PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS

THIERRY BARBOT AND SERGIO R. FENLEY

Abstract — We first prove rigidity results for pseudo-Anosov flows in prototypes of toroidal 3-manifolds: we show
that a pseudo-Anosov flow in a Seifert fibered manifold is up to finite covers topologically conjugate to a geodesic
flow. We also show that a pseudo-Anosov flow in a solv manifold is topologically conjugate to a suspension Anosov
flow. Then we analyse immersed and embedded incompressible tori in optimal position with respect to a pseudo-
Anosov flow. We also study the interaction of a pseudo-Anosov flow with possible Seifert fibered pieces in the
torus decomposition: if the fiber is associated to a periodic orbit of the flow, we produce a standard form for the
flow in the piece using Birkhoff annuli. Finally we introduce several new classes of examples, some of which are
generalized pseudo-Anosov flows which have one prong singularities. The examples show that the results above in
Seifert fibered and solvable manifolds do not apply to one prong pseudo-Anosov flows. In addition we also construct

a large new class of examples in many graph manifolds, including in particular the Bonatti-Langevin example.
1

1. Introduction

The goal of this article is to start a systematic study of pseudo-Anosov flows in toroidal 3-manifolds.
More specifically we analyse such flows in manifolds which are not hyperbolic or in pieces of the torus
decomposition which are not hyperbolic. We study optimal position of tori with respect to arbitrary
pseudo-Anosov flows and we also produce many new examples of pseudo-Anosov flows, including a large
class in graph manifolds.

The study of hyperbolic flows in toroidal manifolds was initiated by Ghys [Gh], who analysed Anosov
flows in 3-dimensional circle bundles. Ghys showed that up to finite covers, the flow is topologically con-
jugate to the geodesic flow in the unit tangent bundle of a hyperbolic surface. This was later strengthened
by the first author who showed that this holds if the manifold is Seifert fibered [Bal]. In the mid 70’s
a generalization of Anosov flows called pseudo-Anosov flows was introduced by Thurston [Th2]. He
showed that these are extremely important for the study of surfaces and 3-manifolds [Thl, Th2, Th3].
The difference from Anosov flows is that one allows finitely many singularities which are each of p-prong
type. In the applications to the topology of 3-manifolds there is a requirement that p is at least 3, which
is the convention here as well. Pseudo-Anosov flows have been used very successfully to analyse the
topology and geometry of 3-manifolds [Mol, Mo2, Mo3, Ga-Ka, Fe3, Fe7, Fe8]. Pseudo-Anosov flows are
much more common than Anosov flows [Fr, RSS, Fe6]. They are much more flexible because for instance
they survive most Dehn surgeries on closed orbits [Fr], see also section 8. In addition as opposed to
Anosov flows, pseudo-Anosov flows can be constructed transverse to Reebless foliations in vast generality
[Mo3, Fe4, Call, Cal2, Cal3], yielding deep geometric information.

In this article we analyse several aspects of pseudo-Anosov flows in toroidal manifolds. In the presence
of a pseudo-Anosov flow the manifold is always irreducible [Fe-Mo]. By the geometrization theorem
[Pel, Pe2, Pe3] a three manifold with a pseudo-Anosov flow is either hyperbolic, Seifert fibered, a solv
manifold or the torus decomposition of the manifold is non trivial.

Notice that there is an ongoing broad study of pseudo- Anosov flows in closed, hyperbolic manifolds by
the second author [Fe3, Fe7, Fe8], which is mostly orthogonal to this article. In our situation classical
3-dimensional topology will play a much bigger role.

A topological conjugacy between two flows is a homeomorphism which sends orbits to orbits. We first
analyse Seifert fibered manifolds. Despite the much bigger flexibility of pseudo-Anosov flows we prove a
strong rigidity theorem, extending the result of [Bal] for Anosov flows (Theorem 4.1):
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Theorem A — Let ® be a pseudo-Anosov in a Seifert fibered 3-manifold. Then up to finite covers, ® is
topologically conjugate to a geodesic flow in the unit tangent bundle of a hyperbolic surface.

In particular the flow does not have singularities and is topologically Anosov. The proof of theorem
A splits into two cases depending on whether the fiber is homotopic to a closed orbit of the flow or not.
In fact later on this dichotomy will be fundamental for the study of pseudo-Anosov flows restricted to
an arbitrary Seifert fibered piece of the torus decomposition of the manifold. In the proof of theorem
A we start by showing that the first case cannot happen. In the other case we prove that there are no
singularities and also that the the stable/unstable foliations are slitherings as introduced by Thurston
[Th4, Th5]. This produces two actions of the fundamental group on the circle, which are used to produce
a mi-invariant conjugacy of the orbit space with the orbit space of the geodesic flow. This is enough to
prove theorem A. Here orbit space refers to the orbit space of the flow lifted to the universal cover. For
a pseudo-Anosov flow, this orbit space is always homeomorphic to the plane [Fe-Mo] and hence the flow
in the universal cover is topologically a product.

Next we analyse pseudo-Anosov flows in three manifolds with virtually solvable fundamental group.
Here again there is a very strong rigidity result (Theorem 5.7):

Theorem B — Suppose that ® is a pseudo-Anosov flow in a three manifold with virtually solvable
fundamental group. Then ® has no singularities and is topologically conjugate to a suspension Anosov
flow.

The proofs of theorem B is roughly as follows. Suppose first that the fundamental group is solvable
and consider a normal rank two abelian subgroup. The first case is that this subgroup acts non freely
on the orbit space. In this case we show that the subgroup preserves a structure in the universal cover
called a chain of lozenges (described below). By normality the whole fundamental group of the manifold
will preserve this chain of lozenges. We also show that the stabilizer of a chain of lozenges is at most
a finite extension of Z?, which leads to a contradiction. It follows that the rank two abelian subgroup
acts freely on the orbit space and by previous results this implies that the flow is topologically conjugate
to a suspension Anosov flow [Fed]. If the manifold is virtually solvable then the flow is covered by a
suspension Anosov flow and one can show that the original flow is also a suspension Anosov flow.

The proof of both theorems A and B use the study of actions on the leaf spaces of the stable/unstable
foliations in the universal cover. These topological spaces already have a key role in the context of
Anosov flows [Gh, Bal, Fel, Fe2]. In the more general context of pseudo-Anosov flows, these leaf spaces
are generalizations of both trees and non Hausdorff simply connected one manifolds and are called non
Hausdorff trees [Fe5]. A key fact used, generalizing a previous result in the case of non Hausdorff simply
connected one manifolds [Ba5], is that a group element acting freely on the non Hausdorff tree has an
axis [Fe5, Ro-St]. Notice that for a pseudo-Anosov flow, the axis may not be properly embedded in the
respective leaf space.

This theme of analysising the structure of the flow in the universal cover is prevalent in a lot of the
study of pseudo-Anosov flows and is central to the results of this article. This is used to give topological
and homotopic information about the manifold, and it also aids questions of rigidity of the flows and
large scale geometry of the flow and the manifold.

Given theorems A and B, we next consider manifolds with non trivial torus decomposition. The
overarching goal is to understand the flow in each piece of the torus decomposition and then analyse
how the pieces are glued. In this article we do a substantial analysis of Seifert fibered pieces and we
study the tori in the boundary of the pieces of a torus decomposition. In terms of the relation with
pseudo-Anosov flows, Seifert fibered pieces in the torus decomposition fall in two categories: if the piece
admits a fibration for which some fiber is freely homotopic to a closed orbit of the flow we say that the
piece is periodic, otherwise the piece is called a free piece. Equivalently the Seifert piece is free if and only
if the action in the orbit space of a deck transformation corresponding to a fiber in any possible Seifert
fibration is free. This dichotomy between free pieces and periodic pieces is fundamental. For example if
the whole manifold is Seifert then one main step in the proof of theorem A is to show that the piece is
a free piece. For solvable manifolds, after cutting along a fiber, the piece is also free. For Anosov flows,
the case of free Seifert pieces has been extensively analysed in [Ba3], giving a nearly final conclusion in
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the following case: R-covered Anosov flows on graph manifolds where all Seifert fibered pieces are free.
Recall that a graph manifold is an irreducible 3-manifold where the pieces of the torus decomposition are
all Seifert. An Anosov flow is R-covered if (say) its stable foliation is R-covered. A foliation is R-covered
if the its lift to the universal cover has leaf space homeomorphic to the real numbers [Fel].

To understand pseudo-Anosov flows in pieces of the torus decomposition one wants to cut the manifold
along tori and analyse the flow in each piece. Therefore one wants the cutting torus to be in good position
with respect to the flow. The best situation for a general given torus is that there is a torus isotopic
to it which is transverse to the flow. But this is not always possible. A good representative of a much
more common situation is the following: consider the geodesic flow in the unit tangent bundle of a closed
hyperbolic surface (an Anosov flow). Let a be a simple closed geodesic and let T be the torus of unit
vectors along a. Then T is embedded and incompressible but is not tranverse to the flow: it contains
two copies of a corresponding to the two directions along « and is otherwise transverse to the flow. This
is the best position amongst all tori isotopic to 7'.

Hence it is essential to understand the interaction between 7i-injective tori and pseudo-Anosov flows.
Consider a Z? subgroup of the fundamental group: if it acts freely on the orbit space then the flow is
topologically conjugate to a suspension Anosov flow [Fe5]. Otherwise some element in Z2 does not act
freely on the orbit space and is associated to a closed orbit of the flow. Then the Z? describes a non
trivial free homotopy from a closed orbit to itself. Any free homotopy between closed orbits can be put in
a canonical form as a union of immersed Birkhoff annuli [Ba2, Ba3]. A Birkhoff annulus is an immersed
annulus so that each boundary component is a closed orbit of the flow and the interior of the annulus
is transverse to the flow. A Birkhoff torus or Birkhoff Klein bottle is essentially one which is a union of
Birkhoff annuli (see section 6). Given an embedded incompressible torus 7', one looks for an isotopic
copy which is a Birkhoff torus.

A Birkhoff annulus lifts to a lozenge in the universal cover: the boundaries lift to periodic orbits and the
interior lifts to a partial ideal quadrilateral region D in the orbit space: two opposite vertices of D are lifts
of the boundary orbits, two vertices of D are ideal and the stable/unstable foliations in D form a product
structure. The boundary orbits are the corners of the lozenge. Lozenges are the building blocks in the
universal cover associated to free homotopies between closed orbits and they are fundamental for much
of the theory of Anosov flows ([Ba2, Fe2]) and more generally, of pseudo-Anosov flows [Fe3, Fe5]. Unless
the flow is suspension Anosov, then any Z? in the fundamental group has associated to it an (essentially)
unique chain of lozenges, where some elements of Z?2 act fixing the corners and some elements act freely.
In the next two results one goal is to look for the best position of embedded incompressible tori. In
Proposition 6.2, we prove (see definition 6.1 for the notion of a string of lozenges):

Theorem C — Let T be a mj-injective torus and let C be the m (T") invariant chain of lozenges. Suppose
there is a corner a of C and a covering translation g with g(«) in the interior of a lozenge in C. Then C
is a string of lozenges. In addition 7" is homotopic into a free Seifert fibered piece.

One relevance of this result is that we also prove the following: if no corner of C is mapped into the
interior of a lozenge in C then one can homotope T to a union of Birkhoff annuli so that the periodic
orbits in the annuli do not intersect the union of the interiors of the Birkhoff annuli. This is half way to
producing an embedded torus homotopic to 1" which is a union of Birkhoff annuli. The second conclusion
of theorem C implies for instance that if 7' is the boundary torus between 2 hyperbolic pieces in the
torus decomposition, then the situation of theorem C cannot happen. The general result concerning best
position of embedded tori is the following (Theorem 6.10):

Theorem D — Suppose that M is orientable and that the pseudo-Anosov flow is not topologically
conjugate to a suspension Anosov flow. Let T' be an embedded, incompressible torus in M. Then either
1) T is isotopic to an embedded Birkhoff torus, or 2) T is homotopic to a weakly embedded Birkhoff
torus 7" and T (or T”) is contained in a periodic Seifert fibered piece, or 3) T is isotopic to the boundary
of the tubular neighborhood of an embedded Birkhoff-Klein bottle contained in a free Seifert piece.

Weakly embedded means that T" is embedded except perhaps along the closed orbits contained in the
Birkhoff annuli. All the possibilities in Theorem D indeed happen: 1) is the typical situation when the



4 THIERRY BARBOT AND SERGIO R. FENLEY

flow is a geodesic flow (or more generally, a Handel-Thurston example, see [Ha-Th]), 2) occurs in the
Bonatti-Langevin examples, and 3) occurs in the geodesic flow on non-orientable closed surfaces (see the
last remark of section 4).

One consequence of this study of standard forms for tori is the following (Proposition 6.9):

Theorem E — Let a be a singular orbit of a pseudo-Anosov flow. Then « is homotopic into a piece of
the torus decomposition of the manifold.

If the manifold is atoroidal or Seifert fibered the statement is vacuous. Notice that the result is clearly
not true for regular periodic orbits as there are many transitive Anosov flows in graph manifolds which
are not Seifert fibered [Ha-Th].

The results above help tremendously to understand canonical neighborhoods associated to periodic
Seifert fibered pieces (section 7):

Theorem F — Let P be a periodic Seifert fibered piece of the torus decomposition of M, where M is
orientable. Then there is a finite union Z of Birkhoff annuli, which is embedded except perhaps at the
boundaries of the Birkhoff annuli and which is a model for the core of P: a sufficiently small neighborhood
of Z is a representative for the Seifert piece P. These neighborhoods are well defined up to flow isotopy.

In the course of analysing the results of this article we produced several very interesting examples of
generalized pseudo-Anosov flows where one also allows one prongs: these are called one prong pseudo-
Anosov flows. Classically they originated in Thurston’s work [Th2] since he constructed pseudo-Anosov
homeomorphisms of the two sphere, having for example four one prong singularities. A suspension of
these homeomorphisms produces a one prong pseudo-Anosov flow. In this case the universal cover is
S2 x S! and hence M is not irreducible, but still the flow in the universal cover is topologically a product
flow and the orbit space is S? which is a two manifold. Other examples with one prongs are obtained
doing Dehn surgery on periodic orbits of pseudo-Anosov flows [Fr], but here very little is known about
the resulting flows. At the end of section 4, we produce some interesting new examples:

Theorem G — 1) There is an infinite family of one prong pseudo-Anosov flows with two one prong
singular orbits and no other singular orbits where the manifold is Seifert fibered. They are doubly
branched covered by the Handel-Thurston examples [Ha-Th]. 2) There are also infinitely many examples
of one prong pseudo-Anosov flows which are doubly branched covered by a geodesic flow in a hyperbolic
surface and where the original manifolds are not irreducible.

As remarked above the Handel Thurston examples are in graph manifolds which are not Seifert fibered.
Part 1) shows that theorem A does not hold in Seifert fibered manifolds if one allows one prong orbits.
The manifolds in part 2) are not irreducible and neither homeomorphic to S? x S'. At the beginning of
section 8, we improve these examples to show that a mixed behavior of Seifert fibered pieces is possible:

Theorem H — There are examples of pseudo-Anosov flows in graph manifolds with one periodic piece
and an arbitrary number of free pieces.

The flows in theorem H are obtained as branched cover constructions of the examples 2) in theorem
G.

The main family of examples we produce, in the same section 8, is a vast generalization of the Bonatti-
Langevin construction [Bo-La], showing that the description given in Theorem F is actually realizable in
a wide variety of cases, at least in the case where one requires that the boundary of the periodic Seifert
pieces are transverse to the flow:

Theorem I — There is a large family of (possibly one prong) pseudo-Anosov flows in graph manifolds and
manifolds fibering over the circle with fiber a torus, where the flows are obtained by glueing simple building
blocks. The building blocks are homeomorphic to solid tori and they are canonical flow neighborhoods of
intrinsic (embedded) Birkhoff annuli. The building blocks have tangential boundary, transverse boundary
and only 2 periodic orbits. A collection of blocks is first glued along annuli in their tangential boundary
to obtain Seifert fibered manifolds with boundary, and which have a flow transverse to the boundary with
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finitely many periodic orbits. Under very general and specified conditions these can be glued along their
boundaries (transverse to the flow) to produce (possibly one prong) pseudo-Anosov flows in the resulting
closed manifolds. In addition one can do any Dehn surgery (except for one) in the periodic orbits of the
middle step to obtain new (possibly one prong) pseudo-Anosov flows. Finally if M fibers over the circle
with fiber a torus and M is not 7, then M has a one prong pseudo-Anosov flows with two one prong
orbits and no other singularities.

The constructions in theorem I are very general producing for example one prong pseudo-Anosov flows
in all but one torus bundle over the circle. This shows that theorem B also does not hold if one allows one
prongs. In the construction in theorem I, if the middle step produces a flow without one prong periodic
orbits, then the resulting final flow in the closed manifold will be pseudo-Anosov in a graph manifold.
All the Seifert fibered pieces are periodic pieces. This construction is very general producing a very large
class of new examples.

An appealing way to describe these examples in the absence of the Dehn surgeries is the following:
the manifolds with transverse boundary in the middle step are circle bundles, with fibers preserved by
the local flow, and projecting to a local flow of Morse-Smale type on a surface S with boundary: there
is a finite number of singular points (prong singularities) in S, stable and unstable manifolds joining the
singular points to the boundary, and all other orbits go from boundary component to another. This
picture can be encoded in the combinatorial data of a fat graph satisfying some conditions.

When the flows of theorem I do not have p-prong singularities or one prongs, they are new examples
of Anosov flows. In this case these Anosov flows are never contact. This is because all contact Anosov
flows are R-covered [Ba6]. In addition if an Anosov flow is R-covered and admits a transverse torus T,
then it has to be topologically conjugate to a suspension and T' must be a cross section [Fel, Bal]. In our
situation consider the transverse tori which are the boundary components of the middle glueing pieces:
they do not intersect all orbits of the flow and cannot be cross sections. This proves that the flows are
not contact.

At this point there is no good understanding of the general structure of one prong pseudo-Anosov flows
and they can be much less well behaved than pseudo-Anosov flows. In this article we do not analyse at
all the structure of one prong pseudo-Anosov flows, but only construct many examples of these, some of
which highlight the differences with pseudo-Anosov flows in Seifert fibered manifolds, solvable manifolds
and graph manifolds.

The first examples of an Anosov flow in a graph manifold where the pieces are periodic were constructed
by Bonatti and Langevin [Bo-La]: they are special cases of the examples provided by theorem I. The
systematic study of Anosov flows in graph manifolds was started in [Ba3, Ba4].

