in D. Therefore the arguments

above show that �(U(ai)) also shrinks in visual measure to the point �(p). This proves continuity

of � at p in cases 1) and 3).

We now prove continuity at p in case 2). We use the same notation as above with p ideal point

of l ray of Os.

The basic lemma refers to a collection of sets Ci each of which in a leaf of e�s or e�u. The proof of

continuity of � at p in cases 1) and 3) uses the fact that the chains in the master sequences always

have length one or two and so the basic lemma can be applied twice directly yielding the result. In

case 2) chains can have arbitrary length. It is true that pieces of the chain intersecting l will have

to escape in O and so the corresponding sets in fM shrink to �(p), but since there can be more and

more links in the chains, it is unclear whether the complete chains converge to �(p). An additional

argument is needed as follows:

Fix a metric in fM[S2

1
making it homeomorphic to a closed ball and so that covering translations

act as homeomorphisms. Let � > 0. Let A = faig be a master sequence which is a standard sequence

associated to p. Suppose there are in�nitely many leaves Lj in e�s which are equivalent to L. Suppose

they form a nested collection, L0 = L. Then Lj escapes compact sets in fM as j ! 1. The basic

lemma (lemma 6.5) implies that diam(Lj) converges to 0 and so suppose j is chosen so that this

diameter is less than �. Since Lj is equivalent to L, then

(Lj)+ = L+ = �(p)

Then Lj is very close to �(p) and so is the part of �(eai) beyond Lj . This shows that we only have to
worry about continuity of � at p for the regions between l and lj = �(Lj). If there are only �nitely

many leaves equivalent to L, then this �rst part is not needed.

The number j is �xed. Hence it suÆces to consider the region between l and a leaf u of Ou

making a perfect �t with l. Let U 2 e�u with u � �(U). Let ebi be the subregion of eai bounded by a

ray in l, a ray in u and 2 segments ci; di in ai: ci starts in l \ ai, di starts in u \ ai and ci, di share

the other endpoint. Let
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bi = @ebi = ci [ di [ ei [ fi

where ei is a ray in l, fi is a ray in u. Let

Ci = ci �R; Di = di �R; Ei = ei �R; Fi = fi �R

Then Ei; Fi converge to �(p) in fM [ S2

1
, because U� = L+. The Di have 
ow lines Di \ L which

converge to �(p) in fM [ S2

1
. If Di does not converge to �(p), then again lemma 6.5 implies that

Di cannot escape compact sets in fM as i ! 1. This contradicts the fact that �(Di) � ai and ai
escapes compact sets in O. It now follows that Ci [ Di [ Ei [ Fi converges to �(p). This proves

continuity of � at p in case 2). This �nishes the proof of continuity of �.

The map � : @O ! S2

1
so de�ned is clearly group equivariant as it was de�ned using group

invariant objects such as master sequences and such. As � : @O ! S2

1
is continuous, then �(@O) is

a closed subset of S2

1
. It is group invariant hence it is S2

1
. This provides several examples of group

invariant Peano curves whenever there is a quasigeodesic pseudo-Anosov 
ow in fM . Notice that �

restricted to @O is independent of the section � chosen. This is because for any sequence xi in O

converging to p in D, then the entire orbits xi �R converge to �(p) in fM [ S2

1
.

This �nishes the proof of the theorem.

In the same way as in theorem 8.2 we prove:

Corollary 8.3. Let � be a quasigeodesic almost pseudo-Anosov 
ow in M3 closed, with �1(M)

negatively curved. Let � : O ! fM be any section. Then it extends continuously to a map O[ @O !fM [ S2

1
. The restriction to the boundary is a map � : @O ! S2

1
, which is a naturally de�ned group

invariant Peano curve.

9 Global circle maps and encoding of limit sets

We now relate the results of the last 2 sections. Let F be a foliation almost transverse to a pseudo-

Anosov 
ow �1 and transverse to an almost pseudo-Anosov 
ow �. Let O be the leaf space ofe�.
De�nition 9.1. Let F 2 eF . The limit set of F in D is the closure of �(F ) in D intersected with

@O. This is denoted by BF .

