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Abstract. We study incompressible tori in 3-manifolds supporting pseudo-Anosov ows and more generally

Z�Z subgroups of the fundamental group of such a manifold. If no element in this subgroup can be represented

by a closed orbit of the pseudo-Anosov ow, we prove that the ow is topologically conjugate to a suspension

of an Anosov di�eomorphism of the torus. In particular it is non singular and is an Anosov ow. It follows

that either a pseudo-Anosov ow is topologically conjugate to a suspension Anosov ow, or any immersed

incompressible torus can be realized as a free homotopy from a closed orbit of the ow to itself. The key tool

is an analysis of group actions on non Hausdor� trees, also known as R-order trees � we produce an invariant

axis in the free action case. An application of these results is the following: suppose the manifold has an

R-covered foliation transverse to a pseudo-Anosov ow. If the ow is not an R-covered Anosov ow, then it

follows that the manifold is atoroidal.

1 Introduction

This paper deals with the relationship between pseudo-Anosov ows in 3-manifolds and incompress-

ible tori. Roughly a pseudo-Anosov ow is one that has �nitely many singular closed orbits with

p-prong type and has Anosov (or hyperbolic) behavior everywhere else, see detailed de�nition in sec-

tion 2. Here we include the case without singularities, namely an Anosov ow [An, An-Si]. Another

well known example of pseudo-Anosov ow is the suspension of a pseudo-Anosov homeomorphism

of a closed surface of genus � 2 [Th2, FLP, Ca-Th]. It turns out that pseudo-Anosov ows are very

common: any closed, irreducible, atoroidal, orientable 3-manifold with non trivial second homology

admits pseudo-Anosov ows [Mos2]. Also foliations coming from irreducible \slitherings" as de�ned

by Thurston admit transverse pseudo-Anosov ows [Th4]. In fact every R-covered foliation (de�ned

below) in an aspherical, atoroidal manifold admits a transverse pseudo-Anosov ow [Fe8, Cal]. Fi-

nally pseudo-Anosov ows are ubiquitous because they survive under most Dehn surgeries on closed

orbits of the ow [Fr] and also after branched covers on closed orbits. Notice that there is no known

example of a closed hyperbolic 3-manifold which does not admit a pseudo-Anosov ow.

In 3-manifold theory it is extremely important to understand the prime and torus decompositions

of a manifold [He, Ja-Sh, Jo]. Manifolds that are prime and atoroidal are the building blocks of all

3-manifolds. When the manifold supports a pseudo-Anosov ow, then in the universal cover the

lifted ow has orbit space homeomorphic to the plane [Fe-Mo] and all orbits are homeomorphic to

the real line [Mos1]. Hence the universal cover is a line bundle over the plane and is homeomorphic

to R3. Consequently the manifold is irreducible, that is, every embedded sphere bounds a ball [He].

Therefore the manifold itself is the only prime factor.
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On the other hand many manifolds supporting pseudo-Anosov ows contain incompressible tori.

For example if the manifold supports a suspension Anosov ow, then the �ber of a �bration of the

manifold over the circle is an incompressible torus which is in fact transverse to the ow. In the case

of geodesic ows in the unit tangent bundle of a closed surface of negative curvature (hereby called

geodesic ows), there are many incompressible tori: just take a closed geodesic in the surface and

rotate the tangent vectors to it by 2� degrees to produce a free homotopy from the orbit to itself

and an incompressible torus. Furthermore any intransitive pseudo-Anosov ow has a transverse

torus [Sm, Mos1] which is then incompressible [Mos1] - see the examples of intransitive Anosov

ows constructed by Franks and Williams [Fr-Wi]. Finally there are many classes of transitive

Anosov ows, which are not topologically conjugate to suspensions, but which admit incompressible

transverse tori [Bo-La, Br, Ba5]. One might argue that many of the recent constructions of pseudo-

Anosov ows in manifolds start with an atoroidal manifold in order to produce the pseudo-Anosov

ow [Mos2, Th4, Fe8, Cal]. However as we mentioned before pseudo-Anosov ows survive after most

Dehn surgeries on closed orbits [Fr] and also after branched coverings � but the resulting manifold

may be toroidal. For example consider Anosov ows � there are many examples in atoroidal and

even hyperbolic manifolds [Go]. Any such ow has a surface of section [Fr] and after �nitely many

Dehn surgeries on closed orbits it becomes a suspension Anosov ow, resulting in a toroidal manifold.

Therefore pseudo-Anosov ows and incompressible tori can coexist quite generally.

It is therefore very important to understand how pseudo-Anosov ows interact with incompress-

ible tori. First consider the (much simpler) smooth setting. In that case the study of incompressible

tori and Anosov ows was previously done in [Ba1, Ba3, Fe4].

The purpose of this article is to analyse the situation for general pseudo-Anosov ows. We

explain below how this di�ers from the Anosov case. Here we also consider immersed �1-injective

tori. Consider the rank two free abelian subgroup A �= Z�Z associated to the fundamental group of

the �1-injective torus. This acts in the universal cover of the manifold by covering translations and

so acts in the orbit space of the lifted ow. As explained above this orbit space is homeomorphic to

the plane R2 and is denoted by O. Suppose �rst that some non trivial element of A does not act

freely in O. Then this element of A leaves invariant an orbit of the lifted ow acting by translations

and is therefore associated to a closed orbit of the ow in the manifold. In this case we show that

the torus associated to A can be put in the form of a free homotopy from this closed orbit to itself.

The remaining case in the analysis of Z� Z actions in O is that A acts freely in O (except for the

identity element in A). The stable foliation of the ow lifts to a foliation in the universal cover with

leaf space denoted by Hs and similarly de�ne Hu. The space Hs is a 1-dimensional object which is

simply connected, usually not Hausdor� [Fe5]. In addition because of the singularities, Hs may have

non manifold points too - with tree like behavior near the singular points. Let g be a non trivial

element of A � then g acts freely in Hs. We look for an axis of this action. This is a very natural

point of view, because whenever a homeomorphism acts freely on a simply connected 1-dimensional

manifold or an R-tree one looks for an axis of the action [Gh, Ba1, MS1], with many important

consequences. Hence we study the action of g on Hs. This is more diÆcult because Hs really is

neither a manifold nor a tree. This hybrid object we will call here a non Hausdor� tree. For example

one of main complications introduced by the singularities is that usually Hs is not orientable - which

occurs if and only if there are singularities of � with an odd number of prongs. The analysis of

actions on simply connected 1-manifolds [Ba1, Ba3] does not work here � in fact some previous

properties are not true in the more general setting: some of the many equivalent de�nitions of an

invariant axis in [Ba3; Ba4] are not equivalent in general and do not work, see section 3. Notice

that Barbot [Ba3, Ba4] assumes that not only g acts freely in Hs but also that it separates points �

which is relevant as Hs may be non Hausdor�. We do not assume that g separates points, only that

it acts freely � so our analysis gives new information even in the case of action on simply connected
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1-manifolds. One cannot apply the results of group actions on R-trees [MS1] either because the leaf

spaces usually are not Hausdor�. In fact the R-tree case is quite simple compared to the general

case. In section 3 of this paper we give a natural de�nition for the invariant axis in the general case

and show they exist:

Theorem A - Let H be a non Hausdor� tree and let g be a homeomorphism of H without �xed

points. Then g has a non empty invariant axis A where it acts by translations.

Showing that the invariant axis is non empty in general turns out to be very subtle and involves

a substantial part of this article. We mention that non Hausdor� trees were also considered in

the context of essential laminations in 3-manifolds by Gabai and Kazez in [Ga-Ka]. They used the

terminology order trees. Group actions in order trees are also studied by Roberts and Stein in [Ro-St].

Then we use the invariant axis to study Z�Z actions on the leaf space Hs. The axis has excellent

properties which allow us to start the analysis when A acts freely in Hs. Our main result is:

Main theorem. Let � be a pseudo-Anosov ow in M3 closed and let A be a Z� Z subgroup of

�1(M). If a non trivial element of A is associated to a closed orbit of �, then A can be geometrically

represented as a free homotopy from this closed orbit to itself. Otherwise it follows that � is

topologically conjugate to a suspension of an Anosov di�eomorphism of the torus and in particular

it is non singular.

The topology of the pseudo-Anosov foliations Fs;Fu as developed in [Fe5, Fe6] is fundamental for

the proof of this result. Roughly the proof goes as follows: one uses the invariant axis for A acting

on Hs;Hu to construct the joint topological structure of eFs; eFu in fM . The resulting topological

picture can only occur for ows topologically conjugate to suspension Anosov ows.

We present one application of this theorem in the case the pseudo-Anosov ow � is transverse

to a foliation G. There are various constructions of pseudo-Anosov ows transverse to foliations:

1) ows transverse to �brations with pseudo-Anosov monodromy [Th1, Th2, Th3], 2) �nite depth

foliations [Ga1, Ga2, Ga3, Mos2], 3) slitherings of M over S1 - equivalently uniform foliations [Th4],

4) any R-covered foliation in an aspherical, atoroidal manifold [Fe8]. Recall that a foliation G is R-

covered if the leaf space of the lifted foliation in the universal cover is Hausdor� and homeomorphic

to the set of real numbers [Pl1, Fe1]. In 1), 3) and 4) above the foliations are R-covered and in 2)

they are usually not R-covered. Our result helps to study general pseudo-Anosov ows transverse

to R-covered foliations. Recall also that an R-covered Anosov ow is one for which the stable and

unstable foliations are R-covered [Ba2, Fe1].

Theorem B Let � be a pseudo-Anosov ow in M3 closed. Suppose that � is transverse to an

R-covered foliation G and that � is not an R-covered Anosov ow. Then M is atoroidal, that is,

there are no Z� Z subgroups of �1(M).

Since M is atoroidal, this implies that � is transitive [Mos1]. In the proof of theorem B we need

to use the results from [Fe7].

The paper is organized as follows: In the next section we review background material about

pseudo-Anosov ows. Section 3 contains the study of group actions on non-Hausdor� trees and

proves theorem A. The following section reviews the needed results about the topological structure

of pseudo-Anosov ows. The main theorem is proved in sections 5 through 8. Theorem B is proved

in section 9.

The results of this article were obtained while the author was visiting Princeton University. We

thank this institution for its hospitality.
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2 Pseudo-Anosov ows

Pseudo-Anosov ows are a generalization of suspension ows of pseudo-Anosov surface homeomor-

phisms. These ows behave much like Anosov ows, but they may have �nitely many singular orbits

which are periodic and have a prescribed behavior. In order to de�ne pseudo-Anosov ows, �rst we

recall singularities of pseudo-Anosov surface homeomorphisms.

Given n � 2, the quadratic di�erential zn�2dz2 on the complex plane C (see [St] for quadratic

di�erentials) has a horizontal singular foliation fu with transverse measure �u, and a vertical singular

foliation f s with transverse measure �s. These foliations have n-pronged singularities at the origin,

and are regular and transverse to each other at every other point of C. Given � > 1, there is a

homeomorphism  : C ! C which takes fu and f s to themselves, preserving the singular leaves,

stretching the leaves of fu and compressing the leaves of f s by the factor �. Let R� be the home-

omorphism z ! e2��z of C. If 0 � k < n the map Rk=n Æ  has a unique �xed point at the origin,

and this de�nes the local model for a pseudohyperbolic �xed point, with n-prongs and rotation k.

This map is everywhere smooth except at the origin. Let dE be the singular Euclidean metric on C

associated to the quadratic di�erential zn�2dz2, given by

d2E = �2u + �2s

Note that

(Rk=n Æ  )
�d2E = ��2�2u + �2�2s

The mapping torus N = C � R=(z; r + 1) � (Rk=n Æ  (z); r) has a suspension ow 	 arising

from the ow in the R direction on C�R. The suspension of the origin de�nes a periodic orbit 

in N , and we say that (N; ) is the local model for a pseudohyperbolic periodic orbit, with n prongs

and with rotation k. The suspension of the foliations f s; fu de�ne 2-dimensional foliations on N ,

singular along , called the local weak stable and unstable foliations.

Note that there is a singular Riemannian metric ds on C � R that is preserved by the gluing

homeomorphism (z; r + 1) � (Rk=n Æ  (z); r), given by the formula

ds2 = ��2t�2u + �2t�2s + dts

The metric ds descends to a metric on N denoted dsN .

Let � be a ow on a closed, oriented 3-manifold M . We say that � is a pseudo-Anosov ow if

the following are satis�ed:

- For each x 2M , the ow line t! �(x; t) is C1, it is not a single point, and the tangent vector

bundle Dt� is C0.

- There is a �nite number of periodic orbits fig, called singular orbits, such that the ow is

smooth o� of the singular orbits.