2. Background

Pseudo-Anosov flows — definitions

Definition 2.1. (pseudo-Anosov flows) Let ® be a flow on a closed 3-manifold M. We say that ® is a
pseudo-Anosov flow if the following conditions are satisfied:

- For each x € M, the flow line t — ®(x,t) is C', it is not a single point, and the tangent vector
bundle D;® is CV in M.

- There are two (possibly) singular transverse foliations A®, A" which are two dimensional, with leaves
saturated by the flow and so that A®, A" intersect exactly along the flow lines of ®.

- There is a finite number (possibly zero) of periodic orbits {~;}, called singular orbits. A stable/unstable
leaf containing a singularity is homeomorphic to P x I/f where P is a p-prong in the plane and f is a
homeomorphism from P x {1} to P x {0}. In addition p is at least 3.

- In a stable leaf all orbits are forward asymptotic, in an unstable leaf all orbits are backwards asymp-
totic.

Basic references for pseudo-Anosov flows are [Mol, Mo2] and [An] for Anosov flows. A fundamental
remark is that the ambient manifold supporting a pseudo-Anosov flow (without 1-prongs) is necessarily
irreducible - the universal covering is homeomorphic to R? ([Fe-Mo)).
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Definition 2.2. (one prong pseudo-Anosov flows) A flow ® is a one prong pseudo-Anosov flow in M3 if
it satisfies all the conditions of the definition of pseudo-Anosov flows except that the p-prong singularities
can also be 1-prong (p=1).

Torus decomposition

Let M be an irreducible closed 3—manifold. If M is orientable, it has a unique (up to isotopy) minimal
collection of disjointly embedded incompressible tori such that each component of M obtained by cutting
along the tori is either atoroidal or Seifert-fibered [Ja, Ja-Sh] and the pieces are isotopically maximal with
this property. If M is not orientable, a similar conclusion holds; the decomposition has to be performed
along tori, but also along some incompressible embedded Klein bottles.

Hence the notion of maximal Seifert pieces in M is well-defined up to isotopy. If M admits a pseudo-
Anosov flow, we say that a Seifert piece P is periodic if there is a Seifert fibration on P for which a regular
fiber is freely homotopic to a periodic orbit of ®. If not, the piece is called free.

Remark. In a few circunstances, the Seifert fibration is not unique: it happens for example when P
is homeomorphic to a twisted line bundle over the Klein bottle or P is T? x I. We stress out that our
convention is to say that the Seifert piece is free if no Seifert fibration in P has fibers homotopic to a
periodic orbit.

Orbit space and leaf spaces of pseudo-Anosov flows

Notation/definition: We denote by M the universal covering of M, and by 71 (M) the fundamental group

of M. considered as the group of deck transformations on M. The singular foliations lifted to M are
denoted by A®, A", If z € M let W*(z) denote the leaf of A* containing z. Similarly one defines W*(z)
and in the universal cover W*(z), W*(z). Similarly if o is an orbit of ® define W*(a), etc... Let also ®
be the lifted flow to M.

We review the results about the topology of 7\5, A" that we will need. We refer to [Fe2, Fe3] for detailed
definitions, explanations and proofs. The orbit space of ® in M is homeomorphic to the plane R? [Fe-Mo]
and is denoted by O = M /®. There is an induced action of m; (M) on O. Let

©: M - O = R’

be the projection map: it is naturally m (M )-equivariant. If L is a leaf of A® or A", then O(L) C O
is a tree which is either homeomorphic to R if L is regular, or is a union of p-rays all with the same
starting point if L has a singular p-prong orbit. The foliations KS, A" induce m1(M)-invariant singular
1-dimensional foliations O°, O" in O. Its leaves are ©(L) as above. If L is a leaf of A* or K“, then a
sector is a component of M- L. Similarly for O% O". If B is any subset of O, we denote by B x R the
set © 1(B). The same notation B x R will be used for any subset B of M: it will just be the union of
all flow lines through points of B. We stress that for pseudo-Anosov flows there are at least 3-prongs in
any singular orbit (p > 3). For example, the fact that the orbit space in M is a 2-manifold is not true in
general if one allows one prongs.

Definition 2.3. Let L be a leaf of AS or Av. A slice of L is | x R where | is a properly embedded copy
of the reals in O(L). For instance if L is reqular then L is its only slice. If a slice is the boundary of a
sector of L then it is called a line leaf of L. If a is a ray in ©(L) then A = a x R is called a half leaf
of L. If ¢ is an open segment in O(L) it defines a flow band Ly of L by L1 = ( x R. We use the same
terminology of slices and line leaves for the foliations O%, O" of O.

If F € A® and G € A then F and G intersect in at most one orbit.
We abuse convention and call a leaf L of A* or A" periodic if there is a non trivial covering translation
g of M with g(L) = L. This is equivalent to w(L) containing a periodic orbit of ®. In the same way

an orbit v of D is periodic if 7(7y) is a periodic orbit of ®. Observe that in general, the stabilizer of an
element a of O is either trivial, or a cyclic subgroup of m (M).

Product regions
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Suppose that a leaf F' € A% intersects two leaves G,H € A" and so does L € A*. Then F,L,G, H form
a rectangle in M, ie. every stable leaf between F' and L intersects every unstable leaf between G and H.
In particular, there is no singularity in the interior of the rectangle [Fe3].

There will be two generalizations of rectangles: 1) perfect fit, which is a rectangle with one corner orbit

removed (definition 2.8) and 2) lozenge, which is a rectangle with two opposite corners removed (definition
2.9). We will also denote by rectangles, perfect fits, lozenges and product regions the projection of these
regions to O = R2.
Definition 2.4. Suppose A is a flow band in a leaf of As. Suppose that for each orbit a of ® in A there
is a half leaf By of W"(«) defined by « so that: for any two orbits v, in A then a stable leaf intersects
Bg if and only if it intersects B.. This defines a stable product region which is the union of the B, .
Similarly define unstable product regions.

The main property of product regions is the following: for any F' € AS, G € A" so that (1)) FNA #
) and (i5) GNA # 0, then FNG # (). There are no singular orbits of ® in A.

Theorem 2.5. ([Fe3]) Let ® be a pseudo-Anosov flow. Suppose that there is a stable or unstable product
region. Then ® is topologically conjugate to a suspension Anosov flow. In particular ® is non singular.

In particular:

Definition 2.6. ([Fel]) A pseudo-Anosov flow is product (or splitting in the terminology of [Fra]) if the
entire orbit space is a product region, ie if every leaf of its stable foliation A® intersects every leaf of its
unstable foliation A™.

Proposition 2.7. A (topological) Anosov flow is product if and only if it is topologically conjugate to a
suspension Anosov flow. In particular M fibers over the circle with fiber a torus and Anosov monodromy.

Hence, in the sequel, we will use product pseudo-Anosov flow as an abbreviation for pseudo-Anosov
flow topologically conjugate to a suspension.

Perfect fits, lozenges and scalloped chains

Recall that a foliation F in M is R-covered if the leaf space of Fin M is homeomorphic to the real
line R [Fel].

Definition 2.8. ([Fe2, Fe3]) Perfect fits - Two leaves F' € A® and G € A¥, form a perfect fit if FNG = ()

and there are half leaves Fy of F' and G1 of G and also flow bands L1 C L € AS and Hy C H € INX“, S0
that the set

Fl U Fl U fl U @1
separates M and forms an a rectangle R with a corner removed: The joint structure of INXS,INX“ i R is

that of a rectangle with a corner orbit removed. The removed corner corresponds to the perfect of F' and
G which do not intersect.

We refer to fig. 1, a for perfect fits. There is a product structure in the interior of R: there are
two stable boundary sides and two unstable boundary sides in R. An unstable leaf intersects one stable
boundary side (not in the corner) if and only if it intersects the other stable boundary side (not in the
corner). We also say that the leaves F, G are asymptotic.

Definition 2.9. ([Fe2, Fe3]) Lozenges - A lozenge R is a region of M whose closure is homeomorphic to
a rectangle with two corners removed. More specifically two points p,q define the corners of a lozenge if
there are half leaves A, B of W*(p), W"(p) defined by p and C, D half leaves of W*(q), W"(q) defined by
p,q, so that A and D form a perfect fit and so do B and C. The region bounded by the lozenge R does
not have any singularities. The sides of R are A, B,C,D. The sides are not contained in the lozenge,
but are in the boundary of the lozenge. There may be singularities in the boundary of the lozenge. See

fig. 1, b.

There are no singularities in the lozenges, which implies that R is an open region in M.
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F, W S(p
P W U (Q)
G, N
L, 4

S W S (q)
(a) (b)

(c)

Figure 1: a. Perfect fits in ]\7, b. A lozenge, ¢. A chain of lozenges.

Two lozenges are adjacent if they share a corner and there is a stable or unstable leaf intersecting both
of them, see fig. 1, c. Therefore they share a side. A chain of lozenges is a collection {C;},7 € I, where
I is an interval (finite or not) in Z; so that if 4,4 + 1 € I, then C; and C;;; share a corner, see fig. 1, c.
Consecutive lozenges may be adjacent or not. The chain is finite if I is finite.

Definition 2.10. (scalloped chain) Let C be a chain of lozenges. If any two successive lozenges in the
chain are adjacent along one of their unstable sides (respectively stable sides), then the chain is called
s-scalloped (respectively u-scalloped) (see fig. 2 for an example of a s-scalloped region). Observe that a
chain is s-scalloped if and only if there is a stable leaf intersecting all the lozenges in the chain. Similarly,
a chain is u-scalloped if and only if there is an unstable leaf intersecting all the lozenges in the chain.
The chains may be infinite. A scalloped chain is a chain that is either s-scalloped or u-scalloped.

For simplicity when considering scalloped chains we also include any half leaf which is a boundary
side of two of the lozenges in the chain. The union of these is called a scalloped region which is then a
connected set. _ - -

We say that two orbits v, a of ® (or the leaves W*(y), W*(«)) are connected by a chain of lozenges
{Ci},1 <i < mn,if yis a corner of C; and « is a corner of C,,.

Fat tree of lozenges

Definition 2.11. (fat tree of lozenges G(«)) Let o be an orbit of ®. We define G(«) as the graph such
that: B

the vertices G(a) are orbits of ® connected to o by a chain of lozenges,

there is an edge in G(a) between [ and v if and only if there is a lozenge with corners a, 3.

One easily proves (see for example [Fe2] for Anosov flows):
Proposition 2.12. For every o in O, G(a) is a tree.

In particular for any two orbits 4,y connected by a chain of lozenges, then there is a unique indivisible
or minimal chain of lozenges — where no backtracking on lozenges is allowed.

The proposition implies that G(«) is naturally embedded in the 2-plane O. Hence, once fixed an
orientation on O, there is, for every vertex «a, a cyclic order on the set of edges of G(«) adjacent to «.
Moreover, G(«) is naturally equipped with a structure of a fat graph: it is a retract of an orientable
surface with boundary (the tubular neighborhood of its embedding in ©). This object will be extremely
useful in this article.

If C is a lozenge with corner orbits 3,y and g is a non trivial covering translation leaving [,y invariant
(and so also the lozenge), then m(83), (v) are closed orbits of ® which are freely homotopic to the inverse
of each other [Fe2]. Here we consider the closed orbits (), w(vy) traversed in the positive flow direction
and we allow 7(3), w(vy) to be non indivisible closed orbits. In other words it is the closed orbit associated
to the deck transformation g, which may not be indivisible.

Theorem 2.13. ([Fe2, Fe3]) Let ® be a pseudo-Anosov flow in M3 closed and let Fy # F; € As.
Suppose that there is a non trivial covering translation g with g(F;) = F;,i = 0,1. Let a;,i = 0,1 be the

periodic orbits of ® in F; so that g(a;) = ;. Then ag and ay are connected by a finite chain of lozenges
{Ci},1 <i < n and g leaves invariant each lozenge C; as well as their corners.
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In particular:
Proposition 2.14. Let g be a non-trivial element of m (M) fizing two orbits a and y. Then G(a) = G(7).

We think of a fat tree as a simplicial tree. Observe that g as above naturally acts simplicially on G(«).
It does not necessarily preserve the cyclic order on links of vertices in G(«), since it does not necessarily
preserve the orientation of O.

Definition 2.15. (the tree G(g)) Let g in w (M) fizing an orbit . The g-fized points in G(a) form a
connected subtree because of simplicial action. This subtree is denoted by G(g).

From this observation we infer several interesting facts:
Proposition 2.16. Let g be a non-trivial element of m (M). All of the following statements are true:

(1) For any n # 0, g admits a fized point in O if and only if g" admits a fized point in O .

(2) Assume that g fizes an orbit o € O. Then, some positive power gP acts trivially on G(a).

(3) Letp be an integer as in item 2. Let Z(gP) be the pseudocentralizer of gP in (M), ie. the subgroup
comprised of elements f such that fgP f~1 = g*P. Then Z(gP) acts on the tree G(a) = G(gP).

(4) Assume that g preserves a lozenge L. Then, g preserves individually each corner of L. Moreover,
g preserves the orientation of O, and acts trivially on G(a) = G(B), where a and B are the corners

of L.
Proof.

(1) Suppose ¢"(a) = a with a orbit of ®. Then g"(g()) = g(«), so by theorem 2.13, o and g(c) are
connected by a chain of lozenges and therefore G(«) = G(g(a)) = g(G(«)). Hence g acts on G(«).
The result now follows easily from the fact that if g acts freely on a tree, then ¢" acts freely on
the tree.

(2) Let k be the number of prongs at . Then g2 preserves the orientation of O, hence the cyclic
ordering of the link of a. Hence g?* fixes every vertex of G(a) adjacent to . But if g?* fixes a
point v in G(a) and an edge in G(a) adjacent to v, it fixes every vertex adjacent to -y (once more,
due to the preservation of orientation of O by ¢?¥). Our claim follows by induction.

(3) Let f in Z(g?) and § a vertex in G(a). Then g (8) = £1 g f(8) = f(g*?(8)) = £(5) by (2).
By theorem 2.13 f(f) is in G(«) and so f acts on G(a).

(4) Let o, 8 be the corners of L. Assume by way of contradiction that g(a) = 8 and g(8) = a. Let
A, C be the stable half leaves of W*(a), W*(8) contained in the closure of £. Then, g(A) = C,
and composing g with the holonomy map from C to A along leaves of A" defines an orientation
reversing map from A onto itself. This map must admit a fixed point, hence there is a leaf U
of A% fixed by g and intersecting £. Now ¢° fixes U and A and hence leaves invariant the orbit
U N A. This produces 2 distinct periodic orbits in 7(A), contradiction.

Hence, ¢ fixes @ and . Keeping the notation above, we have g(A) = A and ¢g(B) = B (where
B is the ¢ invariant unstable half-leaf of W“(a) in the boundary of £). It follows that g preserves
the orientation of O. It therefore preserves the cyclic ordering along vertices of G(a). It follows
as in item 2 that g acts trivially on G(«).

O

The main result concerning non Hausdorff behavior in the leaf spaces of INXS, A is the following;:
Theorem 2.17. [Fe2, Fe3] Let ® be a pseudo-Anosov flow in M?. Suppose that F # L are not separated
in the leaf space of AS. Then F is periodic and so is L. More precisely, there is a non-trivial element g
of m1 (M) such that g(F') = F and g(L) = L. Moreover, let «, B be the unique g-fized points in F, L,
respectively. Then, the chain of lozenges connecting a to B is s-scalloped (see figure 2).

Non-HausdorfT trees

A segment is a set with a linear order which is isomorphic to an interval in R: [0,1],]0,1), (0,1) or
[0,0]. Type (0,1) is called an open segment and type [0,0] is a degenerate segment. A closed segment is
one of type either [0,0] or [0,1], ie. admitting a minimal and a maximal element. A half open segment
is one of type [0,1), where we also consider the reverse linear order. A subsegment C is a subset of a
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Figure 2: The correct picture between non separated leaves of As.
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segment I so that if z,y are in C' and z in C' satisfies x < z < y, then z is also in C. With the induced
linear order, C is also a segment. If a set Z is a union of segments, then given z in Z, a prong at x
is a segment I in Z of type [0,1) or [0,1] with z € I corresponding to 0. A subprong of a prong I at
x is a subsegment of I of type [0,1) with = corresponding to 0. Two prongs I, Iy at x are distinct if
I N I, = {x}, or equivalently they do not share a subprong at z.

Definition 2.18. (non Hausdorff tree)[Feb] A non Hausdorff tree is a space H satisfying:

1) H is a union of open segments,

2) H is arcwise connected — for each x,y € H, there is a finite chain of segments I, ..., I, with
z€l,y€l, and ; N I;11 # 0 for any 1 <1 < mn,

3) Points separate H in the following way — for any x € H and I, Iy distinct prongs at x the following
happens: Given y, € I) — {x}, yo € Iy — {z}, then any finite chain of segments from yi to yo (as in (2)
above) must contain x in at least one of the segments.

If I, 15 are two segments with Iy N 1y a single point which is an endpoint of both I, and Iy, then given
compatible orders in Iy, Is we extend them to an order in I; U Iy, which is then a segment of H.

A priori there may be infinitely or even uncountably many distinct prongs at x.

Definition 2.19. (topology of H — [Feb]) We say that a subset A of H is open in H if for any x € A
the following happens: for any prong I at x, there is a subprong I' at x (I' C I) so that I' C A.

Equivalently A is open if for any open segment S and x in A N S, there is an open subsegment S’
containing z and contained in A.

It follows from condition 3) of non Hausdorff trees that if I; and Iy are two segments, then I; N Iy is
either empty or is a subsegment of both Iy, Is, which may be a point. A point z € H is regular if given
any two open segments I, Iy with x € I} N Iy, then I} N Iy is an open segment in H. Otherwise z is
singular and H is “treelike” in z. Equivalently a point is regular if there are only two distinct prongs at

It is easy to check that if V' is an interval in R with the standard topology and f : V — H is an order
preserving bijection to a segment in H, then f is a continuous map.

Given z # y then for any prong at y there is a subprong disjoint from z, hence contained in H — {x}.
It follows that H — {z} is an open set in A and therefore points are closed in #, that is, A satisfies the T
property of topological spaces [Ke]. In general H does not satisfy the Hausdorff property T4 [Ke|. Given
x € H and I a prong at x let

Ar = {yeH —{z} | thereis a segment path v C H — {z} from y to some point in I }.