Lemma 9.2. There is a continuous, circularly monotone map cF : @O ! @1F . This is an encoding

of the boundary of F . The map �F : �(F )[BF ! F [ @1F given by �F (x) = (x�R)\F if x is in

�(F ) and �F (x) = cF (x) if x is in BF is surjective and continuous.

Proof. Let z 2 BF . Then there are zi in �(F ) with zi ! z in D. Let ui in F with �(ui) = zi. Up to

subsequence assume ui converges to u in @1F . If wi is another sequence in �(F ) with wi ! z and

vi in F with �(vi) = wi assume vi converges to v in @1F . If v; u are distinct, let � be a component

of @1F �fu; vg. There is a stable leaf l of e�s
F with both endpoints in � . Let l1 = �(l�R). If l1 has

both endpoints in @O then they separate the limits of zi and wi, contradiction, because they have

the same limit in D. If both endpoints are in slice leaves r1; r1 of Ou then r1; r2 do not intersect

�(F ) and the other side of r1; r2 is disjoint from �(F ). Then l \ r1 \ r2 also shows that the limits

of zi and wi cannot be the same. We conclude that v; u distinct is impossible.

So there is a well de�ned map cF from BF to @1F and this is weakly circularly monotone �

it can collapse points but not reverse the order: Let p1; p2; p3 be an ordered triple of points in BF .
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Find �i propertly embedded half in�nite arcs in �(F ) converging to pi and disjoint except for their

common starting points. Let �i be their lifts to F , that is �(�i) = �i. Then in F the �i carry

the same ordering as the �i. Since �i has points which limit to cF (pi), the the order of p1; p2; p3
cannot be reversed under the images by cF . However it is quite possible that some or all of the pi
get mapped to the same point in @1F .

In addition every point of @1F is obtained this way. Let ui in F converging to an arbitrary point

u of @1F . Let wi = �(ui). Up to subsequence, assume that wi ! w in D. If w is in @O we are done.

Otherwise suppose that w is in a stable boundary leaf l of @�(F ). Let p be an ideal point of l in

@O. Since l is contained in @�(F ) there are zi in �(F ) converging to p and vi in F with �(vi) = zi,

with vi also assumed to converge in F [@1F to a point v. If u 6= v, then construct as above a stable

leaf in between them and as above arrive at a contradiction.

The same type of argument also shows that the map cF : BF ! @1F thus de�ned is continuous.

The boundary @1F is essentially obtained by collapsing the endpoints of complementary intervals

of BF in @O. The arguments above show that endpoints of any complementary interval of BF in @O

map under cF to the same point of @1F . Extend the map cF to @O, by sending a complementary

interval to the image of the endpoints.

Finally we analyse continuity of �F : If zi in �(F ) and zi ! z in BF then by construction �F (zi)

converges to �F (z). Since �F restricted to BF or �(F ) are already continuous, this implies that �F
is continuous.

Remarks 1) Notice that the proof shows that if l is a boundary leaf of �(F ) and l is the closure of l

in D, then for any sequence wi in �(F ) converging to a point w in l, and any zi 2 F with �(zi) = wi,

then the limit of the zi in F [ @1F is uniquely de�ned. In fact there is always a limit otherwise �nd

a subsequence converging to something else.

2) Also this lemma in particular shows that if z is in @1F , then there is a in @O with cF (a) = z.

This occurs even though for an arbitrary zi in F converging to z and wi = �(zi), then wi may not

converge to a and in fact wi may converge to a point in O. Still there is always some sequence yi in

F converging to z, with �(yi) converging to a.

Now we have the main result of this section:

Theorem 9.3. Let �1 be a quasigeodesic pseudo-Anosov 
ow almost transverse to a Reebless foliation

F in M3 closed, with �1(M) Gromov hyperbolic. As shown before F has the continuous extension

property. Given F in eF , let 'F : @1F ! S2

1
be the induced continuous map. Let � be the almost

pseudo-Anosov 
ow transverse to F . Let � : @O ! S2

1
be the ideal map de�ned in theorem 8.2

associated to e�. Then � encodes all ideal maps 'F : @1F ! S2

1
in the following way: if F is in eF ,

then �jBF
= 'F Æ cF jBF

.

Proof. In other words for any z in @1F and w in (cF )
�1(z) \BF then �(w) is equal to 'F (z).

Let w in (cF )
�1(z) \BF . There are zi in F with �(zi) converging w.