- Each singular orbit i is locally modelled on a pseudo-hyperbolic periodic orbit. More precisely,

there exist n; k with n � 3 and 0 � k < n, such that if (N; ) is the local model for an pseudo-

hyperbolic periodic orbit with n prongs and with rotation k, then there are neighborhoods U of 

in N and Ui of i in M , and a di�eomorphism f : U ! Ui, such that f takes orbits of the semiow

Rk=n Æ  
�� U to orbits of �

�� Ui.
- There exists a path metric dM on M , such that dM is a smooth Riemannian metric o� of the

singular orbits, and for a neighborhood Ui of a singular orbit i as above, the derivative of the map

f : (U � )! (Ui � i) has bounded norm, where the norm is measured using the metrics dsN on U

and dM on Ui.
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- On M �
S
i, there is a continuous splitting of the tangent bundle into three 1-dimensional line

bundles Eu �Es � T�, each invariant under �, such that T� is tangent to ow lines, and for some

constants � > 1; � > 1 we have

1. If v 2 Eu then jD�t(v)j � ��tjvj for t < 0

2. If v 2 Es then jD�t(v)j � ���tjvj for t > 0

where norms of tangent vectors are measured using the metric dM .

- In a neighborhood Ui of a singular orbit i as above, Df(E
s) is tangent to the local weak stable

foliation and similarly for Df(Eu).

With this de�nition, pseudo-Anosov ows are a generalization of Anosov ows in 3-manifolds

[An, An-Si]. The entire theory of Anosov ows can be mimicked for pseudo-Anosov ows [Mos1,

Mos2]. In particular, a pseudo-Anosov ow � has a singular 2-dimensional weak unstable foliation

Fu which is tangent to Eu � T� away from the singular orbits. A complete leaf of this foliation

is called a regular leaf of Fu. A non complete leaf can be completed by adding a singular orbit �.

The union of � and the non complete leaves abutting � forms a singular leaf of Fu containing �.

Similarly there is a 2-dimensional weak stable foliation Fs tangent to Es� T�. These foliations are

singular along the singular orbits of �, and regular everywhere else. In the neighborhood Ui of an

n-pronged singular orbit i, the images of Fs and Fu in the model manifold N are identical with

the local weak stable and unstable foliations.

The pseudo-Anosov ow also has singular 1-dimensional strong foliations Fss;Fuu. Outside the

singular orbits, leaves of Fss are obtained by integrating Es. If x 2 � and � is a singular orbit of �

then in the local model N = C�R= �, the point x corresponds to (O; t), where O is the origin in

C. Then W ss
loc(x) is � � ftg, where � is the singular leaf of f s (which contains O). The fW ss

loc(x)g,

x in singular orbit glue up with the leaves of Fss outside singular orbits to form a singular foliation

Fss. The foliation Fss is ow invariant, that is, for any leaf �1 of F
ss and any real t, �t(�1) is a leaf

of Fss. Furthermore for t > 0 �t exponentially contracts distances along leaves of F
ss. Similarly for

Fuu.

Notation/de�nition: The discussion above applies equally well to the lifted singular foliationseFs; eFu; eFss; eFuu in fM . If x 2M let W s(x) denote the leaf of Fs containing x. Similarly one de�nes

W u(x);W ss(x);W uu(x) and in the universal cover fW s(x);fW u(x);fW ss(x);fW uu(x). Similarly if � is

an orbit of � de�ne W s(�), etc... Let also e� be the lifted ow to fM .

In �gure 1 we highlight the di�erence between non Hausdor� behavior in the leaf space of eFs

and the splitting (or branching) of leaves associated to singular orbits of e�. In part (a) the leaves

F;L of eFs are not separated from each other in the leaf space of eFs. Notice that the sequence Fi
converges to F and L. In �g 1 part (b) we sketch a singular leaf S with 3 prongs. Even though S

separates fM into 3 or more regions, non Hausdor�ness is not involved. The leaves Si converge only

to S. In this article, except for the next section, all pictures of leaves of eFs; eFu will describe them

as subsets of fM , rather than in the leaf space of eFs.

3 Group actions on non Hausdor� trees

In this section we will study group actions on the leaf spaces Hs of eFs and Hu of eFu. These leaf

spaces are examples of what we call non Hausdor� trees, de�ned as follows. A segment is a set which

admits a linear order making it isomorphic to an interval in R: [0; 1]; [0; 1); (0; 1) or [0; 0]. This gives

the type of the segment. Type (0; 1) is called an open segment and type [0; 0] is a degenerate segment.

A closed segment is one of type either [0; 0] or [0; 1]. A half open segment is one of type [0; 1).

De�nition 3.1. (non Hausdor� tree) A non Hausdor� tree is a set H satisfying:
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Figure 1: a. Non Hausdor� behavior in the leaf space of eFs: (a1) F;L non separated from each other, as seen

in fM , (a2) the corresponding picture in the leaf space Hs; (b) A singular leaf of eFs: (b1) as seen in fM , (b2)

as seen in Hs.

1) H is a union of open segments,

2) for each x; y 2 H, there is a �nite chain of segments I1; :::; In with x 2 I1; y 2 In and

Ii \ Ii+1 6= ; for any 1 � i < n,

3) for any x 2 H and I1; I2 distinct prongs at x the following happens: Given y1 2 I1�fxg; y2 2

I2�fxg, then any �nite chain of segments from y1 to y2 (as in (2) above) must contain x in at least

one of the segments.

If I1; I2 are two segments with I1 \ I2 a single point which is an endpoint of both I1 and I2, then

I1 [ I2 admits a natural linear order isomorphic to a segment in R, hence we say that I1 [ I2 is a

segment. A prong at x is a segment I in H of type [0; 1) or [0; 1] with x 2 I corresponding to 0. Two

prongs I1; I2 at x are distinct if I1 \ I2 = fxg, or equivalently they do not share a subprong at x.

Notice that a priori there may be in�nitely or even uncountably many distinct prongs at x.

De�nition 3.2. (topology of H) Let H be a non Hausdor� tree. De�ne the topology of H as follows:

Let A be a subset of H. Then A is open if for any x 2 A and any prong I at x, there is a subprong

I 0 at x (I 0 � I) so that I 0 � A. Intuitively A contains all suÆciently small subprongs at x.

Condition (2) means that H is arcwise connected. It follows from condition 3) that if I1 and I2
are two segments, then I1 \ I2 is either empty or is a subsegment of both I1; I2. The intersection

may be a degenerate segment, that is a point. Condition (3) is essentially saying that H is one

dimensional and simply connected. Also (3) states that points completely separate H.

A point x 2 H is a regular if given any two open segments I1; I2 with x 2 I1 \ I2, then I1 \ I2
is an open segment in H. Otherwise x is singular and H is \treelike" in x. Equivalently a point is

regular if there are only two distinct prongs at x, any third prong at x will share a non degenerate

segment with one of �rst two prongs.

De�nition 3.3. (�nite prong condition) A non Hausdor� tree satis�es the �nite prong condition if

for each x 2 H, there is an integer p � 2 so that there are at most p distinct prongs at x. If there

are p distinct prongs at x then x is said to have p prongs.
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Non Hausdor� trees are hybrid generalizations of arcwise connected trees and (possibly non

Hausdor�) simply connected one manifolds. There are many examples of non Hausdor� simply

connected one dimensional manifolds coming from leaf spaces of stable foliations of Anosov ows

[Fe5, Ba4, Ba5, Fr-Wi]. Also R-trees as de�ned by Morgan and Shalen [MS1] are examples of non

Hausdor� trees. Non Hausdor� trees also occur naturally in the context of essential laminations in

3-manifolds, where they were called R-order trees or more generally order trees by Gabai and Oertel

[Ga-Oe]. They are an important tool to produce a Palmeira theorem [Pa] for essential laminations

of 3-manifolds [Ga-Oe, Ga-Ka] and to completely classify essential laminations of the plane [Ga-Ka].

More importantly for us, if � is a pseudo-Anosov ow in a closed 3-manifold, then the leaf spaces

Hs;Hu of eFs; eFu are non Hausdor� trees. A regular leaf of eFs corresponds to a regular point of

Hs and a singular p-prong leaf of eFs produces a point in Hs with p prongs, hence Hs and also Hu

satisfy the �nite prong condition.

Remark More generally one can de�ne a segment to be just a linearly ordered set. This is the

approach taken by Gabai-Kazez in [Ga-Ka] producing order trees. The results in this section work

in the more general setting.

The reader should note that the local structure of non Hausdor� trees may be quite complex,

even with the �nite prong condition. For instance if x is a point where the �nite prong condition

holds, it does not follow a priori that x must have a neighborhood in H which is homeomorphic to

a p-prong in the plane: even when two (non distinct) prongs �1; �2 at x share a subprong at x, the

splitting point between �1 and �2 may be arbitrarily close to x. This is what happens for the leaf

spaces of eFs; eFu.

Unlike in trees, usually there is not a single path between points. This is depicted for instance in

�gure 1 a2: the points F;L are non separated from each other. There are many distinct paths from

F to L, none of which is embedded.

For our results it will be fundamental to understand group actions on non Hausdor� trees. Group

actions on simply connected one dimensional spaces have been widely studied and applicable:

- In the case of R-trees there is the work of Tits [Ti] and Morgan and Shalen [MS1]. This had

deep applications to the study of 3-manifolds and showing the compactness of the space of hyperbolic

structures in important settings [MS2, MS3].

- In the case of simply connected non Hausdor� one manifolds, group actions were analysed

�rst by Ghys [Gh] who considered Anosov ows in Seifert spaces and analysed the corresponding

space Hs. In a seminal paper in the �eld, he showed that Hs is homeomorphic to R and the ow is

topologically conjugate to a geodesic ow. This was extended by Barbot who used such group actions

to analyse the structure of the torus decomposition with respect to Anosov ows [Ba1, Ba3] and derive

important consequences in wide classes of 3-manifolds including graph manifolds [Ba4, Ba5]. Barbot

also used this to study general codimension foliations in 3-manifolds [Ba6].

- Group actions in order trees are also studied by Roberts and Stein [Ro-St] in the context of

essential laminations, with applications to actions on Seifert �bered spaces. There are additional

conditions concerning separation of points.

We need to understand the structure of H. Given x 6= y then for any prong at y there is a

subprong disjoint from x, hence contained in H� fxg. It follows that H� fxg is an open set in H

and therefore points are closed in H, that is, H satis�es the T1 property of topological spaces [Ke].

Notice that in general H does not satisfy the Hausdor� property = T2 [Ke].

Given x 2 H and I a prong at x let

AI = f y 2 H� fxg j there is a path  � H� fxg from y to some point in I g:

Clearly AI is arcwise connected. If I; J are prongs at x which share a subprong then it is easy to
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see that AI = AJ . If I; J are distinct prongs at x then I [ J is a segment of H with x in the interior

of the segment. If there is a path  � H�fxg from some y 2 AI to some z 2 AJ then one constructs

a path  contained in H � fxg from some y0 2 I to some z0 2 J . This contradicts condition (3) of

the de�nition of non Hausdor� tree. Hence AI \AJ = ; and the collection

fAIg; I distinct prongs at x;

is the collection of arcwise connected components of H� fxg.

In addition given y 2 AI and J a prong at y, there is a subprong J 0 � H�fxg. Clearly J 0 � AI .

This implies that AI is open inH and so this collection is also the collection of connected components

of H� fxg. It follows that distinct prongs at x are in one to one correspondence with components

of H� fxg. For instance x has p prongs if and only if H� fxg has p components.

The following de�nitions will be necessary. Let H be a non Hausdor� tree. Given x; y 2 H which

are not separated from each other in H we write x � y.

One says that z separates x from y if x; y are in distinct components of H� fzg.

Given any two x; y 2 H there is a continuous path �(t); 0 � t � 1 from x to y. De�ne

(x; y) = f z 2 H j z separates from y g

which we call the open block of H with endpoints x; y. Let

[x; y] = (x; y) [ fxg [ fyg;

the closed block of H with endpoints x; y.

Lemma 3.4. [x; y] is the intersection of all continuous paths in H from x to y.

Proof. Let B be the intersection of all paths from x to y. If z 2 [x; y] then clearly any path from x

to y must contain z or else z does not separate x from y. Hence z 2 B.

Conversely let z 62 [x; y]. Then z 6= x; y and z does not separate x from y. Hence x and y are

in the same component of H� fzg. As seen above components of H� fzg are the same as arcwise

components of H� fzg, hence there is a path  from x to y avoiding z. It follows that z 62 B. This

�nishes the proof.

Remark - We use the notation [x; y] for the closed block of H with endpoints x; y. When x; y are

the endpoints of a segment I of H, the notation [x; y] also suggests the segment I from x to y (there

is a unique such segment). In fact I and [x; y] are the same: First, by de�nition of non Hausdor�

tree, any z 2 I�fx; yg separates x from y hence z 2 (x; y). This shows that I � [x; y]. On the other

hand I is a path in H from x to y, so by the previous lemma [x; y] � I and consequently I = [x; y].