By the above remark, Ay is arcwise connected. If I, J are prongs at z which share a subprong then it
is easy to see that Ay = Ajy. If I, J are distinct prongs at x then I U J is a segment of H with = in the
interior of the segment. If there is a segment path v C H — {z} from some y € A; to some z € A; then
one constructs a segment path 7 contained in H — {z} from some y' € I to some 2’ € J. This contradicts
condition (3) of the definition of non Hausdorff tree. Hence A; N A; = (.

In addition given y € A; and J a prong at y, there is a subprong J' C H — {z}. Clearly J' C A;. This
implies that any A; is open in H and hence A; is also closed in H — {z}. Each A; is path connected
hence connected, so the collection
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{Ar}, I distinct prongs at =z (1)
is the collection of connected components of H — {x}.
In addition suppose that A, A; are distinct, but there is a path a in H — {z} from a point in A; to
a point in Ay (notice here we consider a general path). Then since A7, A; are path connected, it follows
that A; U Ay U« is path connected and hence connected in H — {z} contradicting the fact that (1) is
the family of connected components of H — {z}. It follows that the collection (1) is also the collection of
path components of H — {z}.

Conclusion: distinct prongs at x are in one to one correspondence with components (or path components)
of H — {z}. For instance z has p prongs if and only if # — {z} has p components.

Given z,y € H which are not separated from each other in H we write z ~ y. One says that z separates
x from y if z, y are in distinct components of H — {z}. Given any two z,y € H there is a continuous path
a(t),0 <t <1 from z to y. Define

(z,y) = {z€H | zseparates fromy } and [z,y] = (z,y)U{z}U{y},
The first is the open block of H with endpoints x,y and the second is the closed block of H with endpoints
x,y. In [Feb] it is proved that [z,y] is the intersection of all continuous paths in H from z to y.

We remark that when x,y are the endpoints of a segment I of H, the notation [z, y] also suggests the
segment I from z to y (there is a unique such segment). In fact I and [z,y] are the same [Fe5]. We will
also use the notation (z,y] for half open segments.

As ‘H may not be Hausdorff it may be that [z,y] is not connected. It turns out that [z,y] is a union
of finitely many closed segments of H homeomorphic to either [0,0] or [0, 1]:

Lemma 2.20. ([Fe5]) For any x,y € H then there are x;,y; € H with:
n

[:v,y] = U [miuyi}u 1=, Yn =Y,
i=1

a disjoint union, where [z;,y;] are closed segments in H. In addition y; = x; 41 for any 1 <i<n—1 and
some or all segments [x;,y;] may be degenerate, that is, points.

There is a natural pseudo distance in H: d(z,y) = #(components [z,y]) — 1, see [Bab, RSS]. So

d(z,y) = 0 means there is a segment from z to y. Also d(z,y) is the minimum number of non immersed
points of any path from z to .

We now consider group actions on non Hausdorff trees. Let v be a homeomorphism of . We say that
v separates points if y(z) is separated from z for any x € H, that is, they have disjoint neighborhoods
in . In particular v acts freely on #. In [Bab], the first author constructed a fundamental axis A(y) if
v separates points in A and H has no singularities. In that case H is a simply connected 1-dimensional
manifold and hence is orientable.
Definition 2.21. (fundamental axis)[Feb] Let v be a homeomorphism of a non Hausdorff tree H so that
v has no fized points. The fundamental azis of -y, denoted by A(v) is

A) = {seH | @) €l b
or equivalently y(z) separates x from ~*(z).

If y(z) is not separated from x in H, we say that = is an almost invariant point under 7. In [Fe5] the
following easy fact is proved: Let 7 be a homeomorphism of a non Hausdorff tree H without fixed points.
Then z € A(7) if and only if there is a component U to H — {z} so that y(U) C U. The main result is:

Theorem 2.22. ([Feb]) Let y be a homeomorphism of a non Hausdorff tree H without fized points. Then
A(7) is non empty.

Clearly A(y) is invariant under . Also applying v 2 then v~ !(z) separates x from vy ?(z) and so
Aly) = Aly™).
Proposition 2.23. For any = € A(y), then A(y) = Uiez[y (), v (z)].
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Remark: In general it is not true that if v acts freely on H, then powers of y also do. For example let
v have an almost invariant point v with y(v) # v, but ¥?(v) = v. In this case A(y) is an open segment
which is not properly embedded in H.

Let z € A(y). If d(z,y(z)) = 0, then z,y(z) are connected by a segment in #H. Since y(z) separates x
from %(z) it follows that [z,v(%)] U [y(z),y%(z)] = [x,7%(z)] is a segment of H. Tt follows that A(vy) is
an open segment of #H, hence homeomorphic to R. If d(z,y(z)) > 0, then x and y(z) are connected by
a chain of closed segments. It is easy to see that

Aly) = U [z, wi,
nez

where w; is not separated from z;;;. Then v acts as a translation on the set of segments, that is, there
is k € Z, so that vy([z;, wi]) = [zitk, witk] for any i € Z. We abuse notation and say that -y acts on Z.

Notice that if v acts freely and ~ leaves invariant an open segment I of H, then A(y) = I. This
is because for any z € I, y(z) separates = from y?(z) (free action on I), so I C A(y). But A(y) =
Unez[y™(x), 7" (z)] so I = A(y). Finally it is also not hard to prove the following: Let v, be two
commuting homeomorphisms of H# which act freely. Then A(y) = A(«), see [Feb].

3. Actions and pseudo-Anosov flows

Let ® be a pseudo-Anosov flow in M3. The foliations A®, A* have the following local models: at a non
singular point y there is a ball neighborhood U of y in M homeomorphic to D? x [0, 1] where the leaves
of (say) A® are of the form D? x {t}. Near a singular p prong orbit the picture is the same as a p-prong
singularity of a pseudo-Anosov homeomorphism of a surface times an interval. For example consider the
germ near zero of the foliation of the plane whose leaves are the fibers of the complex map z — Re(zP~?).
This foliation has a p-prong singularity at the origin. The 3-dimensional picture is obtained by multiplying
this by an interval. Similarly for A“. Let C be an interval in R.

Definition 3.1. (transverse curves) Let 7 : C' — M be a continuous curve. Then 7 is transverse to A° if
the following happens: given t in C there is a small neighborhood Z of T(t) where T is an injective map
to the set of local sheets of A°. The same definition works for A“,KS,K“.

Equivalently the curve is always crossing local leaves. The foliations A®, A" blow up fo essential
laminations. Hence in M being transverse to AS is equivalent to 7 inducing an injective map in the leaf
space of As. For non singular points this is the usual notion of transversality.

We establish some notation. Let

H* = the leaf space of A* and v, : M — H* the projection map.
Similarly define H* and v,. The results below which will be proved for H?*, obviously work also for H“.

Lemma 3.2. H® has a natural structure as a non Hausdorff tree, where the segments in H* are projections
of transversals to A°. Similarly for H".

Proof. We prove properties (1)-(3) of the definition of non Hausdorff tree. Given x in H* let p in v, '(z)
and 7 an open transversal to As containing p. Then v,(7) is an open segment containing x. This proves
(1). Let 2,y in H* and choose p in v, '(z), ¢ in v, '(y). Connect p,q by a path in M and perturb it
slightly to be a concatenation of transversals. This can be done because it can be done locally. Hence
x,y are connected by a finite collection of segments in H*® and this proves (2).

Finally let I, I5 be segments in 7{° intersecting only in . Let [y, > be transversals to A® with I = vs(ly),
i = 1,2. We can assume they share a point p in v, '(z). Any two transversals to As entering the same
component of M — Ws(p) will have subtransversals intersecting the same leaves of A* because of the

local picture. Therefore Iy — {p}, Iy — {p} are contained in different components of M — W*(p). Let now
yr € Iy — {z}, k =1,2. Let J;,;1 < i < n be a concatenation of segments from y; to ys in H*. There are

transversals 7; to A® with vs(1;) = Ji. Let g1 in 7 Ny '(y1) and go in 7, Nvg '(y2). Since J; and J;yq
intersect we can connect a point in 7; to a point in 7,41 by a path in a leaf of A®*. The concatenation of
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parts of 7; and paths in leaves of AS produces a path from ¢; to gy in M. Since Ws(p) separates M and
q1, g2 are in different components of the complement, then this path has to intersect Ws(p). If it intersects
Ws(p) in a path in Ws(p) then the endpoints of this path are in some 7; and hence its projection, which
is z is in J;. This proves (3). O

We have two topologies in H®: the quotient topology from vy and the non Hausdorff tree topology.
These are the same:

Lemma 3.3. The quotient topology in H® (from vy : M — H?) is the same as the non Hausdorff tree
topology in H?.

Proof. Let A C H* be an open set in the quotient topology and z in A. Let I be a prong at z. Then
I = vy(7) for some transversal 7 to A® starting in some p € v, '(z). Since v;'(A) is open in M and p
is in v, '(A) there is a non degenerate subtransversal 7/ of T starting at p and contained in v, !(4). Let
I' = vg(7"). Then I' is a prong at = which is a subprong of I. In addition I’ is contained in A. Therefore
A is open in the non Hausdorff tree topology.

Conversely suppose that A is open in the non Hausdorff tree topology. By way of contradiction suppose
that there is p in v, '(A) which is not in the interior of v, !(A). Then we can find a sequence (p,,)neN in
M _converging to p and with p, not in vy 1(A) for any n. It follows that p, Z WS( ) for any n as v, ' (A)
is A* saturated. Up to a subsequence assume there is a component Z of M — WS( ) containing p,, for
every n. Here the condition of finitely many prongs at singular points is used. Let 7 be a transversal
to A* starting at p and entering the component Z. Let z = v4(p) and I = (7). Then I is a prong at
p and since A is open in the non Hausdorff tree topology, there is a subprong I’ at z with I' contained
in A. Let 7' be the subtransversal of 7 corresponding to I'. For n sufficiently large W*(p,) intersects
7 C v;'(A). Hence py, is in v, ' (A). This contradiction shows that v '(A) is open in M. Therefore A
is open in the quotient topology. O

Remark — A variation of the proof works for non Hausdorff trees H which are “leaf spaces” of lifts of
essential laminations. The difference is that it is very possible that there are singularities H which have
infinitely many prongs.

We say that two leaves L, F' of A* are non separated from each other if there are p in L, ¢ in F and a
sequence of leaves (L,) of AS having points py., g, in L, with (p,) converging to p and (g,) converging
to ¢. Up to subsequence we may assume that (L,) is a nested sequence of leaves of As. By throwing out
a few initial terms in (p,), (¢n), this is equivalent to the existence of transversals 7, 7p to AS with 7,
starting at p, 75 starting at ¢ with 7, containing all p,, as above and 7, containing all ¢,. Project to H?*:
let

r=vs(p), y=vs(q), Tn=vs(Pn);, Yn=vs(qn), I =vs(1L), J=rvs(p).

Here I,J are segments in H®, [ is a prong at z and J is a prong at y. Also z, = y,. If I, is the
subsegment of I from z; to z, and J, the subsegment of J from y; to y, then I,, = J, and therefore
I —{z} =J —{y}. Conversely if z,y have prongs I,J so that I — {z} = J — {y} it is easy to show that
L=v""(z) and F = v~ '(y) are leaves of A* non separated from each other. We say this is condition (I).

We claim that this condition is also equivalent to condition (II): L, F' do not have disjoint, open, As
saturated neighborhoods in M. In other words z,y do not have disjoint open neighborhoods in H?*.
Clearly condition (I) implies condition (II). Conversely suppose that condition (II) holds. If z = y then
clearly condition (I) holds. Suppose then z,y are distinct. We proved before that for any z in H*, then
two points are in the same path component of H* — {2z} if and only if they are connected by a segment
path in H® which does not contain {z} and these path components are open in H*. By condition (II) it
follows that for any z in H*® — {z, y}, the points x, y are in the same component of H* — {z}. Hence (z,y)
is empty. By lemma 3.5, page 71 of [Fe5|, there are prongs I at x and J at y so that I — {z} = J — {y}.
This is condition (I).

If any of these 2 conditions holds for z,y in H® we write z ~ y.
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For f in (M) let Fiz(f) be those x in H*® with f(x) = x. Let Fiz™(f) be the set of x in H® with
x ~ f(x). Considering the action of f on the orbit space O, let B(f) the set of u in O, fixed by f.

Lemma 3.4. Let ® be a pseudo-Anosov flow and f in 7 (M). Then Fix™ f is a closed subset of H°.

Proof. Let x not in Fiz™(f), so x # f(x). Then z and f(z) have disjoint open neighborhoods U,V in
‘H®. By continuity of f, there is a smaller open neighborhood W of z so that f(W) is contained in V.
Hence any y in W satisfies y £ f(y) and (Fiz™(f))¢ is open. O

Remark — In general Fiz(f) is not closed — a sequence (z,) in Fiz(f) may converge to = which is only
in Fiz™(f).

The following will be useful later:
Lemma 3.5. If f is in m (M) and f is not the identity, then Fiz™(f) is countable.

Proof. First we show that Fiz(f) is countable. Let L in A% with f(L) = L. Then there is a periodic
orbit in 7(L). If Ly, Ly are in Fiz(f) then their periodic orbits are connected by a chain of lozenges by
theorem 2.13. In addition the orbit space @ = R? is countably compact. If Fiz(f) were uncountable,
then B(f) would be uncountable and there would be accumulation points in B(f). This is disallowed
because any two points in Fiz(f) are connected by a chain of lozenges.

Now let N = {x € H*, so that z is non separated from some y € H*}. We will prove that N is
countable, hence Fiz™~(f) is countable. Assume by way of contradiction that N is uncountable. The
space H?® is a union of countably many open segments and we fix one such countable collection. For each
z in H?, let I, be one such segment in the countable family containing z. If N is uncountable, then there
is an open segment [ in H® containing uncountably many elements of N. Choose an order in I. For
each z in I N N, there is y distinct from z with y ~ 2. Suppose wlog that for uncountably many such
z the corresponding y is non separated from the z in their positive sides, with respect to the order in 1.
For any such z,z' in TN N, let y,y" be non separated from them respectively. We claim that I,, I,/ are
different. Suppose for simplicity that z < z’ in I. Here 2z’ ~ 3" and non separated on their positive sides,
so I,y does not contain 2z’ or any point in I smaller than z’. But by construction I, contains y, so I, I,y
are different. Hence all such I, are different, contradicting the fact that there are only countably many
of these. This finishes the proof of the lemma. O

4. Pseudo-Anosov flows in Seifert fibered spaces

This section is devoted to proving the following result:

Theorem 4.1. If ® is a pseudo-Anosov flow in M3 which is a Seifert fibered space, then up to finite
covers, ® is topologically conjugate to a geodesic flow on a closed hyperbolic surface.

Proof. 1f necessary lift to a double cover so that the Seifert fibration is orientable, hence the center of
m1(M) is non-empty (it contains for example the homotopy class of the regular fibers). Let A be in the
center of m(M). The cyclic subgroup < h > is a normal subgroup of 7;(M). The proof splits in two
cases, depending on whether Fiz™(h) is empty or not.

Case 1 — Fiz™(h) is non empty.

We show that this cannot happen. Notice that if z ~ y in H* and ¢ is in 71 (M) then g(z) ~ g(y). Let
g in 7 (M) and x in Fiz~(h). Then g 'hg(z) = h(z) ~ z, so hg(z) ~ g(z) and g(z) is in Fiz™~(h). By
lemma 3.5 Fiz™(h) is countable. Therefore Fiz™(h) is a countable, closed, 71 (M) invariant subset of
##. Consider the union Z of the leaves L in A* with v,(L) in Fiz™(h). This set Z is closed, A® saturated,
71 (M) invariant and transversely countable. It projects to a sublamination of A* which is transversely
countable. Let £ be a minimal sublamination of 7(Z). Any sufficiently small transversal to a minimal
lamination intersects it in either a closed interval, a Cantor set or a point. The first two are disallowed by
the transverse countability condition. The last option implies that there is an isolated leaf in A®, which
is not possible for pseudo-Anosov flows. This shows that case 1 cannot happen.

Case 2 — Fiz"™(h) is empty.
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By theorem 2.22, h has a non empty axis A(h) = {x € H* | h(z) separates = from h%(z)}. This axis
has a linear order where h acts as a translation. Clearly, for every ¢ in 71 (M):

gA(h) = Alghg™") = A(h)
hence A(h) is 71 (M)-invariant.
Either A(h) is an infinite segment or a countable union of disjoint closed segments:

A(h) = Uiezlzi,yi] = UiezBi (*)

where y; ~ x;11. We show that the second option cannot happen. Suppose by way of contradiction that
A(h) is of form (*). Every ¢ in 71 (M) permutes the components B;, preserving or reversing the order on
the set Z of labels. Hence there is a morphism m (M) — Aut(Z), whose kernel is the subgroup made of
elements g such that gz; = z; for all 4, ie. a trivial or cyclic normal subgroup. Since Aut(Z) is the diedral
group, containing a cyclic subgroup of index 2, it follows that m (M) contains a finite index subgroup
isomorphic to Z or Z & Z, which is not possible for an irreducible Seifert fibered space without boundary.
We conclude that A(h) cannot be an infinite collection of disjoint closed segments.

Therefore A(h) is a real line parametrized as A(h) = {l;,t € R}. If A(h) is not properly embedded
in H*, then (I;) converges to a point x in H?® as ¢ converges to infinity (and maybe other points as well).
But then since A(h) is invariant under h, this implies that h(z) ~ z, which is not allowed in Case 2.

Next we show that A(h) is all of H®. Again suppose it is not and let [ be a point of #* not in A(h).
Since A(h) is connected (as it is a line), then A(h) is contained in a single component of H* — {l}. Let
B be another component of H* — {I}. Let L = v, '(I). It was proved in [Fe7] that any complementary
component of L covers M. This implies that given z in A(h), there is g in w1 (M) with g(z) in B, which
is disjoint from A(h). This contradicts the m; (M) invariance of A(h).

We conclude that H* is homeomorphic to R and similarly H" is also homeomorphic to R. Therefore
there are no singularities of ® and A*; A* are R-covered.

Since there is no singularity, the flow is actually (topologically) Anosov. The result was then proved
in [Bal]. We present a different proof here, which improves some arguments in [Bal] and which follows
arguments in the unpublished reference [Ba7].

If there is a leaf of A intersecting all leaves of K“, then proposition 2.7 shows that ® is a product
pseudo-Anosov flow. The manifold then would have solv geometry and could not be Seifert fibered,
contradiction.

It follows from [Fel, Bal] that ® has the skewed type: the orbit space O is homeomorphic to an infinite
strip in R? bounded by parallel lines, say with slope one. The stable foliation is the foliation by horizontal
segments and the unstable foliation is the foliation by vertical segments (see figure 3).

