
PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDSTHIERRY BARBOT AND S�ERGIO R. FENLEYAbstra
t � We �rst prove rigidity results for pseudo-Anosov 
ows in prototypes of toroidal 3-manifolds: we showthat a pseudo-Anosov 
ow in a Seifert �bered manifold is up to �nite 
overs topologi
ally 
onjugate to a geodesi

ow. We also show that a pseudo-Anosov 
ow in a solv manifold is topologi
ally 
onjugate to a suspension Anosov
ow. Then we analyse immersed and embedded in
ompressible tori in optimal position with respe
t to a pseudo-Anosov 
ow. We also study the intera
tion of a pseudo-Anosov 
ow with possible Seifert �bered pie
es in thetorus de
omposition: if the �ber is asso
iated to a periodi
 orbit of the 
ow, we produ
e a standard form for the
ow in the pie
e using Birkho� annuli. Finally we introdu
e several new 
lasses of examples, some of whi
h aregeneralized pseudo-Anosov 
ows whi
h have one prong singularities. The examples show that the results above inSeifert �bered and solvable manifolds do not apply to one prong pseudo-Anosov 
ows. In addition we also 
onstru
ta large new 
lass of examples in many graph manifolds, in
luding in parti
ular the Bonatti-Langevin example.11. Introdu
tionThe goal of this arti
le is to start a systemati
 study of pseudo-Anosov 
ows in toroidal 3-manifolds.More spe
i�
ally we analyse su
h 
ows in manifolds whi
h are not hyperboli
 or in pie
es of the torusde
omposition whi
h are not hyperboli
. We study optimal position of tori with respe
t to arbitrarypseudo-Anosov 
ows and we also produ
e many new examples of pseudo-Anosov 
ows, in
luding a large
lass in graph manifolds.The study of hyperboli
 
ows in toroidal manifolds was initiated by Ghys [Gh℄, who analysed Anosov
ows in 3-dimensional 
ir
le bundles. Ghys showed that up to �nite 
overs, the 
ow is topologi
ally 
on-jugate to the geodesi
 
ow in the unit tangent bundle of a hyperboli
 surfa
e. This was later strengthenedby the �rst author who showed that this holds if the manifold is Seifert �bered [Ba1℄. In the mid 70'sa generalization of Anosov 
ows 
alled pseudo-Anosov 
ows was introdu
ed by Thurston [Th2℄. Heshowed that these are extremely important for the study of surfa
es and 3-manifolds [Th1, Th2, Th3℄.The di�eren
e from Anosov 
ows is that one allows �nitely many singularities whi
h are ea
h of p-prongtype. In the appli
ations to the topology of 3-manifolds there is a requirement that p is at least 3, whi
his the 
onvention here as well. Pseudo-Anosov 
ows have been used very su

essfully to analyse thetopology and geometry of 3-manifolds [Mo1, Mo2, Mo3, Ga-Ka, Fe3, Fe7, Fe8℄. Pseudo-Anosov 
ows aremu
h more 
ommon than Anosov 
ows [Fr, RSS, Fe6℄. They are mu
h more 
exible be
ause for instan
ethey survive most Dehn surgeries on 
losed orbits [Fr℄, see also se
tion 8. In addition as opposed toAnosov 
ows, pseudo-Anosov 
ows 
an be 
onstru
ted transverse to Reebless foliations in vast generality[Mo3, Fe4, Cal1, Cal2, Cal3℄, yielding deep geometri
 information.In this arti
le we analyse several aspe
ts of pseudo-Anosov 
ows in toroidal manifolds. In the presen
eof a pseudo-Anosov 
ow the manifold is always irredu
ible [Fe-Mo℄. By the geometrization theorem[Pe1, Pe2, Pe3℄ a three manifold with a pseudo-Anosov 
ow is either hyperboli
, Seifert �bered, a solvmanifold or the torus de
omposition of the manifold is non trivial.Noti
e that there is an ongoing broad study of pseudo-Anosov 
ows in 
losed, hyperboli
 manifolds bythe se
ond author [Fe3, Fe7, Fe8℄, whi
h is mostly orthogonal to this arti
le. In our situation 
lassi
al3-dimensional topology will play a mu
h bigger role.A topologi
al 
onjuga
y between two 
ows is a homeomorphism whi
h sends orbits to orbits. We �rstanalyse Seifert �bered manifolds. Despite the mu
h bigger 
exibility of pseudo-Anosov 
ows we prove astrong rigidity theorem, extending the result of [Ba1℄ for Anosov 
ows (Theorem 4.1):Resea
h partially supported by NSF grant DMS-0305313.1AMS mathemati
s 
lassi�
ation: Primary: 37D20, 37D50; Se
ondary: 57M60, 57R301



2 THIERRY BARBOT AND S�ERGIO R. FENLEYTheorem A � Let � be a pseudo-Anosov in a Seifert �bered 3-manifold. Then up to �nite 
overs, � istopologi
ally 
onjugate to a geodesi
 
ow in the unit tangent bundle of a hyperboli
 surfa
e.In parti
ular the 
ow does not have singularities and is topologi
ally Anosov. The proof of theoremA splits into two 
ases depending on whether the �ber is homotopi
 to a 
losed orbit of the 
ow or not.In fa
t later on this di
hotomy will be fundamental for the study of pseudo-Anosov 
ows restri
ted toan arbitrary Seifert �bered pie
e of the torus de
omposition of the manifold. In the proof of theoremA we start by showing that the �rst 
ase 
annot happen. In the other 
ase we prove that there are nosingularities and also that the the stable/unstable foliations are slitherings as introdu
ed by Thurston[Th4, Th5℄. This produ
es two a
tions of the fundamental group on the 
ir
le, whi
h are used to produ
ea �1-invariant 
onjuga
y of the orbit spa
e with the orbit spa
e of the geodesi
 
ow. This is enough toprove theorem A. Here orbit spa
e refers to the orbit spa
e of the 
ow lifted to the universal 
over. Fora pseudo-Anosov 
ow, this orbit spa
e is always homeomorphi
 to the plane [Fe-Mo℄ and hen
e the 
owin the universal 
over is topologi
ally a produ
t.Next we analyse pseudo-Anosov 
ows in three manifolds with virtually solvable fundamental group.Here again there is a very strong rigidity result (Theorem 5.7):Theorem B � Suppose that � is a pseudo-Anosov 
ow in a three manifold with virtually solvablefundamental group. Then � has no singularities and is topologi
ally 
onjugate to a suspension Anosov
ow.The proofs of theorem B is roughly as follows. Suppose �rst that the fundamental group is solvableand 
onsider a normal rank two abelian subgroup. The �rst 
ase is that this subgroup a
ts non freelyon the orbit spa
e. In this 
ase we show that the subgroup preserves a stru
ture in the universal 
over
alled a 
hain of lozenges (des
ribed below). By normality the whole fundamental group of the manifoldwill preserve this 
hain of lozenges. We also show that the stabilizer of a 
hain of lozenges is at mosta �nite extension of Z2, whi
h leads to a 
ontradi
tion. It follows that the rank two abelian subgroupa
ts freely on the orbit spa
e and by previous results this implies that the 
ow is topologi
ally 
onjugateto a suspension Anosov 
ow [Fe4℄. If the manifold is virtually solvable then the 
ow is 
overed by asuspension Anosov 
ow and one 
an show that the original 
ow is also a suspension Anosov 
ow.The proof of both theorems A and B use the study of a
tions on the leaf spa
es of the stable/unstablefoliations in the universal 
over. These topologi
al spa
es already have a key role in the 
ontext ofAnosov 
ows [Gh, Ba1, Fe1, Fe2℄. In the more general 
ontext of pseudo-Anosov 
ows, these leaf spa
esare generalizations of both trees and non Hausdor� simply 
onne
ted one manifolds and are 
alled nonHausdor� trees [Fe5℄. A key fa
t used, generalizing a previous result in the 
ase of non Hausdor� simply
onne
ted one manifolds [Ba5℄, is that a group element a
ting freely on the non Hausdor� tree has anaxis [Fe5, Ro-St℄. Noti
e that for a pseudo-Anosov 
ow, the axis may not be properly embedded in therespe
tive leaf spa
e.This theme of analysising the stru
ture of the 
ow in the universal 
over is prevalent in a lot of thestudy of pseudo-Anosov 
ows and is 
entral to the results of this arti
le. This is used to give topologi
aland homotopi
 information about the manifold, and it also aids questions of rigidity of the 
ows andlarge s
ale geometry of the 
ow and the manifold.Given theorems A and B, we next 
onsider manifolds with non trivial torus de
omposition. Theoverar
hing goal is to understand the 
ow in ea
h pie
e of the torus de
omposition and then analysehow the pie
es are glued. In this arti
le we do a substantial analysis of Seifert �bered pie
es and westudy the tori in the boundary of the pie
es of a torus de
omposition. In terms of the relation withpseudo-Anosov 
ows, Seifert �bered pie
es in the torus de
omposition fall in two 
ategories: if the pie
eadmits a �bration for whi
h some �ber is freely homotopi
 to a 
losed orbit of the 
ow we say that thepie
e is periodi
, otherwise the pie
e is 
alled a free pie
e. Equivalently the Seifert pie
e is free if and onlyif the a
tion in the orbit spa
e of a de
k transformation 
orresponding to a �ber in any possible Seifert�bration is free. This di
hotomy between free pie
es and periodi
 pie
es is fundamental. For example ifthe whole manifold is Seifert then one main step in the proof of theorem A is to show that the pie
e isa free pie
e. For solvable manifolds, after 
utting along a �ber, the pie
e is also free. For Anosov 
ows,the 
ase of free Seifert pie
es has been extensively analysed in [Ba3℄, giving a nearly �nal 
on
lusion in
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ase: R-
overed Anosov 
ows on graph manifolds where all Seifert �bered pie
es are free.Re
all that a graph manifold is an irredu
ible 3-manifold where the pie
es of the torus de
omposition areall Seifert. An Anosov 
ow is R-
overed if (say) its stable foliation is R-
overed. A foliation is R-
overedif the its lift to the universal 
over has leaf spa
e homeomorphi
 to the real numbers [Fe1℄.To understand pseudo-Anosov 
ows in pie
es of the torus de
omposition one wants to 
ut the manifoldalong tori and analyse the 
ow in ea
h pie
e. Therefore one wants the 
utting torus to be in good positionwith respe
t to the 
ow. The best situation for a general given torus is that there is a torus isotopi
to it whi
h is transverse to the 
ow. But this is not always possible. A good representative of a mu
hmore 
ommon situation is the following: 
onsider the geodesi
 