By the previous lemma, the continuity of �F implies that zi converges to z in F [@1F . Consider

the picture in fM[S2

1
: The continuous extension property for eF applied to F shows that zi converges

to 'F (z). On the other hand, theorem 8.2 shows that �(�(zi)) converges to �(w). This shows that

�(w) = 'F (z), which is the desired equation. This �nishes the proof of the theorem.

Remark: � Let w in @�(F ) which is a subset of O. Let zi in F with �(zi) converging to w.

Assume that zi converges to z in F [ @1F . Let x in fM with with �(x) = w. Assume without loss

of generality that w is in a stable boundary leaf l of @�(F ). Then F escapes up as �(F ) nears w.

Therefore zi converges to x+ which is then the value of 'F (z). Let L slice of e�s with l = �(L). Let
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a in @O be an ideal point of l. The proof of theorem 8.2, case 2 shows that �(a) = L+ for any ideal

point a of l. By the previous lemma cF (a) = z. Hence

�(a) = L+ = x+ = 'F (z) = 'F (cF (a))

10 Limit sets and identi�cation of ideal points

Let F be a foliation in M3 with �1(M) negatively curved and F 2 eF . The limit set �F is the set

of accumulation points of F in S2

1
. Usually the limit set �F of F is not a Jordan curve and if F

has the continuous extension property, then the map 'F : @1F ! S2

1
is not injective. The map

'F is injective if �(F ) is quasi-isometrically embedded in M [Th1, Gr, Gh-Ha] � for example if

�(F ) is a compact leaf which is not a �ber or a virtual �ber [Th1, Th2, Bon]. Here we analyse the

identi�cations about ideal points of quasigeodesic pseudo-Anosov 
ows. First we mention a result of

identi�ed ideal points:

Theorem 10.1. ([Fe7]) Let � be a quasigeodesic almost pseudo-Anosov 
ow in M3 closed, with

�1(M) negatively curved. Let 
; � be two 
ow lines with the same positive ideal points in S2

1
. Then

there is a sequence of leaves Si; 0 � i � m alternatively in e�s and e�u so that: S0 = fW s(
),

Sm = fW s(�) and Si, Si+1 form a perfect �t. In general if any Si is periodic then all of them are

periodic and left invariant by a common non trivial covering translation. In that case the leaves S0,

Sm are in fact connected by a chain of lozenges. In particular this happens whenever there is i so that

Si and Si+2 are non separated from each other in the leaf space of e�s or e�u. If on the other hand


+ = ��, then there is a sequence of perfect �ts from fW s(
) to fW u(�). If any leaf in the sequence

is periodic, then there is a sequence of lozenges.

Remark � This is contained in parts (2) and (3) of Theorem 5.7 of [Fe7] and the last two statements

are corollary 5.9 of [Fe7]. In [Fe7] these results are proved for quasigeodesic Anosov 
ows in M3

with negatively curved fundamental group. The proof goes verbatin to the case of pseudo-Anosov


ows. The singularities make no di�erence. By the blow up operation, the same holds for almost

pseudo-Anosov 
ows.

Theorem 10.2. Let � be a quasigeodesic pseudo-Anosov 
ow in M3 closed, with �1(M) negatively

curved. Let � : @O ! S2

1
be the ideal map associated to this 
ow. Suppose p; q in @O with

�(p) = �(q). Then p; q are ideal points or rays of leaves l; r of Os or Ou so that l; r are connected

by a �nite chain of perfect �ts between leaves of Os;Ou. If there is any element in the chain that is

periodic then the perfect �ts in the chain are parts of lozenges producing a chain of lozenges. The

leaves l; r may be the same one and p; q the ideal points of di�erent rays of l.

Proof. First of all notice that if there are in�nitely many leaves of e�s or e�u which are non separated

from each other, then theorem 2.6 implies that there is a Z � Z subgroup of �1(M), contradiction

to �1(M) being negatively curved. Hence only options 1) and 2) of proposition 8.1 can occur.

Let �(p) = �(q) and suppose �rst that one of p; q, say p, is not an ideal point of Os or Ou.

By proposition 8.1 we can choose a master sequence L = flig for p with li slices in (say) Os. Let

li � �(Li) where Li are slices in leaves of e�s.