Put a transverse orientation to A positive with increasing y and to At positive with increasing =
(where (z,y) are the cartesian coordinates in O). For each stable leaf L, there is in the positive side of L
a unique unstable leaf S which makes a perfect fit with L — in this model it is equivalent to S sharing an
endpoint with L. This produces a (M) equivariant map ny from H® to H*, which is a homeomorphism
([Bal, Fel]). Similarly for each S in AU there is a unique F of A in the positive side of S and sharing
an endpoint with S. The composition L — S — E is a translation 7, in #* and H*/7 is a circle S}.
Similarly one has 7, which is increasing from H" to H* and a circle S}L = H"/7,. Both 74 and 7, are
71 (M) equivariant homeomorphisms ([Bal, Fel]), so m; (M) acts on S} and S.. We denote the first action
by

¢&: m(M) — Homeo(S)).
In addition the map n¥ : L — S as above is also equivariant by the action of 71 (M) and hence induces
a canonical homeomorphism from S! to S} with inverse denoted by (. So we can identify S} x S} with
Sl x 8! by (z,w) = (2,{(w)). This induces an action of m (M) on S! x S!.
For every orbit § of iI"), there are unique leaves L of A* and G of A" so that B =LNG. Using L and
G, the orbit 3 generates a point in S! x S! and hence a point (p,q) in S! x S!. We say that 3 projects
o (p,q). This defines a map
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h(L) Ts (L)
h(a)
§
o <“—S=nlL)

Figure 3: Orbit space of skewed type.

v: 0 — ngsg.

The projection (p, q) is not in the diagonal A: points in the diagonal correspond to L in AS and S in A%
so that S = n¥(7s)"(L) for some integer n. In particular L and S do not intersect and neither does S
intersect (7,)™(L) for any integer m. Conversely if (p,q) is in S} x S} — A, then one can lift p to a leaf L
of A* and q lifts to a stable leaf, which after the identification S! with S. produces S in A" with SN L
not empty.

Note that if g acts trivially on H* then g is the identity in 7 (M). This follows for instance because
the set of fixed points of non trivial elements of 7y (M) is discrete in H°.

Claim 1 — h acts trivially on S!.

Let & be a lift of a periodic orbit « associated to a covering translation g. Then g?h(a) = hg?(a) = h(a),
so & and h(a@) are connected by a chain of n lozenges by Theorem 2.13. Replacing g by ¢~ 2 if necessary,
we can assume that & is an attracting fixed point of the restriction of ¢ to the stable leaf L through a.
Then h(@) is also an attractive fixed point of the restriction of g2 to h(L). It follows (see fig. 3) that
n is even. In the figure § is connected to a by one lozenge and h(«) is connected to a by a chain of 2
lozenges. Therefore h(L) = (4)'(L) for i = n/2.

This implies that the projections to S! of periodic leaves are fixed points of &,(h). Since periodic leaves
are dense, we conclude that ¢g(h) is the identity map on S!. The claim is proved.

Recall that h was any element of the center of 71(M). Here m1(M) cannot be Z* because M has a
pseudo-Anosov flow. It follows that the center of 7 (M) is a cyclic subgroup [He, Ja-Sh]. From now, we
assume that h generates the center; and we denote by [ the integer such that when acting on H?*, then
7! = h. In order to simplify the presentation, we identify in the sequel #* with R in a way that 7, is the
translation © — x + 1.

Let now f in the kernel of £&. When acting on H?®, f(x) = x + j for some j in Z. In addition given
any ¢ in m (M) and considering the action on H?*, it follows that for any z in H?®, for any 4 in Z, then
g(z +1) = g(z) + i. Now, for any ¢ in m (M), again when considering the action on H* we have

g 'fl9f(x) = g ' fTlga+g) = g7 T (9(@) +5) = g7 glz) = @
Therefore g~ ! f ~'gf acts trivially on H#® and is the identity in 7y (M). Hence f is in the center of 7y (M)
which is < h >.

Conclusion: ker{; = < h > = center of m(M).
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Let H=<h > and Q = 71(M)/H. Since H is the kernel of ¢, there is an induced action &, of @) on
SL. Given g in 71 (M) let g be its image in . By the conclusion above the action &, is faithful.

We now think of S! as the ideal boundary of the hyperbolic disc H? and (p,q) as the hyperbolic
geodesic in H? connecting these endpoints.

Lemma 4.2. The action &, of Q on S! is a convergence group action.
Proof. First we prove the following fact:

Claim 2 — Two arbitrary orbits (1, 82 of ® are connected by a chain of lozenges if and only if 81, 82
project to either the same point of S! x S! — A or one projects to some point (p, ¢) and the other projects
to (¢, p). In the first case they are connected by an even number of lozenges and in the second case they
are connected by an odd number of lozenges.

Suppose first that 81,8y are connected by a chain of lozenges. The first lozenge in the chain has a
stable side L containing ;. There is an unstable side S of the lozenge making a perfect fit with L. The
other corner § of the lozenge is contained in S. Suppose wlog that S is in the positive side of L. Then
S =n¥(L). In addition W*(8;), W#*(8) also make a perfect fit and

W (B) = ny(ry (W*(B)).
So if 81 projects to (p,q) then 8 projects to (q,p). Following the lozenges in the chain proves that (9
projects to either (p,q) or (¢,p). Using these arguments one sees that 81 and a = 7,(L) N 7,(W*(51))
are connected by a chain of two lozenges.

Conversely suppose that 8; and By both project to (p,q). Let F = Ws(ﬁl), G = W“(ﬂl) and let
also F = Ws(ﬁg), S = W“(ﬂg). Since the projections of both 7 and By have the same point p as first
coordinate, there is n in Z so that £ = 7'(F). Similarly there is m in Z with S = 7)"(G). In the
collection {7),(G),i € Z}, there is only one element intersecting 7.'(F') and that is 7,/ (G). It follows that
n = m. In addition

Bo = 7HEF)NTHG).
As explained above 81 and 74(F) N 7,(G) are connected by a chain of two lozenges and by induction (4

and [y are connected by a chain with an even number of lozenges. The case that (1 projects to (p,q)
and B9 projects to (g,p) is very similar and is left to the reader. This proves claim 2.

Let « be an arbitrary closed orbit of @, let a be a lift to M, which is invariant under g in m (M), with
g associated to « in the positive direction. Let (p,q) in S! x S! — A be v(a). Recall that h in (M)
represents the fiber of the Seifert fibration. Since h acts trivially on S}, then claim 2 implies that & and
h(a) are connected by a chain of lozenges with an even number of lozenges [Fel]. Therefore the set of
orbits in the complete chain of lozenges from « is finite modulo the action by < h > and this set projects
to a finite set V' of orbits of ® in M. But a is closed, so V' is a finite set of closed orbits and hence discrete
in M. Hence 7~ (V) is a discrete, 71 (M) invariant set of orbits of ®. We conclude that v(©(7~1(V))) is
a discrete set in S} x S! — A. Tt is also 7 (M) invariant. This is the “orbit” of (p, ¢) under the action of
T (M) . .

Now given a, a, g as above, let L = W*(a). Then g(L) = L and since g is associated to the positive
direction of « then L is a contracting fixed point of ¢ acting on H?®. In the same way S = W"(«) is also
fixed by g and it is a repelling fixed point of g acting on H" and hence p is the attracting fixed point of
g acting on S! and ¢ is the repelling fixed point. There are no other fixed points.

In order to prove the convergence group property for the action &, of @ on S!, we now consider a
sequence b, of distinct elements of () and let g, in w1(M) with b, = g,,. In the arguments below we
abuse notation and also denote by &, the action of 71 (M) on S! x S! — the context makes clear which
one is being used.

Consider a closed orbit a as above, with a given lift &, corresponding points p, ¢ in S! and L = WS(&)
Suppose first that up to subsequence
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£s(gn)((p:q)) = (pq) or &(gn)((p,q)) = (g,p) forall n.

Notice that it does not matter if we consider &(g,) or £,(g,,). First a reduction: if £,(g,)((p,q)) = (g,p)
for all n, then replace @ by gi(@) and g, by gngfl. The new collection satisfies &5(g,)((p,q)) = (p,q)
for all n. Claim 2 implies that for every n, g, () is connected to @ by a chain of lozenges, with an even
number of lozenges. For each n there is a, so that g,(L) = 7%*(L). Recall the integer [ above so that
h = Tsl when acting on H?*. There are b, and ¢, in Z with 0 < ¢, <[ and a,, = byl + ¢,. Up to another
subsequence we assume that ¢, is constant. Again up to taking g; (@) instead of a and gngf1 instead of
gn we may assume that ¢, = 0 for all n. The above facts imply that for each n there is 4, in Z so that
hirg, (&) = & (in fact i, = —by,). Therefore hing, = fi», for some j, in Z where f is a generator of the
isotropy group of & in the forward direction. Notice that &,(hi") acts as the identity on S! (and also on
Sl x S} — A). If there is a subsequence (j,,) which is constant, then the formula

9n,  — h fjnk
shows that all &(gy, ) act in exactly the same way on S!. Then &, (9n,) is constant and since £, is faithful,
then the sequence (gnk) is also constant — contradiction to hypothesis. So up to subsequence we may

assume (say) that j, converges to infinity (as opposed to converging to minus infinity) when n — oo.
Then

s(gn) = gs(hiinfjn) = 55(]”“)
and p is the sink for the sequence &(g,,) acting on S! and ¢ is the source. This proves the convergence
group property in this case.

From now on we assume up to subsequence that £,(g,)((p,q)) # (p,q), (g, p) for all n. In fact by the
same arguments we can assume that all £5(g,)((p,q)) are distinct. Since the orbit of (p,q) under 71 (M)
is discrete in S! x S! — A, then up to subsequence &,(g,,)((p,q)) converges to a point (z,z) in S} x S}
These arguments work for any closed orbit a.

We now show that &,(g,) has a subsequence with the source/sink behavior. Fix an identification of S}
with the unit circle S'. Since ® is R-covered, then the set of closed orbits is dense [Bal]. Find (p1,q1)
corresponding to a periodic orbit, very close to (—1,1) and not disconnecting these two points in S'.
By the above arguments, up to subsequence &,(g,)((p1,q1)) converges to a single point (z,z) in S' x S’
Therefore one interval I; of S! defined by (p;,q) converges to z under &,(g,, ). The interval I; has length
close to half the length of the circle S'. We work by induction assuming that an interval I; has been
produced. Let J; be the closed complementary interval to I;. Find a periodic point (p;, g;) so that: ¢; is
in J; and almost cuts it in half and p; is in the interior of I; (switch p; and g; if necessary). We already
know that &(gn)(p;)) converges to z. As before up to another subsequence one of the intervals defined
by (pi, q;) converges to a point under £,(g, ), which then must be z as p; is in I;. Adjoin this interval to
I; to produce ;11 which converges to z under &s(g,). Let J;11 be the closed complementary interval.
Since each step roughly reduces the size of the remaining interval by a factor of 1/2, then the intervals
J;i converge to a single point w. Use a diagonal process and obtain a sequence &,(gy, ) with source w and
sink z. This finishes the proof of the convergence group property.

Notice that as we mentioned before, we denoted by £ the action on both S! and S! x S! — A. 0

Convention — We lift to a double cover if necessary so that AS is transversely orientable. Every orientation
preserving convergence group acting on the circle is conjugated in Homeo™ (S') to a Fuchsian group
[Ga, Ca-Ju]. Let T be £,(Q). Hence I' is conjugate to a Fuchsian group 7. Here O = H?/T is a
hyperbolic 2-dimensional orbifold.

We have a conjugation ¢ : S! — S' between the action of T on S! and a Fuchsian action 7 on S'.
Lift ¢ to a homeomorphims QZZ H* — R. Let g in m (M) and we also think of g as acting on H*. Then

holy(g o™ = Ppobig)oy!
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is the ideal map of a Moebius transformation and hence 1’/;9(1;)*1 is a projective transformation of R.

This shows that the foliation A® is transversely projective. As shown by the first author in [Bal], this
implies that the flow ® is up to a finite cover, topologically conjugate to a geodesic flow in the unit
tangent bundle of a hyperbolic surface. This finishes the proof of theorem 4.1. O

EXAMPLES and COUNTEREXAMPLES

Recall that in a one prong pseudo-Anosov flow we allow the existence of one prongs. One prong pseudo-
Anosov flows can behave completely differently from pseudo-Anosov flows. In particular it is well known
that there are one prong pseudo-Anosov flows in §? x S, so the manifold M need not be irreducible and
the universal cover need not be R?.

Here we introduce 2 new classes of examples of one prong pseudo-Anosov flows.

1) Let R be a closed hyperbolic surface with an order 2 symmetry o which is an isometric reflection along
a non separating simple closed geodesic o of R. Let M; be the unit tangent bundle of R and ®; be the
geodesic flow in M;. The isometry o sends geodesics of R to geodesics and preserves the geodesic flow.
It induces a map o, in My which has order 2. Let M be the quotient of M; by the map o,. The map
o, does not act freely: the fixed points correspond exactly to the tangent vectors to a — there are two
closed orbits a1, ay of ®; which are fixed pointwise by o.. These correspond to the 2 directions in «.
Hence M is an orbifold, but admitting a natural manifold structure so that the projection map M; — M
is an order 2 branched covering map. The flow ®; induces a flow ® in M because o sends geodesics to
geodesics. The stable/unstable foliations of ®; are invariant under o, so induce stable/unstable foliations
of ®. The stable leaf of ®; through «; folds in two, producing a one prong singularity of ® and similarly
for ag. The flow ® is an example of a one prong pseudo-Anosov flow. Alternatively the manifold M is
obtained as follows: let Ry, Ry be the closures of the 2 components of R — «. The unit tangent bundle of
R, is homeomorphic to R x S', with boundary a torus Z with 2 closed curves corresponding to a; and
9. The map o, identifies one complementary annulus of «y, a9 in Z to the other one with no shearing.
This is obtained by a Dehn filling of Z where {t} x S! is the meridian. Therefore M is homeomorphic to
the union of N; = R; x S! and a solid torus. This is almost a graph manifold: it is the union of Seifert
fibered spaces, but M is not irreducible: Take a non peripheral arc [ in R;. Then [ x S' is an annulus in
Ry x S! which is capped off with 2 discs in the solid torus to produce a sphere which is non separating
in M and hence clearly does not bound a ball in M.

Remark — This example and the next work whenever the hyperbolic surface R admits an isometric
reflection along a collection of simple closed geodesics {«;}. For simplicity of exposition we describe the
examples in 1) and 2) with a single geodesic a.

2) The second class of examples is obtained by a modification of example 1) in order to be in a Seifert
fibered manifold. The modification is that the glueing of the annuli in dN; is done with a shearing. The
notation is the same as in example 1): R is the hyperbolic surface with a geodesic @ of symmetry and
Ry, Ry the closures of the components of R — a. The unit tangent bundle of R is M; and Ny, Ny are
the restrictions to vectors in Ry and Ry respectively. We use 2 tori: dN; = 17 and ONo = Ty. These
are glued to form M;. Put coordinates (01,603) in T, (a1,a2) in Ty as follows: T consists of the unit
vectors along a. Parametrize o by arc length parameter ¢ where 0 < t < Iy and [y is the length of a. Let
01 = 27t/ly. Let 05 be the angle between the unit tangent vector to a and the vector v, where 63 = 0
corresponds to the direction of a;. Also 3 = w corresponds to ag and 0 < 69 < 7 are the vectors exiting
N; and entering Ny. Put coordinates (a1, a9) in T so that the glueing map to create My isn: Ty — Th
given by a; = 61,a9 = 05 (essentially the same coordinates). Notice that vectors with 0 < ag < 7 are
entering Ny and vectors with 7 < a9 < 27 are entering Nj.

In Ny we consider the restriction of the geodesic flow of R. We collapse dN; = T} to an annulus as
follows. Let A; be the strip 0 < 3 < 7 in T7 and let Ay be the strip 7 < 6y < 27 in T}. We glue A; to
AQ by

f(01,02) = (014 2n62,2m — 62) (%)
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Let M be the quotient of Ny by this glueing and let ® be the induced flow from the geodesic flow in
Ni. Notice that the flow in Nj is outgoing in the interior of A; and incoming in the interior of Ay. In
addition, the angle between flow lines and 7} depends only on #3 and not on 6; (by definition) and so
by formula (x) this produces a flow ® in M which is smooth outside of the closed orbits ay, as. Here we
abuse notation and continue to call a;, as their projections to M.

Let A be the annulus which is the quotient of A;, As by the glueing. Let My be the double branched
cover of M obtained by double branched cover (opening up) along A. This My can be cut along the torus
T which is the preimage of A. The closure of the 2 complementary components of 7" are homeomorphic
to N7 and Ny and still denoted by Ny, No. We think of N; as the unit tangent bundle of Ry. We can also
think of Ny as the unit tangent bundle of Ry — this is because Ny under the branched cover is another
copy of Ni, which is isometric to No by the map o, induced by the symmetry o of the surface R. Let
T, T, be the corresponding boundaries of Ry, Ry, with the corresponding coordinates (61, 62) and (a1, as)
as above. Therefore M5 is obtained by a certain glueing of map ¢ from T} to 1.

We first extend the map f to an involution on the entire torus 77: in Ay (which is the region © < 0y <
27), the map f has the same formula f(6q,02) = (61 + 2n6s, 27 — 63). Clearly f is an involution in 7.

Claim — In order to obtain the flow ® in M, the glueing from 7} to T3 in the (61, 62), (a1, a2) coordinates
is given by:

g: 11— Ty,  g(61,02) = (61 + 2nb3,02).

In order to prove the claim we need to show that when restricted to the annulus A; then f = 0,g9. Recall
that o, restricted to T (which is identified with 7") has the form o, : Ty — T, 0. (a1,a2) = (a1, 27 — ag).
It is now clear that f = 0,9 in A;. By the extension of f to Ay, this also holds in As. This proves the
claim.

Let @4 be the lift of the flow ® to My. This flow @, is the geodesic flow in R; when restricted to IVy
and the the geodesic flow of Ry when restricted to No. The glueing is given by the map g described above.
The map g is a shearing. In a very nice result, Handel and Thurston [Ha-Th] studied exactly this example
and they proved that the flow ®5 in M5 is an Anosov flow which is volume preserving. Therefore this
flow has stable and unstable foliations which project to stable/unstable foliations of ®: this is because if
2 orbits in My are asymptotic then their projections to M are asymptotic and vice versa. The projection
from My to M is locally injective and smooth except along «; and a9, where it is 2 to 1. Hence the
stable/unstable foliations in M are non singular except possibly at a;,ay. Since the projection is 2 to
1 and stable leaves go to stable leaves, then along the stable leaf of « the stable leaf folds in two and
similarly for the unstable leaf and likewise for ay. Therefore @ is smooth everywhere except at ay, s
which are one prong singularities. We conclude that ® is a one prong pseudo-Anosov flow.