ow in the unit tangent bundle of a 
losedhyperboli
 surfa
e (an Anosov 
ow). Let � be a simple 
losed geodesi
 and let T be the torus of unitve
tors along �. Then T is embedded and in
ompressible but is not tranverse to the 
ow: it 
ontainstwo 
opies of � 
orresponding to the two dire
tions along � and is otherwise transverse to the 
ow. Thisis the best position amongst all tori isotopi
 to T .Hen
e it is essential to understand the intera
tion between �1-inje
tive tori and pseudo-Anosov 
ows.Consider a Z2 subgroup of the fundamental group: if it a
ts freely on the orbit spa
e then the 
ow istopologi
ally 
onjugate to a suspension Anosov 
ow [Fe5℄. Otherwise some element in Z2 does not a
tfreely on the orbit spa
e and is asso
iated to a 
losed orbit of the 
ow. Then the Z2 des
ribes a nontrivial free homotopy from a 
losed orbit to itself. Any free homotopy between 
losed orbits 
an be put ina 
anoni
al form as a union of immersed Birkho� annuli [Ba2, Ba3℄. A Birkho� annulus is an immersedannulus so that ea
h boundary 
omponent is a 
losed orbit of the 
ow and the interior of the annulusis transverse to the 
ow. A Birkho� torus or Birkho� Klein bottle is essentially one whi
h is a union ofBirkho� annuli (see se
tion 6). Given an embedded in
ompressible torus T , one looks for an isotopi

opy whi
h is a Birkho� torus.A Birkho� annulus lifts to a lozenge in the universal 
over: the boundaries lift to periodi
 orbits and theinterior lifts to a partial ideal quadrilateral region D in the orbit spa
e: two opposite verti
es of D are liftsof the boundary orbits, two verti
es of D are ideal and the stable/unstable foliations in D form a produ
tstru
ture. The boundary orbits are the 
orners of the lozenge. Lozenges are the building blo
ks in theuniversal 
over asso
iated to free homotopies between 
losed orbits and they are fundamental for mu
hof the theory of Anosov 
ows ([Ba2, Fe2℄) and more generally, of pseudo-Anosov 
ows [Fe3, Fe5℄. Unlessthe 
ow is suspension Anosov, then any Z2 in the fundamental group has asso
iated to it an (essentially)unique 
hain of lozenges, where some elements of Z2 a
t �xing the 
orners and some elements a
t freely.In the next two results one goal is to look for the best position of embedded in
ompressible tori. InProposition 6.2, we prove (see de�nition 6.1 for the notion of a string of lozenges):Theorem C � Let T be a �1-inje
tive torus and let C be the �1(T ) invariant 
hain of lozenges. Supposethere is a 
orner � of C and a 
overing translation g with g(�) in the interior of a lozenge in C. Then Cis a string of lozenges. In addition T is homotopi
 into a free Seifert �bered pie
e.One relevan
e of this result is that we also prove the following: if no 
orner of C is mapped into theinterior of a lozenge in C then one 
an homotope T to a union of Birkho� annuli so that the periodi
orbits in the annuli do not interse
t the union of the interiors of the Birkho� annuli. This is half way toprodu
ing an embedded torus homotopi
 to T whi
h is a union of Birkho� annuli. The se
ond 
on
lusionof theorem C implies for instan
e that if T is the boundary torus between 2 hyperboli
 pie
es in thetorus de
omposition, then the situation of theorem C 
annot happen. The general result 
on
erning bestposition of embedded tori is the following (Theorem 6.10):Theorem D � Suppose that M is orientable and that the pseudo-Anosov 
ow is not topologi
ally
onjugate to a suspension Anosov 
ow. Let T be an embedded, in
ompressible torus in M . Then either1) T is isotopi
 to an embedded Birkho� torus, or 2) T is homotopi
 to a weakly embedded Birkho�torus T 0 and T (or T 0) is 
ontained in a periodi
 Seifert �bered pie
e, or 3) T is isotopi
 to the boundaryof the tubular neighborhood of an embedded Birkho�-Klein bottle 
ontained in a free Seifert pie
e.Weakly embedded means that T 0 is embedded ex
ept perhaps along the 
losed orbits 
ontained in theBirkho� annuli. All the possibilities in Theorem D indeed happen: 1) is the typi
al situation when the
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ow is a geodesi
 
ow (or more generally, a Handel-Thurston example, see [Ha-Th℄), 2) o

urs in theBonatti-Langevin examples, and 3) o

urs in the geodesi
 
ow on non-orientable 
losed surfa
es (see thelast remark of se
tion 4).One 
onsequen
e of this study of standard forms for tori is the following (Proposition 6.9):Theorem E � Let � be a singular orbit of a pseudo-Anosov 
ow. Then � is homotopi
 into a pie
e ofthe torus de
omposition of the manifold.If the manifold is atoroidal or Seifert �bered the statement is va
uous. Noti
e that the result is 
learlynot true for regular periodi
 orbits as there are many transitive Anosov 
ows in graph manifolds whi
hare not Seifert �bered [Ha-Th℄.The results above help tremendously to understand 
anoni
al neighborhoods asso
iated to periodi
Seifert �bered pie
es (se
tion 7):Theorem F � Let P be a periodi
 Seifert �bered pie
e of the torus de
omposition of M , where M isorientable. Then there is a �nite union Z of Birkho� annuli, whi
h is embedded ex
ept perhaps at theboundaries of the Birkho� annuli and whi
h is a model for the 
ore of P : a suÆ
iently small neighborhoodof Z is a representative for the Seifert pie
e P . These neighborhoods are well de�ned up to 
ow isotopy.In the 
ourse of analysing the results of this arti
le we produ
ed several very interesting examples ofgeneralized pseudo-Anosov 
ows where one also allows one prongs: these are 
alled one prong pseudo-Anosov 
ows. Classi
ally they originated in Thurston's work [Th2℄ sin
e he 
onstru
ted pseudo-Anosovhomeomorphisms of the two sphere, having for example four one prong singularities. A suspension ofthese homeomorphisms produ
es a one prong pseudo-Anosov 
ow. In this 
ase the universal 
over isS2�S1 and hen
e M is not irredu
ible, but still the 
ow in the universal 
over is topologi
ally a produ
t
ow and the orbit spa
e is S2 whi
h is a two manifold. Other examples with one prongs are obtaineddoing Dehn surgery on periodi
 orbits of pseudo-Anosov 
ows [Fr℄, but here very little is known aboutthe resulting 
ows. At the end of se
tion 4, we produ
e some interesting new examples:Theorem G � 1) There is an in�nite family of one prong pseudo-Anosov 
ows with two one prongsingular orbits and no other singular orbits where the manifold is Seifert �bered. They are doublybran
hed 
overed by the Handel-Thurston examples [Ha-Th℄. 2) There are also in�nitely many examplesof one prong pseudo-Anosov 
ows whi
h are doubly bran
hed 
overed by a geodesi
 
ow in a hyperboli
surfa
e and where the original manifolds are not irredu
ible.As remarked above the Handel Thurston examples are in graph manifolds whi
h are not Seifert �bered.Part 1) shows that theorem A does not hold in Seifert �bered manifolds if one allows one prong orbits.The manifolds in part 2) are not irredu
ible and neither homeomorphi
 to S2 � S1. At the beginning ofse
tion 8, we improve these examples to show that a mixed behavior of Seifert �bered pie
es is possible:Theorem H � There are examples of pseudo-Anosov 
ows in graph manifolds with one periodi
 pie
eand an arbitrary number of free pie
es.The 
ows in theorem H are obtained as bran
hed 
over 
onstru
tions of the examples 2) in theoremG.The main family of examples we produ
e, in the same se
tion 8, is a vast generalization of the Bonatti-Langevin 
onstru
tion [Bo-La℄, showing that the des
ription given in Theorem F is a
tually realizable ina wide variety of 
ases, at least in the 
ase where one requires that the boundary of the periodi
 Seifertpie
es are transverse to the 
ow:Theorem I � There is a large family of (possibly one prong) pseudo-Anosov 
ows in graph manifolds andmanifolds �bering over the 
ir
le with �ber a torus, where the 
ows are obtained by glueing simple buildingblo
ks. The building blo
ks are homeomorphi
 to solid tori and they are 
anoni
al 
ow neighborhoods ofintrinsi
 (embedded) Birkho� annuli. The building blo
ks have tangential boundary, transverse boundaryand only 2 periodi
 orbits. A 
olle
tion of blo
ks is �rst glued along annuli in their tangential boundaryto obtain Seifert �bered manifolds with boundary, and whi
h have a 
ow transverse to the boundary with
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 orbits. Under very general and spe
i�ed 
onditions these 
an be glued along theirboundaries (transverse to the 
ow) to produ
e (possibly one prong) pseudo-Anosov 
ows in the resulting
losed manifolds. In addition one 
an do any Dehn surgery (ex
ept for one) in the periodi
 orbits of themiddle step to obtain new (possibly one prong) pseudo-Anosov 
ows. Finally if M �bers over the 
ir
lewith �ber a torus and M is not T 3, then M has a one prong pseudo-Anosov 
ows with two one prongorbits and no other singularities.The 
onstru
tions in theorem I are very general produ
ing for example one prong pseudo-Anosov 
owsin all but one torus bundle over the 
ir
le. This shows that theorem B also does not hold if one allows oneprongs. In the 
onstru
tion in theorem I, if the middle step produ
es a 
ow without one prong periodi
orbits, then the resulting �nal 
ow in the 
losed manifold will be pseudo-Anosov in a graph manifold.All the Seifert �bered pie
es are periodi
 pie
es. This 
onstru
tion is very general produ
ing a very large
lass of new examples.An appealing way to des
ribe these examples in the absen
e of the Dehn surgeries is the following:the manifolds with transverse boundary in the middle step are 
ir
le bundles, with �bers preserved bythe lo
al 
ow, and proje
ting to a lo
al 
ow of Morse-Smale type on a surfa
e S with boundary: thereis a �nite number of singular points (prong singularities) in S, stable and unstable manifolds joining thesingular points to the boundary, and all other orbits go from boundary 
omponent to another. Thispi
ture 
an be en
oded in the 
ombinatorial data of a fat graph satisfying some 
onditions.When the 
ows of theorem I do not have p-prong singularities or one prongs, they are new examplesof Anosov 
ows. In this 
ase these Anosov 
ows are never 
onta
t. This is be
ause all 
onta
t Anosov
ows are R-
overed [Ba6℄. In addition if an Anosov 
ow is R-
overed and admits a transverse torus T ,then it has to be topologi
ally 
onjugate to a suspension and T must be a 
ross se
tion [Fe1, Ba1℄. In oursituation 
onsider the transverse tori whi
h are the boundary 
omponents of the middle glueing pie
es:they do not interse
t all orbits of the 
ow and 
annot be 
ross se
tions. This proves that the 
ows arenot 
onta
t.At this point there is no good understanding of the general stru
ture of one prong pseudo-Anosov 
owsand they 
an be mu
h less well behaved than pseudo-Anosov 
ows. In this arti
le we do not analyse atall the stru
ture of one prong pseudo-Anosov 
ows, but only 
onstru
t many examples of these, some ofwhi
h highlight the di�eren
es with pseudo-Anosov 
ows in Seifert �bered manifolds, solvable manifoldsand graph manifolds.The �rst examples of an Anosov 
ow in a graph manifold where the pie
es are periodi
 were 
onstru
tedby Bonatti and Langevin [Bo-La℄: they are spe
ial 
ases of the examples provided by theorem I. Thesystemati
 study of Anosov 
ows in graph manifolds was started in [Ba3, Ba4℄.2. Ba
kgroundPseudo-Anosov 
ows � de�nitionsDe�nition 2.1. (pseudo-Anosov 
ows) Let � be a 
ow on a 
losed 3-manifold M . We say that � is apseudo-Anosov 
ow if the following 
onditions are satis�ed:- For ea
h x 2 M , the 
ow line t ! �(x; t) is C1, it is not a single point, and the tangent ve
torbundle Dt� is C0 in M .- There are two (possibly) singular transverse foliations �s;�u whi
h are two dimensional, with leavessaturated by the 
ow and so that �s;�u interse
t exa
tly along the 
ow lines of �.- There is a �nite number (possibly zero) of periodi
 orbits f
ig, 
alled singular orbits. A stable/unstableleaf 
ontaining a singularity is homeomorphi
 to P � I=f where P is a p-prong in the plane and f is ahomeomorphism from P � f1g to P � f0g. In addition p is at least 3.- In a stable leaf all orbits are forward asymptoti
, in an unstable leaf all orbits are ba
kwards asymp-toti
.Basi
 referen
es for pseudo-Anosov 
ows are [Mo1, Mo2℄ and [An℄ for Anosov 
ows. A fundamentalremark is that the ambient manifold supporting a pseudo-Anosov 
ow (without 1-prongs) is ne
essarilyirredu
ible - the universal 
overing is homeomorphi
 to R3 ([Fe-Mo℄).



