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1 Introduction

In this article we study the topology of foliations in 3-manifolds as inuenced by a transverse pseudo-Anosov ow.

A Reebless foliation in a closed 3-manifold lifts to a foliation in the universal cover. It is very natural to ask what

is the topology of the leaf space in the universal cover. The basic form of this is to check whether the leaf space

is Hausdor� or not. The Reebless condition implies that this leaf space is always a one dimensional manifold [No].

Consequently if it is Hausdor� it will be homeomorphic to the real numbers R. In this case we call the foliation

a R-covered foliation [Fe3, Pl4]. An immediate consequence of being R-covered is that the fundamental group

acts on R and this action can be very useful [Pl3]. One important question addressed here is: when is a foliation

R-covered?

It turns out that in general it is very hard and subtle to check whether a foliation is R-covered or not. Fibrations

over the circle are always R-covered and �nite depth foliations [Ga1, Ga2] are never R-covered unless the compact

leaves are �bers of �brations over the circle [Fe1].

For stable or unstable foliations of Anosov ows the question is much more complex and interesting. There is the

groundbreaking work of Verjovsky [Ve], who was the �rst to analyse the topology of the lifts of the stable/unstable

foliations of an Anosov ow and its important consequences. Suspension Anosov ows (suspensions) and geodesic

ows in the unit tangent bundle of closed surfaces of negative curvature (geodesic ows) have stable/unstable

foliations which are R-covered. Anosov ows in Seifert �bered spaces are completely understood, due to the work

of Ghys [Gh]. He proved that the stable foliation of the ow is always R-covered and this was an essential step

to show that such ows are always topologically conjugate to geodesic ows. Anosov ows in graph manifolds are

also well understood due to the work of Barbot [Ba1, Ba3, Ba4] and there are many R-covered examples. Again

the R-covered property for the stable foliation had important consequences. Also there are many non R-covered

examples in graph manifolds. In hyperbolic manifolds there are many examples of R-covered Anosov foliations

obtained by Dehn surgery on closed orbits of suspensions or geodesic ows [Fe3]. This has strong consequences for

the geometry of the ows in hyperbolic manifolds, namely the study of the quasigeodesic property for the ow lines

� when the stable foliation isR-covered then the ow is not a quasigeodesic ow [Fe3]. In both graph manifolds and

hyperbolic manifolds, the proof of the R-covered property involves a very tricky analysis - for hyperbolic manifolds

this entailed the study of how Dehn surgery modi�ed the topology of the leaf space in the universal cover [Fe3].

The results were obtained under very controlled circumstances and in general Dehn surgery on suspensions may

produce non R-covered Anosov foliations - see [Fe5] for non R-covered examples where the surgered manifold is

hyperbolic.

Another class of R-covered foliations is that of \slitherings". A slithering of a manifold over the circle is a

�bration of the universal cover of the manifold over the circle which is equivariant under group translations and

produces a foliation in the manifold [Th5]. By construction these are all R-covered. Fibrations over the circle are

examples of slitherings, as are stable foliations of a large class of Anosov ows [Th5, Fe3]. Furthermore there are

several techniques to construct or replicate slitherings, for instance branched covering techinques [Th5, Ca1]. This

makes slitherings very common.

Finally there are also some new constructions by Calegari [Ca1] ofR-covered foliations in hyperbolic 3-manifolds

which are not associated to slitherings. Another important fact is that for a general foliation in a closed, hyperbolic

3-manifold, the R-covered property implies that every leaf in the universal cover has limit set which is the entire

sphere at in�nity.

On the other hand, the failure of the R-covered property for the stable/unstable foliations of an Anosov ow in

a 3-manifold also has strong consequences for the dynamics of the ow and the topology of the manifold [Fe4, Fe5].

In this case the general structure of such leaf spaces is not yet well understood.
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All of these examples demonstrate the importance of knowing whether a foliation is R-covered or not. When F
has a compact leaf B, then F is R-covered if and only if B is a virtual �ber of M over the circle [Go-Sh]. However

when F has no compact leaves, it is very diÆcult to analyse the R-covered property and very little is known beyond

the examples mentioned above.

In this article we analyse this question when there is a transverse pseudo-Anosov ow. First we mention various

classes of examples where there is a pseudo-Anosov ow transverse to the foliation. 1) If the manifold �bers over the

circle with pseudo-Anosov monodromy, then there is a pseudo-Anosov ow transverse to the �bration [Th3, Bl-Ca].

This ow gives substantial information about the manifold and the foliation [Th2, Th4, Ca-Th]. 2) Another

example is the situation of �nite depth foliations: there are compact leaves, all leaves are properly embedded

and the foliation strongly reects a topological hierarchy of the manifold [Ga1, Ga2]. Gabai showed that if the

manifold is orientable, irreducible and has non trivial second homology, then it has Reebless �nite depth foliations

[Ga1, Ga2]. Work of Gabai and Mosher [Mo2] shows that, as in the �bering case, there is a pseudo-Anosov ow

transverse to the foliation (in general the ow is \almost" transverse to the foliation � a technical condition). The

stable/unstable laminations obtained by splitting the singular leaves of the stable/unstable singular foliations of

the ow are used to prove important results on most Dehn surgeries on knot complements in S3 [Mo2]. 3) Work of

Roberts [Rob1, Rob2] implies that if  is a knot in S3 with hyperbolic complement, then there are in�nitely many

Dehn surgeries on  yielding closed manifolds with foliations transverse to pseudo-Anosov ows. 4) About two years

ago, Thurston showed that a foliation induced by a slithering of the manifold over the circle is either reducible or

admits a transverse pseudo-Anosov ow [Th5]. 5) We recently extended this result to general R-covered foliations:

Theorem ([Fe10]) - Let F be a transversely oriented, R-covered foliation in M3 closed, aspherical. Then either

there is a Z � Z subgroup of �1(M) or there is a pseudo-Anosov ow transverse to F . In particular the second

option occurs if M is hyperbolic.

This result was independently proved by Calegari [Ca2]. 6) Finally Calegari has shown the same result for

foliations with one sided branching [Ca3] and minimal foliations [Ca4].

Pseudo-Anosov ows transverse to foliations are amenable to branched cover and cut and paste techniques. This

will be explored in this article to analyse 2 classes of examples. See also the wealth of examples created by Cooper,

Long and Reid [CLR1, CLR2] and the author [Fe7] for compact immersed surfaces transverse to pseudo-Anosov

ows. Thurston proposed that the existence of a pseudo-Anosov ow transverse to a foliation is a very general

situation [Th6, Th7].

Let then � be a pseudo-Anosov transverse to a foliation F . The question considered here is: can the transverse

pseudo-Anosov ow be used to decide whether F is R-covered or not? First consider the following: does an

arbitrary ow line in the universal cover intersect every leaf of the lifted foliation? If this happens we say that �

regulates F [Th5], or that � is a regulating ow. Clearly if that is the case, then the foliation is R-covered �
points in the given ow line parametrize the leaf space as homeomorphic to R. Our goal is to analyse the converse:

does F being R-covered imply that � is regulating for F? Surprisingly this is not true in general and there are

easy counterexamples. However we prove that the converse only fails for some very restricted and well understood

situations.

Let Fs;Fu be the singular stable/unstable foliations associated to the Anosov ow �. A pseudo-Anosov ow

is called R-covered if one of its stable or unstable foliations is R-covered [Ba1, Fe3]. This implies there are no

p-prong orbits and also that both foliations are R-covered [Ba1, Fe3]. Given a pseudo-Anosov ow � transverse

to a foliation F in M , let e� be the lifted ow to the universal cover fM and let eF be the lifted foliation. We �rst

study basic properties of foliations transverse to pseudo-Anosov ows.

Theorem A - Let � be a pseudo-Anosov ow transverse to a foliation F in M3 closed. Then F is Reebless. In
fM , a given orbit of e� intersects a leaf of eF at most once.

It does not follow that F is taut [Ga1], see constructions in section 3. Then we prove the main result:

Main theorem - Let � be a pseudo-Anosov ow transverse to a foliation F in M3 closed. Suppose that � is
not an R-covered pseudo-Anosov ow. Then � is regulating if and only if F is an R-covered foliation. There are
counterexamples when � is an R-covered pseudo-Anosov ow.

The rough idea is as follows: as F is R-covered, there is a unique way to move transversally to eF in fM . When

� is not regulating for F , this unique transversal direction to eF will force the creation of a unique transversal

direction to say the stable foliation eFs of e�. This in turn implies that Fs has to be R-covered and hence � is

an R-covered Anosov ow. The fundamental tool used here is the topological theory of pseudo-Anosov ows as

developed in [Fe5, Fe8].

When � is an R-covered Anosov ow, counterexamples to the main theorem can be obtained as follows: let F
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be the stable foliation of � � which is R-covered. Perturb � to nearby �0 which is transverse to F . Then �0 will

not be regulating for F . This is explained in detail in section 5.

The main theorem is a useful tool to analyse the topology of foliations:

Theorem B - There is an in�nite family of examples of non R-covered foliations obtained by branched covers of
foliations transverse to suspension Anosov ows and to skewed R-covered Anosov ows. The resulting foliations are
transverse to pseudo-Anosov ows. There are also in�nitely many examples obtained by cut and paste operations
on �brations over the circle.

The skewed condition is explained in detail in section 5.

The main theorem leaves open the situation where � is an R-covered Anosov ow. In this case we prove a

strong topological rigidity. We do this by characterizing all the possible foliations transverse to such a ow. A

foliation F1 is a blow up of another foliation F2 if F1 is obtained by blowing up a collection of leaves of F2 into

foliated I-bundles. We prove:

Theorem C (rigidity theorem) - Let � be an R-covered pseudo-Anosov ow transverse to a foliation F . Then
F is R-covered. In addition if � is not regulating for F , then F is topologically conjugate to a blow up of either
the stable or unstable foliation of �.

This topological rigidity result says that the only counterexamples to the main theorem are essentially obtained

by the construction mentioned above and detailed in section 6. The proof of this rigidity result takes about a third

of the article and is left to the end. As usual with rigidity results it uses tools from a variety of sources. Here we

need: the structure of R-covered Anosov foliations, topology of foliations, Gromov negatively curved spaces, quasi-

isometries of metric spaces, dynamics and topological conjugacy of ows, amongst others. The proof is achieved

by producing a new ow which is topologically conjugate to the original ow and which is tangent to a blow down

of the foliation F .
The results of this article have several applications. In a subsequent article we analyse the atoroidal property

for manifolds with pseudo-Anosov ows and prove:

Theorem ([Fe9]) Let � be a pseudo-Anosov ow in M3 closed. Let A = Z�Z be a subgroup of the fundamental

group �1(M). Then A does not act freely in the orbit space of e�, unless � is topologically conjugate to a suspension

Anosov ow. This means that some non trivial element of A leaves invariant an orbit of e�. Hence if � is not
topologically conjugate to a suspension Anosov ow, then A represents a free homotopy from a closed orbit of � to
itself.

Together with the results here one obtains an important relationship with the topology of the underlying

manifold:

Theorem ([Fe9]) Let � be a pseudo-Anosov ow transverse to an R-covered foliation F in M3 closed. Then
M is atoroidal, unless � is a non regulating R-covered pseudo-Anosov ow. The condition is necessary as simple
examples show.

We can also apply the results here to obtain topological rigidity of pseudo-Anosov ows transverse to foliations.

This means characterizing all pseudo-Anosov ows transverse to a given foliation.

Theorem ([Fe11]) Let � be a regulating pseudo-Anosov ow transverse to an R-covered foliation F in closed
M3. Then up to topological conjugacy, � is the only regulating pseudo-Anosov ow transverse to F.

The article is organized as follows: the next section contains general results about foliations transverse to

pseudo-Anosov ows. Section 3 contains a review of the topological theory of pseudo-Anosov ows as needed here.

In section 4 we prove the main theorem and in the next section we produce the counterexamples in the case of

R-covered Anosov ows. In section 6 we use the main theorem to study the topology of some classes of foliations.

In the last section we show that the counterexamples to the main theorem can only occur in a very restricted

setting.

We thank Bill Thurston for enlightening and very enjoyable conversations about foliations and ows. The main

result in this article was motivated by a a question asked by him. He also suggested that we analyse the branched

cover examples of section 7.

2 Foliations transverse to ows

Pseudo-Anosov ows are a generalization of suspension ows of pseudo-Anosov surface homeomorphisms. These

ows behave much like Anosov ows, but they may have �nitely many singular orbits which are periodic and have
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Figure 1: a. Non Hausdor� behavior in the leaf space of eFs: (a1) F; L non separated from each other, as seen in fM , (a2)

the corresponding picture in the leaf space Hs; (b) A singular leaf of eFs: (b1) as seen in fM , (b2) as seen in Hs.

a prescribed behavior.

Let � be a ow on a closed, oriented 3-manifold M . We say that � is a pseudo-Anosov ow if the following are

satis�ed:

- For each x 2M , the ow line t! �(x; t) is C1, it is not a single point, and the tangent vector bundle Dt� is

C0.

- There is a �nite number of periodic orbits fig, called singular orbits, such that the ow is \topologically"

smooth o� of the singular orbits (see below).

- The owlines are tangent to two singular transverse foliations Fs;Fu which have smooth leaves o� of i and

intersect exactly in the ow lines of �. These are like Anosov foliations o� of the singular orbits. This is the

topologically smooth behavior described above. A leaf containing a singularity is homemorphic to P � I=f where

p is a p-prong in the plane and f is a homeo from I � f1g to I � f0g.
- In a stable leaf all orbits are forward asymptotic, in an unstable leaf all orbits are backwards asymptotic.