So the notation [x; y] matches with the established convention of segments between points, whenever

they are connected by a segment. We will also use the notation (x; y] for half open segments.

As H may not be Hausdor� it may be that [x; y] is not connected. It turns out that [x; y] is a

union of �nitely many closed segments of H homeomorphic to either [0; 0] or [0; 1]:

Lemma 3.5. For any x; y 2 H then there are xi; yi 2 H with:

[x; y] =

n[
i=1

[xi; yi]; x1 = x; yn = y;

a disjoint union, where [xi; yi] are segments in H. In addition yi � xi+1 for any 1 � i � n� 1, see

�g. 2. Notice that some or all segments [xi; yi] may be degenerate, that is, points.
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Figure 2: Interval of leaves between any two leaves. For simplicity we describe the intervals [xi; yi] without

singularities. The points xi+1 and yi are non separated from each other.

Usually there may be many singular points z in the block [x; y]. If such a singular point z is in

the interior of a segment in [x; y], then the block [x; y] will pick two prongs at z.

Proof. Recall that H is arcwise connected. Given x; y 2 H let

I = f Ik = [zk; wk] g; 1 � k � n; z1 = x; wn = y and wk = zk+1; 1 � k < n;

be a chain of segments [zk; wk] from x to y. Assume that I has the minimum number of segments

among all such chains from x to y.

If n = 1 there is a segment from x to y and clearly this is [x; y]. Otherwise consider I1 \ I2 which

is a subsegment of I1 and I2 which contains w1 = z2. Considering I1\ I2 as a subsegment of I1 there

is u1 2 I1 so that the intersection is either (u1; w1] or [u1; w1].

Suppose �rst that I1 \ I2 = [u1; w1]. In this case let J1 be the closed subsegment of I1 from z1 to

u1 and J2 the closed subsegment of I2 from u1 to w2, see �g. 3 a.

By construction J1 \ J2 = u1 which is an endpoint of both J1 and J2. Therefore J1 [ J2 is a

segment from z1 to w2. Then J1 [ J2; I3; :::; In is a chain from x to y with fewer segments than I,

contradiction to hypothesis. We conclude that I1 \ I2 = (u1; w1].

In the same way there is u2 2 I2 with I1 \ I2 = (u2; w2] as a subsegment of I2. It now follows

that u1 and u2 are not separated from each other (see �g. 3 b) because there are vi 2 I1 \ I2 with

vi ! u1 and vi ! u2 also. Since I2 is a segment in H then u1 62 I2 because u1 � u2 and u2 2 I2. If

u1 2 Ik for some k � 3 then one could decrease the number of segments from the chain, contradiction.

Hence u1 62 [k�2Ik and this union is contained in a component of H � fu1g di�erent from the one

containing z1. It follows that u1 separates x = z1 from y = wn. If t 2 (z1; u1) then u1 and z1 are

in di�erent components of H� ftg. If t does not separate z1 from y then y and z1 are in the same

component of H � ftg. As u1 is in another component of H � ftg, then u1 would not separate z1
from y, contradiction. We conclude that (z1; u1) � (x; y) and so [z1; u1] � [x; y].

Notice that given a point t 2 I1 � [z1; u1] we can pull the point w1 = z2 closer to u1 in I1 and

closer to u2 in I2 producing a path from x to y not containing t. Hence t 62 (x; y) and I1� [z1; w1] is

disjoint from [x; y]. Hence [x; y] \ [z1; w1] = [z1; u1]. Let x1 = z1; y1 = u1.

Similarly the subsegment [z2; u2) of I2 is disjoint from [x; y]. If u2 = y then the previous lemma

implies that [x; y] = [x1; u1] [ fyg. In that case let x2 = y2 = y and n = 2 �nishing the proof.

Otherwise u2 6= y. We claim that u2 separates x from y. Suppose that is not true. Let W be

the component of H� fu2g containing x; y. The path [k�3Ik starts in w2 and goes to y in W . But

w2 is either u2 or is in another component W 0 of H� fu2g. In particular n � 3. Also u2 completely

separates H. Therefore [k�3Ik has one segment which contains a prong J at u2, so that this prong

de�nes the component W of H� fu2g. Since u1 is in W and u1 is not separated from u2, the prong
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Figure 3: a. The intersection I1 \ I2 is a closed subsegment of I1, b. The intersection I1 \ I2 is a half open

subsegment of I1 (and also of I2).

J contains points in (u1; w1] � I1. In that case we can decrease the number of segments in the

chain from x to y, by eliminating at least the segment I2. This is a contradiction to hypothesis. We

conclude that u2 separates x from y, so u2 2 (x; y).

Any path from x to y must pass through u2 and a minimal chain from u2 to y has exactly n� 1

segments because it can be augmented to a chain from x to y with one more segment (this uses the

fact that u2 separates x from y). We can now restart the problem with u2 in place of x and use n�1

segments from u2 to y again a minimal number. Let x2 = u2. The argument above produces y2 in

I2 with [x2; y2] contained in [x; y] and I2 \ [x; y] = [x2; y2]. Either n = 2 and we are �nished or there

is also x3 2 I3 with x3 � y2 and x3 2 [x; y]. By induction we conclude that there are xi; yi; 1 � i � n

with [xi; yi] segments in H which are disjoint, yi �= xi+1 and

[x; y] =
[

1�i�n

[xi; yi]:

Notice that some or all segments may be degenerate. This �nishes the proof of the lemma.

A fundamental property is that each block [x; y] has a linear ordering: any z 2 (xi; yi) separates

[xi; yi] into two components and any z 2 [xi; yi] separates the union [j<i[xj; yj ] from the union

[k>i[xk; yk].

There is a natural pseudo distance in H:

d(x; y) = #(components [x; y])� 1;

So d(x; y) = 0 means there is a segment from x to y. Also d(x; y) is the minimum number of non

immersed points of any path from x to y. These de�nitions and arguments are the analogues of those

for the non Hausdor�, simply connected 1-manifold case by Barbot [Ba1, Ba4]. Here again the non

Hausdor�ness is the important feature. Going through singularities is no problem in this particular

analysis - the singularities only make the de�nitions more complicated.

We are now ready to study group actions on non Hausdor� trees. Let  be a homeomorphism

of H. We say that  separates points if (x) is separated from x for any x 2 H, that is, they have

disjoint neighborhoods in H. In particular  acts freely in H. In [Ba1, Ba4], Barbot studied the non

singular case and constructed a fundamental axis A() in the case  separates points in H. In that
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case H is a simply connected 1-dimensional manifold and hence is orientable. He then gives various

characterizations for a point x to be in A() [Ba1, Ba4]:

1) x 2 A() if and only if d(x; (x)) is even;

2) x 2 A() if and only if (x) 2 [x; 2(x)].

3) under a convenient orientations of H, x is in the back side of (x) and (x) is in the front side

of x.

4) [x; (x)] \ [(x); 2(x)] = f(x)g.

5) x 2 A() if and only if the function d(y; (y)) in H attains the minimum in x.

In our situation with singularities in H, condition 3) does not make sense because of lack of a

local and hence global orientation in H. But there is still a local orientation in some cases as we will

see. Also in general properties 1), 4) and 5) do not hold in general, see counterxamples in the proof

of theorem 3.8. Condition 2) is the most natural one, hence our de�nition:

De�nition 3.6. (fundamental axis) Let  be a homeomorphism of a non Hausdor� tree H so that

 has no �xed points. The fundamental axis of , denoted by A() is

A() = f x 2 H j (x) 2 [x; 2(x)] g;

or equivalently (x) separates x from 2(x).

This is the condition that also works for group actions on R-trees [MS1].

One simple fact that will be used throughout is that separation properties are invariant under

homeomorphisms of the non Hausdor� tree. If (x) is not separated from x in H, we say that x is

an almost invariant point under . We need a preliminary result:

Lemma 3.7. Let  be a homeomorphism of a non Hausdor� tree H without �xed points. Then

x 2 A() if and only if there is a component U to H� fxg so that (U) � U .

Proof. Suppose that x 2 A() and let U be the component of H � fxg containing (x). Suppose

that 2(x) is in another component Z of H�fxg. There is a prong J at x with (J�fxg) � Z and in

addition Z is arcwise connected. Hence there is a path in Z from 2(x) to a point in J and together

with J , this produces a path � in Z [ fxg from 2(x) to x. Then (x) 62 �. The same is true if

2(x) = x. But this contradicts the fact that (x) separates x from 2(x). Hence 2(x) 2 U . Notice

that (U) is the component of H � f(x)g containing 2(x). Since (x) separates x from 2(x), it

follows that x 62 (U). Since (U) is arcwise connected and x 62 (U) then (U) is contained in a

component W of H� fxg. But 2(x) 2 (U) �W and 2(x) 2 U , both components of H� fxg. It

follows that W = U and so (U) � U , proving one implication.

For the converse, suppose there is a component U of H� fxg so that (U) � U . We �rst show

that (x) 2 U . Assume that is not the case. Given a prong I at x with I � fxg � U , then (I) is

a prong at (x). As x 6= (x), there is a subprong I 0 of I with x 62 (I 0). Then (I 0) is contained

in a component of H � fxg, which is disjoint from U , since (x) 62 U and U is arcwise connected.

But ((I 0) � (x)) � (U), contradicting (U) � U . We conclude that (x) 2 U . Now x 62 U ,

hence x 62 (U). But (x) 2 U , so 2(x) 2 (U), a component of H � f(x)g. Therefore x and

2(x) are in di�erent components of H � f(x)g, or equivalently (x) separates x from 2(x) and

(x) 2 (x; 2(x)). This �nishes the proof of the lemma.

Notice that the proof shows that if a component Z of H�fxg satis�es (Z) � Z, then (x) 2 Z.

The main result about group actions on non Hausdor� trees is the following:

Theorem 3.8. Let  be a homeomorphism of a non Hausdor� tree H without �xed points. Then

A() is non empty.
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Figure 4: a. Producing invariant axis: (x) separates x from 2(x), b. Preservation of local orientation

producing I1 and (I1) intersectin in a subsegment.

Proof. In the non singular setting, Barbot [Ba1] shows that if x attains a minimum value of d(y; (y)); y 2

H, then this minimum value is even and x is in the fundamental axis. He restricted attention to

those  preserving orientation of H. In the more general setting of non Hausdor� trees it does not

make sense to talk about orientation. It turns out that in general, in some cases the points attaining

the minimum of d(y; (y)) will not be in the fundamental axis of , see explanation below.

Even though H is in general not orientable, there are many relevant subsets of H which are

orientable and the orientation will be useful for our purposes. For instance it turns out that the

fundamental axis A() admits a natural linear order.

Case I -  does not separate points.

There is x with x; (x) not separated from each other. Then no point z 2 H separates x from (x),

so [x; (x)] = fx; (x)g. We can �nd I1; I2 closed segments in H, with I1 = [x; z] and I2 = [(x); z],

so that I1 \ I2 = (x; z] as a subset of I1 and I1 \ I2 = ((x); z] as a subset of I2. Notice that

d(x; (x)) = 1. Let V be the component of H� fxg containing (x).

Case I.1 - Suppose �rst that (V ) is not the component of H� f(x)g containing x, see �g. 4, a.

Then (x) separates (V ) from x and consequently (V ) � V . By lemma 3.7, it follows that

x 2 A(x) and the proof is �nished. As remarked before d(x; (x)) = 1, so it is odd, failing condition

1) of Barbot [Ba1]. In addition if w 2 I1 \ V then (w) 2 (I1) \ (V ) and so there is a segment

from w to (x) and another from (x) to (w), both intersecting only in the common endpoint (x).

Hence their union is a segment of H and d(w; (w)) = 0. This shows that x 2 A() does not achieve

the minimum of d(y; (y)) over all y 2 H. This shows that condition 5) of Barbot may also fail in

general.

Case I.2 - The second possibility is that (V ) is the component of H�f(x)g which contains x, see

�g. 4, b.

Notice that I2 is a prong at (x) with I2 � f(x)g contained in the component of H � f(x)g

containing x. By assumption (I1) is a prong at (x) with (I1) � fxg contained in the same

component of H�f(x)g as above. As components of H�f(x)g are in one to one correspondence

with distinct prongs at (x) it follows that I2 and (I1) share a subprong.

But I2 and I1 share a subsegment, therefore E = (I1) \ I1 6= ; and is a segment of H so that

E [ fxg is a prong at x and E [ f(x)g is a prong at (x). The interval I1 has a local orientation

which induces a local orientation in (I1). The hypothesis about V and (V ) implies that the induced

orientations in E by I1 and (I1) agree. Let z 2 E. Then �1(z) 2 I1. The half open subsegment

(x; �1(z)] of I1 is taken to the half open interval (x; z] of I1 by  and orientations are preserved.