6 THIERRY BARBOT AND S�ERGIO R. FENLEYDe�nition 2.2. (one prong pseudo-Anosov 
ows) A 
ow � is a one prong pseudo-Anosov 
ow in M3 ifit satis�es all the 
onditions of the de�nition of pseudo-Anosov 
ows ex
ept that the p-prong singularities
an also be 1-prong (p = 1).Torus de
ompositionLet M be an irredu
ible 
losed 3{manifold. IfM is orientable, it has a unique (up to isotopy) minimal
olle
tion of disjointly embedded in
ompressible tori su
h that ea
h 
omponent ofM obtained by 
uttingalong the tori is either atoroidal or Seifert-�bered [Ja, Ja-Sh℄ and the pie
es are isotopi
ally maximal withthis property. If M is not orientable, a similar 
on
lusion holds; the de
omposition has to be performedalong tori, but also along some in
ompressible embedded Klein bottles.Hen
e the notion of maximal Seifert pie
es in M is well-de�ned up to isotopy. If M admits a pseudo-Anosov 
ow, we say that a Seifert pie
e P is periodi
 if there is a Seifert �bration on P for whi
h a regular�ber is freely homotopi
 to a periodi
 orbit of �. If not, the pie
e is 
alled free.Remark. In a few 
ir
unstan
es, the Seifert �bration is not unique: it happens for example when Pis homeomorphi
 to a twisted line bundle over the Klein bottle or P is T 2 � I. We stress out that our
onvention is to say that the Seifert pie
e is free if no Seifert �bration in P has �bers homotopi
 to aperiodi
 orbit.Orbit spa
e and leaf spa
es of pseudo-Anosov 
owsNotation/de�nition: We denote by fM the universal 
overing ofM , and by �1(M) the fundamental groupof M , 
onsidered as the group of de
k transformations on fM . The singular foliations lifted to fM aredenoted by e�s; e�u. If x 2M let W s(x) denote the leaf of �s 
ontaining x. Similarly one de�nes W u(x)and in the universal 
over fW s(x);fW u(x). Similarly if � is an orbit of � de�ne W s(�), et
... Let also e�be the lifted 
ow to fM .We review the results about the topology of e�s; e�u that we will need. We refer to [Fe2, Fe3℄ for detailedde�nitions, explanations and proofs. The orbit spa
e of e� in fM is homeomorphi
 to the plane R2 [Fe-Mo℄and is denoted by O �= fM=e�. There is an indu
ed a
tion of �1(M) on O. Let� : fM ! O �= R2be the proje
tion map: it is naturally �1(M)-equivariant. If L is a leaf of e�s or e�u, then �(L) � Ois a tree whi
h is either homeomorphi
 to R if L is regular, or is a union of p-rays all with the samestarting point if L has a singular p-prong orbit. The foliations e�s; e�u indu
e �1(M)-invariant singular1-dimensional foliations Os;Ou in O. Its leaves are �(L) as above. If L is a leaf of e�s or e�u, then ase
tor is a 
omponent of fM � L. Similarly for Os;Ou. If B is any subset of O, we denote by B �R theset ��1(B). The same notation B �R will be used for any subset B of fM : it will just be the union ofall 
ow lines through points of B. We stress that for pseudo-Anosov 
ows there are at least 3-prongs inany singular orbit (p � 3). For example, the fa
t that the orbit spa
e in fM is a 2-manifold is not true ingeneral if one allows one prongs.De�nition 2.3. Let L be a leaf of e�s or e�u. A sli
e of L is l �R where l is a properly embedded 
opyof the reals in �(L). For instan
e if L is regular then L is its only sli
e. If a sli
e is the boundary of ase
tor of L then it is 
alled a line leaf of L. If a is a ray in �(L) then A = a �R is 
alled a half leafof L. If � is an open segment in �(L) it de�nes a 
ow band L1 of L by L1 = � �R. We use the sameterminology of sli
es and line leaves for the foliations Os;Ou of O.If F 2 e�s and G 2 e�u then F and G interse
t in at most one orbit.We abuse 
onvention and 
all a leaf L of e�s or e�u periodi
 if there is a non trivial 
overing translationg of fM with g(L) = L. This is equivalent to �(L) 
ontaining a periodi
 orbit of �. In the same wayan orbit 
 of e� is periodi
 if �(
) is a periodi
 orbit of �. Observe that in general, the stabilizer of anelement � of O is either trivial, or a 
y
li
 subgroup of �1(M).Produ
t regions



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 7Suppose that a leaf F 2 e�s interse
ts two leaves G;H 2 e�u and so does L 2 e�s. Then F;L;G;H forma re
tangle in fM , ie. every stable leaf between F and L interse
ts every unstable leaf between G and H.In parti
ular, there is no singularity in the interior of the re
tangle [Fe3℄.There will be two generalizations of re
tangles: 1) perfe
t �t, whi
h is a re
tangle with one 
orner orbitremoved (de�nition 2.8) and 2) lozenge, whi
h is a re
tangle with two opposite 
orners removed (de�nition2.9). We will also denote by re
tangles, perfe
t �ts, lozenges and produ
t regions the proje
tion of theseregions to O �= R2.De�nition 2.4. Suppose A is a 
ow band in a leaf of e�s. Suppose that for ea
h orbit � of e� in A thereis a half leaf B� of fW u(�) de�ned by � so that: for any two orbits 
; � in A then a stable leaf interse
tsB� if and only if it interse
ts B
. This de�nes a stable produ
t region whi
h is the union of the B
.Similarly de�ne unstable produ
t regions.The main property of produ
t regions is the following: for any F 2 e�s, G 2 e�u so that (i) F \ A 6=; and (ii) G \A 6= ;; then F \G 6= ;. There are no singular orbits of e� in A.Theorem 2.5. ([Fe3℄) Let � be a pseudo-Anosov 
ow. Suppose that there is a stable or unstable produ
tregion. Then � is topologi
ally 
onjugate to a suspension Anosov 
ow. In parti
ular � is non singular.In parti
ular:De�nition 2.6. ([Fe1℄) A pseudo-Anosov 
ow is produ
t (or splitting in the terminology of [Fra℄) if theentire orbit spa
e is a produ
t region, ie if every leaf of its stable foliation e�s interse
ts every leaf of itsunstable foliation e�u.Proposition 2.7. A (topologi
al) Anosov 
ow is produ
t if and only if it is topologi
ally 
onjugate to asuspension Anosov 
ow. In parti
ular M �bers over the 
ir
le with �ber a torus and Anosov monodromy.Hen
e, in the sequel, we will use produ
t pseudo-Anosov 
ow as an abbreviation for pseudo-Anosov
ow topologi
ally 
onjugate to a suspension.Perfe
t �ts, lozenges and s
alloped 
hainsRe
all that a foliation F in M is R-
overed if the leaf spa
e of eF in fM is homeomorphi
 to the realline R [Fe1℄.De�nition 2.8. ([Fe2, Fe3℄) Perfe
t �ts - Two leaves F 2 e�s and G 2 e�u, form a perfe
t �t if F \G = ;and there are half leaves F1 of F and G1 of G and also 
ow bands L1 � L 2 e�s and H1 � H 2 e�u, sothat the set F 1 [H1 [ L1 [G1separates M and forms an a re
tangle R with a 
orner removed: The joint stru
ture of e�s; e�u in R isthat of a re
tangle with a 
orner orbit removed. The removed 
orner 
orresponds to the perfe
t of F andG whi
h do not interse
t.We refer to �g. 1, a for perfe
t �ts. There is a produ
t stru
ture in the interior of R: there aretwo stable boundary sides and two unstable boundary sides in R. An unstable leaf interse
ts one stableboundary side (not in the 
orner) if and only if it interse
ts the other stable boundary side (not in the
orner). We also say that the leaves F;G are asymptoti
.De�nition 2.9. ([Fe2, Fe3℄) Lozenges - A lozenge R is a region of fM whose 
losure is homeomorphi
 toa re
tangle with two 
orners removed. More spe
i�
ally two points p; q de�ne the 
orners of a lozenge ifthere are half leaves A;B of fW s(p);fW u(p) de�ned by p and C;D half leaves of fW s(q);fW u(q) de�ned byp; q, so that A and D form a perfe
t �t and so do B and C. The region bounded by the lozenge R doesnot have any singularities. The sides of R are A;B;C;D. The sides are not 
ontained in the lozenge,but are in the boundary of the lozenge. There may be singularities in the boundary of the lozenge. See�g. 1, b.There are no singularities in the lozenges, whi
h implies that R is an open region in fM .
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Figure 1: a. Perfe
t �ts in fM , b. A lozenge, 
. A 
hain of lozenges.Two lozenges are adja
ent if they share a 
orner and there is a stable or unstable leaf interse
ting bothof them, see �g. 1, 
. Therefore they share a side. A 
hain of lozenges is a 
olle
tion fCig; i 2 I, whereI is an interval (�nite or not) in Z; so that if i; i + 1 2 I, then Ci and Ci+1 share a 
orner, see �g. 1, 
.Conse
utive lozenges may be adja
ent or not. The 
hain is �nite if I is �nite.De�nition 2.10. (s
alloped 
hain) Let C be a 
hain of lozenges. If any two su