Notation/de�nition: The lifted singular foliations to fM are denoted by eFs; eFu. If x 2 M let W s(x) denote the

leaf of Fs containing x. Similarly one de�nes W u(x) and in the universal cover fW s(x);fW u(x). Similarly if � is an

orbit of � de�ne W s(�), etc... Let also e� be the lifted ow to fM .

In �gure 1 we highlight the di�erence between non Hausdor� behavior in the leaf space of eFs and the splitting

(or branching) of leaves associated to singular orbits of e�. In part (a) the leaves F;L of eFs are not separated

from each other in the leaf space of eFs. Notice that the sequence Fi converges to F and L. In �g 1 part (b) we

sketch a singular leaf S with 3 prongs. Even though S separates fM into 3 or more regions, non Hausdor�ness is

not involved. The leaves Si converge only to S. In this article, unless otherwise speci�ed, all pictures of leaves of
eFs; eFu will describe them as subsets of fM , rather than in the leaf space of eFs.

Let � be a pseudo-Anosov ow in a closed 3-manifold M . The following facts and de�nitions will be needed.

We proved in [Fe-Mo] that the orbit space of e� in fM is homeomorphic to the plane R2. This orbit space is denoted

by O �= fM=e�. Let � : fM ! O �= R2 be the projection map. For any subset B � O, let B �R � fM , be the set

��1(B). As the foliations eFs; eFu are invariant under e�, they induce singular, transverse 1-dim foliations eFs
O
; eFu

O

in O. The singular points of eFu
O
are the same as those of eFs

O
. If L is a leaf of eFs or eFu, then �(L) � O is a tree

which is either homeomorphic to R if L is regular, or is a union of p-rays all with the same starting point if L has

a singular p-prong orbit. In particular every orbit in L disconnects L.

In this section we develop some preliminaries of foliations transverse to pseudo-Anosov ows. Let F be a

foliation transverse to a pseudo-Anosov ow �. Then F ;Fs;Fu are 3 foliations in M which are transverse to each

other everywhere.

Proposition 2.1. Let � be a pseudo-Anosov ow transverse to a foliation F in M3. Then F is Reebless. In
addition every orbit of e� intersects a leaf of eF at most once.
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Proof. Suppose that F is not Reebless and �rst consider a Reeb component which is a solid torus V bounded by

a torus T . Assume the ow is incoming along T . Since orbits are trapped inside once they enter V , the shadow

lemma for pseudo-Anosov ows [Han, Man, Mo1], shows that there is a periodic orbit  in V � T . Then W u()

is contained in V � T , because the ow is incoming along T . Since n is not null homotopic for any n 6= 0 [Mo1],

then eV is homeomorphic to D2 �R. It now follows that fW u() is not properly embedded in the universal cover,

contradiction [Ga-Oe]. The same proof shows that there cannot be non-orientable Reeb components - that is the

quotient of a Reeb component by an orientation reversing involution of V which preserves the meridian. This

can be seen by lifting to an orientation double cover of M : the lifted ow is pseudo-Anosov transverse to a Reeb

component.

As for the second statement: Since F is Reebless and transverse to a pseudo-Anosov ow, then leaves of eF
are properly embedded topological planes in fM , because closed transversals to F are not null homotopic [No].

Therefore leaves of eF separate fM . Since orbits of e� are transverse to eF , an orbit of e� can intersect a leaf of eF at

most once.

Suppose that � is not regulating. Let � : fM ! O be the projection. There is  orbit of e� not intersecting all

leaves of eF and a leaf F of eF not intersecting all orbits of e�. Hence �(F ) is not all of O. The following result

describes the boundary of �(F ) � O.

If L 2 eFs then a sector of L is a component of fM �L. A line leaf of L is the boundary L0 of a sector of L. The

line leaf L0 is regular on the side which is a sector of L. It is regular on both sides if and only if L is a regular leaf.

Proposition 2.2. @�(F ) � O is a disjoint union of line leaves of eFs
O
; eFu

O
, all regular on the side containing �(F ).

Also if L 2 eFs (or eFu), then F \ L is connected.

Proof. Because � is transverse to F andM is compact, then for � > 0 suÆciently small there is �(�) with �(�)! 0,

when �! 0 so that: any orbit of e� which comes within � of a point z 2 F 2 eF will in fact intersect F within �(�) of

z. Let p 2 @�(F ) and let pi 2 �(F ) with pi ! p. Let z 2 fM with �(z) = p. Consider D � fM a small embedded

disk, transverse to e� with z 2 int(D) and � injective in D. Let wi 2 F with �(wi) = pi. By truncating �nitely

many terms if necessary, there are unique zi 2 D and ti 2 R so that wi = e�ti(zi). If jtij 6! +1 assume up to

subsequence that ti ! t0. It follows that wi ! e�t0(z). But since F is closed in fM , then e�t0(z) 2 F , contradicting

p 62 �(F ).

Assume then that there is a subsequence ti ! +1. Suppose that the corresponding pi are all in the closure of

the same sector de�ned by m = �(fW s(z)) at p. Let l be the line leaf of m which bounds this sector.

Claim - l is a boundary leaf of the projection of F , that is, l � @�(F ), see �g. 2, b.

Let v 2 fM with �(v) 2 l. Choose � a small segment in fW u(v) transverse to the ow e� in fW u(v) and with v

in the interior of �. For i big enough let qi = � \fW s(wi). The intersection is non void because l is regular on the

side containing pi. There are

si 2 R; si ! +1 so that e�si(qi) 2 fW s(wi) and d(e�si(qi); wi) ! 0:

This implies that there are �i ! 0 with e�si+�i(qi) 2 F . Hence for i big enough �(qi) 2 �(F ). In fact this shows

that a segment � in fW s(qi) transverse to e� in fW s(qi) and going from e�si(qi) to wi projects into �(F ). One

concludes that

�(v) 2 �(F ) [ @�(F ):

If �(v) 2 �(F ) let E be a small disk contained in F with v in the interior. Hence for i big enough there are

bounded ri with e�ri(qi) 2 E. But the argument above shows that there are e�si+�i(qi) 2 F with si + �i ! +1 as

i! +1. This would produce two points e�ri(qi) and
e�si+�i(qi) of F in e�R(qi), contradiction.

We conclude that the stable line leaf l � @�(F ), showing the claim.

Similarly given the ti de�ned above, if there is some subsequence tin ! �1, then we have an unstable line

leaf I through p with I � @�(F ). Since �(F ) is connected this would force I \�(F ) 6= ; which is impossible. In

addition l is regular on the side containing F . This proves the �rst statement.

Let now F 2 eF and L 2 eFs. Suppose that F \L has two components u1; u2. Then �(u1)\�(u2) = ; and there

is x 2 L with �(x) separating �(u1) from �(u2) in �(L) and �(x) 2 @�(u1). By the proof above �(x) 2 @�(F )

and there is a line leaf

m � @�(F ) with either m � �(fW s(x)) or m � �(fW u(x)):
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Figure 2: a. Producing boundary in �(F ), b. Walls in the back of F .

Since �(u1) � �(F ), �(u1) � �(fW s(x)) and m is regular on the side containing �(F ), then m � �(fW s(x)) cannot

happen. Now �(u1) and �(u2) must be in the same component of O �m and �(x) separates �(u1) from �(u2)

in �(F ). Hence there is a component of �(fW u(x)) � �(x) contained in �(F ) and separating �(u1) from �(u2)

in �(fW s(x)). This contradicts the fact that m is a line leaf of �(fW u(x)) which is regular on the side containing

�(F ). The second statement follows. This �nishes the proof of proposition 2.2.

Notice that F is always transversely orientable because it is transverse to a non vanishing continuous vector

�eld. Let positive ow direction de�ne the positive transversal orientation to F . This will be �xed throughout the

article.

As leaves of eF separate fM , then given F 2 eF we can de�ne the positive or front side of F to be the component

of fM � F on the positive side of F with respect to the transversal orientation to eF . Similarly de�ne the negative
or back side of F . Notice that if l is a stable boundary leaf of �(F ) then l�R is in the negative side of F , see �g.

2, b. In addition for any z 2 fM with �(z) 2 l then fW u(z) intersects F . Similarly if l is an unstable boundary leaf

of @�(F ), then l �R is on the positive side of F . This facts will be used throughout the article.

We stress that the fact that F is transverse to a pseudo-Anosov ow does not imply that F is taut, where taut

means that every leaf intersects a closed, tranverse loop [Ga1]. For example this can be seen with the Franks-

Williams example of an intransitive Anosov ow [Fr-Wi]. Start with a suspension Anosov ow �0 in M0 and do

a DA operation on a closed orbit  of �0. This produces a ow called derived from Anosov ow where  is now

a repelling orbit. Remove a solid torus neighborhood of  obtaining a manifold M1 with torus boundary T and

an incoming semi-ow �1. Consider a homeomorphic copy M2 of M1 with a reversal ow �2 which is outgoing

along the boundary. Glue M1 to M2 along the boundary to produce closed manifold M with ow �. Franks and

Williams show that � is Anosov and it is not transitive: it has a separating transverse torus.

Now construct the transverse foliation to �. Start with the �bration in M0 which is transverse to �0. This

produces a �bration in M1 which is transverse to the boundary torus T . Spin the �bers around the boundary torus

T and add T as a torus leaf so that the foliation is still transverse to the ow. Then M1 has a foliation transverse

to �1. Put a similar foliation in M2. The resulting foliation F in M is transverse to the Anosov ow � but is not

taut: it has a separating torus T . F is a depth one foliation with a unique compact leaf T and is a �bration over

the circle in any component of the complement of this compact leaf [Ga1]. In addition M �bers over the circle with

�ber a surface of genus 2 and reducible monodromy.

In the example above notice that � is not regulating for F , because there are closed orbits of � contained in

M1. Their lifts cannot intersect any lift of a leaf of F in M2.

Still there is much one can say if F is not taut:

Proposition 2.3. Let � be a pseudo-Anosov ow transverse to a foliation F . If F is not taut, then � is not
regulating and F is not R-covered.

Proof. Up to taking a �nite cover of M , we may assume that M is orientable and F is transversely orientable. If F
is not taut, then Goodman [Go] showed that there are �nitely many toral leaves T1; ::::; Tn in F so that T1[ ::::[Tn
bounds a submanifold V and the ow is (say) incoming V along T1; :::; Tn. Any orbit intersecting T1 is trapped
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Figure 3: a. Rectangles, b. Perfect �ts in the universal cover.

inside V in forward time and hence can only limit inside V and any limit is an orbit  entirely contained in V .

Then  \ Ti = ; for any i, so in the universal cover any lift e will not intersect any lift of Ti. Therefore the ow �

is not regulating for F .
Now we show that F is not R-covered. By lemma 2.1, F is Reebless. Suppose �rst that n � 2. There is no

transversal to F through T1 and T2, hence no transversal through any lifts of T1; T2 to fM . This shows that F is not

R-covered. The remaining case is that n = 1 and T1 bounds on both sides. Let V be the closure of a component

of M � T1. If �1(T1) surjects in �1(V ) then since F is Reebless, �1(V ) �= Z� Z. This is impossible for a compact

manifold V with torus boundary, see chapter 10 of [He]. It �1(T1) does not surject in �1(V ), there is a closed

loop � 2 V not homotopic into T1. Let g be the covering translation of fM associated to �. In the universal cover

g( eT1) 6= eT1. But g(eT1); eT1 do not cross a transversal, otherwise there would be a closed transversal to T1 in M . We

conclude that F is not R-covered.

3 Topological theory of pseudo-Anosov ows

Let � be a pseudo-Anosov ow in M3 closed. We review the results about the topology of eFs; eFu which will be

used essentially in the next section. We refer to [Fe5, Fe8] for detailed proofs and explanations.

De�nition 3.1. Let L be a leaf of eFs or a line leaf of a leaf of eFs. Then a half leaf of L is a connected component
A of L� , where  is any full orbit in L. The closed half leaf is A = A [  and its boundary is @A = . If � is
an open, relatively compact, connected subset of �(L) then it de�nes a ow band L1 of L by L1 = ��1(�). Let L1

be the closure of L1 in fM . If � is an open segment in �(L), then ��1(�) is called a segment ow band of L.

Two important facts: First if F 2 eFs and G 2 eFu then F and G intersect in at most one orbit, a consequence

of index computations for foliations in the plane. A second fact: Suppose that a leaf F 2 eFs intersects two leaves

G;H 2 eFu and so does L 2 eFs. Then F;L;G;H de�ne a rectangle in fM , see �g. 3, a. There are no singularities

of e� in the interior of the rectangle and there is a product structure of eFs and eFu in the rectangle.

De�nition 3.2. Perfect �ts - Two leaves F 2 eFs and G 2 eFu, form a perfect �t if F \G = ; and there are line
leaves F0; G0 of F;G respectively and half leaves F1 of F0 and G1 of G0 and also segment ow bands L1 � L 2 eFs

and H1 � H 2 eFu, so that F0 is regular on the side containing L, G0 is regular on the side containing H and:

L1 \G1 = @L1 \ @G1; L1 \H1 = @L1 \ @H1; H1 \ F 1 = @H1 \ @F1;

with L1 \G1 6= ;; L1 \H1 6= ; and H1 \ F 1 6= ;:

Furthermore

8 S 2 eFu; S \ L1 6= ; ) S \ F1 6= ; (1) and

8 E 2 eFs; E \H1 6= ; ) E \G1 6= ; (2):

We refer to �g. 3, b for perfect �ts. Implications (1); (2) imply equivalences (that is S \ L1 6= ; , S \ F1 6= ;

and the same for (2)). The set F 1 [H1 [ L1 [ G1 separates fM . Let A be the complementary region which does
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Figure 4: a. A lozenge, b. A chain of lozenges.

not contain F � F1 in its closure. Then there are no singularities of e� in A. Therefore perfect �ts produce \ideal"

rectangles, in the sense that even though F and G do not intersect, there is a product structure (of eFs and eFu) in

the interior of A.