Eventually the li separates p from q in D. This is because no ray of Os or Ou has ideal point

p and q is di�erent than p. It follows that �(p); �(q) are obtained using points in fM which are in

opposite sides of Li. Since �(p) = �(q) then �(p) is in the limit set of Li which is denoted by �Li .

Notice �Li consists of a single point which is the forward limit of all 
ow lines in Li and all other

points in �Li are negative ideal points of 
owlines [Fe3, Fe7].
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Case 1 � Suppose all Li have the same positive ideal point.

Then theorem 10.1 implies that for any i; j then Li and Lj are connected by a chain of perfect

�ts. Notice that fLig is a nested collection, hence the chain of perfect �ts from R1 from Rj has to

contain Ri for any 1 < i < j. It follows that there are at least 2j � 2 perfect �ts in the chain from

R1 to Rj.

If some Lj is periodic then the perfect �ts show that all Li are periodic and left invariant by a

common non trivial covering translation g. Let Æi be the periodic orbit in Li, that is g(Æi) = Æi for all

i. Since � is quasigeodesic, there is a global a1 > 0 so that Æi is in the a1 neighborhood of a minimal

geodesic with the same ideal points [Gr, Gh-Ha]. Therefore Æi has points in a �xed compact set offM for any i. This contradicts the fact that Li escapes fM .

So now assume no Li is periodic. Let 
i be orbits in Li. Since they all share the same positive

ideal points and 
ow lines are uniform quasigeodesics, then given 
1 and 
i, they have subrays in the

positive direction which are a uniform distance apart [Gr, Gh-Ha]. This is dependent on the index

i. Look at �(
1); �(
i). They are non compact and so accumulate in points in M . If the only limit

is a singular orbit then the �(
1) is in the stable manifold of this singular so L1 is periodic, contrary

to assumption. Under those conditions the orbit �(
1) gets arbitrarily close to itself and one can

apply the closing lemma for pseudo-Anosov 
ows [Man] to obtain the following: orbits �i; �i of e�
with �i having a point very close to 
1 and �i having a point very close to 
i. In addition �(�i)

is freely homotopic to �(�i). See the detailed construction in proposition 4.2 of [Fe4] for the case

of quasigeodesic Anosov 
ows � the same arguments work for pseudo-Anosov 
ows. Theorem 2.5

then implies that �i; �i are connected by a chain of lozenges. The number of lozenges from �i to �i
is exactly the same number of perfect �ts in the chain from from 
1 to 
i. Therefore it is at least

2i� 2. This goes to in�nity as i grows without bound.

But then there is a uniform bound on the distance from �i to �i, because they are uniform

quasigeodesics with same ideal points. Hence given any point in �i, say xi there are points y0 =

xi; y1; :::; yk (k � 2i � 2) with yj in the corners of the lozenges from �i to �i and d(y0; yj) � a1. So

we can assume that there are 2 indices j1; j2 with fW s(yj1) intersecting
fW u(yj2) transversely in a

non singular point. But this contradicts the fact that fW s(yj1);
fW u(yj2) are both periodic and left

invariant by the same covering translation.

This shows that case 1) cannot happen. Clearly the same holds if in�nitely many of the Li have

the same positive ideal point.

Case 2 � Up to subsequence in i, assume there are xi in Li with (xi)� = �(p), so Li share some

negative ideal point.

Let Hi = fW u(xi). Now they all have the same negative ideal points and therefore by theorem

10.1, Hi and Hj are connected by a chain of perfect �ts for any i; j. Only �nitely many of the Hi

can be the same or else up to subsequence they are all the same and equal to H. But then as �(xi)

converges to p, it follows that �(H) has one ideal point p, contrary to assumption. So we may

assume that all Hi are distinct.

It follows that the �(Hi) escape compact sets in O. Otherwise they accumulate in some �(H)

and any stable leaf intersecting �(H) transversely will intersect in�nitely many �(Hi) contradiction,

because they are connected by perfect �ts. In addition if there is any non Hausdor�ness involved in

the chain of perfect �ts from Hi to Hj for any i; j or if any Hi or Hj is singular or periodic, then all

Hi are periodic and left invariant by a common non trivial covering translation g. The proof of case

1) shows that only �nitely many Hi can occur, contradiction.