From the point of view of I1 one interval is taken strictly into the other by either  or �1. For
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instance if (x; �1(z)] � (x; z], then �1((x; z])) = (x; �1(z)] � (x; z] and �1(z) is closer to x than

z in I1. Applying �1 again we obtain that �1(z) separates z from �2(z) in (x; z] and therefore

in H. It follows that �2(z) 2 A() and we are done. This �nishes the proof in the case  does not

separate points.

Notice that in this last situation 2(x) is also non separated from x; (x). Therefore (x; 2(x)) = ;

and (x) does not separate x from 2(x), so x 62 A(). On the other hand if x 6= 2(x) (which occurs

in many examples), then

[x; (x)] \ [(x); 2(x)] = fx; (x)g \ f(x); 2(x)g = f(x)g:

So x satis�es property 4) of Barbot's list but x 62 A(). This shows that property 4) is not equivalent

to being an element of the fundamental axis.

Case II - We assume from now on that  separates points.

Our approach will be very similar to looking for invariant axes of actions on trees.

Let x 2 H. If (x) separates x from 2(x), then x 2 A() and we are done. So assume that

(x) does not separate x from 2(x) . Suppose �rst that x = 2(x). Then ([x; (x)]) = [(x); x].

If [x; (x)] is a single segment in H, then  acts as an orientation reversing homeomorphism of this

segment, hence it has a �xed point. This contradicts the hypothesis of the theorem. Otherwise

[x; (x)] =

n[
i=1

[xi; yi]; yi � xi+1; 1 � i < n:

Since ([x; (x)]) = [(x); x], then ([xi; yi]) = [yn+1�i; xn+1�i]. If n is odd then


�
[xn+1

2

; yn+1

2

]
�

= [yn+1

2

; xn+1

2

];

so as seen before  has a �xed point in this segment, contradiction. Otherwise


�
[xn

2
; yn

2
]
�

= [yn

2
+1; xn

2
+1];

so (yn

2
) = xn

2
+1. But since xn

2
+1 � yn

2
, then  would have almost invariant points and we should

be in case I.

We conclude that x 6= 2(x) and the points x; (x); 2(x) are all distinct from each other. Let

A = [x; (x)] \ [x; 2(x)]; B = [(x); 2(x)] \ [x; 2(x)]:

See �g. 5 for a simple example of what A and B could look like when (x) does not separate x

from 2(x).

Lemma 3.9. A \B can have at most one point.

Proof. Suppose on the contrary there are c; d 2 A \ B. Since c; d 2 [x; 2(x)], assume without loss

of generality that c 2 [x; d) - recall that [x; 2(x)] admits a linear order.

Notice that c 6= (x) since (x) 62 [x; 2(x)]. The set [x; (x)] has a linear ordering <1 with

x <1 (x). Conceivably c = 2(x). But then 2(x) 2 [x; (x)] so [x; (x)] is sent into itself by

. Then 2([x; (x)]) � [x; (x)] and 2 preserves <1. Hence (2)n(x) is monotone increasing in

[x; (x)] and bounded above by (x), hence it converges to y 2 [x; (x)] with 2(y) = y. Then

([y; (y)]) = [(y); y] and as seen above, this produces either a �xed point of  or an almost

invariant point of , both disallowed. We conclude that c 6= 2(x). If c = x then x 2 [(x); 2(x)]

and a similar argument shows this is not possible. Hence c is none of x; (x); 2(x). In fact this

argument shows that 2(x) 62 [x; (x)] and x 62 [(x); 2(x)]. Let
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Figure 5: A simple situation where (x) does not separate x from 2(x). For simplicity blocks are drawn

without singularities (except of course for the singular point c) and without non separated points. Here c

separates any two of the 3 points x; (x); 2(x).

Figure 6: a. Impossible con�guration when A \ B = fcg, The correct picture in case A \ B = fcg.

- D1 = component of H� fcg containing x,

- D2 = component of H� fcg containing (x),

- D3 = component of H� fcg containing 2(x).

Since c 2 [x; (x)] then D1 6= D2. In the same way D2 6= D3 and D1 6= D3. As d 2 B, then

d 2 [x; 2(x)] and since c 2 [x; d) then d 2 D3. Also d 2 A, so d 2 [x; (x)] and again as c 2 [x; d)

then d 2 D2. This contradicts D2 \D3 = ; and proves the lemma.

Now there are two possibilities for the intersection A \B:

Case II.1 - A \B 6= ; so A \B = fcg.

Consider (c) 2 [(x); 2(x)]. Suppose �rst that (c) 2 [(x); c], see �g. 6,a, where for simplicity

we draw [x; (x)], etc.. as arcwise connected sets. Then we have c; (c) 2 [x; (x)] and c separates x

from (c), see �g. 6, a. Apply  to get (c); 2(c) 2 [(x); 2(x)] and (c) separates (x) from 2(c),

see �g. 6, a. If 2(c) 2 [(x); c] then [(c); 2(c)] � [c; (c)] and if 2(c) 2 [c; 2(x)] then [c; (c)] �

[(c); 2(c)]. For simplicity we assume the �rst option, see �g. 6, a. Then 2([c; (c)]) � [c; (c)] and

2 preserves a linear ordering in [c; (c)]. As seen before this produces either a �xed point of  in

[c; (c)] or an almost invariant point of , both disallowed options. We conclude that the situation

(c) 2 [(x); c] cannot occur.

Therefore (c) 2 (c; 2(x)], see �g. 6, b. The block [(x); 3(x)] has a linear ordering <2 with

(x) <2 
3(x) in this block. Apply  to (x); c; (c); 2(x). Then

(c); 2(c) 2 [2(x); 3(x)] and 2(c) 2 [(c); 3(x)]:

But

(c) 2 [(x); 3(x)]; so 2(c) 2 [(x); 3(x)]; with (c) <2 
2(c)
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Figure 7: The intersection A \ B can be empty. a. The �rst possibility is supp(A) 2 B, b. The point z is in

the invariant axis when supp(A) 2 B.

in the block [(x); 3(x)]. Also

c 2 [(x); (c)] � [(x); 3(x)]

and so c <2 (c). Therefore c; (c); 
2(c) are in [(x); 3(x)] and

c <2 (c) <2 2(c);

so (c) separates c from 2(c). By de�nition c 2 A(). This �nishes the proof of case II.1.

Case II.2 - A \B = ;.

A priori this case can happen. For instance if A = [x; a] and B = [b; 2(x)] with a; b distinct but

not separated from each other and (x) in the component of H � fa; bg not containing either x or

2(x), see �g. 8, a.

Notice that in any case A [ B = [x; 2(x)] because given any z 2 [x; 2(x)], if z 62 A [ B then

z 62 [x; (x)] so there is a path from x to (x) not passing through z and also z 62 [(x); 2(x)] so

also a path from (x) to 2(x) not passing through z. Joining the two paths together one goes from

x to 2(x) without passing through z, contradiction to z 2 [x; 2(x)].

Put a linear ordering <3 in [x; 2(x)] so that x <3 
2(x). Since A and B are subsegments of

[x; 2(x)], it follows that for any z 2 A, y 2 B, then z <3 y. So in particular supp(A) �3 z for

any z 2 A, where supp(A) 2 [x; 2(x)] is computed in the linear order <3. The supp exists because

[x; 2(x)] is an ordered �nite union of closed segments of H.

Case II.2.1 - z = supp(A) 62 A.

This implies z 2 B � [(x); 2(x)]. Let zn 2 A with zn ! z. We may assume that zn are

increasing in <3. Set [x; 2(x)] = [
i0
i=1[ui; vi] and let 1 � j � i0 with z 2 [uj ; vj ]. For simplicity

assume zn all in a �xed [um; vm]. If m 6= j, then the zn cannot converge to z.

The set [x; (x)] also has a linear order, hence in this set the zn converge to w. Since z 62 [x; (x)],

then z 6= w and z; w are not separated from each other in H, see �g. 7, a.

We claim that these conditions imply that w 2 [(x); 2(x)]. If w = (x) this is obvious, so

assume that w 6= (x). Since zn converges to both z and w in H (and maybe other points as well),

it follows that z is in the same component of H� fwg which contains zn for n suÆciently big. But

w separates zn from (x), hence w separates z from (x), that is, w 2 (z; (x)). If z = 2(x) then

we are done. Otherwise z separates zn from 2(x) and since zn converges to both z and w then z

separates w from 2(x). Hence 2(x) is in the same component of H � fwg as z. By the above it

follows that w separates (x) from 2(x), so w 2 ((x); 2(x)).
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Therefore z; w are in [(x); 2(x)]. Since z; w are not separated from each other in H, then the

description in lemma 3.5 of [(x); 2(x)] as a �nite union of disjoint segments implies that

[(x); 2(x)] = [(x); w] [ [z; 2(x)]:

As w 2 [x; (x)], then (w) 2 [(x); 2(x)]. Suppose �rst that

(w) 2 [(x); w] � [(x); 2(x)]:

Then apply  to obtain 2(w) 2 [2(x); (w)) � [(x); 2(x)], so the 3 points w; (w) and 2(w)

are in [(x); 2(x)] and as before either

([w; (w)]) � [w; (w)] or [w; (w)] � ([w; (w)]):

As in case II.1, this leads to either a �xed point of  or an almost invariant point of , both

contradiction to hypothesis in this case.

Suppose now that (w) 2 [z; 2(x)], see �g. 7, b. Notice that (w) 6= z because z; w are not

separated from each other and use the running hypothesis in case II. Let U be the component of

H� fzg containing x. Then zn 2 U and since zn ! w, also w 2 U . Since w separates z from (x)

then (x) 2 U . As U is arcwise connected then [x; (x)] � U . As (w) 2 (z; 2(x)] then z separates

x from (w). Also (z); (w) are not separated from each other, therefore z separates (z) from x,

so (z) 62 U . As z 2 [(x); 2(x)], then �1(z) 2 [x; (x)] � U . Putting it all together, �1(z) 2 U

and (z) 62 U , so z separates �1(z) from (z). Therefore �1(z) 2 A() and the proof is �nished.

In �g. 7, b we describe a possible con�guration in this case. The case inf(B) 62 B is treated

analogously. The �nal case to be considered is the following:

Case II.2.2 - supp(A) = a 2 A and inf(B) = b 2 B.

The only way this can happen is as follows: the union A [ B = [x; 2(x)] = [
i0
i=1[ui; vi] and for

any x 2 A; y 2 B then x <3 y. This implies that a; b are the endpoints of some intervals [ui; vi] and

a and b are non separated from each other, see �g. 8, a. Then A [ B splits [x; 2(x)] nicely into a

disjoint union of intervals.

Let s 2 (a; (x)). If s = b, then b 2 (a; (x)) � [x; (x)]. As b 2 [x; 2(x)] then b 2 A,

contradicting the hypothesis. Hence s 6= b. If s 62 (b; (x)), then s does not separate b from (x)

and there is a path from b to (x) in H� fsg. Since a and b are not separated from each other and

s 6= a; s 6= b, there is also a path from a to b in H�fsg, producing a path from a to (x) 2 H�fsg.

This contradicts s 2 (a; (x)). Hence (a; (x)) � (b; (x)) and the reverse inclusion is proven in the

same way (using a 62 B). Consequently (a; (x)] = (b; (x)].

Since b 2 [(x); 2(x)], then �1(b) 2 [x; (x)].

The �rst option is that �1(b) 2 [a; (x)], see �g. 8, a. We will show that this case does not

occur, given the running hypothesis in case II.

Notice that �1(b) 6= a since a; b are non separated from each other. Hence

�1(b) 2 (a; (x)] = (b; (x)] � [(x); 2(x)]:

Now apply the homeomorphism  to the points x; a; �1(b); (x), which are linearly ordered in

[x; (x)], to obtain (x); (a); b; 2(x), so

(a) 2 [(x); b) � [(x); 2(x)];

see �g. 8, a. Put a linear order <4 in [(x); b] � [(x); 2(x)] so that (x) <4 b.

Claim - (b) 62 [(x); b].
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Figure 8: The second possibility: supp(A) 2 A; Supp(B) 2 B, which splits [x; 2(x)] nicely into disjoint

intervals, a. The situation �1(b) 2 [a; (x)] leads to a contradiction, b. The points a; b are in the invariant

axis of .