essive lozenges in the
hain are adja
ent along one of their unstable sides (respe
tively stable sides), then the 
hain is 
alleds-s
alloped (respe
tively u-s
alloped) (see �g. 2 for an example of a s-s
alloped region). Observe that a
hain is s-s
alloped if and only if there is a stable leaf interse
ting all the lozenges in the 
hain. Similarly,a 
hain is u-s
alloped if and only if there is an unstable leaf interse
ting all the lozenges in the 
hain.The 
hains may be in�nite. A s
alloped 
hain is a 
hain that is either s-s
alloped or u-s
alloped.For simpli
ity when 
onsidering s
alloped 
hains we also in
lude any half leaf whi
h is a boundaryside of two of the lozenges in the 
hain. The union of these is 
alled a s
alloped region whi
h is then a
onne
ted set.We say that two orbits 
; � of e� (or the leaves fW s(
);fW s(�)) are 
onne
ted by a 
hain of lozengesfCig; 1 � i � n, if 
 is a 
orner of C1 and � is a 
orner of Cn.Fat tree of lozengesDe�nition 2.11. (fat tree of lozenges G(�)) Let � be an orbit of e�. We de�ne G(�) as the graph su
hthat:{ the verti
es G(�) are orbits of e� 
onne
ted to � by a 
hain of lozenges,{ there is an edge in G(�) between � and 
 if and only if there is a lozenge with 
orners �, �.One easily proves (see for example [Fe2℄ for Anosov 
ows):Proposition 2.12. For every � in O, G(�) is a tree.In parti
ular for any two orbits Æ; 
 
onne
ted by a 
hain of lozenges, then there is a unique indivisibleor minimal 
hain of lozenges � where no ba
ktra
king on lozenges is allowed.The proposition implies that G(�) is naturally embedded in the 2-plane O. Hen
e, on
e �xed anorientation on O, there is, for every vertex �, a 
y
li
 order on the set of edges of G(�) adja
ent to �.Moreover, G(�) is naturally equipped with a stru
ture of a fat graph: it is a retra
t of an orientablesurfa
e with boundary (the tubular neighborhood of its embedding in O). This obje
t will be extremelyuseful in this arti
le.If C is a lozenge with 
orner orbits �; 
 and g is a non trivial 
overing translation leaving �; 
 invariant(and so also the lozenge), then �(�); �(
) are 
losed orbits of e� whi
h are freely homotopi
 to the inverseof ea
h other [Fe2℄. Here we 
onsider the 
losed orbits �(�); �(
) traversed in the positive 
ow dire
tionand we allow �(�); �(
) to be non indivisible 
losed orbits. In other words it is the 
losed orbit asso
iatedto the de
k transformation g, whi
h may not be indivisible.Theorem 2.13. ([Fe2, Fe3℄) Let � be a pseudo-Anosov 
ow in M3 
losed and let F0 6= F1 2 e�s.Suppose that there is a non trivial 
overing translation g with g(Fi) = Fi; i = 0; 1. Let �i; i = 0; 1 be theperiodi
 orbits of e� in Fi so that g(�i) = �i. Then �0 and �1 are 
onne
ted by a �nite 
hain of lozengesfCig; 1 � i � n and g leaves invariant ea
h lozenge Ci as well as their 
orners.
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ular:Proposition 2.14. Let g be a non-trivial element of �1(M) �xing two orbits � and 
. Then G(�) = G(
).We think of a fat tree as a simpli
ial tree. Observe that g as above naturally a
ts simpli
ially on G(�).It does not ne
essarily preserve the 
y
li
 order on links of verti
es in G(�), sin
e it does not ne
essarilypreserve the orientation of O.De�nition 2.15. (the tree G(g)) Let g in �1(M) �xing an orbit �. The g-�xed points in G(�) form a
onne
ted subtree be
ause of simpli
ial a
tion. This subtree is denoted by G(g).From this observation we infer several interesting fa
ts:Proposition 2.16. Let g be a non-trivial element of �1(M). All of the following statements are true:(1) For any n 6= 0, g admits a �xed point in O if and only if gn admits a �xed point in O .(2) Assume that g �xes an orbit � 2 O. Then, some positive power gp a
ts trivially on G(�).(3) Let p be an integer as in item 2. Let Z(gp) be the pseudo
entralizer of gp in �1(M), ie. the subgroup
omprised of elements f su
h that fgpf�1 = g�p. Then Z(gp) a
ts on the tree G(�) = G(gp).(4) Assume that g preserves a lozenge L. Then, g preserves individually ea
h 
orner of L. Moreover,g preserves the orientation of O, and a
ts trivially on G(�) = G(�), where � and � are the 
ornersof L.Proof.(1) Suppose gn(�) = � with � orbit of e�. Then gn(g(�)) = g(�), so by theorem 2.13, � and g(�) are
onne
ted by a 
hain of lozenges and therefore G(�) = G(g(�)) = g(G(�)). Hen
e g a
ts on G(�).The result now follows easily from the fa
t that if g a
ts freely on a tree, then gn a
ts freely onthe tree.(2) Let k be the number of prongs at �. Then g2 preserves the orientation of O, hen
e the 
y
li
ordering of the link of �. Hen
e g2k �xes every vertex of G(�) adja
ent to �. But if g2k �xes apoint 
 in G(�) and an edge in G(�) adja
ent to 
, it �xes every vertex adja
ent to 
 (on
e more,due to the preservation of orientation of O by g2k). Our 
laim follows by indu
tion.(3) Let f in Z(gp) and � a vertex in G(�). Then gpf(�) = ff�1gpf(�) = f(g�p(�)) = f(�) by (2).By theorem 2.13 f(�) is in G(�) and so f a
ts on G(�).(4) Let �, � be the 
orners of L. Assume by way of 
ontradi
tion that g(�) = � and g(�) = �. LetA, C be the stable half leaves of fW s(�), fW s(�) 
ontained in the 
losure of L. Then, g(A) = C,and 
omposing g with the holonomy map from C to A along leaves of e�u de�nes an orientationreversing map from A onto itself. This map must admit a �xed point, hen
e there is a leaf Uof e�s �xed by g and interse
ting L. Now g2 �xes U and A and hen
e leaves invariant the orbitU \A. This produ
es 2 distin
t periodi
 orbits in �(A), 
ontradi
tion.Hen
e, g �xes � and �. Keeping the notation above, we have g(A) = A and g(B) = B (whereB is the g invariant unstable half-leaf of fW u(�) in the boundary of L). It follows that g preservesthe orientation of O. It therefore preserves the 
y
li
 ordering along verti
es of G(�). It followsas in item 2 that g a
ts trivially on G(�). �The main result 
on
erning non Hausdor� behavior in the leaf spa
es of e�s; e�u is the following:Theorem 2.17. [Fe2, Fe3℄ Let � be a pseudo-Anosov 
ow in M3. Suppose that F 6= L are not separatedin the leaf spa
e of e�s. Then F is periodi
 and so is L. More pre
isely, there is a non-trivial element gof �1(M) su
h that g(F ) = F and g(L) = L. Moreover, let �, � be the unique g-�xed points in F , L,respe
tively. Then, the 
hain of lozenges 
onne
ting � to � is s-s
alloped (see �gure 2).Non-Hausdor� treesA segment is a set with a linear order whi
h is isomorphi
 to an interval in R: [0; 1℄; [0; 1); (0; 1) or[0; 0℄. Type (0; 1) is 
alled an open segment and type [0; 0℄ is a degenerate segment. A 
losed segment isone of type either [0; 0℄ or [0; 1℄, ie. admitting a minimal and a maximal element. A half open segmentis one of type [0; 1), where we also 
onsider the reverse linear order. A subsegment C is a subset of a
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Figure 2: The 
orre
t pi
ture between non separated leaves of e�s.segment I so that if x; y are in C and z in C satis�es x < z < y, then z is also in C. With the indu
edlinear order, C is also a segment. If a set Z is a union of segments, then given x in Z, a prong at xis a segment I in Z of type [0; 1) or [0; 1℄ with x 2 I 
orresponding to 0. A subprong of a prong I atx is a subsegment of I of type [0; 1) with x 
orresponding to 0. Two prongs I1; I2 at x are distin
t ifI1 \ I2 = fxg, or equivalently they do not share a subprong at x.De�nition 2.18. (non Hausdor� tree)[Fe5℄ A non Hausdor� tree is a spa
e H satisfying:1) H is a union of open segments,2) H is ar
wise 
onne
ted � for ea
h x; y 2 H, there is a �nite 
hain of segments I1; :::; In withx 2 I1; y 2 In and Ii \ Ii+1 6= ; for any 1 � i < n,3) Points separate H in the following way � for any x 2 H and I1; I2 distin
t prongs at x the followinghappens: Given y1 2 I1 � fxg; y2 2 I2 � fxg, then any �nite 
hain of segments from y1 to y2 (as in (2)above) must 
ontain x in at least one of the segments.If I1; I2 are two segments with I1 \ I2 a single point whi
h is an endpoint of both I1 and I2, then given
ompatible orders in I1; I2 we extend them to an order in I1 [ I2, whi
h is then a segment of H.A priori there may be in�nitely or even un
ountably many distin
t prongs at x.De�nition 2.19. (topology of H � [Fe5℄) We say that a subset A of H is open in H if for any x 2 Athe following happens: for any prong I at x, there is a subprong I 0 at x (I 0 � I) so that I 0 � A.Equivalently A is open if for any open segment S and x in A \ S, there is an open subsegment S0
ontaining x and 
ontained in A.It follows from 
ondition 3) of non Hausdor� trees that if I1 and I2 are two segments, then I1 \ I2 iseither empty or is a subsegment of both I1; I2, whi
h may be a point. A point x 2 H is regular if givenany two open segments I1; I2 with x 2 I1 \ I2, then I1 \ I2 is an open segment in H. Otherwise x issingular and H is \treelike" in x. Equivalently a point is regular if there are only two distin
t prongs atx. It is easy to 
he
k that if V is an interval in R with the standard topology and f : V !H is an orderpreserving bije
tion to a segment in H, then f is a 
ontinuous map.Given x 6= y then for any prong at y there is a subprong disjoint from x, hen
e 
ontained in H� fxg.It follows that H�fxg is an open set in H and therefore points are 
losed in H, that is, H satis�es the T1property of topologi
al spa
es [Ke℄. In general H does not satisfy the Hausdor� property T2 [Ke℄. Givenx 2 H and I a prong at x letAI = f y 2 H� fxg j there is a segment path 
 � H� fxg from y to some point in I g:By the above remark, AI is ar
wise 
onne
ted. If I; J are prongs at x whi
h share a subprong then itis easy to see that AI = AJ . If I; J are distin
t prongs at x then I [ J is a segment of H with x in theinterior of the segment. If there is a segment path 
 � H� fxg from some y 2 AI to some z 2 AJ thenone 
onstru
ts a segment path 
 