Therefore up to subsequence the Hi have to be nested with each other. The proof is then exactly

as in the last arguments of case 1) with unstable objects switched with stable ones.

This proves that if p is not an ideal point of a leaf of Os or Ou, then �(p) is not equal to any
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Figure 28: a. The sequence of perfect �ts, b. Jumping in the sequence.

�(q) for an arbitrary q in @O distinct from p.

Suppose then that p; q are ideal points of leaves l; r of Os;Ou. Suppose �rst that l; r are both in

leaves of Os or both in leaves of Ou, say the �rst option. Let l � �(L), r � �(R) with L;R slices

of Os. Then �(p) = L+ and �(q) = R+. We can now apply theorem 10.1 directly to show that L;R

are connected by a chain of lozenges. The only case remaining is that up to renaming objects then

L 2 Os and R 2 Ou. Then �(p) = L+ and �(q) = R�. There are orbits 
; � of e� with 
 � L,

� � R and 
+ = ��. Then again theorem 10.1 shows that fW s(
) and fW u(�) are connected by a

�nite chain of perfect �ts.

Finally the arguments in cases 1) and 2) show that if there are in�nitely many pi in @O with

�(pi) the same point, then we produce a contradiction.

This shows that the map � : @O ! S2

1
is a �nite to one map and completely characterizes the

identi�cations. This �nishes the proof of the theorem.

Using the blow up and blow down operations we obtain the following:

Corollary 10.3. Exactly the same results as in theorem 10.2 hold for quasigeodesic almost pseudo-

Anosov 
ows in M3 with negatively curved fundamental group.

We can now study iden�cation of ideal points of leaves of foliations:

Theorem 10.4. Let F be a Reebless foliation in M3 closed, with negatively curved fundamental

group. Let �1 be a quasigeodesic pseudo-Anosov 
ow almost transverse to F and � be a corresponding

almost pseudo-Anosov 
ow transverse to F . Let O be the orbit space of e� with compacti�cation D

and ideal map � : @O ! S2

1
. Given F a leaf of eF and 'F the extension map from @1F to S2

1
, then

suppose that e0; e1 distinct in @1F with 'F (e0) = 'F (e1). Then e0; e1 are ideal points of leaves ofe�s
F or e�u

F and correspond to ideal points of leaves l;m of Os or Ou. The leaves l;m are connected

by a chain of perfect �ts. The same holds true for the leaves of e�s
F or e�u

F de�ning e1; e2.

Proof. Let e1; e2 in @1F distinct with 'F (z) = 'F (y). By theorem 9.3, there are p; q are in BF with

cF (p) = e1; cF (q) = e2, hence p 6= q. It follows that

�(p) = 'F (e1) = 'F (e2) = �(q):

By theorem 10.2 there are rays l; r of Os or Ou with p ideal point of l, q ideal point of r and l; r

connected by a chain of perfect �ts.

What remains to be proved is that e1; e2 are connected by a chain of perfect �ts in F . The

problem is that we do not know how the sides of the perfect �ts in O from p to q relate to F :
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whether they are they contained in �(F ) (in which case we can lift the perfect �ts in O to perfect

�ts in F ) and so on. The analysis for the rest of the proof is to understand this situation.

We start with the sequence of the perfect �ts in O from p to q.. For simplicity we consider the

sides of the perfect �ts to be not just rays, but rather slices in Os or Ou containing these rays. We

�rst construct a subsequence of the slices which will be used later. Let l1 be the �rst slice with one

ideal point p and the other ideal point z, see �g. 28, a.

If q is the other ideal point of l1 we �nish the selection of the li. Otherwise l1 makes a perfect �t

with another slice in the chain, called Æ1. If q is the other ideal point of Æ1 let l2 be Æ1. Otherwise

there is another perfect �t in the sequence with one side in Æ1. Let Æ2 be the other side of this second

perfect �t. If Æ1; Æ2 share the ideal point z, see �g. 28, a, then throw out Æ1 and restart with Æ2.

Otherwise let l2 = Æ1 and restart with l2 and the subsequent perfect �ts, see �g. 28, b.