De�nition 3.3. Given p 2 fM (or p 2 O), and a half leaf H of fW u(p) de�ned by e�R(p), let

J u(H) = fF 2 H( eFs) j F \H 6= ;g � H( eFs):

Notice that fW s(p) 62 J u(H). Let also

Lu(H) =
[

f p 2 fM j p 2 F 2 J u(H) g � fM:

Then Lu(H) � fM and fW s(p) � @Lu(H). Similarly de�ne J s(L);Ls(L) for a stable half leaf L.

De�nition 3.4. Lozenges - Let p; q 2 fM and half leaves Lp; Hp of fW s(p);fW u(p) de�ned by e�R(p), half leaves

Lq; Hq of fW s(q);fW u(q) de�ned by e�R(q) so that:

Lu(Lp) \ Ls(Hq) = Lu(Lq) \ Ls(Hp) � fM

Then this intersection is called a lozenge A in fM . The corners of the lozenge are e�R(p) and e�R(q) and A is a

subset of fM . The sides of A are Lp; Hp; Lq; Hq. The sides are not contained in the lozenge, but are in the boundary
of the lozenge.

Sometimes we also refer to p and q as corners of the lozenge. There are no singularities in the lozenges. This

in fact shows that A is an open region in fM . However there may be singular orbits on the sides of the lozenge and

the corner orbits also may be singular. The de�nition of a lozenge implies that Lp; Hq form a perfect �t and so do

Lq; Hp. This is an equivalent way to de�ne a lozenge with corners e�R(p); e�R(q). Given any four leaves there is

at most one lozenge with sides in them, so we may refer to the full leaves as the sides of the lozenge.

Two lozenges are adjacent if they share a corner and there is a stable or unstable leaf intersecting both of them,

see �g. 4 b. Therefore they share a side. A chain of lozenges is a collection fAig; i 2 I , where I is an interval

(�nite or not) in Z; so that if i; i+ 1 2 I , then Ai and Ai+1 share a corner, see �g. 4 b. Consecutive lozenges may

be adjacent or not. The chain is �nite if I is �nite. We say that two orbits ; � of e� (or the leaves fW s();fW s(�))

are connected by a chain of lozenges fAig; 1 � i � n, if  is a corner of A1 and � is a corner of An.

De�nition 3.5. Suppose � � E 2 eFs is a (possibly in�nite) strong stable segment so that for each p 2 � there is

a half leaf Hp of fW u(p) de�ned by e�R(p) so that

8 p; q 2 �; J u(Hp) = J u(Hq): In that case let P =
[

p2�

Hp:

Then P � fM is called an unstable product region with base segment �. The base segment is not uniquely determined
by P. Similarly de�ne stable product regions.
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A fundamental result is the following:

Theorem 3.6. [Fe5, Fe8] Let � be a pseudo-Anosov ow in M3 closed and let F0 6= F1 2 eFs. Suppose that there

is a non trivial covering translation g with g(Fi) = Fi; i = 0; 1. Let �i; i = 0; 1 be the periodic orbits of e� in Fi so
that g(�i) = �i. Then �0 and �1 are connected by a �nite chain of lozenges fAig; 1 � i � n and g leaves invariant
each lozenge Ai as well as their corners.

A leaf L of eFs or eFu is called periodic if there is a non trivial covering translation g of fM with g(L) = L. This

is equivalent to �(L) having a periodic orbit of �. In the same way an orbit  of e� is periodic if �() is a periodic

orbit of �. The main result concerning non Hausdor� behavior in the leaf spaces of eFs; eFu is the following:

Theorem 3.7. [Fe5, Fe8] Let � be a pseudo-Anosov ow in M3. Suppose that F 6= L are not separated in the leaf

space of eFs. Then F is a periodic leaf and so is L. Let F0; L0 be the line leaves of F;L which are not separated
from each other. Let V0 be the sector of F bounded by F0 and containing L. Let � be the periodic orbit in F0 and
H0 be the component of (fW u(�)� �) contained in V0. Let g be a non trivial covering translation with g(F0) = F0,
g(H0) = H0 and g leaves invariant the components of (F0 � �). Then g(L0) = L0. This produces closed orbits
of � which are freely homotopic in M . Theorem 3.6 then implies that F0 and L0 are connected by a �nite chain
of lozenges fAig; 1 � i � n, all contained in Lu(H0) and all intersecting a common stable leaf C. Consecutive
lozenges are adjacent. There is an even number of lozenges in the chain, see �g. 5.

This result does not assume thatM is toroidal or atoroidal. In fact almost all Anosov ows satisfy this condition

[Fe8].

Finally we have the following result.

Theorem 3.8. [Fe5, Fe8] Let � be a pseudo-Anosov ow in M3. If there is a product region in fM , then � is

an R-covered pseudo-Anosov ow. In particular Fs;Fu do not have singularities. Furthermore any leaf of eFs

intersects every leaf of eFu and vice versa.

4 Regulating ows

In this section we prove the main result of the article. First we obtain a useful property.

Proposition 4.1. Let � be a pseudo-Anosov ow transverse to an R-covered foliation F and not regulating. Then
for any leaf G of eF there is an orbit  of e� not intersecting G. Conversely for any orbit � of e� there is a leaf E
of eF not intersected by �.

Proof. Since � is not regulating for F , let � be orbit of e� and H leaf of eF , so that � \ H = ;. Without loss of

generality assume that � is in the back of H . Since F is Reebless, R-covered and transverse to a pseudo-Anosov

ow, proposition 2.3 implies that F is taut. Then we can choose �nitely many closed transversals so that their

union intersects every leaf of F . Furthermore concatenating these transversals one �nds a single closed transversal

Æ which intersects every leaf of F .
Let now G be any leaf of eF . Then Æ intersects �(H) and �(G), leaves of F . Lifting to the universal cover we

produce a transversal arc to eF going from H to g(G) in the positive direction. Here g(G) is a covering translate of

G. Then g(G) is in the front of H and Æ is in the back of H , hence g(G) \ Æ = ;. Consequently G \ g�1(Æ) = ;.
This proves the �rst assertion of the proposition.
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As for the second assertion. Since �(H) does not contain �(Æ), then by proposition 2.2, there is a line leaf l in

O, boundary component of �(H) with l �R either containing Æ or separating Æ from H . Since Æ is in the back of

H , then proposition 2.2 shows that l is a line leaf of eFs
O
. Let L be a non singular leaf of eFs, close to l�R and not

intersecting H . Let W1 be the component of fM � L not containing H .

Claim - �(W1) =M .

Otherwise �(W1) is open, F
s saturated and not M . Let Z be a leaf of Fs in the boundary of �(W1). Since Z is

not compact it limits on a regular point p. Locally near p one �nds many distinct local sheets of Z. The de�nition

of W1 implies that in fact Z intersects �(W1). But then Z � �(W1), contradiction. This proves the claim.

Therefore given an arbitrary orbit � of e� let h be a covering translation of fM with h(�) � W1. Then

h(�) \H = ;, so � \ h�1(H) = ;. This �nishes the proof of the proposition.

We now prove the main theorem of the article:

Theorem 4.2. Let � be a pseudo-Anosov ow transverse to F , with � not an R-covered Anosov ow. Then � is
regulating for F if and only if F is R-covered.

Proof. If � is regulating for F then clearly F is R-covered, because any orbit of e� provides a homeomorphism from

its points to the leaf space of eF . Suppose from now on that F is R-covered but � is not regulating for F . We will

show that � must be an R-covered Anosov ow.

Put an order in the leaf space of eF as follows: F <s G if F is in the back of G. The goal is to show that there

is a unique transversal direction to eFs or eFu.

1. General construction for periodic orbits of e� -

For each periodic orbit of e� we produce a chain of leaves of eF escaping in eF and associated to that we produce

a chain of leaves of eFs escaping in eFs. This de�nes a direction transverse to eFs, which we later prove is unique.

Let then  be a periodic orbit of e�, with g() =  and g 2 �1(M) a generator of the isotropy group of .

By the previous proposition,  does not intersect every leaf of eF , so let F 0 2 eF with F 0 \  = ;. For simplicity

assume that  is on the back side of F 0. Since there are leaves of eF intersecting  and eF is R-covered, there is a

unique leaf F with F \  = ;,  in the back of F and for any E 2 eF suÆciently close to F and in the back of F

then E \  6= ;. In other words F is the least element in eF satisfying F \  = ; and  is in the back of F . For

the existence and uniqueness of F , it is essential the fact that F is R-covered as this may not be true otherwise.

Taking g�1 if necessary we may assume that g(F ) �s F . Since g() =  and g(F ) \  = ;, the de�nition of F

implies that g(F ) = F .

Since F \ = ; and  is in the back of F , there is a stable line leaf l of eFs
O
with l � @�(F ) and either  � l�R

or l �R separating  from F . By the same reasoning as above g(l �R) = l �R. Let L = l �R and V be the

component of fM � L not containing F .

The following technical fact is needed later:

Claim 1.1 - There is F1 in eF with  in the back of F1 and fW u() \ F1 = ;.
In order to prove that we go in the opposite direction to F , that is in the region V .

Suppose �rst that L intersects all leaves of eFu which intersect V . In particular the leaf space of eFu restricted

to V is homeomorphic to R and therefore V does not contain singularities of e�. Since �(V ) = M this implies

that there are no singularities of �, that is � is an Anosov ow. Suppose there are A;B 2 eFu which are not

separated from each other. Because �(V ) =M , there is h 2 �1(M) so that h(B) \L 6= ; and h(A) � V . But then

h(A)\L = ; contradicting the above property of L. Hence the leaf space of eFs is Hausdor� and � is an R-covered

Anosov ow. This �nishes the proof in this case.

The remaining case is that there is Z leaf of eFu with Z � V and Z \ L = ;. We may assume that Z is non

singular. Let h1 2 �1(M) with h1() in the component of fM � Z not intersecting L. Then h1(fW u()) � V and

h1(fW u()) will not intersect any leaf F 0 2 eF with F 0 �s F . So fW u() will not intersect any leaf �s h�11 (F ).

This settles claim 1.1.

Now we construct the chains in eF and eFs. As done before let F1 be the smallest leaf of eF in the front of F and

not intersecting fW u(). Since g(fW u()) = fW u(), then as above g(F1) = F1. Also  is in the back of F1. Now

there is l1 a stable line leaf in @�(F1) with either  in l1 �R or  separated from F1 by l1 �R. If  � @�(F1)

then since l1 is a stable line leaf it follows that fW u(1) \ F1 6= ;. Then fW u() \ F1 6= ;, contradiction. So the

second option occurs. Then as seen before l1 is a stable line leaf. Let L1 = l1 �R. Then g(L1) = L1, so there is

an orbit 1 in L1 with g(1) = 1.
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We can iterate this process: As before produce F2 smallest in eF with 1 in the back of F2 and fW u(1)\F2 = ;.
Then g(F2) = F2 and produce l2 stable line leaf l2 � @�(F2) and L2 = l2 �R with g(L2) = L2. In this way we

produce i orbits of e�, Fi leaves of eF , Li leaves of eFs with

g(i) = i; g(Fi) = Fi; g(Li) = Li; Fi <s Fi+1 and g(fW u(i)) \ Fi+1 = ;;

for all i 2 N, see �g. 6. In addition for all i 2 N, Li+1 separates Li from Li+2, that is, the Li are nested in fM .

Then the Fi escapes in fM when i ! 1. Otherwise Fi ! F � unique leaf of eF since F is R-covered. As the

family li = �(Li) � O; i 2 N is nested and trapped by �(F ), then the li also converge. There may be more than

one limit as the leaf space of eFs
O
may fail to be Hausdor�, but nevertheless there is a unique limit l� line leaf of eFs

O

which separates �(F ) from all �(Li). Let L
� = l� �R. Then g(Li) = Li and g(F ) = F implies that g(L�) = L�

so there is a periodic orbit � � L� with g(�) = �. Then g(fW u(�)) \ Li 6= ;, for big enough i, producing two

orbits invariant by g in fW u(�), namely fW u(�)\Li and �. This is a contradiction. Hence the Fi escapes in fM .

We stress that the construction above works for any periodic orbit  of e�. The point here is the following:

The general construction suggests there is a standard \direction" in the universal cover \transverse" to eFs which

is created by the increasing Fi. This is the direction of the nested Li. The following property shows that this

\direction" given by the Li is essentially independent of the periodic orbit . This will eventually force the leaf

space of eFs (or eFu) to be non singular and Hausdor� proving the theorem.

2. Nesting property -

If � is another periodic orbit of e� associated to the covering translation f of fM , the general construction above

produces sequences �i of periodic orbits of e�, Gi leaves of eF and Ei line leaves of eFs which are all invariant under

f for any i 2 N.

Claim 2.1 - The nested sequence fEig; i 2 N is eventually nested with the sequence fLjg; j 2 N.

This will prove there is a unique \up" direction transverse to eFs.

To prove the claim, �rst notice that Gi 2 eF also has to escape in fM when i ! 1. Hence there is i0 2 N so

that Gi0 �s Fj0 for some j0 2 N. Given i > i0 there is a unique j(i) 2 N (j(i) � j0)) so that either Gi = Fj(i) or

Fj(i) �s Gi <s Fj(i)+1. This shows that the sequences fFkg; k 2 N and fGkg; k 2 N are eventually nested. We

want to show the same thing for the fLkg; fEkg; k 2 N.