ontained in H�fxg from some y0 2 I to some z0 2 J . This 
ontradi
ts
ondition (3) of the de�nition of non Hausdor� tree. Hen
e AI \AJ = ;.In addition given y 2 AI and J a prong at y, there is a subprong J 0 � H�fxg. Clearly J 0 � AI . Thisimplies that any AI is open in H and hen
e AI is also 
losed in H � fxg. Ea
h AI is path 
onne
tedhen
e 
onne
ted, so the 
olle
tion
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t prongs at x (1)is the 
olle
tion of 
onne
ted 
omponents of H� fxg.In addition suppose that AI ; AJ are distin
t, but there is a path � in H� fxg from a point in AI toa point in AJ (noti
e here we 
onsider a general path). Then sin
e AI ; AJ are path 
onne
ted, it followsthat AI [ AJ [ � is path 
onne
ted and hen
e 
onne
ted in H � fxg 
ontradi
ting the fa
t that (1) isthe family of 
onne
ted 
omponents of H�fxg. It follows that the 
olle
tion (1) is also the 
olle
tion ofpath 
omponents of H� fxg.Con
lusion: distin
t prongs at x are in one to one 
orresponden
e with 
omponents (or path 
omponents)of H� fxg. For instan
e x has p prongs if and only if H� fxg has p 
omponents.Given x; y 2 H whi
h are not separated from ea
h other inH we write x � y. One says that z separatesx from y if x; y are in distin
t 
omponents of H�fzg. Given any two x; y 2 H there is a 
ontinuous path�(t); 0 � t � 1 from x to y. De�ne(x; y) = f z 2 H j z separates from y g and [x; y℄ = (x; y) [ fxg [ fyg;The �rst is the open blo
k of H with endpoints x; y and the se
ond is the 
losed blo
k of H with endpointsx; y. In [Fe5℄ it is proved that [x; y℄ is the interse
tion of all 
ontinuous paths in H from x to y.We remark that when x; y are the endpoints of a segment I of H, the notation [x; y℄ also suggests thesegment I from x to y (there is a unique su
h segment). In fa
t I and [x; y℄ are the same [Fe5℄. We willalso use the notation (x; y℄ for half open segments.As H may not be Hausdor� it may be that [x; y℄ is not 
onne
ted. It turns out that [x; y℄ is a unionof �nitely many 
losed segments of H homeomorphi
 to either [0; 0℄ or [0; 1℄:Lemma 2.20. ([Fe5℄) For any x; y 2 H then there are xi; yi 2 H with:[x; y℄ = n[i=1 [xi; yi℄; x1 = x; yn = y;a disjoint union, where [xi; yi℄ are 
losed segments in H. In addition yi � xi+1 for any 1 � i � n� 1 andsome or all segments [xi; yi℄ may be degenerate, that is, points.There is a natural pseudo distan
e in H: d(x; y) = #(
omponents [x; y℄) � 1, see [Ba5, RSS℄. Sod(x; y) = 0 means there is a segment from x to y. Also d(x; y) is the minimum number of non immersedpoints of any path from x to y.We now 
onsider group a
tions on non Hausdor� trees. Let 
 be a homeomorphism of H. We say that
 separates points if 
(x) is separated from x for any x 2 H, that is, they have disjoint neighborhoodsin H. In parti
ular 
 a
ts freely on H. In [Ba5℄, the �rst author 
onstru
ted a fundamental axis A(
) if
 separates points in H and H has no singularities. In that 
ase H is a simply 
onne
ted 1-dimensionalmanifold and hen
e is orientable.De�nition 2.21. (fundamental axis)[Fe5℄ Let 
 be a homeomorphism of a non Hausdor� tree H so that
 has no �xed points. The fundamental axis of 
, denoted by A(
) isA(
) = f x 2 H j 
(x) 2 [x; 
2(x)℄ g;or equivalently 
(x) separates x from 
2(x).If 
(x) is not separated from x in H, we say that x is an almost invariant point under 
. In [Fe5℄ thefollowing easy fa
t is proved: Let 
 be a homeomorphism of a non Hausdor� tree H without �xed points.Then x 2 A(
) if and only if there is a 
omponent U to H� fxg so that 
(U) � U . The main result is:Theorem 2.22. ([Fe5℄) Let 
 be a homeomorphism of a non Hausdor� tree H without �xed points. ThenA(
) is non empty.Clearly A(
) is invariant under 
. Also applying 
�2 then 
�1(x) separates x from 
�2(x) and soA(
) = A(
�1).Proposition 2.23. For any x 2 A(
), then A(
) = [i2Z[
i(x); 
i+1(x)℄.