In this way we inductively de�ne l1; l2; ::::; ln so that li; li+1 have equivalent rays and li; li+2 do not

have equivalent rays, for any i for which this makes sense. This means that the rays of li; li+1 de�ne

the same ideal point in @O, but the rays of li+2 do not. We now prove a collection of properties of

these leaves li.

Claim 1 � If �(F ) intersects li, then li is contained in �(F ).

Suppose that x0 is in li \ �(F ). If li is not contained in �(F ), then starting from x0 go along

li until hitting x in li \ @�(F ). Then there is a slice � of either Os or Ou, so that x is in � and

� � @�(F ). Then � separates the endpoints of li in D. It follows that it separates p from q in D.

As � � @�(F ), then � separates �(F ) from one of p or q. This is impossible, since p; q are in BF so

�(F ) limits to p; q in D. This proves claim 1.

Claim 2 � If �(F ) does not intersect li, then li is contained in @�(F ).

It suÆces to show this for l1, because then the other ideal point z of l1 is in @�(F ) and in addition

�(p) = �(z). Also cF (p) = cF (z). Hence we can then restrict the process to l2 and the other leaves.

So we show this fact for l1. Suppose for simplicity that l1 is a slice of Os. Let � be a ray of l1
de�ning p so that � has no singularity, see �g. 29, a. Let � be a segment in a leaf of Ou transversal

to � going into the side containing �(F ) and let � be an arbitrary non singular leaf of Os intersecting

� close to �.

We �rst show that the rays of � de�ned by � \� and in the direction of p have to intersect �(F ) if

they are close enough to l1. To prove this �rst notice that since l1 and � intersect a common unstable

segment � , then � and that ray of � cannot be equivalent rays. If they are equivalent, they would

have to be at least non separated in the leaf space of Os which is impossible. This means that these

rays do not de�ne the same ideal point of O. Suppose that � \ �(F ) is empty for all � near v. As

�(F ) limits to p then �(F ) is always contained on the same side of � that l1 is. It follows that as

� gets closer and closer to l1 then the corresponding rays of � cannot converge only to �: there is a

slice 
 of Os with 
 non separated from l1 and so that 
 separates �(F ) from l1, see �g. 29, a. But

then �(F ) cannot limit on q, contradiction.

We conclude that � has points of �(F ). If � stops intersecting �(F ) before getting to � \ � then

one has an unstable boundary leaf �1 of @�(F ) separating � from �(F ). Again �1 separates �(F )

from q, contradiction. This shows that � is contained in �(F ) and the ray � is contained in @�(F ).

There is a slice of Os(l1) contained in @�(F ). If this slice is not l1 ,then there is a prong 
0 in Os(l1)

with 
0 contained in @�(F ) and again we obtain �(F ) cannot limit on q, see �g. 29, b. This proves

claim 2.

We now use this information to analyse the situation in F . We want to show that e1; e2 are

connected by a chain of perfect �ts between rays of e�s
F ;
e�u
F . Recall that z is the other ideal point

of l1. If l1 does not intersect �(F ), then l1 � @�(F ) and so z is also in BF . As seen before
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Figure 29: a. The leaves � close to l1 have to intersect �(F ), b. Theta(F ) cannot get close to q.

cF (z) = cF (p) = e0. If on the other hand l1 � �(F ) then there is leaf �1 of e�s
F with �(�) = l1.

What is left to prove is the following: suppose li; lj with i < j are the �rst two lk contained in

�(F ) and let �1; �2 with �(�1) = li, �(�2) = lj . Then we need to prove that �1; �2 are connected

by a sequence of perfect �ts in F . If li; lj are consecutive, that is, j = i + 1 then the perfect �ts in

O produces a perfect �t in F . So suppose that j > i+ 1.

First of all notice that since li+1 does not intersect �(F ) then li+1 cannot separate li from lj in

O. Consider the sequence of perfect �ts in O from li to li+1. Since li is contained in �(F ) and li+1 is

contained in @�(F ) then all these perfect �ts are contained in �(F ) � except for the corresponding

ray of li+1. The next perfect �t from li+1 to lj has one side in another ray of li+1 on the same side

that li is � since li+1 does not separate li from lj . Since lj is contained in �(F ) then this perfect

�t is contained in �(F ). The two consecutive perfect �ts in O with sides in rays of li+1 coalesce in

�(F ) producing a single perfect �t. In this way one produces a perfect �t in F from �1 to �2.