Suppose that (b) 2 [(x); b]. Then b; �1(b); (b) are all in [b; (x)]. Hence either [b; (b)] �

[b; �1(b)] or the reverse inclusion. Without loss of generality assume the �rst inclusion. Then

([b; �1(b)]) � [b; �1(b)] and so

2([b; �1(b)] � [b; �1(b)];

preserving the linear order in [b; �1(b)]. An argument in the proof of lemma 3.9 produces v with

(v) not separated from v - disallowed by hypothesis in case II. We conclude that (b) 62 [(x); b],

proving the claim.

Let U be the component of H�fag containing b. As a 62 B = [(x); 2(x)]\ [x; 2(x)], there is a

path in H� fag from (x) to 2(x) and this path has to pass through b. Therefore (x) 2 U . Also

�1(b) 2 [(x); 2(x)] � U , hence b 2 (U) and U \ (U) 6= ;.

This implies that (b; (a)) = (b; (b)). To see this let t 2 (b; (b)). Notice �rst that t 6= (a)

because (U), which is a component of H� f(a)g, contains both b and (b). If t 62 (b; (a)), then

there is a path in H � ftg from b to (a) (using that t 6= (a)) and since t 6= (a); (b) and these

last two points are not separated from each other, there is a path from (a) to (b) in H�ftg. This

produces a path from b to (b) in H�ftg, contradicting t 2 (b; (b)). We conclude that t 2 (b; (a))

and this shows that (b; (b)) � (b; (a)). Let now t 2 (b; (a)). Recall that (a) 2 [(x); b). If

t = (b) then

(b) 2 (b; (a)) � (b; (x)];

which is disallowed by the claim. Hence t 6= (b) and the same argument as above shows that

(b; (a)) � (b; (b)), producing equality of these two sets.

Now both �1(b); (a) are in [(x); b]. If �1(b) �4 (a) in [(x); b], then

(b; (b)) = (b; (a)) � (b; �1(b));

so (b; �1(b)) � (b; �1(b)). If on the other hand (a) <4 
�1(b) then

(b; �1(b)) � (b; (a)) = (b; (b));

so �1(b; (b)) � (b; (b)).

Without loss of generality assume the �rst option. Notice that  reverses the linear order <4 in

the blocks. For y 2 (�1(b); b) near �1(b), then
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(y) 2 (b; (b)) � (�1(b); b) and (y) >4 y;

because (y) is near b. For y 2 (�1(b); b) near b then (y) 2 (�1(b); b) near (b) - so near (a),

and therefore (y) <4 y. Since (b; 
�1(b)) is an (open) block of H, this reversal of order in (b; �1(b))

implies that there is z 2 (�1(b); b) with either (z) = z or (z) non separated from z. Both of these

are disallowed by the running hypothesis in case II. This shows that �1(b) 2 [a; (x)] cannot occur.

As �1(b) 2 [x; (x)], the last possible option is that �1(b) 2 [x; a). In addition (a) 2

[(x); 2(x)] and in the same way as above one shows that (a) 2 (b; 2(x)]. Since (b) is non

separated from (a) it follows that (b) is in the component of H � fbg which contains (b; 2(x)].

Therefore a separates �1(b) from (b) and hence b separates �1(b) from (b). Consequently �1(b)

is in the fundamental axis of , see �g. 8, b.

This �nishes the analysis of case II.2.2 and the proof of theorem 3.8.

Remark: This proof works almost verbatin in the case of essential laminations. Let L be an essential

lamination in a closed 3-manifoldM . First replace each isolated leaf of L by an interval of leaves - a

well known operation in lamination theory [Ga-Oe, Ga-Ka]. This produces an essential lamination

L1 which is basically the same as L. Then let H1 be the leaf space of the lifted lamination eL1. Then

H1 is an order tree as de�ned by Gabai-Oertel [Ga-Oe] and since eL1 has no isolated leaves, then

H1 is an R-order tree [Ga-Oe]. But R-order trees are exactly the same as non Hausdor� trees as

de�ned here. Theorem 3.8 can then be used to analyse group actions in the leaf spaces of essential

laminations.

We now study some properties of the invariant axis and give a description of its structure. It is

obvious that A() is invariant under  for if (x) separates x from 2(x), then ((x)) separates (x)

from 2((x)). Also notice that x 2 A(�1) if and only if �1(x) separates x from �2(x). Applying

2, this occurs if and only if (x) separates 2(x) from x, which is the de�nition of x 2 A().

Therefore A() = A(�1).

Proposition 3.10. For any x 2 A(), then A() = [i2Z[
i(x); i+1(x)].

Proof. Given x 2 A(), let

Ax =
[
i2Z

[i(x); i+1(x)]:

First choose y 2 (x; (x)). Let U be the component of H � fxg containing (x) and V the

component of H � fyg containing (x). Since y separates x from (x) and (x) 2 V then x 62 V .

Also V is arcwise connected so V is contained in a component W of H� fxg. But (x) 2 V \U , so

in fact W = U , that is V � U .

In addition y separates x from (x), hence y; x are in the same component of H� f(x)g. Since

x 62 (U) (because (U) � U), then y 62 (U). So (U) is contained in a component of H � fyg.

Choose a prong I at x with I � fxg � U . Since y 6= (x), there is subprong I 0 of I with y 62 (I 0).

But (I 0 � fxg) � (U). Also (x) 2 (I 0) which is then contained in the component V of H� fyg.

It follows that V \ (U) 6= ; and as a result (U) � V . Therefore

(U) � V � U so (V ) � (U) � V:

Lemma 3.7 applied to the component V of H� fyg implies that y 2 A(). Hence [x; (x)] � A()

and by de�nition of Ax and  invariance of A() it follows that Ax � A().

To prove the converse inclusion we use the following: Given z 2 A() de�ne Uz to be the

component of H�fzg which contains (z) and Vz to be the component of H�fzg with �1(z) 2 Vz.
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By lemma 3.7, Uz is the unique component of H�fzg with (Uz) � Uz and similarly �1(Vz) � Vz.

In addition  invariace implies that (Uz) = U(z). Also since (Uz) � Uz then z 62 (Uz) = U(z) �

in fact (z) separates U(z) from z.

Let now y 2 A() and suppose that y 62 Ax. We want to show that this is impossible. Since

y 2 A() then Uy; Vy are de�ned. There are 3 possibilities for the relative position of x. Notice �rst

that x 6= y since y 62 Ax.

Case 1 - x 2 Uy.

As (y) 62 Ax then (y) 62 (x; (x)), so (y) does not disconnect x from (x). But (x) 2 (Uy) =

U(y), therefore x 2 U(y) also. As y 62 U(y), then (y) separates x from y, or (y) 2 (x; y) � [x; y].

By induction assume that i(y) 2 (x; i�1(y)) and x 2 Ui(y). Then

(x) 2 (Ui(y)) = Ui+1(y):

But y 62 Ax, hence 
i+1(y) 62 (x; (x)), so as before x; (x) are in the same component of H �

fi+1(y)g, and hence x 2 Ui+1(y). But 
i(y) 62 Ui+1(y). We conclude that i+1(y) separates x from

i(y) or

i+1(y) 2 (x; i(y)):

This works for all i � 0. Consequently all i(y), i � 0 are in [x; y] and are distinct and monotone in

[x; y]. Recall that

[x; y] =

n0[
1

[ui; vi];

segments in H. Hence there is j0 so that eventually all 
i(y) are in [uj0 ; vj0 ], monotonic and distinct.

Hence in the segment [uj0 ; vj0 ], the 
i(y) converge to z as i ! +1. Notice that z is either x or z

separates x from all i(y); i � 0. But also i+1(y) = (i(y)) ! (z) as i ! +1. We can see that

z; (z); 2(z) are all non separated from each other. If x = z this immediately is a contradiction,

because then (x) = (z) does not separate x = z from 2(x) = 2(z), contradicting x 2 A().

Suppose then that x 6= z and let T be the component of T � fzg containing x. Notice that

i(y) 62 T for any i. Also (T ) is the component of H�f(z)g containing (x) and does not contain

any i(y). It follows that (z) separates (T ) from T , therefore (T )\T = ; and so (T )\2(T ) = ;

also. Let � be a path contained in T [ Z from x to z. As

(x) 2 (T ) and (T ) \ T = ;; then (x) 62 �:

Also 2(�) is a path from 2(x) to 2(z) contained in 2(T ) [ 2(x), so again (x) 62 2(�). For i

big [z; i(y)] is a prong at z disjoint from T and also from (T ). The same is true for 2([z; i(y)]).

Using this two prongs one can construct a path � from z to 2(z) not containing (x). Then

� � � � (2(�))�1;

is a path from x to 2(x) not containing (x). This contradicts x 2 A(). We conclude that this

case cannot happen.

Case 2 - x 2 Vy.

Do the same proof as in case 1, using �1 instead of . This leads to a contradiction as in case 1.

The remaining case is:

Case 3 - There is a component W of H� fyg with Uy 6=W 6= Vy and x 2W .
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Figure 9: The homeomorphism  acts freely, but 2 does not.

This case can happen because y may be a singular point, so H � fyg may have more than 2

components. As y 2 A(), Vy is the unique component of H�fyg containing �1(y). Hence (Vy) is

the unique component of H�f(y)g containing y. Since (W ) 6= (Vy), then y 62 (W ) and so (y)

separates (W ) from y and (W ) is contained in a component of H�fyg. As there is a prong at (y)

contained in (y)[f(y)g, it follows that this component of H�fyg has to be Uy, because (y) 2 Uy.

Therefore (W ) � Uy. But also W 6= Uy so in fact W \Uy = ;. We conclude that W \(W ) = ;. In

particular y separates W from (W ) so y 2 (x; (x)). In the same way (y) 2 (x; (x)) and in fact

x; y; (y); (x) are linearly ordered in [x; (x)]. Let now Z be the component of H� fxg containing

(x). Then y 2 Z and (Z) is the component of H � f(x)g containing (y). But then as (y)

separates x from (x), it follows that x 2 (Z). But x 62 Z, consequently (Z) 6� Z. The analysis of

lemma 3.7 implies that x 62 A(), contradiction to hypothesis. Hence case 3) cannot happen either.

We conclude that the assumption y 2 A() but y 62 Ax is impossible. Hence A() = Ax. Since

x is arbitrary in A(), this �nishes the proof of the proposition.

Using the characterization of A() as Ax for x 2 A() it follows that A() has a linear ordering:

Recall the component Ux of H� fxg with (x) 2 Ux. Since for any n � 1:

n(Ux) = Un(x) � U(x);

then n(x) separates [i>n[
i(x); i+1(x)] from any y 2 (x; (x)). By  invariance it follows that

any y 2 (n(x); n+1(x)) separates [i<n[
i(x); i+1(x)] from [i>n[

i(x); i+1(x)]. The linear order

<5 can be de�ned as follows. Put an order in [x; (x)] so that x <5 (x). For any n 2 Z, n then

induces an order in [n(x); n+1(x)]. Finally if z 2 [ix; i+1(x)) and w 2 [jx; j+1(x)) (half open

intervals), let z <5 w if and only if i < j. This is a linear order in A().

Remark: In general it is not true that if  acts freely in H, then powers of  also do. For example

let  have an almost invariant point v with (v) 6= v, but 2(v) = v and so that A() is a segment,

see �g. 9.

Let x 2 A(). If d(x; (x)) = 0, then x; (x) are connected by a segment in H. Since (x)

separates x from 2(x) it follows that [x; (x)] [ [(x); 2(x)] = [x; 2(x)] is a segment of H. It

follows that A() is an open segment of H, hence homeomorphic to R. If d(x; (x)) > 0, then x and

(x) are connected by a chain of closed segments. It is easy to see that

A() =
[
n2Z

[zi; wi];

where wi is not separated from zi+1. Then  acts as a translation in the set of segments, that is,

there is k 2 Z, so that ([zi; wi]) = [zi+k; wi+k] for any i 2 Z. We abuse notation and say that  acts

in Z.
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Notice that if  acts freely and  leaves invariant an open segment I of H, then A() = I. This

is because for any z 2 I, (x) separates x from 2(x) (free action in I), so x 2 A() and hence

I � A(). But then A() = [n2Z[
n(x); n+1(x)] so I = A().

Lemma 3.11. Let ; � be two commuting homeomorphisms of H which act freely. Then A() =

A(�).

Proof. Let x 2 A(), then (x) separates x from 2(x). Applying �: �((x)) = (�(x)), separates

�(x) from �(2(x)) = 2(�(x)). Hence �(x) 2 A(). Therefore �(A()) � A(). In the same way

applying ��1 then ��1(A()) � A() or A() � �(A()). So �(A()) = A().

Put a linear order <6 in A(). Suppose that � does not preserve the linear order <6. If A()

is an open interval then � would have a �xed point in the interval A(), contradiction. If A() =

[i2Z[zi; wi] = [i2ZIn, then � has to preserve the collection of intervals, so it acts as a map on Z

reversing the ordering in Z. Since  acts on Z preserving the ordering and freely, it follows that �

and  could not commute, contradiction. Hence � preserves <6.