12 THIERRY BARBOT AND S�ERGIO R. FENLEYRemark: In general it is not true that if 
 a
ts freely on H, then powers of 
 also do. For example let
 have an almost invariant point v with 
(v) 6= v, but 
2(v) = v. In this 
ase A(
) is an open segmentwhi
h is not properly embedded in H.Let x 2 A(
). If d(x; 
(x)) = 0, then x; 
(x) are 
onne
ted by a segment in H. Sin
e 
(x) separates xfrom 
2(x) it follows that [x; 
(x)℄ [ [
(x); 
2(x)℄ = [x; 
2(x)℄ is a segment of H. It follows that A(
) isan open segment of H, hen
e homeomorphi
 to R. If d(x; 
(x)) > 0, then x and 
(x) are 
onne
ted bya 
hain of 
losed segments. It is easy to see thatA(
) = [n2Z [zi; wi℄;where wi is not separated from zi+1. Then 
 a
ts as a translation on the set of segments, that is, thereis k 2 Z, so that 
([zi; wi℄) = [zi+k; wi+k℄ for any i 2 Z. We abuse notation and say that 
 a
ts on Z.Noti
e that if 
 a
ts freely and 
 leaves invariant an open segment I of H, then A(
) = I. Thisis be
ause for any z 2 I, 
(x) separates x from 
2(x) (free a
tion on I), so I � A(
). But A(
) =[n2Z[
n(x); 
n+1(x)℄ so I = A(
). Finally it is also not hard to prove the following: Let 
; � be two
ommuting homeomorphisms of H whi
h a
t freely. Then A(
) = A(�), see [Fe5℄.3. A
tions and pseudo-Anosov 
owsLet � be a pseudo-Anosov 
ow in M3. The foliations �s;�u have the following lo
al models: at a nonsingular point y there is a ball neighborhood U of y in M homeomorphi
 to D2 � [0; 1℄ where the leavesof (say) �s are of the form D2 � ftg. Near a singular p prong orbit the pi
ture is the same as a p-prongsingularity of a pseudo-Anosov homeomorphism of a surfa
e times an interval. For example 
onsider thegerm near zero of the foliation of the plane whose leaves are the �bers of the 
omplex map z ! Re(zp�2).This foliation has a p-prong singularity at the origin. The 3-dimensional pi
ture is obtained by multiplyingthis by an interval. Similarly for �u. Let C be an interval in R.De�nition 3.1. (transverse 
urves) Let � : C !M be a 
ontinuous 
urve. Then � is transverse to �s ifthe following happens: given t in C there is a small neighborhood Z of �(t) where � is an inje
tive mapto the set of lo
al sheets of �s. The same de�nition works for �u; e�s; e�u.Equivalently the 
urve is always 
rossing lo
al leaves. The foliations �s;�u blow up to essentiallaminations. Hen
e in fM being transverse to e�s is equivalent to � indu
ing an inje
tive map in the leafspa
e of e�s. For non singular points this is the usual notion of transversality.We establish some notation. LetHs = the leaf spa
e of e�s and �s : fM !Hs the proje
tion map:Similarly de�ne Hu and �u. The results below whi
h will be proved for Hs, obviously work also for Hu.Lemma 3.2. Hs has a natural stru
ture as a non Hausdor� tree, where the segments in Hs are proje
tionsof transversals to e�s. Similarly for Hu.Proof. We prove properties (1)-(3) of the de�nition of non Hausdor� tree. Given x in Hs let p in ��1s (x)and � an open transversal to e�s 
ontaining p. Then �s(�) is an open segment 
ontaining x. This proves(1). Let x; y in Hs and 
hoose p in ��1s (x), q in ��1s (y). Conne
t p; q by a path in fM and perturb itslightly to be a 
on
atenation of transversals. This 
an be done be
ause it 
an be done lo
ally. Hen
ex; y are 
onne
ted by a �nite 
olle
tion of segments in Hs and this proves (2).Finally let I1; I2 be segments inHs interse
ting only in x. Let l1; l2 be transversals to e�s with Ii = �s(li),i = 1; 2. We 
an assume they share a point p in ��1s (x). Any two transversals to e�s entering the same
omponent of fM � fW s(p) will have subtransversals interse
ting the same leaves of e�s be
ause of thelo
al pi
ture. Therefore l1 � fpg, l2 � fpg are 
ontained in di�erent 
omponents of fM �fW s(p). Let nowyk 2 Ik � fxg, k = 1; 2. Let Ji; 1 � i � n be a 
on
atenation of segments from y1 to y2 in Hs. There aretransversals �i to e�s with �s(�i) = Ji. Let q1 in �1 \ ��1s (y1) and q2 in �n \ ��1s (y2). Sin
e Ji and Ji+1interse
t we 
an 
onne
t a point in �i to a point in �i+1 by a path in a leaf of e�s. The 
on
atenation of
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es a path from q1 to q2 in fM . Sin
e fW s(p) separates fM andq1; q2 are in di�erent 
omponents of the 
omplement, then this path has to interse
t fW s(p). If it interse
tsfW s(p) in a path in fW s(p) then the endpoints of this path are in some �i and hen
e its proje
tion, whi
his x is in Ji. This proves (3). �We have two topologies in Hs: the quotient topology from �s and the non Hausdor� tree topology.These are the same:Lemma 3.3. The quotient topology in Hs (from �s : fM ! Hs) is the same as the non Hausdor� treetopology in Hs.Proof. Let A � Hs be an open set in the quotient topology and x in A. Let I be a prong at x. ThenI = �s(�) for some transversal � to e�s starting in some p 2 ��1s (x). Sin
e ��1s (A) is open in fM and pis in ��1s (A) there is a non degenerate subtransversal � 0 of � starting at p and 
ontained in ��1s (A). LetI 0 = �s(� 0). Then I 0 is a prong at x whi
h is a subprong of I. In addition I 0 is 
ontained in A. ThereforeA is open in the non Hausdor� tree topology.Conversely suppose that A is open in the non Hausdor� tree topology. By way of 
ontradi
tion supposethat there is p in ��1s (A) whi
h is not in the interior of ��1s (A). Then we 
an �nd a sequen
e (pn)n2N infM 
onverging to p and with pn not in ��1s (A) for any n. It follows that pn 62 fW s(p) for any n as ��1s (A)is e�s saturated. Up to a subsequen
e assume there is a 
omponent Z of fM �fW s(p) 
ontaining pn forevery n. Here the 
ondition of �nitely many prongs at singular points is used. Let � be a transversalto e�s starting at p and entering the 
omponent Z. Let x = �s(p) and I = �s(�). Then I is a prong atp and sin
e A is open in the non Hausdor� tree topology, there is a subprong I 0 at x with I 0 
ontainedin A. Let � 0 be the subtransversal of � 
orresponding to I 0. For n suÆ
iently large fW s(pn) interse
ts� 0 � ��1s (A). Hen
e pn is in ��1s (A). This 
ontradi
tion shows that ��1s (A) is open in fM . Therefore Ais open in the quotient topology. �Remark � A variation of the proof works for non Hausdor� trees H whi
h are \leaf spa
es" of lifts ofessential laminations. The di�eren
e is that it is very possible that there are singularities H whi
h havein�nitely many prongs.We say that two leaves L;F of e�s are non separated from ea
h other if there are p in L, q in F and asequen
e of leaves (Ln) of e�s having points pn; qn in Ln with (pn) 
onverging to p and (qn) 
onvergingto q. Up to subsequen
e we may assume that (Ln) is a nested sequen
e of leaves of e�s. By throwing outa few initial terms in (pn); (qn), this is equivalent to the existen
e of transversals �L; �F to e�s with �Lstarting at p, �F starting at q with �L 
ontaining all pn as above and �L 
ontaining all qn. Proje
t to Hs:let x = �s(p); y = �s(q); xn = �s(pn); yn = �s(qn); I = �s(�L); J = �s(�F ):Here I; J are segments in Hs, I is a prong at x and J is a prong at y. Also xn = yn. If In is thesubsegment of I from x1 to xn and Jn the subsegment of J from y1 to yn then In = Jn and thereforeI � fxg = J � fyg. Conversely if x; y have prongs I; J so that I � fxg = J � fyg it is easy to show thatL = ��1(x) and F = ��1(y) are leaves of e�s non separated from ea
h other. We say this is 
ondition (I).We 
laim that this 
ondition is also equivalent to 
ondition (II): L;F do not have disjoint, open, e�ssaturated neighborhoods in fM . In other words x; y do not have disjoint open neighborhoods in Hs.Clearly 
ondition (I) implies 
ondition (II). Conversely suppose that 
ondition (II) holds. If x = y then
learly 
ondition (I) holds. Suppose then x; y are distin
t. We proved before that for any z in Hs, thentwo points are in the same path 
omponent of Hs � fzg if and only if they are 
onne
ted by a segmentpath in Hs whi
h does not 
ontain fzg and these path 
omponents are open in Hs. By 
ondition (II) itfollows that for any z in Hs�fx; yg, the points x; y are in the same 
omponent of Hs�fzg. Hen
e (x; y)is empty. By lemma 3.5, page 71 of [Fe5℄, there are prongs I at x and J at y so that I � fxg = J � fyg.This is 
ondition (I).If any of these 2 
onditions holds for x; y in Hs we write x � y.



14 THIERRY BARBOT AND S�ERGIO R. FENLEYFor f in �1(M) let Fix(f) be those x in Hs with f(x) = x. Let Fix�(f) be the set of x in Hs withx � f(x). Considering the a
tion of f on the orbit spa
e O, let B(f) the set of u in O, �xed by f .Lemma 3.4. Let � be a pseudo-Anosov 
ow and f in �1(M). Then Fix�f is a 
losed subset of Hs.Proof. Let x not in Fix�(f), so x 6� f(x). Then x and f(x) have disjoint open neighborhoods U; V inHs. By 
ontinuity of f , there is a smaller open neighborhood W of x so that f(W ) is 
ontained in V .Hen
e any y in W satis�es y 6� f(y) and (Fix�(f))
 is open. �Remark � In general Fix(f) is not 
losed � a sequen
e (xn) in Fix(f) may 
onverge to x whi
h is onlyin Fix�(f).The following will be useful later:Lemma 3.5. If f is in �1(M) and f is not the identity, then Fix�(f) is 
ountable.Proof. First we show that Fix(f) is 
ountable. Let L in e�s with f(L) = L. Then there is a periodi
orbit in �(L). If L1; L2 are in Fix(f) then their periodi
 orbits are 
onne
ted by a 
hain of lozenges bytheorem 2.13. In addition the orbit spa
e O �= R2 is 
ountably 
ompa
t. If Fix(f) were un
ountable,then B(f) would be un
ountable and there would be a

umulation points in B(f). This is disallowedbe
ause any two points in Fix(f) are 
onne
ted by a 
hain of lozenges.Now let N = fx 2 Hs; so that x is non separated from some y 2 Hsg. We will prove that N is
ountable, hen
e Fix�(f) is 
ountable. Assume by way of 
ontradi
tion that N is un
ountable. Thespa
e Hs is a union of 
ountably many open segments and we �x one su
h 
ountable 
olle
tion. For ea
hx in Hs, let Ix be one su
h segment in the 
ountable family 
ontaining x. If N is un
ountable, then thereis an open segment I in Hs 
ontaining un
ountably many elements of N . Choose an order in I. Forea
h z in I \ N , there is y distin
t from z with y � z. Suppose wlog that for un
ountably many su
hz the 
orresponding y is non separated from the z in their positive sides, with respe
t to the order in I.For any su
h z; z0 in I \N , let y; y0 be non separated from them respe
tively. We 
laim that Iy; Iy0 aredi�erent. Suppose for simpli
ity that z < z0 in I. Here z0 � y0 and non separated on their positive sides,so Iy0 does not 
ontain z0 or any point in I smaller than z0. But by 
onstru
tion Iy 
ontains y, so Iy; Iy0are di�erent. Hen
e all su
h Iy are di�erent, 
ontradi
ting the fa
t that there are only 
ountably manyof these. This �nishes the proof of the lemma. �4. Pseudo-Anosov 
ows in Seifert �bered spa
esThis se
tion is devoted to proving the following result:Theorem 4.1. If � is a pseudo-Anosov 
ow in M3 whi
h is a Seifert �bered spa
e, then up to �nite
overs, � is topologi
ally 
onjugate to a geodesi
 
ow on a 
losed hyperboli
 surfa
e.Proof. If ne
essary lift to a double 
over so that the Seifert �bration is orientable, hen
e the 
enter of�1(M) is non-empty (it 
ontains for example the homotopy 
lass of the regular �bers). Let h be in the
enter of �1(M). The 
y
li
 subgroup < h > is a normal subgroup of �1(M). The proof splits in two
ases, depending on whether Fix�(h) is empty or not.Case 1 � Fix�(h) is non empty.We show that this 
annot happen. Noti
e that if x � y in Hs and g is in �1(M) then g(x) � g(y). Letg in �1(M) and x in Fix�(h). Then g�1hg(x) = h(x) � x, so hg(x) � g(x) and g(x) is in Fix�(h). Bylemma 3.5 Fix�(h) is 
ountable. Therefore Fix�(h) is a 
ountable, 
losed, �1(M) invariant subset ofHs. Consider the union Z of the leaves L in e�s with �s(L) in Fix�(h). This set Z is 
losed, e�s saturated,�1(M) invariant and transversely 
ountable. It proje
ts to a sublamination of �s whi
h is transversely
ountable. Let L be a minimal sublamination of �(Z). Any suÆ
iently small transversal to a minimallamination interse
ts it in either a 
losed interval, a Cantor set or a point. The �rst two are disallowed bythe transverse 
ountability 
ondition. The last option implies that there is an isolated leaf in �s, whi
his not possible for pseudo-Anosov 
ows. This shows that 
ase 1 
annot happen.Case 2 � Fix�(h) is empty.