Finally M can be thought as a Dehn filling of N; along 77. We determine the new meridian. Under
the map f from A; to A, the segment #; = 0, 0 < #; < 7 in A; is glued to the the segment
(2n02,2m — 63), 0 < Oy < 7w in Ay. This last segment goes from (0,27) to (2nm, 7) linearly. It follows
that this is the new meridian which is then the (—n,1) curve.

When n = 0, this is exactly the same construction as in the first example which makes the fiber in Ny
null homotopic. When n # 0, the curve which becomes null homotopic is not {p} x S'. It follows that
the resulting manifold M is Seifert fibered.

Conclusion — If one allows 1-prongs, then Seifert fibered manifolds can admit one prong pseudo- Anosov
flows with singularities as opposed to what happens with pseudo-Anosov flows. Theorem A does not hold
for one prong pseudo-Anosov flows.

This poses the following questions: Suppose that ® is a one prong pseudo-Anosov flow in M Seifert
fibered (closed). Can one show that there are no p-prongs with p > 37 Can one show that ® has a
branched cover to an Anosov flow in a Seifert manifold?

Remark: With this description of geodesic flows we now mention the following, which will be extremely
useful later on in the article. Here is an explicit example of a Klein bottle in a manifold with an Anosov
flow. Let @ be the geodesic flow of a nonorientable hyperbolic surface S and « an orientation reversing
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simple geodesic. Let A be the unit tangent bundle of a and a1, as, the two orbits of & associated to
the two directions of «. Consider tubular neighborhoods of of &1, as. These are solid tori, and A in
these neighborhoods wraps around each of these periodic orbits twice producing a Mdobius band, which
contains the periodic orbit, and with boundary a closed curve homotopic to the double of the periodic
orbit. It follows that the closure of A is the union of an annulus (outside the solid tori) and two Mdébius
strips and therefore A is a Klein bottle. This is a typical example of Birkhoff-Klein bottle, see formal
definition in section 6. A tubular neighborhood of this Klein bottle if homeomorphic to the twisted line
bundle over the Klein bottle.

5. Pseudo-Anosov flows in manifolds with virtually solvable fundamental group

In this section we first do a detailed analysis of maximal subgroups of 71 (M) stabilizing a given chain of
lozenges. Conversely given a subgroup of m; (M) isomorphic to Z? we analyse the uniqueness of chains of
lozenges invariant under this subgroup. These results are foundational for understanding any Z? subgroup
of m(M) and they are fundamental for the analysis of pseudo-Anosov flows in manifolds with virtually
solvable fundamental groups. The results are later used for other results in this article. We also expect
that these results will be useful for further study of pseudo-Anosov flows in toroidal manifolds.

In this section let K denote the Klein bottle. We first need a result from 3-dim topology. Let F' be a
compact surface with a free involution 7. Then M = (F x I)/(z,t) ~ (7(z),1 — t) is a twisted [-bundle
over the surface F' = F/z ~ 7(z) and F is the associated 0-sphere bundle, see [He|, page 97.

Lemma 5.1. Let N be an irreducible, compact 3-manifold with finitely generated fundamental group
which is torsion free and has a finite index subgroup isomorphic to Z?. Then N is either an I-bundle or
a twisted I-bundle over a surface of zero Euler characteristic. In particular m(N) is isomorphic to either
Z? or w1 (K). In addition if N is orientable, then either N = T2 xI or N = (T% x I)/(z,t) ~ (7(x),1 1)
is a twisted I-bundle over the Klein bottle T? |z ~ 7(x) which is one sided in N.

Proof. Suppose first that N is closed. Then take a finite cover N’ with m;(N') = Z2. Since the finite
cover is irreducible, this is not possible [He|. Hence ON is not empty. Suppose that boundary of N is
compressible. By the loop theorem [He] there is a curve in N, not null homotopic in AN, but bounding
an embedded disc D in N. Cutting along D, shows that 1 (/N) is either a free product or an amalgamated
free product along a trivial group, hence a free product with Z. In either case the free product would
either not contain a Z? (it would be infinite cyclic) or would contain a free group of rank > 2, in which
case it could not contain Z? with finite index. Hence ON is incompressible. If it has a component of genus
> 2 then as above it would have a rank 2 free subgroup, again contradiction. If it has a component which
is a projective plane, then 71 (N) has elements of order 2, contrary to hypothesis. Since N is irreducible,
no component of N is a sphere, as w1 (N) is not trivial. We conclude that every boundary component
of N is either a torus or a Klein bottle.

Let F' be one such component. Because F' is incompressible and 7 (/N) has a finite index subgroup
isomorphic to Z?2, then 71 (F) has finite index in 7 (N). By theorem 10.5 of [He], either i) 71 (N) = Z, or
ii) m(N) = m(F) with N =2 F x I or iii) 71 (F') has index 2 in 7;(N) and N is a twisted I-bundle over
a compact manifold F’, with F' the associated 0-sphere bundle. In our situation case i) cannot happen.
In case ii) 7 (N) is either Z2 or 71 (K) and we are done. In case iii) 7y (V) is isomorphic to 71 (F’) as
there is a deformation retract from N to F'. Here F' is a closed surface which has a double cover either
the torus or the Klein bottle. Hence again F’ is the torus or the Klein bottle and we also conclude that
71 (N) is either Z2 or m;(K). The last stament is easy given the above. This finishes the proof of the
lemma. U

Note that both the torus and the Klein bottle have double covers homeomorphic to themselves. The
manifolds in question above can be either orientable or not. It is easy to construct a compact manifold
N which is a twisted I-bundle over the Klein bottle (with quotient surface a Klein bottle). This manifold
has boundary a Klein bottle and an orientation double cover Ny which is a twisted I-bundle over the
torus (with quotient surface a Klein bottle, which is one sided in Nj). Finally N has an order 4 cover
homeomorphic to T2 x I.



22 THIERRY BARBOT AND SERGIO R. FENLEY

Lemma 5.2. Suppose that C is a bi-infinite chain of lozenges. Let G be the stabilizer of C in m (M).
Then G is isomorphic to a subgroup of 7 (K). In particular, it contains an unique mazimal abelian
subgroup of index at most 2, which is either trivial, (infinite) cyclic or isomorphic to Z2.

Proof. The proof will reveal the structure of the stabilizer of C and not just show that it is isomorphic
to a subgroup of m(K). In this proof cyclic means infinite cyclic. Let a be a corner in C. The chain C
corresponds to a linear subtree Ty of the tree G(«). It defines a homomorphism p : G — Aut(T;). The
kernel K of p stabilizes every corner of C, and thus, is either cyclic or trivial.

Assume first that G preserves the orientation on Ty. Then p(G) is a group of translations along Tj,
ie. trivial or cyclic. In the former case, G = I is either trivial or cyclic. In the latter case, if IC is trivial
then G is isomorphic to p(G) and hence trivial or cyclic. If K is cyclic then G is an extension of Z by Z.
It follows that G is either Z? or m1(K). We are done.

We are left with the case where some element g of G reverses the orientation of 7. Hence g leaves
either a vertex or and edge of Ty invariant. Then, according to proposition 2.16 item 4, g preserves a
corner a. Let s be a generator of the G-stabilizer of a — in particular this stabilizer is not the identity.
Then s reverses the orientation of 7 (otherwise all elements in G leaving « invariant would preserve
orientation) and s? is in K. On the other hand, every element of K fixes a and preserves the orientation:
it must be a power of s?, which therefore generates K. As usual there are two option for p(G). One
option is that p(G) = p(s) and therefore G is generated by s and is cyclic. Otherwise p(G) has at least
one translation. Select h in G such that p(h) is a translation along Tj of minimal length. In this case it
is easy to see that s, h generate G.

By considering the action on the set of vertices of Ty one sees that hsh preserves a. It is also in G so
hsh = s'. Similarly h~'sh~! = s/. At this point we have exhausted the information we can obtain solely
from the flow and we appeal to 3-manifold topology.

Let G' be the subgroup of G preserving the orientation on Ty. The previous arguments show that G’
has a subgroup of order < 2 isomorphic to Z2, so G has a subgroup of order < 4 isomorphic to Z?. Let
U be the cover of M associated to G. Then U is irreducible and 7 (U) is torsion free. By Scott’s core
theorem [He] there is a compact core N for U. We can assume that no boundary component of N is a
sphere - by attaching 3 balls to such components, without affecting the fundamental group. Now apply
the previous lemma to show that G = 7 (NN) is isomorphic to either Z? or m (K).

Finally if G is not abelian then G is isomorphic to 7 (K) and it is an elementary algebra fact that G
has a unique maximal abelian subgroup of index 2, which is isomorphic to Z2. ]

Conversely:

Lemma 5.3. Let G be a subgroup of m (M) isomorphic to Z?. Assume that ® is not product. Then G
preserves a bi-infinite chain of lozenges.

Proof. If G ~ Z & Z acts freely on the orbit space O, then it was proved in [Feb] that ® is product,
contrary to hypothesis. Hence there is g in G with a fixed point in O. If g = (¢’)" where ¢’ is in G and
|n| > 1, then ¢’ also does not act freely on O (Proposition 2.16, item 1.). Hence we may assume that g
is indivisible in G. Choose h in G so that h,g form a basis of G. Consider the tree 7 = G(g): since G
is abelian, then G acts on T. If f is an element of G admitting a fixed point in 7, then some power of
f leaves invariant all vertices of T and likewise for g. It follows that g and f admit a common power:
g? = f4. Since f,g are in G = Z? then f,g generate a cyclic group. But g is indivisible in G, implying
that f is a power of g. Hence, G/{g) ~ Z is a cyclic group acting freely on the vertices of the tree T.
According to Proposition 2.16, item 4., an element in G/ < g > cannot reverse an edge of 7. It follows
that G/(g) acts freely on T, and that there is an invariant axis for this cyclic group therein. It provides a
bi-infinite G-invariant chain of lozenges C. In particular the arguments show that g fixes all the vertices

in C. O

Definition 5.4. ([Feb]) Let C be a s-scalloped bi-infinite chain of lozenges. The s-scalloped region defined
by C is the union of all lozenges in C with the half-leaves of A" common to two adjacent lozenges in C.
One defines similarly u-scalloped regions. A scalloped region is a s-scalloped or u-scalloped region; it is
an open subset of O.
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It may happen in the situation of lemma 5.3 that the G-invariant chain is not unique, but only in a
very special situation:

Lemma 5.5. Let G be a subgroup of (M) isomorphic to Z%. Assume that G preserves two different
chains of lozenges. Then, one these chains is s-scalloped, and the other is u-scalloped. Moreover the
associated u-scalloped and s-scalloped regions are the same.

Proof. In this proof we consider all objects in 0. Let C, C' be two different G-invariant chains of lozenges.
Let g be an element of G fixing every corner in C, and let f be an element of G fixing every corner of C' —
see proof of the previous lemma. Suppose first that g and f share a common non-trivial power: g = f9,
p,q # 0. Since G is abelian it acts on G(g”) and also G(g) C G(g”), so C is an invariant axis for G acting
on G(gP). Similarly C' is a G-invariant axis in G(f9). Since these trees are the same, it now follows that
C = (', contradiction.

Hence, replacing G by a finite index subgroup if necessary, one can assume that f, g form a basis of
G~ 72

Let 3 be a corner of C'. We claim that 8 cannot be in C or in one of its boundary sides. Suppose not.
There is h non trivial in G fixing § and therefore fixing every corner of C'. As h leaves C invariant, then (3
has to be a corner of C. This would produce an element in G fixing every corner of C and every corner of
C'" and hence some powers of f and g coincide. The previous paragraph shows this is impossible. Let now
¢ be a path in O joining 8 to an element § in the union of the lozenges in C, and disjoint from the corners
of C. We assume that ¢ avoids the singular orbits in O. Notice that the union of corners of C forms a
discrete set in . Consider the intersection V between ¢ and the union of stable and unstable half-leaves
contained in the boundary of the lozenges of C. By the above this intersection is non empty. Assume
first that V is finite. Let 7y be the first element of V' met while traveling along ¢ from S to §. Then + lies
on the boundary of a lozenge C of C, let’s say the boundary component is a stable half leaf L containing
a corner a of C. Let C" be the other lozenge in C admitting also « as a corner: there is a half leaf K,
contained in the boundary of C’ and such that the union I U K U « is an embedded line in O, which
moreover disconnects C from £. In addition this properly embedded line is unique with these properties.
Since C and 8 are f-invariant, it now follows that L U K U « is f-invariant, and hence f(a) = «, where
« is a corner of C. Contradiction. B _

Therefore, V' is not finite: it admits an accumulation point . Since A® and A" are transverse outside
the singular points, y is an accumulation point of a sequence F,, N ¢, where the F,, are leaves in the
boundary of lozenges in C. In addition we may assume that all F;, have all the same type, for example
all F,, are leaves of A®. Let L be the leaf of A“ through ~: it intersects all the F), for n sufficiently big.
It follows that C contains an infinite u-scalloped subchain. Since C is G-invariant, the entire chain C has
to be a bi-infinite u-scalloped chain. Hence it defines a u-scalloped region U.

Similarly, C' has to be scalloped, and defines a scalloped region U’.

Now the key point is the following: in [Fe5| the following facts are shown: i) We can choose h in G
acting freely on O; ii) The leaves of A® (respectively A%) intersecting U defines a G-invariant subline I°
in H* (respectively a G-invariant subline I" in H"); iii) Every leaf in I° intersects every leaf in I, and
this intersections occurs in U; iv) Every point in U is the intersection of a leaf in I* and a leaf in I™.

Similarly, the open scalloped region U’ provide G-invariant sublines .J*, J" in H®, H", such that every
leaf in J* intersects every leaf in J" at a point in U’. But since h acts freely, h-invariant lines in H*®, H"
are unique [Fe5]. Thus, I* = J* and I" = J". The equality U = U’ follows.

If the chain C' was u-scalloped, as C, then it would be equal to C since it defines the same scalloped
region. Hence, C' is s-scalloped. The lemma follows. ]

Corollary 5.6. Let G be a subgroup of w1 (M) isomorphic to Z? and h an element of wy(M) such that
hG'h=' = G', where G' is a finite index subgroup of G. Then h preserves any G-invariant chain of
lozenges.

Proof. Let C be a G-invariant chain of lozenges. Then, C is G'-invariant, and h(C) is hG'h~ ! = G'-
invariant. According to lemma 5.5, if C is not scalloped, then C is the unique G'-invariant chain: hence
we have h(C) = C. If not, C is scalloped, for example suppose that C is s-scalloped. Again by lemma 5.5,
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C is the unique s-scalloped G’-invariant chain, and since h(C) is also s-scalloped, the equality h(C) = C
follows. H

As a corollary of these results, we get the description of pseudo-Anosov flows in manifolds with virtually
solvable fundamental group (theorem B).

Theorem 5.7. Let ® be a pseudo-Anosov flow in M3 with (M) virtually solvable. Then ® has no
singularities and is product. In particular ® is topologically conjugate to a suspension Anosov flow.

Proof. First notice that the fact that each leaf of A’ intersect every leaf of AU is invariant up to taking
finite covers and so is the existence of singularities. Hence we can take finite covers at will. Up to a finite
cover, one can assume that w1 (M) is solvable. Notice that as M has a pseudo-Anosov flow then M is
irreducible. Since (M) is solvable, classical 3-manifold topology results [He| imply that M fibers over
the circle with fiber a surface S which has solvable fundamental group. The surface S can only be the
torus or the Klein bottle K. Up to another finite cover one can assume that S is actually the torus.
Assume that @ is not product. Then, according to lemma 5.3, 71 (S) preserves a chain of lozenges. Since
71(S) is normal in 71 (M), it follows from Corollary 5.6 that this chain of lozenges is 71 (M )-invariant.
According to lemma 5.2, m (M) is a finite index extension of Z or Z2. This contradicts the fact that M
fibers over the circle with fiber T2. This finishes the proof. O

6. m-injective tori in optimal position

Given a mi-injective torus, we look for a representative in its homotopy class which is in optimal position
— this means that it is a union of Birkhoff annuli, which have very important dynamical meaning. If
the initial torus is embedded we want to study when the optimal position torus is also embedded. This
is tremendously important if one wants to cut the manifold along the tori which separate pieces in the
torus decomposition.

We first study under which conditions a chain of lozenges C may admit a corner « such that for some
element g of w1 (M) the image g(«) is contained in a lozenge of C. Later on we explain how this concerns
the intersections of corner orbits in the Birkhoff annuli with the interior of the annuli.

Definition 6.1. Let C be a chain of lozenges. If for any element g of w1 (M) and for every corner « of C
then the orbit g(a) is not in the interior of a lozenge in C, then C is called simple. The chain C is called
a string of lozenges if no corner orbit is singular and consecutive lozenges are never adjacent.

Proposition 6.2. Let G be a subgroup of mi (M) isomorphic to Z? and let C be a G-invariant chain of
lozenges. Suppose that C is not simple. Then C is a string of lozenges. In addition G is contained in the
fundamental group of a free Seifert fibered piece.

Proof. Let a be a corner orbit of C and ¢ in 7;1(M) with g(«) in the interior of a lozenge in C. We first
prove that C is a string of lozenges. We denote by {«;,i € Z} the corners of C and by {Cj,i € Z} the
lozenges of C, so that «;, a; 11 are the corners of C; for each integer . Moreover, we assume wlog o = «g.
There is an integer k so that 5 = g(«) belongs to Cj. We will prove that both corners ay, a1 of Cy are
in the interior of lozenges in g(C). Since the orbit  is in the interior of a lozenge, then  is non singular
and Ws(ﬂ) W“(ﬂ) define exactly 4 quadrants in M. Two of the quadrants contain the corners of Cj.
Let W be one of the remaining quadrants. It contains a perfect fit between sides of the lozenge Cj, say
between L = W#(py) and S = W"(py), where pg, p; are appropriately named.

We claim that W does not contain a lozenge with corner in 8. Suppose not and call this lozenge D;.
Then D; has 2 sides in W*(f) and W*(5). There is a side of D;, call it £ which is contained in an
unstable leaf and makes a perfect fit with W*(8). Since W*(8) intersects S = W"(py) transversely, it
follows that S separates E from the lozenge Cj. Therefore £ cannot intersect any leat which makes a
perfect fit with W"(3). This is a contradiction and proves the claim.