Fix i and let j = j(i). Consider Lj ; Lj+1 and the 3 components of fM � (Lj [ Lj+1):

� W1 is the component not intersecting Fj or Fj+1, essentially \below" Fj ,

�W2 is the component intersecting Fj but not Fj+1. This is the component between Lj and Lj+1, equivalently

the one which has both Lj and Lj+1 in its boundary,

� W3 the component intersecting Fj+1, see �g. 7, a.

For simplicity we consider the situation where both Lj and Lj+1 are non singular. In general fM � (Lj [Lj+1)

may have more components, but the same arguments apply.

We claim that Ei has to be either Lj or to separate Lj from Lj+1, so it must be in the closure of W2 in fM .

If for instance Ei � W1, then as �(Gi) has a boundary component in �(Ei), then Gi has points in W1 too. This

forces Gi <s Fj , contradiction. If on the other hand Ei � W3 then Gi >s Fj+1. We conclude that Ei is in the

closure of W2. Assume that Ei 6= Lj ; Lj+1. If Ei does not separate Lj from Lj+1 then Ek; k > i will be contained
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in the component of fM � Ei not containing Lj+1, see �g. 7, a. This is a contradiction because Gk > Fj+1. We

conclude that Ei separates Lj from Lj+1. This proves claim 2.1 This is the nesting we are looking for.

In addition suppose the fLig; i 2 N are line leaves of eFs of any such sequence given by the general construction.

Then fLig; i 2 N escapes in fM as i!1. Otherwise Li ! L� line leaf of eFs and maybe other limits as well since

the leaf space of eFs may fail to be Hausdor�. Let V2 be the component of fM � L� not containing the Li. Then

�(V2) = M so let h be a covering translation so that h(L�) � V2. For j big enough h(Lj) � V2 and cannot be

nested with the sequence Li; i 2 N. This fails the nesting property and is therefore not possible. Therefore we can

now conclude that the sequence fLig; i 2 N escapes in fM .

The general construction and the nesting property will imply that starting in any periodic orbit in fM there is a

chain of lozenges going to the \canonical" direction of the Li; i 2 N. By carefully choosing where to put the initial

periodic orbits we will show this is incompatible with the existence of singularities of e� or non Hausdor� behavior

in the leaf space of eFs or eFu.

CASE I - � has singularities.

We will show this does not happen. By way of contradiction, let � be a singular orbit of e�. Consider one chain
i; Li; Fi; i 2 N given by the general construction, all invariant under g 2 �1(M). Since the sequence fLig; i 2 N

escapes in fM and are nested, it follows that the Li are eventually in a �xed sector V0 of fW s(�).

Suppose �rst that all leavesLi; i 2 N intersectfW u(�). Let h 2 �1(M). The sequences of leaves h(i); h(Li); h(Fi); i 2
N are those obtained by the general construction if one starts with the orbit h(). By the nesting property above,

the fh(Lj)g; j 2 N are eventually nested with the fLig; i 2 N. Since h(fW u(�)) intersects all of h(Li), it follows

that h(fW u(�)) will intersect all Li; i � i0 for some i0 big enough. Choose h so that h(fW u(�)) 6= fW u(�). For

any j > i0, the leaves fW u(�); h(fW u(�)); Li0 ; Lj form a rectangle in fM , hence there is a product structure in the

interior of the rectangle. Let V1 be the component of fM � Li0 containing Li for i > i0. Since Lj escapes in fM as

j !1, it follows that any leaf unstable leaf of eFu between fW u(�) and h(fW u(�)) intersects the same set of stable

leaves restricted to V1. This creates a stable product region contained in V1 and with base segment in Li0 see �g.

7, b. By theorem 3.8, the foliations eFs; eFu have leaf space homeomorphic to R. This contradicts the existence of

singularities.

Therefore we may assume that Li \fW u(�) = ; for i big enough and therefore the Li are eventually in a single

component C of Y = fM � (fW u(�) [fW s(�)). Since there at least 3 prongs in fW s(�);fW u(�), there are at least 6

components of Y . Let D be a component of Y which is separated from C by at least 3 separatrices on each side.

For simplicity we analyse the case that fW s(�);fW u(�) have 3 prongs, see �g. 8, a.

The proof now will go as follows: start with a periodic orbit in D and use the general sequence. This eventually

has to go into C, which will be a contradiction.

First consider �(D) �M . If this is not M then it is a region whose boundary may have a corner, coming from
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� and is otherwise saturated by leaves of Fs or Fu. In a similar way to a previous argument, this is impossible,

therefore �(D) = M . Hence there are periodic orbits of e� in D. Let � be one such periodic orbit and f the

covering tranlation of fM associated to it. The general construction produces sequences �i periodic orbits of e�,
Ei line leaves of eFs and Gi leaves of eF ; i 2 N, all invariant under f 2 �1(M) associated to �. By the nesting

property the sequence Ei; i 2 N is eventually nested with Li; i 2 N. Therefore both sequences are eventually

contained in C. Let i0 with Li0 � C. Then f(�) = � and f(�i0) = �i0 . By theorem 3.6 there is a chain of lozenges

Bk; 1 � k � n from � to �i0 . Let Æk; 0 � k � n be the periodic orbits which are the corners of these lozenges, so

Æ0 = �, Æn = �i0 . The goal is to show that any such sequence of lozenges has to have a corner in � which will turn

out to be impossible.

Let D1; D2; D3; D4 be the other components of Y as described in �g. 8, a. Let also S1; S2; S3 be the components

of fW s(�)�� as described in �g. 8, a and let U1; U2; U3 be the components of fW u(�)��. These are the separatrices
of Y . The chain of lozenges has to go from D to C so it has to intersect the boundary of D. For simplicity suppose

that Æ0 is the last corner in the chain which is contained in D. Therefore B1 has to intersect the boundary of D.

Suppose �rst that it crosses the stable boundary of D namely S1. The term cross here means that the lozenge

B1 intersects S1 in the interior. Therefore an unstable side Q1 of B1 crosses the interior of S1 into the adjacent

component D1, see �g. 8, a. In order for the lozenge to close up, the other corner of B1 has to be in D1, see �g.

8, a. Consider the second lozenge B2. If it is adjacent to B1 along an unstable side Q2, this forces the corner Æ2 to

be contained in D, see �g. 8, a. This contradicts the choice of Æ0 as the only corner in D. Suppose B2 is adjacent
to B1 along a stable side, see �g. 8, b. Then there is an unstable side Q2 of B2 and an unstable side Q3 of B1, so
that Q2 and Q3 belong to the same unstable leaf Q, see �g. 8, b. The leaf Q separates the lozenges B1;B2 from

C and all further lozenges in the chain are contained in the same component of fM � Q. Therefore the chain can

never reach C, contradiction. The same occurs if B2 does not immediately cross to the next component D2. The

�nal possibility is that the other corner of B2 is in D2, that is, B2 crosses the unstable standard leaf U2 � fW u(�),

see �g. 8, c. Then there is a stable side R1 of B1 and a stable side R2 of B2 which are in the same stable leaf R of
eFs, see �g. 8, c. The leaf R separates B2 from C and will also separate all further lozenges in the chain from the

set C. Again this is a contradiction.

We conclude that the chain cannot cross S1. In the same way the chain cannot cross U1.

The point here is that the chain of lozenges can only cross at most two separatrices of Y but not 3. Since D is

separated from C by at least 3 separatrices in each side, there is no way to go from D to C crossing the interior of

the separatrices.

The remaining option is that one of the corners in the chain is actually � and B1 has sides in S1 and U1 rather

than crossing these standard leaves. Then B2 could jump to the other side and be contained in C, without the chain

having to cross the interior of the separatrices. A priori there is no contradiction. But since this has to happen for

any periodic orbit in D then any periodic orbit in D has to be connected to � by a chain of lozenges. If the set

of periodic orbits in D projects to an in�nite collection of closed orbits in M , then they have to limit somewhere

in M and so in fM also. Therefore there will be two periodic orbits �1; �2 in D so that fW u(�1) \ fW s(�2) 6= ;.
Let g0 be the generator of the isotropy group of �. As both �1 and �2 are connected to � by a chain of lozenges,

then g0(�1) = �1, g0(�2) = �2. This would produce two periodic orbits in fW u(�1), contradiction. Consequently the

collection of periodic orbits in D projects to a �nite collection of orbits in M . Since �(D) = M this would imply

there are only �nitely many closed orbits of � in M . This is a contradiction [Mo1, Man].

We conclude that case I cannot happen. Therefore � does not have singularities.

CASE II - Suppose eFs does not have Hausdor� leaf space.

Now we know there are no singular orbits in �. The general thrust of the proof will be similar to Case I. By

hypothesis there are A1; A2 2 eFs which are not separated in their leaf space. By theorem 3.7 A1; A2 are connected

by a chain of adjacent lozenges all intersecting a common stable leaf. There are an even number of lozenges. For

simplicity we may assume there are two lozenges C1; C2 in the chain. A stable leaf intersects C1 if and only if it

intersects C2. Let �1; �2 be the periodic orbits in A1; A2 respectively. There are some special leaves for us: A1; A2

are the line leaves of eFs not separated from each other. A3 is the line leaf in the boundary of the union of the two

lozenges C1 [ C2 - that is, contains the union of the stable sides of C1; C2 which are not in A1; A2. Finally B1 (B2)

is the component of fW u(�1)� �1 (fW u(�2)� �2) which is a side of one of the lozenges C1 or C2, see �g. 9, a. This

de�nes 5 regions of fM which will be important for us:

� Region (1) - the component of fM �A1 not containing A2,

� Region (2) - the component of fM �A2 not containing A1,

� Region (3) - the component of fM �A3 not containing A1,

� Region (4) - the component of fM � (A1 [B1) not containing A2,
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Figure 9: a. Non separated leaves in eF
s and regions of fM associated to them. Trapping back and forth of corners of lozenges

producing contradiction, b. The union R1 [ R2 separates B2 from A2.

� Region (5) - the component of fM � (A2 [B2) not containing A1.

Notice that fM is the union of these 5 regions, plus the two lozenges and their sides, plus A1; A2, see �g. 9, a.

Let  be a periodic orbit of e� and the sequences i orbits of e�, Li line leaves of eFs and Fi 2 eF as given by the

general construction. As seen in the beginning of the proof of Part I, the Li cannot keep intersecting any of the

leaves B1 or B2, or also the leaves A1; A2; A3 since these last ones are stable leaves. Therefore the Li; i 2 N are

eventually contained in of the 5 regions de�ned above.

We analyse each possibility in turn.

Case II.1 - Suppose the Li are eventually contained in region (2).

Start with a periodic orbit � in region (1). The general construction produces orbits �i of e�, line leaves Ei of
eFs and leaves Gi 2 eF ;8i 2 N. These are all invariant under f 2 �1(M) associated to �. By the nesting property

the Ei are entually nested with the Li and so eventually in region (2). As before this produces a chain of lozenges

Bk; 1 � k � n, from Æ0 = � to Æn = �i0 , with �i0 � region (2). Let Æj ; 0 � j � n be the corner orbits in this chain.

Assume Æ0 is the last corner in region (1). Then B1 has to intersect A1. Assume �rst the interior of B1 intersects

A1. If the second lozenge is adjacent to B1 along the common unstable side Q1, then Q1 intersects A1 and this

forces Æ2 to be contained in region (1), see �g. 9, a. This contradicts the choice of Æ0. The other option is that

there are stable sides R1 of B1 and R2 of B2 contained in the stable leaf fW s(Æ1) and so that R1 [R2 separates B2
from A1 and hence from A2, see �g. 9, b. Then R1 [ R2 separates all further lozenges from A2 and A2 cannot be

reached by the chain, contradiction. The last option is that the chain has a corner in the periodic orbit �1 in A1.

But then all periodic orbits in region (1) would have to be connected to this orbit by a chain of lozenges. As seen

in the proof of case I, this is not possible either. We conclude that this case cannot happen.

If the sequence Li; i 2 N is eventually in region (1), then we switch the roles of regions (1) and (2) and apply

the same proof.

Case II.2 - The Li; i 2 N are eventually in region (3).

In this case we let � be a periodic orbit contained in region (4). There is a chain of lozenges Bk; 1 � k � n,

with corners Æk; 0 � k � n from � to �i0 � region (3). As before assume Æ0 is the last corner in region (4). Assume

�rst the interior of B1 intersects the unstable leaf fW u(�1) - notice B1 � fW u(�1). Then there is a stable side R0 of

B1 which intersects B1 � fW u(�1) because Æ0 � region (4). Since the lozenges C1; C2 are adjacent, this forces R0 to

intersect C2 also and enter region (5). Hence Æ1 is contained in region (5). If B2 is adjacent to B1 along a stable

side R1, then this forces B2 to cross back to region (4) and Æ2 � region (4), see �g. 10, a. This contradicts the

choice of Æ0. Otherwise there is an unstable side Q1 of B1 and an unstable side Q2 of B2 so that Q1 [Q2 � fW u(Æ1)

and Q1 [ Q2 separates B2 from region (3), see �g. 10, b. In fact Q1 [ Q2 will separate all further lozenges from

region (3), so �i0 can never be achieved, contradiction. The remaining option is that B1 has a side in fW u(�1). But

then Æ1 = �1. But this is also impossible, as seen before. This proves that case II.2 cannot happen either.

Conversely if the Li; i 2 N are eventually in region (4), then we would start with � � region (3). The above

proof shows there is no chain of lozenges from region (4) to region (3), consequently no chain of lozenges from
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Figure 10: a. Trapping back and forth of lozenges, b. Separating leaf which traps lozenges.

region (3) to region (4). Therefore this cannot happen either. Finally the symmetry between regions (4) and (5)

shows that the sequence Li; i 2 N cannot be eventually in region (5) either.