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 15By theorem 2.22, h has a non empty axis A(h) = fx 2 Hs j h(x) separates x from h2(x)g. This axishas a linear order where h a
ts as a translation. Clearly, for every g in �1(M):gA(h) = A(ghg�1) = A(h)hen
e A(h) is �1(M)-invariant.Either A(h) is an in�nite segment or a 
ountable union of disjoint 
losed segments:A(h) = [i2Z[xi; yi℄ = [i2ZBi (�)where yi � xi+1. We show that the se
ond option 
annot happen. Suppose by way of 
ontradi
tion thatA(h) is of form (*). Every g in �1(M) permutes the 
omponents Bi, preserving or reversing the order onthe set Z of labels. Hen
e there is a morphism �1(M)! Aut(Z), whose kernel is the subgroup made ofelements g su
h that gxi = xi for all i, ie. a trivial or 
y
li
 normal subgroup. Sin
e Aut(Z) is the diedralgroup, 
ontaining a 
y
li
 subgroup of index 2, it follows that �1(M) 
ontains a �nite index subgroupisomorphi
 to Z or Z�Z, whi
h is not possible for an irredu
ible Seifert �bered spa
e without boundary.We 
on
lude that A(h) 
annot be an in�nite 
olle
tion of disjoint 
losed segments.Therefore A(h) is a real line parametrized as A(h) = flt; t 2 Rg. If A(h) is not properly embeddedin Hs, then (lt) 
onverges to a point x in Hs as t 
onverges to in�nity (and maybe other points as well).But then sin
e A(h) is invariant under h, this implies that h(x) � x, whi
h is not allowed in Case 2.Next we show that A(h) is all of Hs. Again suppose it is not and let l be a point of Hs not in A(h).Sin
e A(h) is 
onne
ted (as it is a line), then A(h) is 
ontained in a single 
omponent of Hs � flg. LetB be another 
omponent of Hs � flg. Let L = ��1s (l). It was proved in [Fe7℄ that any 
omplementary
omponent of L 
overs M . This implies that given x in A(h), there is g in �1(M) with g(x) in B, whi
his disjoint from A(h). This 
ontradi
ts the �1(M) invarian
e of A(h).We 
on
lude that Hs is homeomorphi
 to R and similarly Hu is also homeomorphi
 to R. Thereforethere are no singularities of � and �s;�u are R-
overed.Sin
e there is no singularity, the 
ow is a
tually (topologi
ally) Anosov. The result was then provedin [Ba1℄. We present a di�erent proof here, whi
h improves some arguments in [Ba1℄ and whi
h followsarguments in the unpublished referen
e [Ba7℄.If there is a leaf of e�s interse
ting all leaves of e�u, then proposition 2.7 shows that � is a produ
tpseudo-Anosov 
ow. The manifold then would have solv geometry and 
ould not be Seifert �bered,
ontradi
tion.It follows from [Fe1, Ba1℄ that � has the skewed type: the orbit spa
e O is homeomorphi
 to an in�nitestrip inR2 bounded by parallel lines, say with slope one. The stable foliation is the foliation by horizontalsegments and the unstable foliation is the foliation by verti
al segments (see �gure 3).Put a transverse orientation to e�s positive with in
reasing y and to e�u positive with in
reasing x(where (x; y) are the 
artesian 
oordinates in O). For ea
h stable leaf L, there is in the positive side of La unique unstable leaf S whi
h makes a perfe
t �t with L � in this model it is equivalent to S sharing anendpoint with L. This produ
es a �1(M) equivariant map �us from Hs to Hu, whi
h is a homeomorphism([Ba1, Fe1℄). Similarly for ea
h S in e�u there is a unique E of e�s in the positive side of S and sharingan endpoint with S. The 
omposition L ! S ! E is a translation �s in Hs and Hs=�s is a 
ir
le S1s .Similarly one has �u whi
h is in
reasing from Hu to Hu and a 
ir
le S1u = Hu=�u. Both �s and �u are�1(M) equivariant homeomorphisms ([Ba1, Fe1℄), so �1(M) a
ts on S1s and S1u. We denote the �rst a
tionby �s : �1(M) ! Homeo(S1s ):In addition the map �us : L! S as above is also equivariant by the a
tion of �1(M) and hen
e indu
esa 
anoni
al homeomorphism from S1s to S1u with inverse denoted by �. So we 
an identify S1s � S1u withS1s � S1s by (z; w)! (z; �(w)). This indu
es an a
tion of �1(M) on S1s � S1s .For every orbit � of e�, there are unique leaves L of e�s and G of e�u so that � = L \G. Using L andG, the orbit � generates a point in S1s � S1u and hen
e a point (p; q) in S1s � S1s . We say that � proje
tsto (p; q). This de�nes a map



16 THIERRY BARBOT AND S�ERGIO R. FENLEY

L

h(L)

αh(   )

β

α

τs (L)

(L)S u
s

η=

Figure 3: Orbit spa
e of skewed type.� : O ! S1s � S1s :The proje
tion (p; q) is not in the diagonal �: points in the diagonal 
orrespond to L in e�s and S in e�uso that S = �us (�s)n(L) for some integer n. In parti
ular L and S do not interse
t and neither does Sinterse
t (�s)m(L) for any integer m. Conversely if (p; q) is in S1s �S1s ��, then one 
an lift p to a leaf Lof e�s and q lifts to a stable leaf, whi
h after the identi�
ation S1s with S1u produ
es S in e�u with S \ Lnot empty.Note that if g a
ts trivially on Hs then g is the identity in �1(M). This follows for instan
e be
ausethe set of �xed points of non trivial elements of �1(M) is dis
rete in Hs.Claim 1 � h a
ts trivially on S1s .Let e� be a lift of a periodi
 orbit � asso
iated to a 
overing translation g. Then g2h(e�) = hg2(e�) = h(e�),so e� and h(e�) are 
onne
ted by a 
hain of n lozenges by Theorem 2.13. Repla
ing g2 by g�2 if ne
essary,we 
an assume that e� is an attra
ting �xed point of the restri
tion of g2 to the stable leaf L through e�.Then h(e�) is also an attra
tive �xed point of the restri
tion of g2 to h(L). It follows (see �g. 3) thatn is even. In the �gure � is 
onne
ted to � by one lozenge and h(�) is 
onne
ted to � by a 
hain of 2lozenges. Therefore h(L) = (�s)i(L) for i = n=2.This implies that the proje
tions to S1s of periodi
 leaves are �xed points of �s(h). Sin
e periodi
 leavesare dense, we 
on
lude that �s(h) is the identity map on S1s . The 
laim is proved.Re
all that h was any element of the 
enter of �1(M). Here �1(M) 
annot be Z3 be
ause M has apseudo-Anosov 
ow. It follows that the 
enter of �1(M) is a 
y
li
 subgroup [He, Ja-Sh℄. From now, weassume that h generates the 
enter; and we denote by l the integer su
h that when a
ting on Hs, then� ls = h. In order to simplify the presentation, we identify in the sequel Hs with R in a way that �s is thetranslation x 7! x+ 1.Let now f in the kernel of �s. When a
ting on Hs, f(x) = x + j for some j in Z. In addition givenany g in �1(M) and 
onsidering the a
tion on Hs, it follows that for any x in Hs, for any i in Z, theng(x+ i) = g(x) + i. Now, for any g in �1(M), again when 
onsidering the a
tion on Hs we haveg�1f�1gf(x) = g�1f�1g(x+ j) = g�1f�1(g(x) + j) = g�1g(x) = x:Therefore g�1f�1gf a
ts trivially on Hs and is the identity in �1(M). Hen
e f is in the 
enter of �1(M)whi
h is < h >.Con
lusion: ker �s = < h > = 
enter of �1(M).