It follows that the 2 quadrants defined by B which contain respectlvely o and a1 contain lozenges in

g(C). Let Dy, D3 be these lozenges. Since W* (1) intersects W*(8) and W"(ay1) intersects W*(8),
the definition of lozenges implies that ajyq is in the interior of (say) Ds3. As in the argument above it
now follows that the other corners of Dy, D3 are in the interior of Cy_1,Cg1q. This can be iterated and
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so all g(«;) are in the interior of lozenges in C. It follows that each g(«;) (and consequently the same for
«;) is non singular and C;, C;11 are not adjacent. This shows that C is a string of lozenges.

In order to conclude, we have to show that up to conjugation G is contained in the fundamental group
of a free Seifert piece. Let H be the stabilizer of C in 7 (M), and let Hy be the maximal abelian subgroup
of H (see lemma 5.2 which shows that Hj has index < 2 in H). Then G C Hy; hence we can assume
G = Hy, ie. that G has index at most two in H.

We stress the following very important fact: the above arguments show that for any corner v of C
there are exactly 2 lozenges which have corner . The remaining quadrants of v do NOT have lozenges
with corner . As a corollary, we obtain that the tree G(«) coincides with C. Similarly, G(8) = ¢(C). In
particular C = G(«) is a simplicial linear tree.

Claim 1 — One can assume that the manifold M is orientable.

Suppose that M is not orientable and let My be the orientation double cover of M, with lifted flow ®s.
Let I be the set of stable leaves either intersecting a lozenge in C or containing a corner orbit in C. This
set is order isomorphic to the reals R. Similarly define [*. One can use the arguments above to show
that [*,1" are invariant under g. This is because every g(«;) is in the interior of a lozenge in C — so the
arguments above show that if ¢ is any corner of C, then ¢(q) is also in the interior of a lozenge in C. This
implies the ¢ invariance of [%,[". If g preserves the order in [* then the arguments above imply that g also
preserves the order in {“: this is because one can order [*,* so that “high elements” in [° intersect high
elements in [*. Since intersection is preserved by the action of g the statement follows. This implies that
g preserves orientation in @ = R?. If on the other hand ¢ reverses order in [*, the same argument shows
that g also reverses order in [ and hence g again preserves orientation in (. Since clearly g preserves
the flow direction it follows that in any case g preserves orientation in M. Therefore g is an element of
™ (MQ)

Similarly, one proves for every element a of G that if a reverses the orientation of [°, it also reverses
the orientation of [“: G is contained in 71 (Msy). Now if P, is a free Seifert piece whose fundamental group
contains GG, then P = p(P,) is a free Seifert piece in M whose fundamental group contains G. Hence we
may assume that M = M, in the statement of the proposition. Claim 1 is proved.

Assumption — From now on we can assume that M is orientable.

Since g preserves [, there are two options: Case I) g preserves orientation in [*. Then there is k in Z
so that g(«;) is always in the interior of Cy,;, Case II) g reverses orientation in [*. Then up to choosing
a new «g and perhaps changing i to —i, it follows that g(a;) is in the interior of C_; for all i.

Claim 2 — There is an element hy of G such that the centralizer Z(hg) (in 71(M)) is not abelian.

Let f denote a generator of the stabilizer in G of every «;, and let h be an element of G acting freely
on C: there is an integer p so that h(e;) = a;—p, h(C;) = Ci—p.

Assume first that we are in Case I). For every integer i, g(ay;) is contained in Cjypy, hence all the
h'g(ay;) lie in Ck. On the other hand, one can produce as in [Ba2] a f-invariant proper embedding of
[0,1] x R into M, so that {0,1} x R maps into the corner orbits of Cj, (0,1) x R maps into the interior
of the lozenge and transversely to ®. The image of this embedding projects to an embedded annulus A
in M/(f), which itself projects to an immersed annulus A in M, transverse in its interior to the flow ®.
The key point is that A is compact, hence the periodic orbit = (/3) intersects A only a finite number of

times. It follows that m(8) = m(ag) = m(@) admits only finitely many lifts in M /(f) intersecting A. In
other words, there must be distinct positive integers 7, 7 and an integer ¢ such that:

h'g(om:) = fI(W g(oy))
Let

o =api=hTI(a) so  ay=hT"(a)=h""()
Hence: o ,
h'gh?*(a') = fThg(a)
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So there is n for which h'gh/~" = f9h7 gs™, where s is the stabilizer in m (M) of ap; = o/. Let m =i — j.
Since f and h are both in G they commute, so the last equation implies

gflffqhmg — ¢"pm
Notice that s preserves G(a) = C. This is because C is a string of lozenges and also the very important
fact mentioned above. Hence s belongs to H. Let hg = (s"h™)? and v = (f 9h™)2. Also since m is not
zero then hg is not the identity. The equation above implies that ¢~ 'vg = hg. Since Hj has index < 2 in
H then hg is in Hy.
We conclude that hg is a non trivial element of G' whose centralizer Z(hg) contains G, but also g~ 'Gg.

Now suppose we are in Case II) and we want to achieve the same conclusion. This is similar to Case
I) and some details are left to the reader. Here g(ay;) is in C_p; and h™*(C_p;) = Cp. As in case I) there
are 1, j positive and distinct and ¢ integer to that

h™'glap) = fh ™ g(ayy),
So if & = a; then h=tghi=" = fih~Jgs", with s as above, leading finally to

g '(fIh™)g = s"A™, where m=i—j#0
Here take hg = (s"h™)? non trivial in Hy and let v = (f9h~™)2. So as before g 'vg = hg, so again hg
is a non trivial element of Hy whose centralizer contains G' and also ¢~ 'Gg.

Now assume by way of contradiction that Z(hg) is abelian. According to lemma 5.5, since the chain
C is not scalloped, it is the unique G-invariant chain of lozenges. Since g~ 'Gyg is a subgroup of Z(hy), it
commutes with G as Z(hg) is abelian. It follows that C is ¢~ ' Gg-invariant.

But a similar argument shows that ¢~ '(C) is the unique g~ 'Gg-invariant chain of lozenges. Hence
g (C) = C. This is a contradiction since 3 = g(«) is not a corner of C. This finishes the proof of claim
2.

Since Z(hg) is not abelian, lemma VI.1.5 of [Ja-Sh] shows that there is a Seifert fibered piece P of the
torus decomposition of M [Ja-Sh, Jo, Ja] so that Z(hy) C m(P). The hypothesis of lemma VI.1.5 of
[Ja-Sh] require i) M is irreducible, ii) M is orientable, iii) M has an incompressible surface. Condition
i) holds because M has a pseudo-Anosov flow [Fe-Mo]. Condition ii) holds because of Claim 1. As for
condition iii) we know that 71 (M) has a Z? subgroup. Gabai [Ga] proved that either M has an embedded
incompressible torus or M is a small Seifert fibered space. But it M is Seifert fibered, then theorem 4.1
shows that the fiber in M acts freely on O and we are done. So we can assume that condition iii) also
holds. An example of a non simple chain of lozenges in Seifert fibered spaces is the following: let ® be a
geodesic flow, v a non simple geodesic and T the torus associated to v with corresponding chain C. Then
C is not simple.

In order to conclude, we just have to show that P is a free piece. Assume this is not the case: let ¢ be
the fiber of a Seifert fibration in P admitting fixed points in O.

Claim 3 — For any v in m;(P), v(C) =C.

Since G C 71 (P), for every a in G we have ata™' = t*!. Let G’ be the subgroup of G made of elements
a? where a is an arbitrary element of G. Then G’ is isomorphic to Z? (it has index 4 in G) and G’ is
contained in the centralizer Z(t). The chain C is the unique G'-invariant chain of lozenges (lemma 5.5).
But since G' C Z(t), the chain #(C) is G’-invariant, hence equal to C. Then ¢ has a fixed point which is a
corner of C and so G(t) C G(«).

Consider now the action of G’ on the tree G(t). Since G(t) is contained in a linear tree and G’ is
isomorphic to Z?, there is an element b of G’ acting freely on G(¢). Since G(t) C G(a) = C and the
last one is a simplicial linear tree, it now follows that G(t) = C. Claim 3 follows since G(#) is obviously
71 (P)-invariant.

The fundamental group m;(P) contains Z(hg) which itself contains ¢~ 'Gg: it follows that g 'Gg
preserves C. We have already observed, while proving that Z(hg) is not abelian (claim 2), that this is
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impossible. This contradiction proves that ¢ acts freely on (. This finishes the proof of proposition
6.2. O

Definition 6.3. A Birkhoff annulus is an immersed annulus in M so that each boundary component is
a periodic orbit of the flow, and such that the interior of the annulus is transverse to the flow. If the
interior 1s embedded, then the annulus is called weakly embedded.

The interior of a Birkhoff annulus is transverse to the flow, and hence is also transverse to the weak
foliations A®, A”. They therefore induce foliations on the annulus denoted by [®, [". These foliations can
both be extended to the boundary of the annulus as foliations tangent to the boundary. A singular orbit
with p prongs (here again we use that for pseudo-Anosov flows p > 3) induces a singularity of [* (or [")
in the interior of the annulus having negative index 1 —p/2. Since the Euler characteristic of the annulus
is zero, Poincaré-Hopf index formula implies that the interior of the annulus intersects no singular orbits.

Definition 6.4. A Birkhoff annulus is elementary if [°, [*, do not have closed leaves in the interior.

Observe that in the definition of weakly embedded Birkhoff annuli, we did not require the whole annulus
to be embedded: it may wrap around each periodic orbit in its boundary, an arbitrary (finite) number
of times. Notice however that the boundary cannot intersect the interior, as otherwise points near the
boundary would produce self intersections in the interior.

Let T : A — M be a Birkhoff annulus (embedded or not). It lifts as an immersion T : A ~ Rx [0, 1] <
M such that R x {0}, and R x {1} are orbits of ®, and such that the image by T of R x (0, 1) is transverse
to ®: wecall T: A< M a Birkhoff band. Moreover, this image is invariant under the action of the
cyclic subgroup Y,(m(A)) ~ Z. Finally, if T : A — M is elementary, every orbit of M intersects the
image of the interior in at most one point, and the projection in O is a Y, (71 (A))-invariant lozenge ([Ba2,
Proposition 5.1]).

Conversely, and as we already mentioned in the proof of Proposition 6.2, Claim 2, every lozenge in O
invariant by a cyclic subgroup of (M) is the projection in O of an embedded Birkhoff band in M, that
projects in M to an elementary Birkhoff annulus. Moreover, if the lozenge is simple, ie. if its interior

contains no iterate of its corner, then the Birkhoff annulus can be selected weakly embedded ([Ba2,
Theorem DJ).

More generally, let C be a string of lozenges invariant under a subgroup G of m (M) isomorphic to
Z?. Then, there is a cyclic subgroup H of G fixing every lozenge in C. We lift all the lozenges in M,
so that the lift of every two successive lozenges share a common H-invariant orbit. This can be done in
a G-equivariant way. This lift projects in the quotient of M by G to an embedded torus and this torus
projects to an immersed torus in M which is an union of elementary Birkhoff annuli.

Definition 6.5. A Birkhoff torus is an immersion Y : T — M of a torus T, such that T is an union of
distinct annuli A; for which every restriction Y : A; — M is an elementary Birkhoff annulus.

Similarly, a Birkhoff-Klein bottle is an immersion of the Klein bottle whose image is an union of
elementary Birkhoff annuli.

Notice the restriction to elementary Birkhoff annuli.

In the sequel, a closed Birkhoff surface means a Birkhoff torus or a Birkhoff-Klein bottle. A Birkhoff
surface is an union of Birkhoff annuli. It contains a finite number of periodic orbits of ®, called the
tangent orbits, and is transverse to ® outside these periodic orbits.

Definition 6.6. A closed Birkhoff surface Y : S — M s called weakly embedded if the Birkhoff annuli
T : A, = M are all weakly embedded, with interiors two-by-two disjoint.

If moreover T : S — M is an embedding, then the closed Birkhoff surface is embedded.

As explained above, the condition that interiors are embedded and two by two disjoint implies that

none of the tangent periodic orbits of Y(S) intersects any interior of the annuli.
Proposition 6.7. Let C be a string of lozenges in O invariant invariant under a subgroup G of w1 (M)
isomorphic to Z? or w1 (K). Then C is the projection in O of the lift to M of a closed Bvrkhoﬁ surface
T:5— M. More premqely, T: S — M is the composition p o Y of an embbeding T : S — M and the
covering map P : M — M, where M is the quotient ofM by G.
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Moreover, if C is simple, ie. if no element of w1 (M) maps a corner of C in the interior of a lozenge of
C, then the closed Birkhoff surface can be selected weakly embedded.

Proof. The first part has been explained before in the case where G is abelian, and is easily generalized
to the case G ~ m1(K): the matter is to find a fundamental domain of the action of G on the set of
lozenges in C, to lift each lozenge in this fundamental domain to a Birkhoff band, and then to lift all
other lozenges in C as Birkhoff bands in a G-equivariant way.

Assume now that the chain is simple. Every lozenge in it is simple. Then the closed Birkhoff surface is
an union of weakly embedded Birkhoff annuli, whose interiors are all disjoint from the tangent periodic
orbits. Since the chain is simple, we can prove, using the technics in [Ba2, § 7] that through some isotopy
along the flow, the interiors of the elementary annuli can be made disjoint from each other, that is, the
Birkhoff surface is weakly embedded. O

All of these results in [Ba2] were stated and proved for smooth Anosov flows. However, exactly the
same techniques work for general pseudo-Anosov flows.
More generally, using the results above, then according to lemma 5.3:

Lemma 6.8. Let G be a subgroup of wi (M) isomorphic to Z2. Suppose that the pseudo-Anosov flow ® is
not product. Then G is the image Y.(m1(T)) of the fundamental group of a Birkhoff torus T : T — M.

Observe that weakly embedded closed Birkhoff surfaces may fail to be embedded for various reasons:

I) every Birkhoff subannulus may be non-embedded, wrapping around one or both of the tangent
periodic orbit in its boundary. It means that some element g of (M) (corresponding to the periodic
orbit) is not in G, but g preserves a corner in C (where C is the G = Z? invariant chain of lozenges).

IT) an element of 7 (M) may map a corner « of C to another corner 8 of C which is not in the G-orbit
of a, ie. a tangent periodic orbit can be the boundary of more than two Birkhoff subannuli. This is the
case in the Bonatti-Langevin example ([Bo-La]).

III) even an element g of 71 (M) not in G could map a lozenge in C to another lozenge. This corresponds
at the Birkhoff surface level to the existence to two different elementary Birkhoff annuli sharing the same
boundary components and homotopic one to the other along the orbits of ®. This situation typically
arises in Proposition 6.7 if G is a finite index subgroup of a bigger group preserving the chain C.

Remark: Let us first stress out that possibility I) can certainly happen. For example let ® be the
geodesic flow in the unit tangent bundle of an orientable hyperbolic surface and let T' be the set of unit
vectors along a simple closed geodesic. Let v be one closed orbit in 1'. Put coordinates in the torus
ON () so that (0,1) is the meridian and (1,0) is the trace of say the stable foliation. The construction
here is more general, the key fact used is that the trace of the stable foliation intersects the meridian
once. Do Dehn surgery on v so that the new meridian is (1,n) where n is an integer > 1. Isotoping the
old torus slightly to a torus 7" avoiding vy we see that it survives the Dehn surgery. After Dehn surgery
T’ is homotopic to a Birkhoff torus, with Birkhoff annuli which wrap n times around the orbit . Since
it is a Birkhoff torus, it is mi-injective and so is T". This gives the desired examples. In fact the surgery
procedure can be done by blowing up the orbit -y into a boundary torus and then blowing back using
the new meridian information [Fr]. Therefore the new Birkhoff torus can be taken as the result of the
original Birkhoff torus under this procedure.

A Birkhoff torus is m-injective because of the following: a closed curve is homotopic to either a closed
orbit in the Birkhoff torus or to a curve transverse to say the stable foliation in the torus. In the first
case the curve represents a power of a closed orbit, which is not null homotopic [Fe-Mo]. In the second
case, as it is transverse to the stable foliation, it is also not null homotopic [Fe3, Ga-Oe].

The notion of weakly embedded tori is sufficient to analyse the relationship between (possible) singular
orbits of the flow and the torus decomposition of M.

Proposition 6.9. Let a be a singular orbit of a pseudo-Anosov flow ® in M. Then « is homotopic into
a piece of the torus decomposition of M.
Remarks — 1) Clearly this is not true for regular periodic orbits: for example there are (non Seifert)

graph manifolds with Anosov flows which are transitive — for example the flows constructed by Handel
and Thurston [Ha-Th], which are actually volume preserving. Then there are dense orbits and hence
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periodic orbits which are not homotopic into any Seifert fibered piece. 2) If M is atoroidal, the lemma
is vacuous. 3) Notice that o may be homotopic into several pieces — for example, a priori there can be
annuli crossing through atoroidal pieces.

Proof. Let Ty, ...,T, be the cutting tori in a torus decomposition of M — with complementary components
Py, ..., Py, which are either Seifert fibered or atoroidal. By a small isotopy assume that « is transverse to
the collection {T;}. Fix a lift & to M and let g in 71 (M) be associated to a so that g(a) = a. Consider
the collection of all lifts of the {T;}.

Case 1 — Suppose that a eventually stops intersecting lifts of the {7;}.
Since « is closed, this shows that « is contained in a component of the complement of {7;}.

Case 2 — Suppose that a keeps intersecting a fixed lift T in points pp = '5% (po) where t; converges to
infinity. o

Let V be the tree, whose vertices are the components M — (lifts of {7;}) and edges are the lifts of {T}}.
Then 71 (M) acts on V.

By transversality, the intersection of o and {7}} is finite. Up to subsequence we may assume that m(py)
is a single point. The projection to M of &)[tk,tk/}(pﬂ) is the orbit « being traversed a number n of times.
This shows that o™ is freely homotopic into some T;. It follows that g™ preserves an edge in V' and so
does not act freely on V. Therefore g also does not act freely on V. There are two options: If g acts as
an inversion in the tree V', then it fixes an edge associated to a lifted torus T, and then o is homotopic
into the torus 7, = W(TV*) Then we are done. Otherwise g fixes a vertex in V' and hence « is homotopic
into a piece of the Seifert fibered decomposition.

Case 3 — & intersects distinct lifts 79, j € N of elements in {T}}.