Therefore for any x 2 A(), the points x; �(x); �2(x) satisfy x <6 �(x) <6 �2(x). Hence

�(x) separates x from �2(x) so x 2 A(�). We conclude that A() � A(�) and in the same way

A(�) � A(). Therefore A(�) = A().

Notice one has to assume that both  and � act freely � for example consider  and 2 in the

example above.

4 Topological theory of pseudo-Anosov ows

Let � be a pseudo-Anosov ow in M3 closed. We review the results about the topology of eFs; eFu

which will be needed in the following sections to prove the main theorem. We refer to [Fe5, Fe6]

for detailed proofs. The orbit space of e� in fM is homeomorphic to the plane R2 [Fe-Mo] and is

denoted by O �= fM=e�. Let � : fM ! O �= R2 be the projection map. If L is a leaf of eFs or eFu,

then �(L) � O is a tree which is either homeomorphic to R if L is regular, or is a union of p-rays

all with the same starting point if L has a singular p-prong orbit.

De�nition 4.1. A line leaf L0 of L 2 eFs is the boundary of a component of M � L. Then L0 is

regular on the side of the corresponding sector (there are two such sides if L itself is non singular).

If L is a leaf of eFs or a line leaf of a leaf of eFs, then a half leaf of L is a connected component A

of L � , where  is any full orbit in L. The closure is denoted by A = A [  and its boundary is

@A = . If � is an open, relatively compact, connected subset of �(L), it de�nes a ow band L1 of

L by L1 = ��1(�).

If F 2 eFs and G 2 eFu then F and G intersect in at most one orbit. Also suppose that a leaf

F 2 eFs intersects two leaves G;H 2 eFu and so does L 2 eFs. Then F;L;G;H form a rectangle infM and there is no singularity in the interior of the rectangle [Fe6].

De�nition 4.2. ([Fe2, Fe6]) Perfect �ts - Two leaves F 2 eFs and G 2 eFu, form a perfect �t if

F \ G = ; and there are line leaves F0; G0 of F;G respectively and half leaves F1 of F0 and G1 of

G0 and also ow bands L1 � L 2 eFs and H1 � H 2 eFu, so that F0 is regular on the side containing

L, G0 is regular on the side containing H and:

L1 \G1 = @L1 \ @G1; L1 \H1 = @L1 \ @H1; H1 \ F 1 = @H1 \ @F1;

with L1 \G1 6= ;; L1 \H1 6= ; and H1 \ F 1 6= ;:
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Figure 10: a. Perfect �ts in fM , b. A lozenge, c. A chain of lozenges.

Furthermore

8 S 2 eFu; S \ L1 6= ; ) S \ F1 6= ; (1)

and 8 E 2 eFs; E \H1 6= ; ) E \G1 6= ; (2):

We refer to �g. 10, a for perfect �ts. Implications (1); (2) force equivalences (that is S \ L1 6=

; , S \ F1 6= ; and the same for (2)). The set F 1 [ H1 [ L1 [ G1 separates fM . Let A be the

complementary region which does not contain F �F1 in its closure. An important fact is that there

are singularities of e� in A. Perfect �ts produce \ideal" rectangles, in the sense that even though F

and G do not intersect, there is a product structure (of eFs and eFu) in the interior of A.

De�nition 4.3. [Fe2, Fe6] Given p 2 fM (or p 2 O), and a half leaf H of fW u(p) de�ned by e�R(p),

let

J u(H) = fF 2 H( eFs) j F \H 6= ;g � H( eFs):

Notice that fW s(p) 62 J u(H). Let also

L
u(H) =

[
f p 2 fM j p 2 F 2 J u(H) g � fM:

Then Lu(H) � fM and fW s(p) � @Lu(H). Similarly de�ne J s(L);Ls(L) for a stable half leaf L.

De�nition 4.4. ([Fe2, Fe6]) Lozenges - Let p; q 2 fM and half leaves Lp;Hp of fW s(p);fW u(p) de�ned

by e�R(p), half leaves Lq;Hq of fW s(q);fW u(q) de�ned by e�R(q) so that:

L
u(Lp) \ L

s(Hq) = L
u(Lq) \ L

s(Hp) � fM
Then this intersection is called a lozenge A in fM , see �g. 10, b. The corners of the lozenge aree�R(p) and e�R(q) and A is a subset of fM . The sides of A are Lp;Hp; Lq;Hq. The sides are not

contained in the lozenge, but are in the boundary of the lozenge.

There are no singularities in the lozenges, which implies that A is an open region in fM . There

may be singular orbits on the sides of the lozenge and the corner orbits. The de�nition of a lozenge

implies that Lp;Hq form a perfect �t and so do Lq;Hp. This is an equivalent way to de�ne a lozenge

with corners e�R(p); e�R(q).
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Figure 11: The correct picture between non separated leaves of eFs. Here there are 6 lozenges C1; :::; C6.

Two lozenges are adjacent if they share a corner and there is a stable or unstable leaf intersecting

both of them, see �g. 10, c. Therefore they share a side. A chain of lozenges is a collection fCig; i 2 I,

where I is an interval (�nite or not) in Z; so that if i; i+ 1 2 I, then Ci and Ci+1 share a corner, see

�g. 10, c. Consecutive lozenges may be adjacent or not. The chain is �nite if I is �nite.

De�nition 4.5. Suppose � � E 2 eFs is a (possibly in�nite) strong stable segment so that for each

p 2 � there is a half leaf Hp of fW u(p) de�ned by e�R(p) so that

8 p; q 2 �; J u(Hp) = J u(Hq): In that case let P =
[
p2�

Hp:

Then P � fM is called an unstable product region with base segment �. Similarly de�ne stable product

regions.

The main property of product regions is the following: for any F 2 eFs, G 2 eFu so that (i) F\P 6=

; and (ii) G \ P 6= ;; then F \G 6= ;. There are no singular orbits of e� in P.

We will also denote by rectangles, perfect �ts, lozenges and product regions the projection of

these regions to O �= R2.

A leaf L of eFs or eFu is called periodic if there is a non trivial covering translation g of fM with

g(L) = L. This is equivalent to �(L) containing a periodic orbit of �. In the same way an orbit 

of e� is periodic if �() is a periodic orbit of �.

We say that two orbits ; � of e� (or the leaves fW s();fW s(�)) are connected by a chain of lozenges

fCig; 1 � i � n, if  is a corner of C1 and � is a corner of Cn.

Theorem 4.6. [Fe6] Let � be a pseudo-Anosov ow in M3 closed and let F0 6= F1 2 eFs. Suppose

that there is a non trivial covering translation g with g(Fi) = Fi; i = 0; 1. Let �i; i = 0; 1 be the

periodic orbits of e� in Fi so that g(�i) = �i. Then �0 and �1 are connected by a �nite chain of

lozenges fCig; 1 � i � n and g leaves invariant each lozenge Ci as well as their corners.

A chain from �0 to �1 is called minimal if all lozenges in the chain are distinct. Exactly as proved

in [Fe3] for Anosov ows, it follows that there is a unique minimal chain from �0 to �1 and also all

other chains have to contain all the lozenges in the minimal chain.

The main result concerning non Hausdor� behavior in the leaf spaces of eFs; eFu is the following:

Theorem 4.7. [Fe6] Let � be a pseudo-Anosov ow in M3. Suppose that F 6= L are not separated

in the leaf space of eFs. Then F is periodic and so is L. Let F0; L0 be the line leaves of F;L which

are not separated from each other. Let V0 be the sector of F bounded by F0 and containing L. Let
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� be the periodic orbit in F0 and H0 be the component of (fW u(�) � �) contained in V0. Let g be a

non trivial covering translation with g(F0) = F0, g(H0) = H0 and g leaves invariant the components

of (F0 � �). Then g(L0) = L0. This produces closed orbits of � which are freely homotopic in M .

Theorem 4.6 then implies that F0 and L0 are connected by a �nite chain of lozenges fCig; 1 � i � n,

all contained in Lu(H0). Consecutive lozenges are adjacent. There is an even number of lozenges in

the chain, see �g. 11. In addition let BF;L be the set of leaves non separated from F and L. Put

an order in BF;L as follows: Let C 2 eFs not singular so that C \ H0 6= ;. Put an orientation in

�1 = fW ss(a) where a 2 C. If R1; R2 2 BF;L let �1; �2 be the respective periodic orbits in R1; R2.

Then fW s(�i) \ C 6= ; and let ai = fW u(�i) \ �1. We de�ne R1 < R2 in BF;L if a1 precedes a2 in

the orientation of �1. Then BF;L is either order isomorphic to f1; :::; ng for some n 2 N; or BF;L is

order isomorphic to the integers Z. In addition if there are Z; S 2 eFs so that BZ;S is in�nite, then

there is an incompressible torus in M transverse to �. In particular M cannot be atoroidal. Finally

up to covering translations, there are only �nitely many non Hausdor� points in the leaf space of eFs.

For detailed explanations and proofs, see [Fe6]. Finally notice that product regions are very rare:

Theorem 4.8. [Fe6] Let � be a pseudo-Anosov ow in M3. If there is a product region in fM , then

� is topologically conjugate to a suspension Anosov ow.

5 Non free actions of Z� Z subgroups

We now analyse a Z� Z subgroup of �1(M) where M supports a pseudo-Anosov ow �. Let

A �= Z� Z be such a subgroup. Then A acts by homeomorphisms in the plane O. Recall that A

acts freely in O if any non trivial element in A does not have �xed points.

Suppose A does not act freely in O and let f 2 A� fidg not acting freely in O. Then f() = 

for some orbit  of e�. Let Sf be the graph whose vertices are the �xed points of f in O and edges

corresponding to a lozenge in O with corners at two �xed points of f . By theorem 4.6 any two �1; �2
with f(�1) = �1, f(�2) = �2 are connected by a chain of lozenges, hence Sf is connected. In addition

any chain from �1 to �2 has to contain the minimal chain from �1 to �2, so any path in Sf from �1
to �2, has to contain the path associated to the minimal chain. It follows that Sf is a tree. Two of

the sides of a lozenge with corner � are in fW s(�);fW u(�). Therefore each vertex of Sf has valence

� 2k0, where k0 is the maximum number of prongs at a singularity of �. This means that Sf is a

locally �nite simplicial tree. The following result is similar to the one in [Ba3] for Anosov ows.

Lemma 5.1. If g acts freely in O, then gn acts freely in O for any n 2 Z� f0g.

Proof. Suppose gn does not act freely in O, with n � 2. Let h = gn. Then g sends a �xed point of

h to another one, so g acts on the tree Sh. This action is torsion because h = gn acts by identity on

Sh. Look at the orbit of a vertex p 2 Sh. The convex hull of this orbit is the smallest subtree of Sh
containing this orbit. It is a �nite simplicial tree, which is invariant by g. The theory of group actions

on �nite trees implies that either g �xes a vertex or has an invariant edge, ipping the endpoints.

The second option is equivalent to g(B) = B, where B is a lozenge and g switches the corners �; 

of B. Then g acts as an orientation reversing homeomorphism is the set of stable leaves in B, hence

g leaves invariant a stable leaf L in B. But gn �xes the corners of B, so gn would �x two orbits �

and fW u(�) \ L in fW u(�) contradiction. The remaining option is that g �xes a vertex in Sh and so

g has a �xed point in O as desired. This �nishes the proof.
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By the lemma we may assume that if f 2 A does not act freely in O , then f is indivisible in A.

Let g 2 A so that f; g form a basis of A. If g() = , then A leaves  invariant. But the stabilizer

of an orbit of e� is at most in�nite cyclic, because leaves of Fs are either simply connected or with

fundamental group isomorphic to Z. Therefore this is a contradiction and g() = � 6= . Since

f(�) = f(g()) = g(f()) = g() = �;

then f(�) = �; f() = . Theorem 4.6 implies that  and � are connected by a chain of lozenges

C1; :::; Cn with  corner of C1 and � corner of Cn. This produces a free homotopy in M from �()

to �(�) = �(), that is an immersed, incompressible torus which represents A. Using the same

techniques as in [Ba3], we can then homotope the torus to be a �nite union of closed annuli Ai

so @Ai is a pair of closed orbits of � and the interior of A is transverse to �. Each annulus lifts

to an in�nite strip in fM which is contained in a lozenge with the boundary in the corners of the

lozenge. The boundary orbits project to closed orbits inM and the interior of the strip is transverse

to e�. Barbot calls such a torus a quasi-transverse torus [Ba3]. This is the canonical form of a free

homotopy from a closed orbit of � to itself. In certain situations one can homotope the torus to be

transverse to �. This �nishes the analysis of the action of A in the non free case.