To conclude the proof, note that the map cF : BF ! @1F is at most two to one and the map �

is �nite to one. By theorem 8.2 this implies that the identi�cations of 'F are �nite to one.

This �nishes the proof of the theorem.

Much more can be said in certain circumstances, for example when the leaf spaces of e�s; e�u are

Hausdor� or then there are no freely homotopic closed orbits of �.

Corollary 10.5. Suppose there are no freely homotopic closed orbits of �. Then the only identi�-

cations come from distinct rays of leaves of Os or Ou

Proof. By theorem 2.6, the condition implies that e�s; e�u have Hausdor� leaf space. It also implies

that there are no perfect �ts, for otherwise one gets one orbit freely homotopic to another � by the

argument in the proof of theorem 10.1 or [Fe4]. Hence the only possible identi�cations come from

di�erent rays in the same leaf of Os or Ou.

Corollary 10.6. Let F be an R-covered foliation almost transverse to a quasigeodesic pseudo-Anosov


ow � in M3 closed with negatively curved fundamental group. Then the maps � : @O ! S2

1
and

'F : @1F ! O (for F in eF) are �nite to one and identi�cations come only from rays of leaves of

Os or Ou, or e�s
F ;
e�u
F .

Proof. Since F isR-covered, there cannot be non trivial free homotopies between closed orbits [Fe11].

Therefore the the previous corollary applies.
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11 Foliations and Kleinian groups

There are many similarities between foliations in hyperbolic 3-manifolds and Kleinian groups. We

refer to [Mi, Can, Mar] for basic de�nitions concerning degenerate and non degenerate Kleinian

groups, in particular singly and doubly degenerate groups.

If the foliation is R-covered then the limit set of any leaf in fM is the whole sphere. This

corresponds to doubly degenerate surface Kleinian groups [Th1, Mi, Can, Mar]. There is always a

pseudo-Anosov 
ow which is transverse to the foliation [Fe9, Cal1]. If the 
ow is quasigeodesic then

the results of this article imply that the foliation has the continuous extension property.

If the foliation has one sided branching, say branching down, then limit sets of leaves can only

have domain of discontinuity \above" [Fe5]. Let F in eF and �F its limit set. If p is not in �F , the p

is said to be above F if there is a neighborhood V of p in fM [ S2

1
, so that V \ fM is on the positive

side of F . This corresponds to simply degenerate surface Kleinian groups [Th1, Mi, Can]. There

are examples of foliations with one sided branching transverse to suspension pseudo-Anosov 
ows

provided by Meigniez [Me]. Suspension 
ows are always quasigeodesic 
ows [Ze]. The results of this

article show the continuous extension property for such foliations. Under these conditions, the limit

sets are locally connected, the continuous extension provides parametrizations of these limit sets.

Finally if there is branching in both directions, then there can be domain of discontinuity above

and below leaves. This corresponds to non degenerate Kleinian groups [Th1, Mi, Can]. These occur

for example in the case of �nite depth foliations, where the depth 0 leaves are not virtual �bers [Fe1].

There are many interesting questions:

Question 1 � Given a foliation F , is it R-covered if and only if for every F 2 eF then the limit set

�F is S2

1
?

The forward direction is true. The backwards direction is true if there is a compact leaf [Fe5]. In

addition if there is one leaf with limit set the whole sphere then all leaves have limit set the whole

sphere [Fe5] � whether F is R-covered or not.

Question 2 � Given F an R-covered foliation, is there a quasigeodesic transverse pseudo-Anosov


ow?

This is true in the case of slitherings or uniform foliations as de�ned by Thurston [Th5]. Examples

are �brations, R-covered Anosov 
ows and many others. There is always a transverse pseudo-Anosov


ow, the question is whether it is quasigeodesic.

Question 3 � Is there domain of discontinuity of �F only above F if and only if F has one sided

branching in the negative direction?

This occurs for the examples constructed by Meigniez [Me].

Question 4 � Are the pseudo-Anosov 
ows constructed by Calegari [Cal2] and transverse to one

sided branching foliations quasigeodesic?

Question 5 � If F has 2 sided branching is there always domain of discontinuity above and below?

Is there a quasigeodesic pseudo-Anosov 
ow almost transverse to F?
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