By the proof of case 2, it follows that the assumption of case 2 does not hold. Therefore a eventually
stops intersecting any single lift T of the {T;}. In addition if distance between & and any single lift T
does not converge to infinity as time goes to infinity then: up to subsequence we may may assume there
are pg in & with d(pk,j’v) bounded. We may then assume that 7(pg) converges in M and up to a small
adjustment and subsequence we may assume that m(py) is constant. In addition pj is a bounded distance
from z in 7. Up to another subsequence assume that 7(zx) converges in M and since n(T) is compact,
we may assume that 7(z) is constant. The projection of 5[tk,tk/} is « being traversed n times. The
projection of an arc in T from 2, to zp is a closed curve in T'. Up to another subsequence assume that
the geodesic arcs from z; to pr have images in M which are very close. This produces a free homotopy
from o and a closed curve in 7(7'). Now the proof is exactly as in Case 2.

Hence assume that d(py, T) converges to infinity for any fixed lift T. Ifa keeps returning to the same
component of M- (lifts of {7}}), then some power of a preserves this component and an argument as in
case 2 finishes the proof.

__Finally we can assume that & crosses 17 for each 7 and eventually switches from one component of
M — TJ to the other. There is a smallest separation distance ag > 0 between any two lifts of {T}
Homotope each T; to a Birkhoff Torus, union of Birkhoff annuli {B,,,} and lift these homotoples to M.
Each point is moved at most a constant a;. Fix j and let j' vary. The fact that d(TJ T4 ) goes to infinity
means that @ has to cross some lift Bm of some Birkhoff annulus B, and cannot be contained in Em
But this is a contradiction because the orbits intersecting the interior of a Birkhoff annulus are never
singular. This finishes the proof of lemma 6.9. O

Theorem 6.10. Suppose that M is orientable and that ® is not product. Let T be an embedded, incom-
pressible torus in M. Then either 1) T is isotopic to an embedded Birkhoff torus, or 2) T is homotopic to
a weakly embedded Birkhoff torus and contained in a periodic Seifert fibered piece, or 3) T is isotopic to
the boundary of the tubular neighborhood of an embedded Birkhoff-Klein bottle contained in a free Seifert
piece.

Proof. Using proposition 6.7, let Yo : 7' — M be an immersed Birkhoff torus homotopic to 7" and let
T, = Yo(T). Let C be the chain of lozenges invariant under 71 (7") and associated with the torus 7 (a
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priori there could be two 7 (T')-invariant chains, if they are scalloped). The proof of this proposition has
similarities with that of proposition 6.2, but notice that some of the conclusions are opposite.

Step 1 — Claim: C is simple.

Suppose this is not true. Then there is a corner orbit a in C and f in 7 (M) with f(«) = ( intersecting
the interior of a lozenge in C. Let g be a generator of the isotropy group of 3. Let T. be the lift of T, to M
which is invariant under 7 (T). Similarly let T' be the lift of T' invariant under (T). Then j intersects
T, in a single point p. Let BT, B~ be the two rays of 8 defined d by p. Notice that T, is embedded and
separates M. Hence T and B~ are in distinct components of M T.. In addition 7' also separates M

Assume that 1 and 8~ are not at bounded distance from T,: for any R > 0, there are points ¢y, qR

in 3, BT, each at distance > R from T.. But 7" and T are freely homotopic: there is some Rg such that
T is contalned in the Ry-neighborhood of T for any R > 2Ry, any path joining a point ¢~ to a point
g* such that d(¢*, ¢) < R must intersect T.

On the other hand, the closed orbit 7(8) is homotopic in M to a curve in T. But T' is embedded and
M is orientable, so T is two sided and 7(3) is homotopic to a curve disjoint from T' (it is crucial that T
is embedded here!). Lift this to a homotopy from S to a curve 3 disjoint from T. The homotopies from
from B to 1 move points a bounded distance. Hence, there is a positive number r such that for every
R > 0, there are points mﬁ on (1 such that d(mﬁ,qﬁ) < r. Take R > 2Ry, R > r: according to the

above, the segment in ) between my and mE must intersect 1. Contradiction.

Therefore, one of the two rays (say 81) is at bounded distance < a; from T.. Consider a sequence of
points p; = ¢"i(p) in BT which all project to the same point 7(p;) in M.

Let ¢; in T, a distance < a; from pi- Up to subsequence assume that 7(g;) converges in M. Since T
is compact, we can assume that 7(g;) is constant. Now up to another subsequence assume that there are
geodesic segments u; in M from p;i to ¢; so that m(u;) converges in M. Again by small adjustments we
can assume that m(u;) is constant for i big. Consider the following closed curve in M: a segment in
from p; to pg, k > 4, then the segment uy, then a segment in T, from qr to ¢; and finally a segment from
g; to p; along wu;. Since m(u;) = m(uy) this projects to a free homotopy from a power of the loop 7(«) to
a closed curve in T,. In other words, ¢g" (¢;) = qi for some n in Z. Hence for some n different from 0, g"
leaves i invariant.

But this implies that ¢g" leaves C invariant. Since g" (/) = 3, then ¢" leaves invariant the lozenge C of
C containing § in its interior and g" is not the identity. But then ¢™ does not leave invariant any orbit
in the interior of C' — contradiction to it leaving £ invariant. This proves the claim.

Let G = m(T). According to proposition 6.7 we can choose the Birkhoff torus Yy : T — M weakly
embedded. As we already observed, if this Birkhoff torus is not embedded, some element g of the set
(m (M) — 71 (T)) maps a corner of C to a corner of C. Our strategy is to enlarge G to a bigger subgroup
of w1 (M), containing all these elements.

Let G denote the tree G(«) where a is a corner in C. The chain C corresponds to a G-invariant line in
G. Let H be the subset of w1 (M) of those h such that there is a vertex 8 of G such that h(5) is also a
vertex of G. In particular G(8) = G(a) = G(h(B)). Then, for every h in H:

hence H is the stabilizer of G. In particular H is a subgroup of w1 (M).

Let Hy the subgroup of H acting trivially on G: Hj is a cyclic normal subgroup of H, generated by an
element hg. Let H' be the centralizer of Hy (or hg) in H: it is a normal subgroup of H of index at most
2.

Step 2 — The case where H' is abelian.

Here H' = Z?. Since G N H' has finite index in H' which is abelian, it follows that C is H'-invariant
(Corollary 5.6 ). Now since H' is normal in H, the same result shows that C is H-invariant. By Lemma 5.2,
H is isomorphic to Z? or m1(K) — since it contains a Z*. This is the crucial conclusion in this case.
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Apply Proposition 6.7 to H using that C is simple: there is a weakly embedded closed Birkhoff surface
Ti:S — M with (T1).(m1(S)) = H. It follows from the discussion following lemma 6.8 that Y, : S — M
is an embedding, since any element of 71 (M) mapping a corner of C to a corner of C lies in H.

Suppose first that S is a torus, that is, H is isomorphic to Z2. If S is one sided, then M is non
orientable, contrary to hypothesis. Therefore there is a neighborhood N of S homeomorphic to S x [0, 1].
As the initial embedded torus T' C M is homotopic into N, it now follows from classical 3-dim topology
[He| that 7' is homotopic and in fact isotopic to the embedded Birkhoff torus Y;(S). In other words, T
is isotopic to an embedded Birkhoff torus: we are done (case 1) of the statement of the proposition).

Consider now the case where S is the Klein bottle. Since M is oriented, T1(S) admits a tubular
neighborhood U in M diffeomorphic to the non-trivial line bundle over K. The boundary of U is an
embedded torus T". As above T' is homotopic into U and has to be homotopic and in fact isotopic to T".

Now observe that U is a Seifert submanifold which is not a product of surface cross interval. It follows
that U is contained in a Seifert piece P of the torus decomposition of M (that is S is not in the boundary
of two intersecting atoroidal/hyperbolic pieces). If P is periodic then proposition 6.7 implies that 7' is
homotopic to a weakly embedded Birkhoff torus — this is case 2) of the statement of the proposition. If
P is not periodic then we are in case 3). We are done in this case.

Step 3 — The case where H' is not abelian.

Since H', contained in the centralizer of Hy, is not abelian, lemma VI.1.5 of [Ja-Sh] shows that there is
a Seifert fibered piece P of the torus decomposition of M so that H' C m(P). Let ¢t be a representative
of the regular fibers of 7 (7). Then the centralizer Z(t) of ¢ in 7 (P) (the characteristic subgroup) has
index at most 2 in 71 (P). Since H' C m(P), the centralizer Z(t) contains a finite index subgroup G” of
G. Hence, according to corollary 5.6, ¢ preserves the chain C: in particular ¢ belongs to H.

Assume that P is periodic, ie. that ¢ can be selected acting non-freely on . Then, according to
proposition 6.7, T is homotopic to a weakly embedded Birkhoff torus, contained (up to homotopy) in P.
We are in case 2) of the proposition. Notice that in general there may be identifications in the boundary
orbits as already described. A priori any of problems I), IT) or ITI) described after lemma 6.8 may occur.

The last case to consider is the case where ¢ acts freely on . Then C represents the axis of ¢ in the
tree G. When t acts freely it may not leave invariant a unique chain of lozenges, for example as happens
in the geodesic flow case. However the key fact here is that H preserves G and then C is the unique axis
of t in G. Since H' is contained in 7 (P), some finite index normal subgroup H" of H is contained in
Z(t). For any g in H", then tg(C) = ¢g(C) so by the uniqueness above, g(C) = C, or C is preserved by H".
Since H"” is normal in H then again it follows that H preserves C. Now we conclude almost as in step 2:
if H is isomorphic to Z? then H' is abelian, contradiction to assumption in case 3). If H is isomorphic
to m1(K) then T is isotopic to the boundary of a tubular neighborhood of an embedded Birkhoff-Klein
bottle contained in P, which can be periodic (case 2) or free (case 3)). O

Remark: We remark that tori homotopic to a double cover of a Birkhoff-Klein bottle appearing in step
2 and 3 actually occur in the free case and in the periodic case too. The periodic case occurs for example
in the Bonatti-Langevin flow [Bo-La]. An example of the free case was described in the remark at the
end of section 4.

Remark: The hypothesis of orientability for M in proposition 6.10 occurs because several results for
torus decompositions and maps of Seifert spaces into manifolds are only clearly stated in the literature
for orientable manifolds, for example [Ja-Sh].

7. Periodic Seifert fibered pieces

This section is devoted to the proof of theorem F — in particular we assume that M is orientable. Let P
be a (non trivial) Seifert fibered piece of a 3-manifold M with a pseudo-Anosov flow ®. We will analyse
here only the case that the regular fiber hg in 7 (P) does not act freely on O, that is P is a periodic
piece. By theorem 4.1 this implies that P is not all of M. We start by constructing a canonical tree of
lozenges associated to P. First consider the action on O: there is o in O with ho(a) = a. Let T be the
fat tree G(). Given g in 7 (P), then ghog~' = hf' so hog(a) = g(a) and g(a) is in G(a). It follows



32 THIERRY BARBOT AND SERGIO R. FENLEY

that 7 = G(«) is a w1 (P)-invariant tree. The kernel of the 7 (P)-action on 7 is a normal cyclic subgroup
Hj of (M), which contains a non-trivial power h{ of hg (cf. proposition 2.16).

Notice that there is at least a Z @ Z in 71 (P) so there are elements in 7 (P) acting freely on 7. We
now go through several steps to produce a normal form of the flow in P.

Pruning the tree T

We first construct a subtree of 7 which is still 7 (P)-invariant and has no vertices of valence one.
Given g in 7 (P) acting freely on T let A(g) be the axis of g in 7. Let now 7' be the union of all axes
A(g), for all g in 71 (P) acting freely on O. Clearly T’ is m(P) invariant and has no vertices of valence
one, since they are all in axes. All that is left to prove is that 7' is connected and hence a subtree.

Let cg,c; in T’ so that there are f,g in m(P) with ¢ in A(f), ¢; in A(g). If A(f),A(g) intersect,
then there is a path in 7' from ¢y to ¢;. Suppose then that they do not intersect. There is a well defined
bridge in 7 from A(f) to A(g) denoted by [z,y] — it is a closed segment intersecting A(f) only in the
extremity = and intersecting A(g) only in y. Let z = f (). Consider the element gf which is in 71 (P).
Then z separates z from y and so separates z from gf(z) which is in gA(f). Also gf(z) = g(x) separates
x from gf(z) which is in gA(f). It follows that z,z,gf(z) and gf(z) are all distinct and linearly ordered
in a segment contained in 7. Hence gf acts freely on 7 and z,gf(z) are in A(gf). In particular z and
y are in A(gf) contained in 7" so there is a path in 7’ from ¢g to ¢;. This shows that 7' is connected.

Weakly embedded Birkhoff annuli

Suppose there is a vertex ¢ of 7' and an element g of m (M) (not necessarily in 71 (P)) and a lozenge C
in 77 with g(g) intersecting the interior of C. The lozenge C' is part of an axis A(f) for some f in w1 (P).
Since g(q) intersects C, then a proof exactly as in proposition 6.2 shows that 7' has to be a string of
lozenges. Then f, h3" generate a Z @ Z subgroup of 71 (M) preserving this string of lozenges. Moreover,
q is a vertex of 7' and g(q) is in the interior of C. Proposition 6.2 again implies that the piece P has to
be a free piece — contrary to assumption in this case.

We conclude that each lozenge in 7' corresponds to a weakly embedded elementary Birkhoff annulus
in M. We want to show that the union of the Birkhoff annuli can be adjusted to be embedded in the
interiors.

Weakly embedded union of Birkhoff annuli

As in the proof of Proposition 6.10, we consider the stabilizer H in 71 (M) of 7'. The action of H on
T' is not faithful, since the kernel contains a non trivial group. Therefore, H contains an infinite cyclic
normal subgroup, but also contains m (P). It follows that H = 71(P), since P is a maximal Seifert piece.
In addition the same arguments show that the stabilizer in 71 (M) of T is also m (P).

Suppose that g in 71 (M) maps a vertex a of T’ to a vertex of 7'. Hence it also sends a vertex of T
to a vertex of 7. In that case we already observed during the proof of proposition 6.10 that g stabilizes
T and hence belongs to 7 (P).

Consider the quotient of the tree 7' by m(P). It is a graph, that we denote by A. Since it is a graph,
the fundamental group of A is a free group, and since 71 (P) is finitely generated, then the fundamental
group of A has finite rank. Moreover, by construction, A does not contain an infinite ray (since every
element of 7" lies on the axis of some element of 7y (P) acting freely on 7”). It follows that A is a finite
graph.

Consider a fundamental domain of the action of 7 (P) on 7. We lift every lozenge of this fundamental

domain to a Birkhoff band in M, and then lift all other lozenges in 7' in a m (P)-equivariant way. It
projects to an union of weakly embedded Birkhoff annuli in M. Once more, we can then use cut and
paste techniques of [Ba2] to have the union of the Birkhoff annuli to be embedded in the interior of the
annuli — with possible identifications in the boundary orbits.

Flow adapted neighborhoods of periodic pieces

Let B be the union of the weakly embedded elementary Birkhoff annuli as in the previous item. Let U
be the neighborhood of B obtained by taking a tubular neighborhood of every periodic orbit contained in
B (the “tangent periodic orbits”), attaching to them tubular neighborhoods of the elementary Birkhoff
annuli. Topologically, this corresponds to the following: start with a finite collection of solid tori and
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attach several handles diffeomorphic to [—1,1] x [—1,1] x S!, where in each handle, {0} x [—1,1] x S!
is contained in the corresponding weakly embedded Birkhoff annulus. Handles attached to a given solid
torus (corresponding to one of the tangent periodic orbits) are pairwise disjoint. One can perform a
Dehn surgery on U along tangent periodic orbits so that now the handles are attached along longitudes
of the solid tori: we get a 3-manifold U’ which is clearly a circle bundle over a surface with boundary X.
Moreover, ¥ retracts to the graph A.

It follows that U is diffeomorphic to a Seifert manifold, obtained by Dehn surgeries around fibers in
U’ above vertices of A. More precisely, there is a Seifert fibration & : U — X, where X, is an orbifold,
whose singularities correspond to vertices of A; singular fibers are tangent periodic orbits where attached
Birkhoff annuli wrap non trivially. s

Now observe that U is the projection of a “tubular neighborhood” in M of Birkhoff bands, which is
homeomorphic to the product of the tree 7' by R. This neighborhood is therefore simply connected,
and U is an incompressible Seifert submanifold with fundamental group isomorphic to P. Therefore, P
is isotopic to U. This achieves the proof of Theorem F.

Remark — The only periodic orbits contained in U correspond to the projections of the vertices of 7.

Here is why: The interiors of the finitely many Birkhoff annuli in question are transverse to ® and so
orbits intersecting these interiors exit U if U is sufficiently small. The other orbits are in the solid tori
neighborhoods. If these neighborhoods are small enough then the only orbits entirely contained in them
are the core orbits.

In particular a singular orbit 7y cannot intersect the interior of the Birkhoff annuli, hence either 7 is one
of the periodic orbits in U or can be chosen disjoint from U if U is small. Previously we had proved that
a singular orbit is homotopic into a piece of the torus decomposition. In a graph manifold, if a singular
orbit is homotopic into a free piece Z, we conjecture that it must be homotopic into the boundary of the
piece Z.

8. New classes of examples of pseudo-Anosov flows in graph manifolds

In section 4 we described some new examples of (one prong) pseudo-Anosov flows. In this section we
will describe two new classes of examples, which are extremely interesting: The first class consists of
actual pseudo-Anosov flows. The examples in the second class, which is a much larger class, may have
one prongs.

1) Consider the class of examples 1) of section 4. Each example had a 2-fold branched cover which is the
geodesic flow in T7S, where S is closed, hyperbolic and has a reflection along finitely many geodesics.
For simplicity we assume here that S has a single closed geodesic « of symmetry. Let N be the quotient
manifold. In N, there is a quotient annulus C which is the branched quotient of the unit tangent bundle
of a. Now for any integer n > 0 we can do the n-fold branched cover of N along C. If n = 2 this recovers
the original geodesic flow. Otherwise the boundary of C lifts to 2 closed orbits which are n-prongs. Let
M, be this n-fold cover and C’ be the lift of the annulus C. The set C’ cuts M,, into Seifert fibered pieces
— each a copy of T1S’, where S’ is one component of S cut along « (notice both components of S — «
are isometric by the symmetry along @). Each of these components is a component (up to isotopy) of the
torus decomposition of M,,. In each of these components the fiber acts freely on the orbit space, so these
are free pieces. There is one additional Seifert component which is a small neighborhood of C’. There is
a planar graph X which has 2 vertices (corresponding to the 2 directions on the geodesic o) and n edges
from one vertex to the other. The set C’ is homeomorphic to X x S'. This is a Seifert fibered piece of
M,,, where the fiber corresponds to a periodic orbit — this is a periodic piece.