6 The free case - Almost invariant situation

From now on assume that A acts freely in O. The proof is similar to the situation of Anosov ows

[Fe4], but various steps are di�erent because of singularities. In addition theorem 4.1 of [Fe4] which

was needed for the argument in [Fe4] was incorrect as stated and in section 8 we provide a corrected

version of that result.

Recall that Hs is the leaf space of eFs and that Hs is a non Hausdor� tree. Similarly for Hu, hence

the results of section 3 can be applied. The following abuse of notation will be used: if f 2 �1(M),

think of f as a covering tranlsation of fM . The same notation f will be used for the induced actions

in O, Hs, Hu and any invariant subsets thereof. The context will make it clear where the action is

taking place.

Given any non trivial f 2 A, it acts freely in Hs, a non Hausdor� tree. Theorem 3.8 shows that

f has an invariant axis in Hs. Since all non trivial elements of A commute with each other and act

freely in Hs, lemma 3.11 implies that the invariant axis is the same for all elements of A and this

common axis is denoted by Is � Hs.

Lemma 6.1. The invariant axis Is is an open segment.

Proof. Otherwise the invariant axis is Is = [i2Z[xi; yi]. Each g 2 A acts in Is and shifts the

collection of intervals in Is. Therefore g induces an action in Z - the set of intervals. This produces

an action of A = Z�Z on Z. There must be a non trivial h 2 A which has a �xed point in Z, which

implies that h([xi; yi]) = [xi; yi]. This produces a �xed point of h in [xi; yi], hence a �xed point of h

in Hs, contradiction. Therefore Is is an open segment as desired.

Lemma 6.2. Let g 2 A. Then there are no almost invariant leaves under g.

Proof. Suppose that g leaves L almost invariant, that is, L and g(L) are non separated from each

other. By theorem 4.7, the leaf L has a periodic orbit . Let BL be the set of leaves of eFs which

are non separated from both L and g(L). Let U be the component of fM � L containing g(L).

If g(U) � U , then as seen in case I.1 of the proof of theorem 3.8, the leaves L; g(L) 2 A(g) and

by proposition 3.10, the axis A(g) = Is is an in�nite union of closed, disjoint segments. This is

disallowed by the previous lemma.
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Therefore g(U) 6� U and the analysis of case I.2 of theorem 3.8 implies the following: if Z is

the set of stable leaves intersected by fW u() \ U , then g(Z) = Z. Hence Z produces an invariant

segment in Hs under g, so as seen before Z = Is. But then any f 2 A has f(Is) = Is, preserving

orientation, which implies that f(BL) = BL. By theorem 4.7, the set BL is order isomorphic to either

Z or f1; :::; ng for some n 2 N. Since A �= Z� Z acts on BL there would be a non trivial element

in A with a �xed point in BL. This would leave a leaf of BL invariant, contradiction to hypothesis

of free action of A in this case. This contradiction shows that there cannot be any almost invariant

leaves under g and �nishes the proof of the lemma.

Now we know that any g 2 A acts freely in Hs and separates points. Similarly for the action of

A in Hu producing an invariant axis Iu. Recall the projections �s : fM ! Hs and �u : fM ! Hu.

Let Rs = ��1s (Is) � fM which is a union of leaves of eFs and let Ru = ��1u (Iu) � fM . Notice Rs is

connected, but usually not open because of singular leaves in Rs. Then Is;Iu are homeomorphic to

R.

Lemma 6.3. If G is any leaf in Iu then G \ Rs 6= ;. In particular if J is any in�nite interval in

Iu �= R, then ��1u (J) \Rs 6= ;. Similarly any S 2 Is intersects Ru.

Proof. Suppose not and there is G 2 Iu with G \ Rs = ;. Because Is is an interval, then Rs is

connected, hence it is contained in a component of Ru �G. There is a component of Ru �G which

cannot intersect the set Rs, so there is an in�nite interval J of Iu with ��1u (J) \ Rs = ;. We will

show this is impossible.

Let g 2 A, with g non trivial. Looking at the action of g in Iu, we may assume by taking inverse

if necessary, that U � g(J) and so [n>0g
n(J) = Iu - because g has no �xed points in Iu. Using that

g(Rs) = Rs and ��1u (gn(J)) = gn(��1u (J)), then

Rs \ Ru = Rs \ ��1u (Is) = Rs \ ��1u

 [
n>0

gn(J)

!

=
[
n>0

�
Rs \ gn(��1u (J))

�
=

[
n>0

gn
�
Rs \ ��1u (J)

�
= ;:

We now show that Rs \ Ru = ; is impossible. Since Rs is connected and Ru \ Rs = ;, there

is a unique leaf F 2 eFs so that F � @Rs and a line leaf of F separates Rs from Ru. For any

g 2 A, g(Rs) = Rs; g(Ru) = Ru implies that g(F ) = F . But A acts freely, contradiction. This

contradiction �nishes the proof of the lemma.

7 The �nite case

The proof is now divided in two cases. In this section we suppose that for any G 2 Iu, G intersects

the leaves of Is in at most a bounded subsegment of Is - hence the name �nite case. The goal is to

show that this case cannot occur.

Fix an order <s in I
s and parametrize is as

Is = fFt j t 2 Rg;

with Ft <s Fs if t < s. This in fact determines an order in Iu as follows:

De�nition 7.1. (Order in Iu) Put a linear order in Iu by: if G 2 Iu with G \ Rs 6= ; let L 2 Is

with G \L 6= ;. Let E 2 Is with E >s L and E \G = ; (here we use the running hypothesis in this
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Figure 12: Singularities can produce interesting behavior. Here R >u G. The leaf E0 is a singular leaf. For

any E1 arbitrarily near E0, then E1 \G = ;, even though E0 \G 6= ;.

case). By lemma 6.3 the leaf E has to intersect Ru. Since E \G = ;. There is only one component

of Ru�G which can intersect E. Let this component of Ru�G de�ne the positive direction from G

in Iu, or the elements bigger than G in Iu in this order. This de�nes a linear order in Iu.

One fundamental fact for all the analysis in this case is:

Lemma 7.2. The above linear order in Iu is independent of the choice of E or G.

Proof. First notice that if G \ Fa 6= ; and G \ Fb 6= ;, then G \ Ft 6= ; for any a < t < b, because

Is is a segment, so it is connected and any leaf of Is separates Is into two components. Let now

E0 2 I
s, so that E0 >s F and E0 is the smallest (in <s) not intersecting G or E0 \G 6= ;, but for

for any E1 2 I
s, E1 >s E then E1 \ G = ;, see �g. 12. Notice that a priori G \ E0 6= ; does not

imply G\E1 6= ; for any E1 near E0 as is the case for non singular foliations. This is because of the

singularities, G may intersect a prong of E0 which is not near E1 even though E1 is near E0, see �g.

12.

The set VG = fx 2 L 2 Is j L >s E0g �
fM is connected and does not intersect G. Hence VG is

contained in a single component of fM �G, so it can intersect only a �xed component of Ru �G no

matter which E is chosen in Is with E >s E0. The same component occurs if E0 \ G = ;. Hence

this component of fM �G is independent of E �s E0. This shows that the linear order in I
u depends

only in G 2 Iu - denote this order by <G.

If G0 is another leaf of Iu let <G0 be the linear order associated to G0. We want to show that

both orders are the same. Assume �rst that G0 <G G. Let F 0 2 Is with F 0 \G0 6= ;. Choose

E 2 Is; E >s F; E >s F
0 and E \G = ;; E \G0 = ;:

.

But E \Ru 6= ;, so E is in the component of Ru �G de�ning elements bigger than G in <G. Since

G0 <G G, then G0 is not in this component of Ru � G. Hence G separates G0 from E. Also by

de�nition of <G0 using E, it follows that E is in the component of Ru �G0 de�ning bigger elements

that G0 in <G0 . But as G separates G0 from E, then G is also contained in this component of Ru�G0.

It follows that G is bigger than G0 in the <G0 order or G <G0 G0. If G <G G0, do the same argument

switching the roles of G and G0 to obtain G <G0 G0. Hence G <G G0 if and only if G <G0 G0. But

the orders <G; <G0 are linear orders on Iu, so the relative position of any two elements under the

order determines the whole order, that is,

8 H;R 2 Iu; H <G R () H <G0 R:

Since G;G0 are arbitrary in Is, this shows the order is independent of G and �nishes the proof.
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Remark - The proof shows that for any G 2 Iu, there is t0 2 R so that for any t > t0, the leaf Ft is

contained in the component of fM �G containing those G0 2 Iu with G0 >u G.

Let <u denote the unique linear order in Iu de�ned above. The uniqueness of the linear order

<u is a key fact which implies a fundamental result for us:

Lemma 7.3. Let f 2 A. Then f induces an increasing homeomorphism in Is if and only if f

induces an increasing homeomorphism of Iu.

Proof. Suppose f is increasing in >s. Let G 2 Iu and F 2 Is with G\F 6= ;. Choose E >s F with

E \G = ;. Choose n > 0 so that fn(F ) >s E. The component of Rs�G intersecting fn(F ) de�nes

elements >u G in Iu. But fn(F ) intersects fn(G), hence fn(G) >u G. So f
n acts as an increasing

homeomorphism in Iu with the order <u. As a result f also induces an increasing homemorphism

in Iu. This �nishes the proof of the lemma.

This is the key lemma in the proof. It is at this point that things are di�erent if some G 2 Iu

intersects a non bounded interval of leaves in Is or vice versa.

Since A is abelian, Plante [Pl2] showed that the action of A over Is �= R is semi conjugate to a

linear action of A in R: there is a surjective monotone map:

's : I
s ! R; and �s : A! R;

with �s a homomorphism which satis�es the following condition:

8F 2 Is; 8g 2 A; 's(g(F )) = 's(F ) + �s(g):

Since A acts freely in Is then �s is injective [Pl2]. In addition since A has rank two, the action of

A on Is admits a unique minimal closed invariant set �s � I
s. This set is a perfect set and Is� �s

(which could be empty) is exactly the set where 's is constant. Notice that �s(g) > 0 if and only if

g acts as an increasing homeomorphism of Is. The same happens for Iu producing 'u; �u and �u.

Since �s is a perfect set, there are F 2 �s which are not isolated on both sides.

The previous lemma shows that for any g 2 A, �s(g) > 0 if and only if �u(g) > 0. This easily

implies that for any f; g 2 A:

�s(g) > �s(f) () �u(g) > �u(f):

Lemma 7.4. There is F 2 �s not isolated on both sides in �s and F intersecting G 2 Iu which is

in �u.

Proof. Let F 2 �s not isolated on both sides. If F satis�es the condition of the lemma we are done.

Otherwise consider the set B � Is all G0 2 �u intersecting only leaves in Is which are smaller than

F in <s. The de�nition of <u using any G0 with G0 \ F 6= ; implies that any such G0 2 B satis�es

G0 <u G0. Hence the set B is bounded above in Iu. Let G be the supremum in <u of the set B.

Use the fact that �u is closed in Iu, hence G 2 �u. Notice that by assumption G \ F = ;.

By lemma 6.3 for any G 2 Iu, then G\Rs 6= ;. Let E 2 Is with G\E 6= ;. If F is the smallest

in Is not intersecting G and with F >s E, choose F1 2 �s near enough F with E <s F1 <s F and

F1 \ G 6= ; with F1 not isolated on both sides. This uses the fact that F is not isolated on both

sides. This �nishes the proof in this case.

Otherwise choose F 0 2 �s with E <s F
0 <s F and F 0 \ G = ;. This uses F is not isolated on

the negative side. Since the orbit of F 0 under A is dense in �s and F is not separated on both sides

in �s choose g 2 A with F 0 <s g(F
0) <s F . Then �s(g) > 0, so by the previous lemma �u(g) > 0
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and g(G) >u G in Iu. But g(G) \ g(F 0) = ;. Recall that by de�nition, G can only intersect those

L in Is with L <s F
0. Hence g(G) only intersects L 2 Is with L <s g(F

0) <s F . This implies that

g(G)\F = ;. This is contradiction to the de�nition of G, because g(G) >u G, g(G) 2 I
u. Therefore

this case cannot happen and this �nishes the proof of the lemma.

Lemma 7.5. If gi 2 A with �s(gi)! 0, then �u(gi)! 0.

Proof. We may assume �s(gi) > 0 and �s(gi) decreasing with i increasing. Hence �u(gi) > 0 and

�u(gi) decreasing with i increasing. If �u(gi) 6! 0 then �u(gi) ! a > 0. Since �u(A) is a rank

two subgroup of R, it is dense in R. Choose f 2 A with 0 < �u(f) < a. Since a < �u(gi), then

0 < �s(f) < �s(gi) for all i, contradicting �s(gi)! 0.