Since none of the possibilities can occur we conclude that eFs has Hausdor� leaf space. It now follows that � is

a (topological) R-covered Anosov ow. This �nishes the proof of theorem 4.2.

5 R-covered Anosov ows

The main theorem leaves open the question as to whether R-covered pseudo-Anosov ows transverse to R-covered

foliations can be non regulating. At �rst it may seem this is not possible, but in fact there are many examples.

We �rst describe the topological types of R-covered pseudo-Anosov ows. If � is an R-covered pseudo-Anosov

ow, then up to isotopy there are only two topological models for the joint structure of the stable and unstable

foliations in the universal cover [Ba2, Fe3], which we now describe.

The set O is homeomorphic to H = (0; 1) � R, which is more convenient for our description of R-covered

pseudo-Anosov ows. In the product type the foliation eFs is a foliation by horizontal segments in H and eFu is a

foliation by vertical lines. Notice that any leaf F of eFs intersects every leaf of eFu and vice versa.

In the skewed model eFs is again a foliation by horizontal segments in H and now eFu is a foliation by parallel

segments in H making an angle � 6= �=2 with the horizontal. Hence any leaf of eFs does not intersect all leaves of
eFu and vice versa.

For the remainder of this section we consider smooth Anosov ows. In this case there are 1-dimensional strong

stable and unstable foliations Fss;Fuu which are transverse to each other and generated by subbundles Es; Eu of

the tangent bundle. For details see [An, An-Si].

We �rst study suspension Anosov ows. Let F be the unstable foliation of a suspension Anosov ow. Then F
is R-covered. Notice any stable leaf of eFs intersects every unstable leaf of eFu in a single orbit of e� and vice versa.

We will produce a new Anosov ow, transverse to F and which is not regulating for F .
Assume that F is transversely oriented or that Fss is oriented. For simplicity assume that M has the solv

metric so that T� is perpendicular to both the stable Es and unstable Eu bundles of �. Let ��=2 < � < �=2.

De�ne a new ow �� as follows. In each point of M consider the stable leaf R of Fs through it. Staying in R, tilt

the vector T� by the angle �, see �g. 12, a. This can be done coherently because Fss is oriented. This produces a

new vector �eld ��. For small j�j, the vector �elds �� and � are C1-close so by structural stability of � [An, An-Si]

it follows that �� is Anosov and topologically conjugate to �.

But in fact this is true for any ��=2 < � < �=2: Since orbits of �� are tangent to Fs it follows that the new

orbits are contained in the old stable leaves. These ow lines make constant angle � with the old ow lines. The

stable leaves of eFs are isometric to the hyperbolic plane H2. Fix a stable leaf L 2 eFs. It is easier to see in the

upper half plane model for H2 where ow lines of e� are vertical rays and strong stable leaves of e� are horizontal

lines (or horocycles), see �g. 12, a. The vertical rays are the intersection of unstable leaves of eFu with L or

the intersections of leaves of eF with L. A curve making a constant angle with the verticals is a ray (Euclidean

ray) making angle � with vertical direction. This curve is a bounded distance from a vertical line. Still ow lines

of e�� converge exponentially in forward time. The reader may check that the horizontal vectors are uniformly

exponentially contracted in the forward direction. The old strong unstable vectors are still uniformly exponentially
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Figure 12: a. The tilt of an Anosov ow, b. The picture in a stable leaf.

expanded in negative time. We conclude that the ow �� is Anosov with same strong stable foliations as those of

�, same stable foliation, but di�erent unstable foliation.

Notice that for � = ��=2; �=2 the ow lines will be tangent to the �bers of a �bration of M over the the circle

and the ow �� obviously will not be Anosov. For �� < � < ��=2 or �=2 < � < �, the ow is conjugate to the

inverse of the old one.

Now given an orbit  of f�� contained in L,  is a ray making angle � with the verticals and  will only intersect

a sub collection of the vertical lines in L. Therefore  will not intersect all leaves of eF . We conclude that �� is

transverse to F but is not regulating for F and still F is R-covered. This provides counterexamples to the main

theorem if one allows � to be an R-covered pseudo-Anosov ow.

Once this example is well understood, it is easy to see that any perturbation of � keeping it tangent to leaves

of Fs, tranverse to Fu = F and perturbed with angle < �=2, will produce an Anosov ow transverse to F and

which is not regulating for F . We can also do the same for small transverse perturbations of � outside of being

tangent to Fs.

As for the skewed case: Assume again that Fu is transversely orientable. A small perturbation of � tangent

to Fs and transverse to Fu = F , will produce a new ow �0 topologically conjugate to �, hence Anosov. Let L

be a leaf of eFs (same for e� and e�
0

). Orbits of �0 in L can only intersect the leaves of eF = eFu (unstable from

the original ow e�) intersected by L. But these are not all of the leaves of eF because of the skewed picture. This

shows that �0 is not regulating for F . The easier picture to see in this case, is that of a geodesic ow in the unit

tangent bundle T1S, S a closed surface of constant negative curvature.
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6 Non regulating pseudo-Anosov ows and non R-covered foliations

In this section we use the main theorem to analyse a large class of known examples of foliations transverse to

pseudo-Anosov ows and so that the foliations are not R-covered. There are two types of constructions: branched

covers and cut and paste operations.

I. Branched cover construction -

As in the last section consider F to be the unstable foliation of a suspension Anosov ow �. Assume that Fss

is orientable. Fix � 2 (��=2; �=2). As in the previous section construct the Anosov ow �� which is transverse to

F but not regulating for F .
Fix a periodic leaf R of Fs with periodic orbit 0. Then �� also has a periodic orbit  � R which is transverse

to the ow lines of � when restricted to R. The simple closed curve  is transverse to F . Also  is transverse to

the �bration of M over the circle associated to the suspension ow �.

The complement M �  is irreducible, atoroidal and has an incompressible surface, hence it has a complete

hyperbolic metric of �nite volume [Th2, Th4]. By Thurston's Dehn surgery theorem, for n big enough, the (0; n)

Dehn �lling along  has a hyperbolic structure [Th2]. Here (0; 1) is the meridian, that is, the curve bounding a

�ber in M � . Dehn �lling produces a hyperbolic orbifold Mn with singular locus  and index n along . By

Selberg's theorem about �nite index subgroups without torsion [Se], there is a �nite index orbifold cover of Mn

which is a manifold N . In other words N is a branched cover of M with branch locus  and index n along . For

background on branched covers consult [Rol].

Since the branch set is a closed orbit  of ��, the branched cover construction produces a ow �1 in N which

is a branched cover of the ow ��. Locally near  the construction unwraps the manifold Mn n times around ,

therefore the new ow �1 is a pseudo-Anosov ow in N . The only singular orbits are those coming from , where

there is a n to 1 branched cover of a neighborhood of .

The curve  is transverse to F in M , hence leaves of F meet a neighborhood of  in meridian disks. Under the

branched cover construction N !Mn, F lifts to a foliation F1 in N . Locally near lifts of , leaves of F1 are n to

1 branched covers of disks in leaves of F . The pseudo-Anosov ow �1 in N is transverse to the foliation F1. The

foliation F1 is the one we are interested in analysing.

We claim that �1 is not regulating for F1. To see this consider �rst the universal cover fM of M , with lifts eF ; e�.
Let Z be the leaf of F containing 0, that is the unstable leaf (of �!) containing 0. Let e be a lift of  to fM and

F 2 eF the corresponding lift of Z. By construction of  and Z, it follows that e \F = ;. The universal cover eN is

a branched cover of fM , branched along all lifts of  to fM . It follows that any lift of e to eN will not intersect any

lift of F to eN . Hence some orbits of e�1 do not intersect every leaf of eF1. It follows that �1 is not regulating for

F1.

Since �1 is obviously a singular pseudo-Anosov ow it cannot be an R-covered pseudo-Anosov ow. If F1 were

R-covered, the ow �1 would have to be regulating, by the main theorem. We conclude that F1 is not R-covered.

The orbit  of �� is transverse to the original �bration of M over the circle. Under the branched cover

construction, the �bration in M lifts to a �bration in N and hence �1 is a suspension pseudo-Anosov ow.

In summary the main ingredient for the construction to work is a branch cover along a closed orbit of the given

ow which is not regulating for the original foliation. It follows that this applies to a large class of examples.

II. Cut and paste construction -

The second class of examples is obtained by cut and paste operations on a �bration. Let M be a manifold

�bering over the circle with pseudo-Anosov monodromy �, that is M = S � [0; 1]=(x; 1) �= (�(x); 0), where S is

a hyperbolic surface and � is a pseudo-Anosov homeomorphism of S [Th3, FLP]. Suppose that all singularities

of � have an even number of prongs. This can be achieved for instance by taking branched covers of Anosov

di�eomorphisms of the torus T 2, see expose 13 in [FLP]. Then choose � so that there is a simple closed curve �

in S so that � \ �(�) = ;. This can also be achieved by taking �nite covers and the fact that �1(S) is LERF [Sc]

(see explicit construction in section 2 of [CLR1]). Let � be the expansion/contraction constant associated to the

homeomorphism �, that is, under � unstable lengths get multiplied by � and stable lengths get divided by �.

Now consider the suspension ow � of � which is a suspension pseudo-Anosov ow. This ow will be �xed

throughout the discussion. Let F0 be the original �bration of M .

In [CLR1] Cooper et al did cut and paste to the �ber S along an annulus transverse to the �bration and with

base in � � S to obtain closed immersed surfaces transverse to �. Many of these surfaces were not virtual �bers

producing fascinating examples. Here we do cut and paste to produce a non R-covered foliation.

Let A be the annulus � � [0; 1] in S � [0; 1]. Since � \ �(�) = ;, then A embedds in M . Extend A a little

bit beyond both boundaries to get an embedded annulus in M transverse to F0 with boundaries in leaves of F0

covering a little more than one period of the �bration. Let this be the annulus A thought to be in M . Then F0
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Figure 13: a. Cutting and pasting in �brations, b. Shearing along an annulus.

induces a foliation by circles on A - parametrize this �� [�a; 1+ a] (where a > 0). Cut open M along A and glue

back by ��ftg ! ��fh(t)g, where h is a homemorphism of [�a; 1+ a] so that h(x) > x for any x 2 (�a; 1+ a).

There is b > 0 so that for any x 2 [0; 1], then h(x) > x + b. The cut and paste of F0 produces a new foliation F
still transverse to the suspension ow �.

This construction is well known to Thurston, Gabai and others. Here we analyse the leaf space of the ensuing

foliations.

We think of � as a true suspension so that it takes time 1 to go between any two lifts of S to fM . We will

measure height in fM using the time parameter. Let eS0 be the lift of S at height 0.

Think of S as S � f0g embedded in M . Let Fuu
0 be the singular strong unstable folation of � in S. Notice

Fuu
0 is orientable because of the even parity of prongs. Therefore following leaves of Fuu

0 in the positive direction,

they will always intersect � in the same direction, which we may assume is the direction which increases the height

under the glueing by h. In addition since leaves of Fuu
0 are dense in S any segment in a leaf of Fuu

0 intersects �

after at most length c0 > 0. It easily follows that there is c > 0 so that any segment of a leaf of Fuu (of �!) of

length > c, has to intersect a lift of �� [0; 1].

Let F be a leaf of eF . Since � is transverse to F the unstable foliation eFu induces a singular one dimensional

foliation eFu
F in F . Let l be a leaf of eFu

F , contained in L 2 eFu. We will keep track of the progress of this leaf in
fM . For simplicity suppose we start at a point in l of height 0 and follow l in the positive direction. Assume L is

non singular. Each time l crosses a lift of � � [0; 1], then l goes up by at least height b and this happens at least

every length c in l. Projecting back to eS0 along ow lines of e� the distances along l are contracted by at least �b

as compared to what happened before the crossing [Ca-Th]. Therefore as seen from the projection in eS, then after

length at most ��bc, the leaf l will hit a lift of � � [0; 1] again and l goes up again by at least height b. When

projecting to eS distance are now contracted by at least �2b. By induction after length at most kc along l, which

corresponds to the length

c + ��bc + ��2bc + ::::: + ��b(k�1)c = c
1 � ��bk

1 � ��b

when projected to eS, then l is at a height at least kb. Let l0 be L \ eS0. By letting k ! 1 in the argument above

we see that the height of l blows up to 1 before the projection of l to l0 achieves a length of

c
1

1 � ��b

from the initial point in l0. It follows that F cannot intersect the orbit of e� corresponding to the intersection of eS
with the limit of the projection of l to l0. Otherwise by uniqueness of intersections of F with orbits of e�, the height
of l would be bounded near this limit orbit, contradiction to it increasing without bound.

We conclude that F does not intersect this orbit of e� and hence � is not regulating for F . Since � is a singular

pseudo-Anosov ow the main theorem implies that F is not R-covered. This �nishes the analysis of the second

class of examples.
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Figure 14: The skewed picture produces a slithering over the circle.

7 Foliations transverse to R-covered Anosov ows

If � is a pseudo-Anosov ow transverse to an R-covered foliation F then as seen in section 5, � may fail to be

regulating if � is an R-covered pseudo-Anosov ow. We will show in this section that this failure is very rare. The

goal is to prove a topological rigidity result: that F is essentially topologically conjugate to one of the invariant

foliations of �.

First we need some facts about the structure of R-covered pseudo-Anosov ows. Consider � an R-covered

pseudo-Anosov ow of product type. If g is a covering translation of fM , then g leaves invariant at most one leaf of
eFs (or eFu) [Fe2]. Equivalently there are no non trivial free homotopies between closed orbits of �.