This highlights an important fact: there are examples of graph manifolds M supporting pseudo- Anosov
flow @, so that in the torus decomposition of M there are periodic pieces glued to free pieces.

2) The next class of examples will be on graph manifolds where all pieces are periodic. It is much more
involved and much more interesting.
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In the previous section we proved that the periodic Seifert pieces can be obtained as neighborhoods of
unions of Birkhoff annuli. Here we will introduce standard models for certain neighborhoods of Birkhoff
annuli and then use them to produce many examples.

Model of neighborhood of an embedded Birkhoff annulus

Let I = [-7n/2,m/2]. Let N = I x S' x I with coordinates (z,y,z). Think of S' as [0,1]/0 ~ 1.
Convention: the increasing or positive direction in S!' corresponds to increasing in [0, 1].
For every positive real number A, we consider the C'* vector field X, defined by:

z = 0
= Asin(z) cos?(z)

= cos®(z) + sin’(z) sin? ()

Let 1) be the local flow in N generated by X). It has the following properties:

it preserves the fibration by circles (z,y, z) — (x, 2).
There are only 2 closed orbits:

ap = {—7/2} x 8" x {0}, ay = {n/2} xS' x {0}.
In «; the flow is decreasing the y coordinate (in the flow forward direction) and in «y the flow is
increasing the y coordinate. Hence as oriented orbits, ay is freely homotopic in N to () '
The flow is incoming and perpendicular to the boundary I x S! x {—7/2} and outgoing and
perpendicular to I x S' x {r/2}. The flow is tangent to I x S' x I.
The annuli z = constant are flow saturated.
The orbits in {—~m/2} x S' x {—7/2} enter N and spiral towards «; in the negative y direction.
Hence in N, W8(ay) = {—n/2} x S' x [-7/2,0]. In {—7/2} x S' x (0, 7/2] the orbits spiral (low
backwards) to a; in the positive y direction, so W%(ay) = {~7/2} x S! x [0,7/2]. We have a
similar behavior (with the y coordinate increasing when moving flow forward) in {7/2} x S! x I.
The flow is invariant under the any rotation in the y coordinate: (z,y,z2) — (z,y + a,z) where
the y coordinate is mod 1. The flow is invariant under (z,y,2) — (—z, —y (mod 1), z). This is
symmetry (I).
Let Fy = (—n/2,7/2) x S' x {—7/2}, Fy = (—7n/2,7/2) x S' x {n/2}, both parametrized by the
7,y coordinates. In (—7/2,m/2) x S' x I all orbits enter N in Fy and exit N in F;. An easy
computation shows that the variation of time spent between the entrance and the exit is:
s
A o |

There is an induced homeomorphism f : Fy — Fj given by the exit point in the z,y coordinates.

It has the form

fle,y) = (2,y+a(z)),
where the function a(x) is C* and depends only on z. It can also be computed:

a(z) = Ar[tan(z) — tan(z/2)]

Observe that a(0) = 0. In fact, the orbits in the center annulus have y coordinate constant.
Also, a(z) converges to minus infinity when z converges to —m/2 and a(z) converges to infinity
when z converges to /2. In addition, a(—z) = —a(z).

Finally:

AT

o (z) = )\w[% + (tan2(z) — %tan2(:1c/2)] >

By the formula above, the map f is a non linear shearing in the y direction. The bigger the A the
stronger the shearing.
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Figure 4: Figure 4: The local flow (N,y). The top and bottom are identified, that is, the vertical coordinate y is
defined modulo 1.

One canonical Birkhoff annulus associated to the block N is B = [-7/2,7/2] x S! x 0. If aj,as
are traversed in the positive flow direction then B is a free homotopy from a; to (a3)!. The flow is
transverse to B outside of «a, ap. The formulas above are convenient and give explicit models, but they
are not essential: Up to topological conjugacy any embedded Birkhoff annulus has a neighborhood with
this description.

Glueing the tangential boundaries of the blocks

Observe that the same formula defines a vector field X, on N := R x 8! x I, which is 27-periodic on the
coordinate x. Actually, due to the invariance of X, under the symetry (I), we see that the transformation
7(z,y,2) = (x+m, —y, z) preserves X,. The quotient of N by the cyclic group generated by 7 is a Seifert
manifold Ny, homeomorphic to the product K x I, where K is the Klein bottle. The induced local flow
has a single 1-prong singular orbit; N has two boundary components, one which is a incoming Klein
bottle, the other an outgoing Klein bottle.

More generally, we can take the quotient by the group generated by 7% where k is a positive integer.
We get a Seifert 3-manifold Py, diffeomorphic to K x I or T? x I (according to the parity of k), with
one incoming boundary component and one outgoing component, containing exactly k£ singular 1-prong
periodic orbits.

Now, more generally, we can glue several copies of (N, X)) in a much more involved way. The blueprint
encoding such a glueing will be a finite fat graph X, ie. a graph embedded in a surface > with boundary,
such that X is a retract of 3 — here, we do not require that 3 be oriented.

We moreover require the following conditions:

Condition (1): the valence of every vertex is an even number.

Condition (II): the set of boundary components of ¥ can be partitioned in two subsets so that for every
edge e of X, the two sides of e in X lie in different subset of this partition.

Use as labels “incoming” and “outgoing” for this partition of the set of boundary components of X.
Now every edge has an incoming side, and an outgoing side.

Given such information we construct a flow in a 3-manifold. Associate to every edge e of X a copy N,
of N as above. Then, every incoming boundary component ¢ of ¥ corresponds to a cyclic sequence of
edges (e1,ea,...,ex). We glue all the associated N,, along the stable manifolds {£m/2} x S' x [~7/2,0)
in the same cyclic order; more precisely, we map every point of coordinate (7/2,y,z) (z < 0) in N,,
to the point of coordinate (—7/2, —y, z) in the following copy N(e;y1). The result, for each boundary
component ¢, is a Seifert 3-manifold (with boundary and corner). The Seifert 3-manifold has interior
diffeomorphic to P, with the unstable manifolds {47 /2} x 8! x [~7/2,0] and the incoming and outgoing
boundaries removed. It has an incoming boundary component, obtained by glueing copies of closures of
the incoming annulus Fj for each N,,. This boundary component is diffeomorphic to the torus if k is
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even and to the Klein bottle if k is odd. This manifold also has “outgoing” annular components. Observe
that up to diffeomorphism, the result depends only on the cyclic order (e, eq, ..., ).

Next we do the similar glueing along outgoing boundary components, but now glueing the copies
of N along the unstable annuli. The result is a Seifert manifold N(X), with incoming and outgoing
components, but no tangential boundary components. Moreover, to every vertex v of X corresponds a
tubular neighborhood of the periodic orbit which is homeomorphic to a solid torus. The flow is obviously
homeomorphic to a p-branched cover of a tubular neighborhood of the singular orbit in P; — here 2p is
the valence of v. This is a compact Seifert manifold. Observe that N(X) is orientable if and only if all &
are even.

By construction, N(X) is equipped with a vector field X for every A > 0. The boundary of N(X) is
an union of incoming components and outgoing components, which are tori or Klein bottles. Due to the
final process in the construction, this vector field is not smooth along the vertical orbits corresponding to
the vertices of X, except if the valence of the vertex is 2 or 4, a special situation where we can perform
the glueing so that the vector field is smooth in the neighborhood of the associated singular orbit. In
particular, if all vertices have valence 4, then there is no singular orbit.

This is exactly the case in the Bonatti-Langevin [Bo-La] example, where the fat tree X is a figure eight
(with one vertex) embedded in a once-punctured Mobius strip.

Remark: Notice that N(X) is a circle bundle over the surface X, with fibers the vertical circles with
constant x, z components. Moreover, the local flow generated by X, preserves this fibration, hence there
is an induced vector field X on . The vector field Xy is Morse-Smale. Its singularities are the vertices
of X it is transverse to O%. There is three types of non-singular trajectories of Xy:

— trajectories in the stable line of a singularity, entering ¥,

— trajectories in the unstable line of a singularity, exiting X,

— trajectories joining two boundary components.

Observe that the data (X, X) is equivalent to the data (3, X,) up to isotopy.

Glueing the transverse boundary components

The next step is to glue outgoing boundary components to incoming boundary components. Observe
that these components are naturally isomorphic to boundary components in the manifolds Ny, and thus
admit natural coordinates (z,y).

Let T" be the union of the incoming boundary components and let 7" be the union of the outgoing
boundary components. Let u denote the line field in T' or T” associated to z being constant. In order
to perform the glueing, we have one obvious condition: there must be the same number of outgoing and
incoming tori, and the same number of outgoing and incoming Klein bottles!

Under this condition, we can select a map A : T — T’ which is linear in the z,y-coordinates on
each component. The only assumption we will have is that A does not preserve any of the line fields p.
Equivalently A does not send any unstable manifold of the periodic orbits to a curve isotopic into the
stable manifold of a periodic orbit.

Given this condition we first show that there are no components of T which are Klein bottles. Suppose
there is one such component denoted by K; to be glued to a component Ky of T'. Notice that up
to isotopy there are only two foliations by circles of the Klein bottle K. One foliation has two circles
which are orientation reversing and the nearby leaves cover such a leaf two to one. The leaf space is
a 1-dim orbifold, with two “boundary” orbifold points of order 2. This is type I. The other foliation
comes from a product foliation by circles of the annulus and glueing the boundaries by an orientation
reversing homeomorphism. This is type II. Since there are only two such foliations up to isotopy and
they are intrinsically different (one has orientation reversing leaves and the other does not), then: any
homeomorphism between a Klein bottle K and another K’ has to preverse each type up to isotopy.

The construction of the flow shows that the line field p induces foliations of type Il in Ky and Kq. By
the above explanation A has to preserve the line field p up to isotopy, which we do not want. Hence we
have a necessary condition:

Conclusion — In order for the last step to produce a pseudo-Anosov flow, then all the components of T
have to be tori.
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In particular the manifolds in the middle step will all be orientable.

By glueing T' onto T' by A we obtain a closed 3-manifold M = M (X, A) equipped with a family of
vector fields Y). Hence it provides a flow ¥, on M for each A > 0. The periodic orbits of X, provide a
finite number of periodic orbits of Wy that we call vertical orbits. Observe that since X is orthogonal to
the boundary, Y, is smooth outside of the vertical orbits.

Our goal is to prove that, if A is big enough, then ¥, is pseudo- Anosov.

Let Ij be the union of the circles in 7" contained in the local unstable manifolds of the vertical orbits
(they are associated to the circles z = £7/2, z = 7/2 in each block), and similarly let [§ be the union of
the circles in T” contained in the local stable manifolds of the vertical orbits. Let ¢ be the first return
map from a maximal subset of T to itself. Its domain is the complement in T' of u§ = A~'(I3). For every
n > 0, let p$ be the preimage of uf by ¢": T'\ p¥ is the domain of "', Each component of u$ is a
curve in T, intersecting every circle in [{f, and spiraling around two circles in p$. The complement QF
of the union pf  of all x? is the domain of points where all the positive iterates ™ (n > 0) are defined.
Observe that QF may not be not open: it is the complement of x%_, which is an union of countably many
1-manifolds: the intersection with 7' of the stable manifolds of the vertical orbits.

Let Cy be a smooth small cone field on 7', centered around p, and constant in the coordinates z, y.
If Cy is small enough, then A(Cp) is a cone field in 7" whose closure avoids the line field p in 77, If in
addition A > Ao >> 1, that is, a’(z) > Ar/2 > ag >> 1, then the image of A(Cy) across the fundamental
blocks will be very close to the constant z direction — that is g. This is because A is a linear map,
so A(Cyp) is a definite positive distance away from the line field . In addition if the shearing is strong
enough as above then the first return of A(Cy) will be very close to the line field x. This implies that
whenever ¢ is defined, then ¢, (Cj) is strictly contained in Cy. Moreover, this contraction from Cy inside
itself is uniform, since the bound from below of &'(z) is uniform. Furthermore: ¢.(Cy) C Cy is close
to u, hence every tangent vector in Cy has a non-trivial y-component, which is uniformly expanded by
the differential of ¢. It follows that, again increasing A¢ if necessary, all vectors in ¢,(Cy) have a norm
uniformly expanded under the differential of ¢, let us say have norm at least multiplied by 2.

Given these properties, standart arguments (see for example [Ha-Th]) show that the intersection of all
iterates ¢"(Cy) defines an invariant direction at every point of Q7. Vectors in this direction are uniformly
exponentially expanded under the action of y,.

Consider now more closely the set p) . Let F' be a component of the complement in T of [j: it is a
copy of the annulus F; (from the definition of model neighborhoods of Birkhoff annuli). The intersection
between F' and puf (after the glueing by A) is an union of straight segments, with no tangent vectors in Cp,
and joining the two boundary components of F'. The second generation curves, that is, the components
of i = ¢~ 1(ug)) are obtained by pushing backward the first generation lines through all blocks. These
become curves in T’ with direction very close to y if the curves are close to [§. Then apply A~ !: in every
annular component F' they are still a union of curves joining the boundary of F, and these curves are
nearly horizontal, that is, with tangent directions outside Cj. Iterating the argument, we get that every
connected component of u  has these properties: in every annular component F, it is a disjoint union
of graphs y = g(x) of smooth functions, with uniformly bounded derivative ¢g’. They are of course all
included in the stable manifold of vertical orbits.

Claim — Q7 has empty interior

This is the key property. Suppose this is not true and let ¢ be a point in the interior of QF. Its positive
orbit intersects 7" infinitely many times; hence there is an annular component F' of T'— [ visited infinitely
many times.

Consider now all paths ¢ in Int(27), with tangent directions contained in Cy. Due to the description
above, the length of these paths is uniformly bounded from above.

On the other hand, let ¢ be such a path containing gq. There are infinitely many iterates ¢"*(q)
contained in F. Since ¢ is connected, and since the image of ¢ avoids [{, the paths ¢"(c) are all
contained in F NInt(Q"). But they all have tangent vectors contained in Cy as ¢, (Cy) C Cp, and their
length is exponentially increasing as proved above: contradiction. The claim is proved.
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It follows that u’_ is dense. Hence, every annular component F' is foliated by graphs of continuous
functions y = g(z), which are even C' since they are limits of smooth functions with uniformly bounded
derivatives. Pushing along the flow, we obtain a foliation A® in M of codimension one, which is C! outside
the vertical orbits. Observe that this foliation is C'' on T', where it defines a one-dimensional foliation.
This foliation admits closed leaves (the circles pf) and all other leaves in T' spiral towards these closed
leaves. There is no Reeb component.

Reversing the flow direction, we construct a codimension one foliation A“. These two foliations are
transverse to T' and T". Moreover, there are transverse one to the other: indeed, in 7', near I§ the
foliation A® is very close to A~ (u), whereas A" is very close to . Iterating by powers of ¢ this works
in all of T'. Moreover, the stable (respectively unstable) manifolds of the vertical orbits are leaves of A*
(respectively A"), and their union is dense in M. The foliations A® and A" are the natural candidates
for being the stable and unstable foliations of V.

Let g be a point in T'. If ¢ is in 2, ie. the stable manifold of a vertical orbit, then the leaf of A®
containing ¢ is obviously in the stable manifold of ¢: for ¢ big enough, the vectors tangent to A*(q) at ¢
are divided at least by 2 by the differential of U¥.

Now assume that ¢ lies in 27, ie. that all iterates ¢"(q) are defined. At each of these points, there
is a tangent cone Cy(¢"(q))), which is exponentially expanded. But there is also a cone field Cj(¢"(q)),
constructed by considering the reversed flow, and which is exponentially expanded by ¢, ', therefore
exponentially contracted by ¢,. Since A® is g-invariant, and also A® has no tangent vector in Cj, then
tangent vectors at A*(¢"(q)) must lie in C}(¢"(q)), hence are exponentially contracted. It follows that
A® is the stable foliation for ¥y, and similarly, A" is the unstable foliation.

Conclusion — There are stable and unstable foliations of Wy, which is a (possibly one-prong) pseudo-
Anosov flow.

Observe that the flow is a 1-prong pseudo-Anosov flow if and only if X admits vertices of degree 2. If
there are only 2-prong orbits before the last glueing, ie. if all vertices of X have valence 4, then ¥ is an
Anosov flow. If there are no 1-prong orbits, then ¥y is a pseudo-Anosov flow.

This proves Theorem 1.

Remark — Notice that this produces infinitely many examples of pseudo-Anosov flows in non orientable
graph manifolds. These are obtained by appropriate arrangements of orientation reversing glueing maps
from tori T to T".

An interesting subclass of the class of flows constructed here is the class where the graph X is a
circle: all the vertices have degree two, that is all the vertical orbits are 1-prong. Observe that condition
(IT) implies that the surface ¥ must be an annulus. The intermediate glueing N (X) is then one of the
manifolds Nj. The resulting manifold M (X, A) is then a torus bundle over the circle (k must be even by
the discussion above).

Since the only requirement on A is that it does not preserve the vertical direction, we obtain in
particular:

Corollary 8.1. In any torus bundle over S' which is not T there are 1-prong pseudo-Anosov flows with
any even number of 1-prong orbits.

In particular notice that there are infinitely many one prong such examples in nil manifolds. The
fundamental groups of these manifolds have polynomial growth as opposed to exponential growth, which
is obtained by taking a hyperbolic linear map A.

Remark — In the construction of periodic Seifert fibered pieces in this section the following happens:
For every vertical orbit ¢ in the piece and for every quadrant W associated to J, then W contains a
lozenge Z with a corner in §. This is not true for every periodic Seifert fibered piece with respect to a
pseudo-Anosov flow. It follows that the construction in this section does not attain all possibles periodic
Seifert fibered pieces. In particular in the construction in this section the neighborhoods of the periodic
pieces always have boundaries which are transverse to the flow. This does not occur in general periodic
pieces.
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Dehn surgery — Once the examples in family 2 are constructed, then one can perform any Dehn surgery
on the vertical orbits. As long as the new meridian is not the original longitude, the resulting flows will be
a (possibly one prong) pseudo-Anosov flow. In addition each middle step manifold is still Seifert fibered,
so the resulting manifolds are still graph manifolds. This tremendously expands the class of examples in
graph manifolds.
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