We now produce a contradiction to the hypothesis of the �nite case.

Proposition 7.6. There is h 2 A not acting freely in O.

Proof. Using lemma 7.4, choose F 2 �s not isolated on both sides and intersecting G 2 �u. Without

loss of generality suppose that G is not isolated on the positive side of G in Iu. Let  = F \ G

which is a single orbit of e�. Choose hi 2 A with �s(hi) > 0 and �s(hi) ! 0 decreasing. Then

�u(hi) > 0, �u(hi) ! 0. Also hi(F ) 2 �s � Is and since F is not isolated in �s then hi(F ) ! F

in Is and hence in Hs. Similarly hi(G) ! G in Hu. Because of singularities we may not have a

product picture of the foliations near  - so hi(F )! F and hi(G)! G does not a priori imply that

hi() ! . For instance if  is singular, the fact that Li ! F and Si ! G, does not imply at all

that Li \ Si ! F \ G. It could well happen that Fi \ Si = ;. However, because hi(F ) and hi(G)

intersect, that is, ; 6= hi(F ) \ hi(G) = hi(), it now follows that hi() !  (even if  is a singular

orbit).

Since hi() ! , but not equal to , it follows in particular that � = �() is not a closed orbit

of �. Therefore � is not a singular orbit also. Choose x 2 �. Since the ow line � keeps returning

arbitrarily near x and x is not singular, a long segment of � is shadowed by a closed orbit of �,

see shadow lemma for pseudo-Anosov ows [Ha, Ma, Mos2]. This closed orbit of � corresponds

to a covering translation f taking  to hi() (or vice versa). Hence f�1(hi()) =  and since the

stabilizer of  is trivial (as  is not periodic), it follows that f = hi. But then hi is associated to a

closed orbit of � and therefore hi does not act freely in O. Let h = hi. This �nishes the proof of the

proposition.

The proposition shows that the running hypothesis in this section is contradictory with free action

of A.

8 The in�nite case

We now prove the main theorem. The case that A �= Z�Z does not act freely in O was dealt with

in section 5. Here we �nish the analysis of the free action case:

Theorem 8.1. Let � be a pseudo-Anosov ow in M3 closed. If there is A = Z�Z acting freely infM=e� �= O then � is topologically conjugate to a suspension Anosov ow.

Proof. The previous section shows that there is some leaf of Iu intersecting an in�nite interval in Is.

Recall that Is = fFt j t 2 Rg. By reversing this parametrization of Is if necessary, we may assume

there is G 2 Iu with G \ Ft 6= ; for any t � a, where a is a real number. For simplicity choose a so

that Fa is a non singular leaf of eFs. This a is �xed from now on. Let  = G \ Fa, where a is a real

number.
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Lemma 8.2. The Ft escapes in fM as t! +1.

Proof. Otherwise since Ft is nested with increasing t, there is S 2 eFs with Ft ! S when t ! +1.

Given g 2 A then g(Ft) converges to g(S) as t ! +1. But also g(Ft) = Ft0 and if t ! +1 then

t0 ! +1 because g acts by orientation preserving homeomorphisms of Is. Therefore g(Ft) = Ft0

also converges to S. Hence S and g(S) are not separated from each other and g does not separate

leaves. By lemma 6.2 the group A does not act freely in O, contradiction. This �nishes the proof of

the lemma.

Let now g 2 A with �s(g) < 0. Hence g(Fa) <s Fa in I
s and by construction g(G) also intersects

all of Ft 2 I
s with Ft �s g(Fa). Therefore for any t > a, Ft \ g(G) 6= ;. It follows that for any t > a

the leaves Fa; Ft; G; g(G) form a rectangle and there are no singularities of e� in the rectangle. Let

D be the ow band of Fa between G and g(G). Notice that g(G) 6= G, because of free action. Let

H be any leaf of eFu separating G from g(G), that is, any leaf H 2 eFs which intersects D. Then

H \Ft 6= ; for any t > a because of the rectangle condition [Fe6]. In addition since Ft escapes in eFs

as t! +1 these are all the leaves intersected by the half leaf of H de�ned by H\Fa. It follows that

for any L 2 eFs, then L intersects H if and only if L = Ft for some t > a. By de�nition of product

regions, this proves that D is the base ow band of an unstable product region in fM . Theorem 4.8

implies that � is topologically conjugate to a suspension Anosov ow, which is what we wanted to

prove. This �nishes the proof of theorem 8.1.

Some consequences of this result are:

Corollary 8.3. Let � be a pseudo-Anosov ow in M3 and let T be an incompressible torus in M .

Suppose that no loop in T is freely homotopic to a closed orbit of �. Then � is topologically conjugate

to a suspension Anosov ow. If in addition T is embedded then T is isotopic to a torus transverse

to �.

Proof. The �rst statement follows directly from the previous theorem. SinceM �bers over the circle

with torus �ber and Anosov monodromy, there is only one incompressible torus in M up to isotopy

[Bo-La, He], so the second assertion follows.

Corollary 8.4. Let � be a pseudo-Anosov ow in M3. Let F be an incompressible torus transverse

to the stable foliation and let Fs
T be the induced foliation by Fs in T . Then Fs

T has closed leaves

unless � is topologically conjugate to a suspension Anosov ow.

Proof. This is the same result as theorem 8.1 of [Fe4] for Anosov ows. We need the following

modi�cations: �rst, if necessary lift to a double cover and assume M is orientable. Also in general

Hs;Hu are not orientable. Rather than talking about the \front" or \back" of F 2 eFs (or G 2 eFu)

we consider the appropriate components of fM � F . Given these changes, the proof goes exactly as

in [Fe4] to which we refer the reader. The goal is to show that �1(T ) acts freely in Hs - then one

can apply the main theorem here.

Notice that incompressibility is necessary and does not follow from the fact that T is transverse

to Fs, as opposed to T being transverse to �. For example take a small tubular neighborhood of

a non singular closed orbit: one obtains a torus T transverse to Fs and having Fs
T with two closed

leaves and 2 Reeb annuli. Clearly T is compressible.

We remark here that theorem 4.1 of [Fe4] is incorrect as stated and we provide a correct result.

Proposition 8.5. Let � be an Anosov ow in M3 orientable. Let T be an embedded incompressible

torus inM . Suppose there is g 2 �1(T ) without invariant leaves in eFs but having an almost invariant

leaf F 2 eFs (or eFu). Then T is isotopic to a torus transverse to �.
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Figure 13: Non separated leaves and reversal of orientation.

Proof. Since � is an Anosov ow, then Hs is a simply connected 1-manifold and hence orientable

and so is Hu. Fix orientations in Hs;Hu. Then g can �x or reverse this orientation of Hs. In [Fe4]

we used the incorrect fact that if g reverses orientation of Hs then g has a �xed point in Hs. We can

have a situation where g(F ) is non separated from F 2 eFs but g reverses the orientation of Hs, see

�g. 13. This is exactly what happens in case I.1 of the analysis in the proof of theorem 3.8.

Hence the component of fM � F containing g(F ) is taken to the component of fM � g(F ) not

containing F . The axis of g is an in�nite sequence of leaves gi(F ) so that gi(F ) is not separated

from gi+1(F ) for any i 2 Z.

Suppose this is the case, that is, g reverses the orientation of Hs. As in the proof of lemma 3.11,

any f commuting with g preserves A(g). Hence �1(T ) has to act in the axis A(g) = fgi(F )g; i 2 Z

preserving the order. Therefore some h 2 �1(T ) �xes all elements in the chain. Therefore �1(T ) does

not act freely in O and this is the case that T can be put in a form of a free homotopy from a closed

orbit of � to itself. In this case the torus is isotopic to one which is only quasi-transverse to �, see

Barbot's work in [Ba3] for details. One does not obtain an isotopic torus transverse to �. So clearly

this fails theorem 4.1 of [Fe4].

In order to rectify theorem 4.1 of [Fe4], the additional hypothesis here is that M is orientable.

We now explain how that helps us. Suppose there is g as above with g reversing the orientation of

Hs. Consider the action of g in Hu. Let  be the periodic orbit in F and let H = fW u(). As F; g(F )

are not separated from each other, then g(H) and H intersect a common stable leaf, see �g. 13. If

g reverses the orientation of Hu, then the components C of fM �H not containing g(H) is taken to

the component of fM � g(H) not containing H. Then g2(F ) � g(C), but also g2(H) \ g(C) = ;.

Hence g2(H) cannot intersect g2(F ) contradiction. It follows that g preserves the orientation of

Hu. The invariant axis for the action of g on Hu is a segment, which contains H; g(H); g2(H), ...

Since g reverses the orientation to Hs but preserves the orientation of Hu, it follows that g reverses

the orientation in O and therefore reverses the orientation of fM . Hence M is not orientable. This

contradicts the hypothesis of M orientable.

The conclusion is that g must preserve the orientation of Hs. As in the analysis of case I.2 of the

proof of theorem 3.8, it follows that the axis of g is a segment in Hs. If g reverses the orientation

of Hu, then again M would be non orientable, contradiction. Hence g preserves both orientations.

It follows that all gn(F ); n 2 Z are non separated from each other. Also if gn(F ) = F for some

n 6= 0, then gn would have to reverse the orientation to eFs or eFu, again a contradiction. Therefore

the gn(F ); n 2 Z are all distinct. Let BF be the set of leaves non separated from F and g(F ). By

the above, this set is in�nite, so by theorem 4.7 it is order isomorphic to Z. Given any f 2 �1(T ),

then f leaves invariant A(g) and commutes with g, so f preserves the orientation of Hs. Since M is

orientable f also leaves invariant the orientation of Hu. From this point on we can proceed exactly

as in the proof of theorem 4.1 in [Fe4]. The end result is that T is isotopic to a torus transverse to

�.
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9 Pseudo-Anosov ows transverse to foliations

There are many situations where a codimension one foliation G in a 3-manifoldM admits a transverse

pseudo-Anosov ow [Th2, Th3, Th4, Mos2, Fe8]. Our results help to understand the atoroidal

property in this setting. Recall that G is R-covered if the lifted foliation eG to fM has leaf space

homeomorphic to the real numbers R [Fe1]. Also an Anosov ow is R-covered if its stable foliation

Fs (equivalently unstable foliation Fu [Fe1, Ba2]) is R-covered.

Theorem 9.1. Let G be an R-covered foliation in M3 closed so that G is transverse to a pseudo-

Anosov ow �. Suppose that � is not an R-covered Anosov ow. ThenM is homotopically atoroidal,

that is, there are no Z�Z subgroups of �1(M).

Proof. One says that that � is regulating for G if any orbit of e� intersects all leaves of eG [Fe7]. The

main result of [Fe7] states that if G is R-covered and transverse to � pseudo-Anosov, then � is

regulating for G unless � is an R-covered Anosov ow. Since we are assuming that the last option

does not occur, then � is regulating for G. Therefore every ow line intersects all leaves of eG and

vice versa. Fix an identi�cation of the leaf space H(eG) of eG with R so that positive movement in

ow lines of e� corresponds to increasing the parameter in R.

Suppose there is A �= Z� Z subgroup of �1(M). If A acts freely in O, the the main theorem of

this article shows that � is topologically conjugate to a suspension Anosov ow. But a suspension

Anosov ow is R-covered, so this is disallowed by hypothesis.

The remaining option is that there is f 2 A� fidg and  orbit of e� with f() = . By lemma

5.1, we may assume that f is indivisible in A. Let g 2 A so that ff; gg form a basis of A. Then

g() 6=  and , g() are connected by a �nite chain of lozenges Ci; 1 � i � n, with  a corner of C1.

Let � be the other corner of C1 so f(�) = �. The action of f on C1 shows that the closed orbit �()

of � is freely homotopic to the closed orbit (�(�))�1 [Fe2, Fe6]. Notice that  and � intersect all

leaves of eG. Assume that f translates  in the positive ow direction, hence increasing the parameter

in H(eG). But f(�) = � and since �() �= (�(�))�1, it follows that f acts as a translation in � in

the negative ow direction, therefore decreasing the parameter in H(eG). These two facts contradict

each other. This shows that the second option cannot happen either.

We conclude that there is no Z� Z subgroup of �1(M), so M is homotopically atoroidal. This

�nishes the proof of the theorem.

Remark - Clearly the hypothesis of � is not an R-covered Anosov ow is necessary. If � is for

instance a suspension Anosov ow, one can perturb the unstable foliation of � to produce a new

R-covered foliation transverse to �, see details of this construction in [Fe7]. But clearlyM is toroidal

- the �ber produces an incompressible torus. The same can be done for a geodesic ow in the unit

tangent bundle of a closed hyperbolic surface [Fe7] - which is also an R-covered Anosov ow [Fe1].

Again the underlying manifold is toroidal.
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