In this case �1(M) is solvable and there has been important work of Plante [Pl2] completely classifying foliations

in such manifolds. However Plante assumes that F is at least C2 and he makes use of Kopell's lemma [Ko]. We do

not assume that F is C2, in fact in this particular case it is very easy to produce F transverse to � which cannot

be C2.

Recall that H is the leaf space of eF and similarly Hs;Hu.

The structure of a skewed R-covered pseudo-Anosov ow is much more complex and rich. Let � have skewed

type. For simplicity suppose that Fs;Fu are transversely orientable. Fix a transverse orientation to Fs and put

an order <s in H
s coherent with this transverse orientation. Given F 2 eFs there is a unique unstable leaf U which

makes a perfect �t with F and is contained in the component of fM � F de�ning the positive orientation from F

[Fe3]. Intuitively the leaf U is \asymptotic" to F , see �g. 14. Let this U be denoted by �+(F ). Then �+ de�nes a

homeomorphism from Hs to Hu. Similarly de�ne ��(F ) which makes a perfect �t with F and is on the negative

side of F , see �g. 14. Then �� is also a homeomorphism from Hs to Hu. We choose a transversal orientation <u

to Fu so that ��(F ) <u �+(F ).

Let � : Hs ! Hs be the homeomorphism (��)
�1 Æ �+. Then � is �xed point free [Fe3, Fe6]. Intuitively it goes

one step up in the in�nite ladder of asymptotic leaves. Then Hs=� is homeomorphic to a circle and there is a map

Æ : fM ! S1 induced by the map Hs ! Hs=�. The map Æ is group equivariant: there is a group homomorphism

� : �1(M)! Homeo(S1), so that

8 g 2 �1(M); 8 x 2 fM; Æ(g(x)) = �(g)(Æ(x)):

or Æ Æ g = �(g) Æ Æ [Fe3, Fe6]. Therefore the foliation eFs (and consequently Fs) is induced by Æ. The map Æ is an

example of what Thurston calls a slithering over the circle [Th5]. We refer the reader to [Th5] for the beautiful

theory of slitherings. They are very common in 3-manifolds. We will use a few simple properties of foliations

de�ned by slitherings. One property which follows easily from the slithering map is that given any F;L 2 eFs they

are a bounded (Hausdor�) distance apart: there is c0 > 0 so that for any x 2 F; y 2 L then d(x; L) < c0 and

d(y; F ) < c0. Here the number d(x; L) is the in�mum of d(x; z) for all z 2 L. Clearly c0 depends on the pair F;L.

Let dH(F;L) be the smallest c0 which works. This is the Hausdor� distance between leaves in fM .

Notice that distance in Hs is not well de�ned but slithering units are: we say that a; b 2 Hs are n slithering

units apart if a = �n(b) or b = �n(a). Then given any a; b 2 Hs with a <s b let

ds(a; b) = n; if �n(a) �s b <s �n+1(a):

Extend it to a �s b by making ds symmetric. This is a roughly de�ned distance in Hs. One fundamental fact is

that ds is invariant under covering translations: if g 2 �1(M) then for any a; b 2 Hs, ds(a; b) = ds(g(a); g(b)). This
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Figure 15: a. The case where boundary of @�(F0) has only one component produces impossible intersection, b. An unstable

boundary also produces impossible intersection.

follows from the invariance of the in�nite staircase picture. Another important fact proved in [Th5] is that there

are constants c1; c2 so that for any E;L 2 eFs then

c1(ds(E;L)� 1) � dH(E;L) � c2(ds(E;L) + 1) (1):

This says that the slithering distance between leaves roughly measures the Hausdor� distance between leaves. In

addition the distance between points in leaves is also bounded below: there is c3 > 0 so that for any E;L 2 eFs

then

8 p 2 E; q 2 L; d(p; q) > c3(ds(E;L)� 1): (2)

Whenever the distance ds is used, it is implicit that � is a skewed R-covered pseudo-Anosov ow and ds refers

to the distance de�ned here.

Many 3-manifolds containing skewed Anosov ows are Seifert �bered. Ghys [Gh] showed the manifold is up to

�nite covers T1S where S is a hyperbolic surface. Foliations in Seifert �bered manifolds have also been extensively

studied by Thurston [Th1], Levitt [Le] and �nally Brittenham [Br]. This could help us a bit in the Seifert �bered

case. However skewed R-covered pseudo-Anosov ows can occur in much more general manifolds, for instance the

manifolds may be hyperbolic [Fe3].

Unless otherwise stated, for the remainder of this section � will denote an R-covered pseudo-Anosov ow and

F a transverse foliation. We �rst show that F has to be R-covered.

Proposition 7.1. If � is an R-covered pseudo-Anosov ow transverse to a foliation F then F is an R-covered
foliation.

Proof. Let the positive transversal direction to F be de�ned by positive ow direction of �. Up to a double cover

if necessary, assume that Fs is transversely oriented. We assume that the order <s in Hs is coherent with the

transverse orientation to Fs. Notice that it is preserved by covering translations.

Suppose the proposition is not true. Clearly � is not regulating for F . Let F0; F1 2 eF not separated from

each other, say in their negative sides. As they are not separated, they cannot intersect a common orbit of e�, so
�(F0) \ �(F1) = ;. Hence there is either a stable or unstable boundary leaf of �(F0) separating it from �(F1).

If it is unstable, then the corresponding unstable leaf of eFu is on the positive side of F0. Therefore F1 is also in

the positive side of F0, contradiction to assumption. Let therefore L0 be a leaf of eFs with �(L0) � @�(F0) and

L0 separating F0 from F1. In the same way there is L1 2 eFs with �(L1) � @�(F1) and L1 separating F1 from F0.

Notice that L0 and L1 may be the same leaf. Let li = �(Li). Assume that F1 intersects stable leaves which are

<s L0, see �g. 15 a. Given these conditions we make the following claim.

Claim � For any leaf F 2 eF , then @�(F ) is a union of two stable leaves of eFs
O
.

We �rst prove the claim for F0 de�ned above. If the boundary of �(F0) consists only of l0, then F0 intersects

all L 2 eFs with L >s L0. Take a covering translate g(L0) of L0 so that g(L0) \ F1 6= ;. Hence g(L0) <s L1.

We now consider the picture near g(L0). Let p 2 �(g(L0)) and pi 2 �(g(F0)) with pi ! p. Let yi 2 �(F1) with

�(yi) = pi. Since p 2 �(F1) then yi ! y with �(y) = p. Let x 2 g(F0) with �(xi) = pi. As p 2 @�(g(F0)), then

xi = e�ti(yi) with jtij ! 1. Since �(g(L0)) is a stable boundary leaf of �(g(F0)) it follows that ti ! +1. This

implies that g(F0) is in the front of F1. Applying the same argument to points in L1 we obtain that g(F0) is in the

back of F1. But that would imply that g(F0) and F1 have to intersect, which is a contradiction, see �g. 15, a.
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Figure 16: Producing unstable boundary.

Hence �(F0) has more boundary. If it is unstable boundary, then points in F0 go down when points in �(F0)

approach this boundary. Take g(L0) \ F1 6= ;. As seen in the argument of the previous paragraph this implies the

contradiction g(F0) \ F1 6= ;, see �g. 15, b. We conclude that there should be more stable boundary to �(F0).

Finally given any 3 stable leaves of eFs, one of them separates the other two, hence it follows that @�(F0) can have

only two components. This proves the claim for F0.

Let l00 be the other component of @�(F0) and let L00 2
eFs with �(L00) = l00. Now given any F 2 eF , there is

h(F ) which is in front of F0. But then h(F ) cannot intersect L0 or L
0

0. Therefore h(F ) has to escape in the positive

direction before it gets to L0 or L
0

0. It follows that @�(h(F )) also has two components and the same holds for F .

This �nishes the proof of the claim.

It is this claim that will eventually lead to a contradiction.

If all leaves of F are simply connected, then F is a foliation by planes and this implies that M is the 3-torus

T 3 [Ros]. But T 3 does not support an R-covered pseudo-Anosov ow, because it has abelian fundamental group

and 3-manifolds supporting R-covered pseudo-Anosov ows have exponential fundamental group [Pl-Th].

Let then F2 with �(F2) not simply connected. Let g 2 �1(M), not identity, with g(F2) = F2. Let @�(F2) = l2[l
0

2

and L2; L
0

2 2
eFs with �(L2) = l2, �(L

0

2) = l02. Since g preserves orientation of H
s, the fact that g(F2) = F2 implies

that g(L2) = L2 and g(L02) = L02.

If � has product type this immediately leads to a contradiction, because g would have two invariant leaves in
eFs.

In the skewed case this does not lead to a contradiction yet. Suppose that ds(L2; L
0

2) = n. Consider h 2 �1(M),

with h(L2) >s L02 and ds(L2; h(L2)) > n + 3. Fix an orbit  in L2. Consider E 2 eF with E \ L2 6= ;. Then

E \  6= ;. Suppose �rst that no such E intersects h(L2). Let Ei be a sequence of leaves of eFs so that Ei \ 

is monotonic in  and escapes in the negative ow direction of . Let Si be the stable leaf with Si >s L2 and

�(Si) � @�(Ei), see �g. 16. Because Ei \  is monotonic in  then Si are (weakly) monotonic and increasing in

Hs. But since no Ei intersects h(L2) then Si �s h(L2). Therefore Si ! S in Hs as i!1, see �g. 16.

Choose R \ S 6= ;. Then R is in the back of any Ei so R \ L2 = ;. Also R \ Si 6= ; for i big enough and

therefore R cannot escape in the positive direction before getting to L2. One concludes that R has to escape down,

producing unstable boundary in �(R), see �g. 16. This contradicts the claim above.

We conclude that there is E with E\L2 6= ; and E\h(L2) 6= ;. Let A0; A
0

0 2
eFs with @�(E) = �(A0)[�(A

0

0).

Then A0 <s L2 and A00 >s h(L2). Therefore ds(A0; A
0

0) � n+ 3.

Choose f 2 �1(M) with f(E) in front of F . This implies that

L2 �s f(A0) <s f(A00) �s L02:

Then

ds(f(A0); f(A
0

0)) � ds(L2; L
0

2) = n � ds(A0; A
0

0)� 3:

This contradicts the fact that the covering translation f preserves ds. This contradiction shows there is also a

problem in the skewed case. We conclude that the claim is impossible, that is, for any F 2 eFs, the set �(F ) can

have at most one stable boundary component. Finally, the failure of the claim implies that F is R-covered as

desired. This �nishes the proof of proposition 7.1.
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Given that F is R-covered we now start to analyse the relationships between F ;Fs;Fu. We �rst lift to a double

cover if necessary so that Fs is transversely orientable. As shown by Barbot [Ba2], this implies in the skewed case

that Fu is also transversely oriented. The standing hypothesis for the remainder of this section (unless otherwise

stated) is that there is a �xed leaf F � 2 eF with �(F �) having a stable boundary component.

Lemma 7.2. For any F 2 eF the set �(F ) has a unique stable boundary component.

Proof. The leaf F � has a stable boundary componet l�. Since � is transitive, it follows from symbolic dynamics

[Bow1, Bow2] that there are dense orbits of � in M . Let  be an orbit of � which is dense in M and let e a lift

of  which intersects F �. There is a translate f0(F ) of F so that e intersects f0(F ) after intersecting F �. Then

�(F �);�(f0(F )) intersect in a point p = �() 2 O. Let � be a path in �(F �) [ l� from p to p0 2 l�, intersecting

l� only in p0. This path cannot be totally lifted to F � because it escapes in the positive direction as the projection

to O approches p0. Since f0(F ) is above F
�, the path cannot be totally lifted to f0(F ) either and has to escape

in the positive ow direction before the projection in O gets to p0. This produces stable boundary in �(f0(F )).

Translating back by f�10 implies that �(F ) also has stable boundary.

Finally the proof of the previous proposition shows that there is at most one boundary stable leaf.

These results show that given F 2 eF there is a unique L 2 eFs with �(L) � @�(F ). Let this L be �s(F ). This

de�nes a function �s : H ! Hs, �s(F ) = L. The function �s commutes with covering translations:

8 g 2 �1(M); �s Æ g = g Æ �s:

We now �x a transversal orientation <s to Fs so that under this orientation F � is contained in the front

of �s(F
�). As explained in the beginning of the section this de�nes a transversal orientation <u to Fu so that

�+ Æ (��)
�1 is increasing in Hu.

Recall that �s(F
�) is in the back of F � with respect to positive ow direction of e�, hence �s(F �) is in the back

of F � with respect to the transverse orientation of eF . Given a translate g(F �) of F � then �s(g(F
�)) = g(L�) is in

the back of g(F �) (as seen from the transverse orientation to eF) and g(F �) is in the front of g(L�) (as seen from

the transverse orientation to eFs). Therefore because the translates of L� are dense in fM , this property follows for

all F 2 eF and L = �s(F ) 2 eFs � this is because F is R-covered. Hence if F1 < F2 in H, then F2 is in the front of

F1 and so F1 separates �s(F1) from F2. It follows that �s(F2) is also in the front of �s(F1) (from the point of view

of eFs). This implies that �s : H ! Hs is a weakly monotone increasing map.

If the original Fs is not transversely orientable, there is g 2 �1(M) reversing any orientation to Hs. Then g(F �)

would be in the back of �s(g(F
�)), contradicting the discussion above. It follows that the original Fs is transversely

orientable and it is not necessary to lift to a double cover. In addition if � is skewed, then Fu is also transversely

oriented.

We stress that the fact that both H and Hs are homeomorphic to the real numbers, is essential throughout the

proofs in this section. The leaf F � of eF is �xed throughout the discussion. Let L� = �s(F
�).

Lemma 7.3. The map �s : H ! Hs is continuous.

Proof. Consider Fi 2 H with Fi ! F in H. We may assume that Fi is monotonic in H.

Case 1 � Fi is decreasing.

Then Li = �s(Fi) is weakly monotone decreasing. Clearly L = �s(F ) �s �s(Fi) for all i, hence Li is bounded

below and Li ! L� in Hs. If L <s L
�, then either F intersects L� or L� separates Li from F for all i, see �g.

17, a. Hence for a �xed j big enough, either Fj intersects L
� or Fj jumps to the other side of L�. Both options

are disallowed by Li �s L
� for all i. Hence L� = L and �s(Fi)! �s(F ).

Case 2 � Fi is increasing in H.
Suppose that Li = �s(Fi)! L� with L� <s L = �s(F ), see �g. 17, b. Then choose a covering translate g(L1)

with

L� <s g(L1) <s L:

The map �s is weakly monotonic, hence g(F1) < F in H. But also as �s(g(F1)) = g(L1) >s L
�, then g(F1) > Fi in

H for any i. This contradicts the fact that Fi ! F , see �g. 17, b. This shows that L� = L and so �s(Fi)! �s(F ).

It now follows that �s is continuous as desired.

Corollary 7.4. For any stable leaf L 2 eFs there is F 2 eF with L = �s(F ). In addition ��1s (L) is a compact
interval in H.



x7. Foliations transverse to R-covered Anosov flows 24

F

FF

L LLL

i

F
i

i L i
-

L- g(L 1)

g(F1)

(a) (b)

Figure 17: a. The case Fi is decreasing, b. The case Fi is increasing.

Proof. To prove the �rst statement choose g0; g1 2 �1(M) with g0(L
�) <s L <s g1(L

�). Then g0(L
�) = �s(g0(F

�))

and g1(L
�) = �s(g1(F

�)) are in the image of �s. As �s is continous, its image is connected, which implies that L

is also in the image of �s. The second statement follows from �s being continuous, surjective, monotonic and H
homeomorphic to R.

We now show that leaves of eF are boundedly near leaves of eFs.

Proposition 7.5. Let F 2 eFs and L = �s(F ). Then the Hausdor� distance between F and L is �nite and bounded
by a global constant r0.

Proof. Suppose not. Then there are Fi 2 eF , Li = �s(Fi) which are not a bounded distance from each other.

First option - Up to subsequence there are qi 2 Li with d(qi; Fi)! +1.

Up to covering translations we may assume that qi ! q0, so Li ! L0 2 eFs � the limit is unique because Fs

is R-covered. Therefore the Li are in compact interval I of Hs. It follows that Fi are in ��1s (I) � H, which is a

compact interval of H by lemma 7.3 and corollary 7.4. Up to taking a subsequence we may assume that Fi ! F

in H. Take z 2 F and choose zi 2 Fi with zi ! z. Then

d(qi; Fi) � d(qi; zi) ! d(q; z):

So d(qi; Fi) is bounded, contradiction.

Second option - Up to subsequence there are pi 2 Fi with d(pi; Li)! +1.

Again up to covering translations, assume that pi ! p so Fi ! F for some F 2 H. By continuity of �s,

Li = �s(Fi) ! �s(F ) = L. The argument in the �rst option shows that d(pi; Li) is bounded, again contradiction

to assumption. This �nishes the proof of the proposition.

The goal now is to show that F is topologically equivalent to Fs. However this is not true in general for the

following easy reason: given a foliation F transverse to � one can blow up a leaf (or a collection) of leaves of F
into foliated I-bundles [Ga-Oe] and still get a foliation transverse to �. To get the conjugacy, one �rst needs to

blow down these gaps or foliated I-bundles. At this point we need to di�erentiate a bit between the two cases:

Lemma 7.6. Suppose that � is a product R-covered pseudo-Anosov ow. Then for any F 2 eF , @�(F ) = l, with l a

stable leaf in O (there is no unstable boundary in �(F )). If F; F 0 2 eF satisfy �s(F ) = �s(F
0), then �(F ) = �(F 0).

Proof. Suppose that �(F ) has an unstable boundary component u 2 eFu
O
. But � is product type, so u \ l 6= ;,

contradiction to two boundary components of �(F ) not intersecting. As seen before there can only one stable

boundary component. This shows that @�(F ) is a single stable leaf l = �(�s(F )). Hence if �s(F ) = �s(F
0), then

@�(F ) = @�(F 0) and both F; F 0 are contained in the front of �s(F ), so �(F ) = �(F 0). This �nishes the proof.
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Figure 18: a. Boundary in the product case, b. Boundary in the skewed case.

In the skewed case we have a di�erent situation.

Proposition 7.7. Suppose that � is skewed. Then for any F 2 eF, there are unique L 2 eFs; U 2 eFu with
@�(F ) = �(L)[�(U). In addition U and L make a perfect �t and U = �+(L). In particular given F; F 0 2 eF with
�s(F ) = �s(F

0) then �(F ) = �(F 0).

Proof. Let F 2 eF . By lemma 7.2, @�(F ) can have only one stable boundary component, which is �(L) where

L = �s(F ). If �(F ) does not have unstable boundary component, then �(F ) is a half plane in O bounded by

�(L). Choose Li ! +1 in Hs, which implies that �(Li) � �(F ). Hence ds(L;Li) ! 1. Choose pi 2 Li \ F .

It follows from the distance equation (2) (from the beginning of the section) applied to pi 2 Li and L 2 eFs, that

d(pi; L)! +1. But pi 2 F and proposition 7.5 showed that dH(F;L) < r0 so there are zi 2 L with d(pi; zi) < r0.

This contradicts d(pi; L)!1.

We conclude that �(F ) must have unstable boundary. In addition it can have only one unstable boundary

component � the argument is the same as in the proof of proposition 7.1. Let this unstable boundary be denoted

by �u(F ). In the same way as in lemma 7.3, corollary 7.4 and proposition 7.5 it follows that �u is continuous,

weakly monotone increasing, surjective and for any F 2 eF , then F and �u(F ) are a bounded Hausdor� distance

from each other. We stress that �u is only de�ned in the skewed case (given the assumption that there is F � 2 eF
with �(F ) having stable boundary).

Given L 2 eFs let J = [F0; F1] = ��1s (L) be a non empty, compact interval in H. Assume F0 < F1 in H. Given
g 2 �1(M), suppose that g(J) \ J 6= ;. Then some leaf F 0 2 g(J) has �s(F

0) = L. But all leaves in g(J) have the

same image under �s. It follows that g(J) � J . In the same way J � g(J). So the translates of J are either equal

to J or disjoint from it. It follows that the stabilizers of L, F0 and F1 in �1(M) are exactly the same. Notice that

this also works in the product case.

We now prove that if �s(F ) = L, then �u(F ) = �+(L).

We �rst assume that L is periodic, that is, there is a non trivial g 2 �1(M) with g(L) = L. Let J = [F0; F1] =

��1s (L). Then g(F0) = F0. Let U = �+(L), which makes a perfect �t with L and is contained in the same component

of fM � L which contains F0. Then g(U) = U . Let  be the periodic orbit of e� in U so g() = . If F0 \ U 6= ;
then F0 intersects all orbits in U � because the only stable boundary to �(F0) is �(L). Hence F0 intersects .

Recall that the intersection of F0 with  can be at most one point and let this be p. Then

g(p) = g(F0 \ ) = g(F0) \ g() = F0 \  = p;

which obviously contradict the fact that g acts freely in fM . It follows that F0 \ U = ;. On the other hand

g(�u(F0)) = �u(g(F0)) = �u(F0):

But U is the smallest (in eFu) leaf contained in fM �L and intersecting stable leaves >s L, which is invariant by g.

Hence either U = �u(F0) or U separates �u(F0) from L. The second option would imply F0 \U 6= ;, contradiction.
We conclude that U = �u(F0) and so �u(F0) = �+(L). In the same way one proves that �u(F1) = U and so for any

F 2 [F0; F1], then �u(F ) = �+(L).

If L is now any leaf in eFs, choose Li 2 eFs periodic with Li ! L. Choose Fi 2 ��1s (Li). Then as seen before,

we may assume up to subsequence that Fi ! F . As proved in the previous paragraph �u(Fi) = Ui = �+(Li). As

�+ is continuous, then Ui ! U = �+(L). But �u is also continuous, hence �u(Fi) = Ui ! U = �u(F ). It follows

that �u(F ) = �+(L) = �+(�s(F )) for an arbitrary F 2 eF .
Finally this shows that given any F; F 0 2 eF , if �s(F ) = �s(F

0) then �u(F ) = �u(F
0) also. It follows that �(F ) =

�(F 0), that is, F and F 0 intersect exactly the same orbits of e�. This �nishes the proof of the proposition.
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Given any foliation F� transverse to � and F 2 eF
�

, let @s�(F ) be the union of the stable boundary components

of �(F ) and similarly de�ne @u�(F ). In our situation of F transverse to �, @s�(F ) = �(�s(F )), @u�(F ) =

�(�u(F )) (the second term only occurs in the skewed case).

Proposition 7.8. There is a foliation F 0, which is obtained from F by blowing down at most countably many
foliated I-bundles of F to single leaves and so that F 0 satis�es: F 0 is transverse to � and for any L 2 eFs there is

a unique F 2 eF
0

with �(L) = @s�(F ).

Proof. Suppose there is L 2 eFs and there are F; F 0 2 eF with �(L) = @s�(F ) = �s(F ) = @s�(F 0) = �s(F
0). Let

J = ��1s (L) = [F0; F1], which is a compact, non degenerate interval in H( eFs). Assume F0 <s F1. By proposition

7.5, the Hausdor� distances from L to F0 and from L to F1 are bounded by r0. It follows that the Hausdor�

distance from F0 to F1 is bounded by 2r0.

By lemma 7.6 and proposition 7.7, then for any F; F 0 2 J , �(F ) = �(F 0), that is F and F 0 intersect exactly

the same orbits of e�. There is a homeomorphism from F0 to F1 obtained by following orbits of e�. Also for any

g 2 �1(M), g(J) = J or g(J) \ J = ;, so the stabilizers of F0 and F1 are equal to a subgroup A of �1(M). Let

V be the closed subset of fM bounded by F0 [ F1. The conditions above imply that V=A embeds in M and is

homeomorphic to �(F0) � [0; 1] with �(F0) and �(F1) corresponding to levels 0 and 1 respectively and following

orbit segments of � produces a homeomorphism from �(F0) to �(F1). Therefore V=A is a foliated product so that

transverse segments are given by orbits of �. Collapse �(F0) to �(F1) by identifying those segments to points. This

is the inverse operation of blowing up a single leaf. There are at most countably many such regions, corresponding

exactly to the non degenerate intervals of H where �s is constant. Do the blow down operation for the at most

countable foliated products as above to produce a foliation F 0. Then F 0 is still transverse to the ow �. In addition

for any F; F 0 2 eF
0

, if @s(F ) = @s(F 0) then F = F 0 so F 0 satis�es the requirements of the proposition.

The goal now is to show that F 0 is topologically conjugate to Fs. First we need a couple of facts. Given a leaf

F of a foliation F let dF be the path metric in F - dF (x; y) is the in�mum of the lengths of paths from x to y

contained in F . The metric d will always denote the original metric in M or fM .

Lemma 7.9. ([Fe2]) Let F be an R-covered foliation in M3 closed. Then for any u > 0 there is v(u) > 0 satisfying:

for any leaf G of eF and any two points x; y 2 G:

d(x; y) < u ) dG(x; y) < v(u) (3)

The point here is that v(u) depends only on F and u and not on G; x or y.

De�nition 7.10. Let ' : (M1; d1) ! (M2; d2) be a map between metric spaces. Then ' is a quasi-isometric
embedding [Th2, Gr] if there is k > 0 so that for any x; y 2M1 then

1

k
d1(x; y)� k < d2('(x); '(y)) � k < k d1(x; y) + k: (4)

If in addition there is k0 so that for any

8z 2M2; 9 x 2M1; with d2(z; '(x)) < k0 (5);

then ' is called a quasi-isometry between M1 and M2. If the constant is important then we say that ' is a k

quasi-isometry.

In the case of quasi-isometry it easily follows that there is '0 : M2 ! M1 which is also a quasi-isometry and

which is an inverse of ' in the quasi-isometry category: '0 Æ ' is a bounded distance from the identity map of

M1 and similarly for ' Æ '0. Notice that is is NOT at all required that the quasi-isometry ' is continuous � one

is only interested in what happens for large distances. For background on quasi-isometries we refer the reader to

[Gr, Gh-Ha, CDP].

Let H0 be the leaf space of eF
0

which is obviously homeomorphic to R. Clearly for any F 0 2 eF
0

there is F 2 eF
with �(F ) = �(F 0). Hence @s(F 0) = @s(F ) = �s(F ). De�ne �(F

0) = �s(F ). By proposition 7.8, the map � is well

de�ned and � is a homeomorphism from H0 to Hs.

Since F 0 is obtained from F by collapsing at most countably many foliated products, there is a collapsing map

� : M ! M sending leaves of F to leaves of F 0 and collapsing the required foliated products. The map � is

continuous and is a homotopy equivalence which is homotopic to the identity. If lifts to a map e� : fM ! fM , which

leaves orbits of e� invariant and moves points of fM a bounded distance. Hence the Hausdor� distance dH(e�(F ); F )



x7. Foliations transverse to R-covered Anosov flows 27

is �nite and bounded for any F 2 eF . Let F 0 = �(F ). Since dH (F; �s(F )) < r0 and �(F 0) = �s(F ), it follows that

dH(F
0; �(F 0)) is globally bounded by a constant r1 for any F

0 2 F 0.

We begin by relating leaves of eF
0

and eFs metrically.

Lemma 7.11. For any F 2 eF
0

and �(F ) 2 eFs there is a roughly natural map ' : �(F ) ! F which is a uniform
quasi-isometry.

Proof. The term roughly natural will become clear in the proof. Both F and F 0 are R-covered. Let v be the

function given by lemma 7.9 for Fs and v0 the respective function for F 0. Given F 2 eF
0

let L = �(F ). Then

dH(F;L) < r1. So given p 2 L choose a point q 2 F with d(p; q) < r1. Let this be '(p). Obviously '(p) is not

uniquely de�ned, but we show it is roughly uniquely de�ned in F as follows: if q0 2 F with d(q0; p) < r1 then

d(q; q0) < 2r1. Let a0 = v0(2r1). By lemma 7.9 dF (q; q
0) < v0(2r1) = a0, which is a �xed constant. So the diameter

of the set of possible choices for '(p) is globally bounded and '(p) is well de�ned in F up to a distance a0. Notice

that clearly there is no guarantee that ' is even continuous.

Given x; y 2 L let n = bdL(x; y)c where b c denotes the function greatest integer less than or equal the given

number. Choose a minimal length geodesic  in L from x to y and choose points p0; p1; ::::; pn+1 in  so that

p0 = x; pn+1 = y, dL(pi; pi+1) = 1 if 0 � i < n and dL(pn; pn+1) < 1. Let qi = '(pi). Then d(qi; pi) < r1, hence

d(qi; qi+1) < 2r1 + 1. Let a1 = v0(2r1 + 1). By lemma 7.9 dF (qi; qi+1) < a1. Therefore

dF ('(x); '(y)) = dF (q0; qi+1) < (n+ 1)a1 = na1 + a1 � a1dL(x; y) + a1: (6)

This proves one side of the needed quasi-isometric inequality (4) for the map '. To prove the other direction we

will use a dual argument.

Given w 2 F choose z 2 �(F ) = L with d(z; w) < r1. Let this z be '
0(w). As above the function '0 is (roughly)

natural � its possible values are in a set of diameter < 2r1 in fM and hence of diameter < v(2r1) in L.

Let a2 = v(2r1 + 1). An argument entirely analogous as above shows that for any z; w 2 F then

dL('
0(z); '0(w)) � a2dF (z; w) + a2: (7)

Notice that for any z 2 F then '(z) 2 L and d(z; '0(z)) < r1. Let y = '0(z). Then '(y) 2 F and d(z; '(y)) < 2r1.

So dF (z; '(y)) < v0(2r1) = a0. Since z is arbitrary in F and F arbitrary in H, this proves the second condition (5)

of the quasi-isometry de�nition for ' with k0 = a0. In addition for any z 2 F , dF (z; ' Æ '
0(z)) < v0(2r1) = a0. Let

a3 = v(2r1). In a completely analogous fashion, for any x 2 L then

dL(x; '
0 Æ '(x)) < v(2r1) = a3: (8)

Finally we show the other side of the required inequality (4). Let x; y 2 L arbitrary. Then (7) applied to

z = '(x); w = '(y) shows that

dL('
0 Æ '(x); '0 Æ '(y)) � a2dF ('(x); '(y)) + a2: (9)

But dL('
0 Æ '(x); x) < a3 and similarly for y, hence

dL(x; y) < a2dF ('(x); '(y)) + (a2 + 2a3): (10)

or

1

a2
dL(x; y) �

�
1 +

2a3

a2

�
< dF ('(x); '(y)): (11)

Choose k = max(a1; a2; 1+
2a3
a2

). Then equation (4) holds for any x; y 2 L. Therefore ' is a k quasi-isometry from

L to F . This �nishes the proof of the proposition.

We now produce a ow �0 tangent to F 0 which \shadows" � in a particular way: for each orbit of e� there is

an orbit of e�
0

which is a bounded Hausdor� distance from it. Recall that a quasigeodesic in a metric space is a

quasi-isometric embedding of R or Z (with their natural metrics).

Proposition 7.12. (shadowing ow) There is a ow �0 in M tangent to F which shadows �: for any orbit  of

e� there is unique orbit 0 of e�
0

associated to it and 0 is is a bounded distance from .
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F

b(F)

Figure 19: The shadowed ow in eF
0

.

Proof. It is well known that the leaves of eFs are Gromov negatively curved in the large in their path metrics

[Su, Pl1, Gr]. Therefore each leaf L of eFs has an ideal boundary @1L which is then homeomorphic to a circle [Fe2]

and L [ @1L is homeomorphic to a closed disk [Fe2]. Given F 2 eF
0

then F is k quasi-isometric to �(F ) = L � it

follows that F is also Gromov negatively curved in the large [Gr, Gh-Ha, CDP].

Since all leaves of eF
0

are Gromov negatively curved, Candel [Can] showed that there is a metric d0 in M making

leaves of F 0 hyperbolic. The metric d0 is obviously smooth along the leaves of F 0 but may be only C0 transversely.

Here we use both metrics d and d0. Let d0F be the induced path metric in each leaf of F 0 � it is a hyperbolic

metric. Then the metric dF and d0F are uniformly quasi-isometric, that is, the identity map (F; dF )! (F; d0F ) is a

uniform quasi-isometry. Uniform means that the quasi-isometric constant does not depend on F and this follows

from compactness of M .

Let L = �(F ). The ow lines of e� in L are uniform quasigeodesics in L [Fe3] and therefore limit to two distinct

ideal points in @1L [Fe3]. In fact there is a common forward ideal point b(L) of all ow lines (they are forward

asymptotic) and all other points of @1L are negative ideal points of ow lines of e� in L [Fe3].

An important fact about Gromov negatively curved spaces is that since ' : L! F is a quasi-isometry, it extends

to a homeomorphism ' : L[ @1L! F [ @1F [Gr, Gh-Ha, CDP]. This de�nes a point b(F ) 2 @1F which is the

image of b(L) under this map. The point b(F ) is uniquely de�ned in @1F . We now construct a ow e�
0

in fM as

follows: its orbits are contained in leaves of eF
0

. For each F 2 eF
0

the orbits are geodesics in the hyperbolic metric

d0F of F . They all have one ideal point in b(F ) and move toward this ideal point with speed 1.

We �rst need to show that this de�nes a continuous ow in fM . In each leaf of eF
0

it is obviously smooth but we

need to consider what happens transversally. Given p 2 fM let De�
0

(p) be the tangent vector �eld to the ow lines.

We aim to prove that De�
0

is continuous with p.

Let O0 be the orbit space of e�
0

. Before proving continuity we produce a map from orbits of e� to orbits of e�
0

or equivalently a map from O to O0. Here we identify orbits of e� to points of O and similarly for O0. Given 

and orbit of e�, it is contained in L 2 eFs. Let F = ��1(L) 2 eF
0

. Notice that F is unique. Then  is a uniform

quasigeodesic in L [Fe3] and as ' : L ! F is a quasi-isometry then '() is a quasigeodesic in F . Since ' is not

continuous, '() may not be a continuous curve. Another point of view is to choose a sequence of points in  so

that consecutive points are 1 unit apart in . The image is a quasi-isometric embedding from Z in F and its image

is a bounded distance from a unique geodesic in F [Gr, Gh-Ha, CDP]. One of the ideal points is obviously b(F )

and the other depends on . There is a unique geodesic in F which has these two ideal points and let this be �().

The geodesic �() is an orbit of e�
0

and this de�nes a map � : O ! O0. Then �() is a bounded Hausdor� distance

from '() and hence from  also. In fact �() is the unique geodesic in F which is bounded distance from  in F

and hence in fM . The bound is global for all orbits of e�. The map � sends the set of orbits of e� in L bijectively

to the set of orbits of e�
0

in F . Finally � : O ! O0 is a bijection.

We now prove continuity of D�0. Let pi ! p in fM . Let �i be the orbits of e�
0

through pi. We can choose a

subsequence so that D�0(pi) converges to a tangent vector w0 at p. Let pi 2 Fi 2 eF
0

and p 2 F 2 eF
0

. Let � be

the geodesic of F through p in the direction of w0. Then every point of � is a limit of points in �i. Let Li = �(Fi)

and i � Li orbits of e� which are a uniform bounded distance from the orbits �i. By the construction above the
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i are unique. Also Li ! L with L = �(F ). The i all have points qi a bounded distance from pi so up to a

further subsequence we may assume that qi ! q and i converge to an orbit  of e� in F . For any �xed size r2, the

segments of size r2 of i centered at qi converge uniformly to the segment of size r2 of . But these segments are a

bounded distance from segments of size z(r2) of �i centered at pi, where z(r2)!1 when r2 !1. But segments

of �xed size in �i converge uniformly to segments in �, so for any �xed size segment in � it is a bounded distance

from a segment in . In addition the bound is independent of the segment or its size. It follows that the whole

orbit � is a bounded distance from . But the only geodesic of F which is a bounded distance from the orbit  of
e� is �(). Hence � = �() and the tangent to � at p is De�

0

(p) which is w0. This proves continuity of De�
0

and

shows that e�
0

is a continuous ow in fM .

Furthermore the function b(F ) is clearly equivariant under covering translations: if g 2 �1(M) and F 2 eF
0

then b(g(F )) = g(b(F )) � where the second g denotes the extension of the isometry g : F ! g(F ) to the ideal

boundaries of F and g(F ). It follows that e�
0

induces a ow �0 in M . Notice that � is a homeomorphism from O
to O0.

Finally for any F 2 eF
0

; �(F ) = L 2 eFs, the maps @1L! @1F are also equivariant, hence the map � : O ! O0

is also group equivariant.

We now prove topological equivalence of F 0 and Fs.

Theorem 7.13. The ows � and �0 are topologically conjugate. The foliation F 0 is topologically equivalent to the
stable foliation Fs of �.

Proof. By the previous proposition there is a homeomorphism � : O ! O0. This homeomorphism is group

equivariant. There is a general theory which deals with such situations [Hae]: the theory of classifying spaces for

ows produces a map h : M ! M which is a homotopy equivalence and sends orbits of � to orbits of �0 and is

transversely injective. The problem is that h may not be injective along the orbits. Ghys [Gh] encountered this

situation when studying Anosov ows in Seifert �bered spaces and did an averaging trick to produce an injective

map, hence topological equivalence. Barbot did the same for general R-covered Anosov ows [Ba2]. We cannot

apply these results directly because we do not know that the ow �0 is Anosov, let alone that it is a smooth ow.

On the other hand there is much more structure in our situation which allows us to get the topological equivalence

more directly.

In our situation the homeomorphism � : O ! O0 and the quasi-isometries ' : L! ��1(L) give a way to relate

the orbits and points in the orbits. Let U be a very �ne, locally �nite foliation box cover (of Fs) of M . Choose

a partition of unit subordinated to this cover. For each element of the cover, lift it to fM and de�ne a map from

this set to a foliated box of F 0 by sending each plaque of eFs to a plaque of eF
0

, each orbit segment of e� to an orbit

segment of e�
0

so that this is a homeomorphism between the two sets and monotonic increasing along orbits. The

�nal requirement is that any point and its image are < r3 distant apart, where r3 is a globally �xed constant. This

is doable because dH(; �()) is bounded over all orbits of e�. Iterate by covering translations of fM . Do this for all

elements of the foliated box cover of M . Given p 2 fM with p 2  orbit of e�, then the above construction de�nes

�nitely many images of p in �(). Each orbit of e�
0

has a well de�ned aÆne structure: use the partition of unity

as aÆne coordinates of the images of p in the orbit �() of e�
0

to de�ne a map eh : fM ! fM which sends orbits of

e� to orbits of e�
0

and induces � : O ! O0. This map is continuous and equivariant, producing a map h : M !M

which is a homotopy equivalence, sends orbits of � to orbits of �0 and is transversely injective.

Furthermore the construction implies that for any p 2 fM , then d(p;eh(p)) < r4 for a globally �xed constant

r4. Therefore even though eh may not be monotonic in a �xed orbit of e�, it eventually progresses in the forward

direction. This is called by Thurston as quasi-monotonic [Th5] and it is the key property which allows for the

construction of a monotonic map [Ba2] (see details of the proof of theorem 3.4 of [Ba2]). The new map is obtained

by averaging h on orbit segments of long but �xed size t. This provides a new map h0 : M ! M , which is now

injective along orbits and is therefore a topological equivalence from � to �0.

This immediately shows that F 0 is topologically equivalent to Fs, �nishing the proof of the theorem.

We collect these results together:

Corollary 7.14. Let � be an R-covered pseudo-Anosov ow transverse to a foliation F and suppose that � is not
regulating for F . Then F is topologically equivalent to a blow up of either (1) the stable foliation Fs or (2) the
unstable foliation Fu of �.
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Proof. Suppose �rst that some leaf F 2 eF has @s(�(F )) 6= ;. Then the results of this section show that conclusion

(1) occurs. If on the other hand @u(�(F )) 6= ;, the same arguments show that (2) occurs. This �nishes the proof.

Notice that in the skewed case Fs and Fu are topologically equivalent [Ba2].

Finally we also mention a topological rigidity for the ows: Let F be an R-covered foliation in M3 closed.

Then, up to topological conjugacy, there is at most one pseudo-Anosov ow � which is transverse to F , but not
regulating. The proof is very similar to the arguments given in this section and is omitted for brevity.
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