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 17Let H =< h > and Q = �1(M)=H. Sin
e H is the kernel of �s, there is an indu
ed a
tion �s of Q onS1s . Given g in �1(M) let g be its image in Q. By the 
on
lusion above the a
tion �s is faithful.We now think of S1s as the ideal boundary of the hyperboli
 dis
 H2 and (p; q) as the hyperboli
geodesi
 in H2 
onne
ting these endpoints.Lemma 4.2. The a
tion �s of Q on S1s is a 
onvergen
e group a
tion.Proof. First we prove the following fa
t:Claim 2 � Two arbitrary orbits �1; �2 of e� are 
onne
ted by a 
hain of lozenges if and only if �1; �2proje
t to either the same point of S1s �S1s �� or one proje
ts to some point (p; q) and the other proje
tsto (q; p). In the �rst 
ase they are 
onne
ted by an even number of lozenges and in the se
ond 
ase theyare 
onne
ted by an odd number of lozenges.Suppose �rst that �1; �2 are 
onne
ted by a 
hain of lozenges. The �rst lozenge in the 
hain has astable side L 
ontaining �1. There is an unstable side S of the lozenge making a perfe
t �t with L. Theother 
orner � of the lozenge is 
ontained in S. Suppose wlog that S is in the positive side of L. ThenS = �us (L). In addition fW u(�1);fW s(�) also make a perfe
t �t andfW u(�1) = �us (��1s (fW s(�)):So if �1 proje
ts to (p; q) then � proje
ts to (q; p). Following the lozenges in the 
hain proves that �2proje
ts to either (p; q) or (q; p). Using these arguments one sees that �1 and � = �s(L) \ �u(fW u(�1))are 
onne
ted by a 
hain of two lozenges.Conversely suppose that �1 and �2 both proje
t to (p; q). Let F = fW s(�1); G = fW u(�1) and letalso E = fW s(�2); S = fW u(�2). Sin
e the proje
tions of both �1 and �2 have the same point p as �rst
oordinate, there is n in Z so that E = �ns (F ). Similarly there is m in Z with S = �mu (G). In the
olle
tion f� iu(G); i 2 Zg, there is only one element interse
ting �ns (F ) and that is �nu (G). It follows thatn = m. In addition �2 = �ns (F ) \ �nu (G):As explained above �1 and �s(F ) \ �u(G) are 
onne
ted by a 
hain of two lozenges and by indu
tion �1and �2 are 
onne
ted by a 
hain with an even number of lozenges. The 
ase that �1 proje
ts to (p; q)and �2 proje
ts to (q; p) is very similar and is left to the reader. This proves 
laim 2.Let � be an arbitrary 
losed orbit of �, let e� be a lift to fM , whi
h is invariant under g in �1(M), withg asso
iated to � in the positive dire
tion. Let (p; q) in S1s � S1s � � be �(e�). Re
all that h in �1(M)represents the �ber of the Seifert �bration. Sin
e h a
ts trivially on S1s , then 
laim 2 implies that e� andh(e�) are 
onne
ted by a 
hain of lozenges with an even number of lozenges [Fe1℄. Therefore the set oforbits in the 
omplete 
hain of lozenges from e� is �nite modulo the a
tion by < h > and this set proje
tsto a �nite set V of orbits of � inM . But � is 
losed, so V is a �nite set of 
losed orbits and hen
e dis
retein M . Hen
e ��1(V ) is a dis
rete, �1(M) invariant set of orbits of e�. We 
on
lude that �(�(��1(V ))) isa dis
rete set in S1s � S1s ��. It is also �1(M) invariant. This is the \orbit" of (p; q) under the a
tion of�1(M).Now given �; e�; g as above, let L = fW s(e�). Then g(L) = L and sin
e g is asso
iated to the positivedire
tion of � then L is a 
ontra
ting �xed point of g a
ting on Hs. In the same way S = fW u(�) is also�xed by g and it is a repelling �xed point of g a
ting on Hu and hen
e p is the attra
ting �xed point ofg a
ting on S1s and q is the repelling �xed point. There are no other �xed points.In order to prove the 
onvergen
e group property for the a
tion �s of Q on S1s , we now 
onsider asequen
e bn of distin
t elements of Q and let gn in �1(M) with bn = gn. In the arguments below weabuse notation and also denote by �s the a
tion of �1(M) on S1s � S1s � the 
ontext makes 
lear whi
hone is being used.Consider a 
losed orbit � as above, with a given lift e�, 
orresponding points p; q in S1s and L = fW s(e�).Suppose �rst that up to subsequen
e



18 THIERRY BARBOT AND S�ERGIO R. FENLEY�s(gn)((p; q)) = (p; q) or �s(gn)((p; q)) = (q; p) for all n:Noti
e that it does not matter if we 
onsider �s(gn) or �s(gn). First a redu
tion: if �s(gn)((p; q)) = (q; p)for all n, then repla
e e� by g1(e�) and gn by gng�11 . The new 
olle
tion satis�es �s(gn)((p; q)) = (p; q)for all n. Claim 2 implies that for every n, gn(e�) is 
onne
ted to e� by a 
hain of lozenges, with an evennumber of lozenges. For ea
h n there is an so that gn(L) = �ans (L). Re
all the integer l above so thath = � ls when a
ting on Hs. There are bn and 
n in Z with 0 � 
n < l and an = bnl + 
n. Up to anothersubsequen
e we assume that 
n is 
onstant. Again up to taking g1(e�) instead of e� and gng�11 instead ofgn we may assume that 
n = 0 for all n. The above fa
ts imply that for ea
h n there is in in Z so thathingn(e�) = e� (in fa
t in = �bn). Therefore hingn = f jn , for some jn in Z where f is a generator of theisotropy group of e� in the forward dire
tion. Noti
e that �s(hin) a
ts as the identity on S1s (and also onS1s � S1s ��). If there is a subsequen
e (jnk) whi
h is 
onstant, then the formulagnk = h�ink f jnkshows that all �s(gnk) a
t in exa
tly the same way on S1s . Then �s(gnk) is 
onstant and sin
e �s is faithful,then the sequen
e (gnk) is also 
onstant � 
ontradi
tion to hypothesis. So up to subsequen
e we mayassume (say) that jn 
onverges to in�nity (as opposed to 
onverging to minus in�nity) when n ! 1.Then �s(gn) = �s(h�inf jn) = �s(f jn)and p is the sink for the sequen
e �s(gn) a
ting on S1s and q is the sour
e. This proves the 
onvergen
egroup property in this 
ase.From now on we assume up to subsequen
e that �s(gn)((p; q)) 6= (p; q); (q; p) for all n. In fa
t by thesame arguments we 
an assume that all �s(gn)((p; q)) are distin
t. Sin
e the orbit of (p; q) under �1(M)is dis
rete in S1s � S1s ��, then up to subsequen
e �s(gn)((p; q)) 
onverges to a point (z; z) in S1s � S1s .These arguments work for any 
losed orbit �.We now show that �s(gn) has a subsequen
e with the sour
e/sink behavior. Fix an identi�
ation of S1swith the unit 
ir
le S1. Sin
e � is R-
overed, then the set of 
losed orbits is dense [Ba1℄. Find (p1; q1)
orresponding to a periodi
 orbit, very 
lose to (�1; 1) and not dis
onne
ting these two points in S1.By the above arguments, up to subsequen
e �s(gn)((p1; q1)) 
onverges to a single point (z; z) in S1 � S1.Therefore one interval I1 of S1 de�ned by (p1; q1) 
onverges to z under �s(gn). The interval I1 has length
lose to half the length of the 
ir
le S1. We work by indu
tion assuming that an interval Ii has beenprodu
ed. Let Ji be the 
losed 
omplementary interval to Ii. Find a periodi
 point (pi; qi) so that: qi isin Ji and almost 
uts it in half and pi is in the interior of Ii (swit
h pi and qi if ne
essary). We alreadyknow that �s(gn)(pi)) 
onverges to z. As before up to another subsequen
e one of the intervals de�nedby (pi; qi) 
onverges to a point under �s(gn), whi
h then must be z as pi is in Ii. Adjoin this interval toIi to produ
e Ii+1 whi
h 
onverges to z under �s(gn). Let Ji+1 be the 
losed 
omplementary interval.Sin
e ea
h step roughly redu
es the size of the remaining interval by a fa
tor of 1=2, then the intervalsJi 
onverge to a single point w. Use a diagonal pro
ess and obtain a sequen
e �s(gnk) with sour
e w andsink z. This �nishes the proof of the 
onvergen
e group property.Noti
e that as we mentioned before, we denoted by �s the a
tion on both S1s and S1s � S1s ��. �Convention �We lift to a double 
over if ne
essary so that e�s is transversely orientable. Every orientationpreserving 
onvergen
e group a
ting on the 
ir
le is 
onjugated in Homeo+(S1) to a Fu
hsian group[Ga, Ca-Ju℄. Let � be �s(Q). Hen
e � is 
onjugate to a Fu
hsian group T . Here O = H2=T is ahyperboli
 2-dimensional orbifold.We have a 
onjugation  : S1s ! S1 between the a
tion of � on S1s and a Fu
hsian a
tion T on S1.Lift  to a homeomorphims e : Hs ! R. Let g in �1(M) and we also think of g as a
ting on Hs. Then Æ �s(g) Æ  �1 =  Æ �s(g) Æ  �1



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 19is the ideal map of a Moebius transformation and hen
e e g( e )�1 is a proje
tive transformation of R.This shows that the foliation �s is transversely proje
tive. As shown by the �rst author in [Ba1℄, thisimplies that the 
ow � is up to a �nite 
over, topologi
ally 
onjugate to a geodesi
 
ow in the unittangent bundle of a hyperboli
 surfa
e. This �nishes the proof of theorem 4.1. �EXAMPLES and COUNTEREXAMPLESRe
all that in a one prong pseudo-Anosov 
ow we allow the existen
e of one prongs. One prong pseudo-Anosov 
ows 
an behave 
ompletely di�erently from pseudo-Anosov 
ows. In parti
ular it is well knownthat there are one prong pseudo-Anosov 
ows in S2�S1, so the manifoldM need not be irredu
ible andthe universal 
over need not be R3.Here we introdu
e 2 new 
lasses of examples of one prong pseudo-Anosov 
ows.1) Let R be a 
losed hyperboli
 surfa
e with an order 2 symmetry � whi
h is an isometri
 re
e
tion alonga non separating simple 
losed geodesi
 � of R. Let M1 be the unit tangent bundle of R and �1 be thegeodesi
 
ow in M1. The isometry � sends geodesi
s of R to geodesi
s and preserves the geodesi
 
ow.It indu
es a map �� in M1 whi
h has order 2. Let M be the quotient of M1 by the map ��. The map�� does not a
t freely: the �xed points 
orrespond exa
tly to the tangent ve
tors to � � there are two
losed orbits �1; �2 of �1 whi
h are �xed pointwise by ��. These 
orrespond to the 2 dire
tions in �.Hen
e M is an orbifold, but admitting a natural manifold stru
ture so that the proje
tion map M1 !Mis an order 2 bran
hed 
overing map. The 
ow �1 indu
es a 
ow � in M be
ause � sends geodesi
s togeodesi
s. The stable/unstable foliations of �1 are invariant under �� so indu
e stable/unstable foliationsof �. The stable leaf of �1 through �1 folds in two, produ
ing a one prong singularity of � and similarlyfor �2. The 
ow � is an example of a one prong pseudo-Anosov 
ow. Alternatively the manifold M isobtained as follows: let R1; R2 be the 
losures of the 2 
omponents of R��. The unit tangent bundle ofR1 is homeomorphi
 to R1 � S1, with boundary a torus Z with 2 
losed 
urves 
orresponding to �1 and�2. The map �� identi�es one 
omplementary annulus of �1; �2 in Z to the other one with no shearing.This is obtained by a Dehn �lling of Z where ftg�S1 is the meridian. Therefore M is homeomorphi
 tothe union of N1 = R1 � S1 and a solid torus. This is almost a graph manifold: it is the union of Seifert�bered spa
es, but M is not irredu
ible: Take a non peripheral ar
 l in R1. Then l� S1 is an annulus inR1 � S1 whi
h is 
apped o� with 2 dis
s in the solid torus to produ
e a sphere whi
h is non separatingin M and hen
e 
learly does not bound a ball in M .Remark � This example and the next work whenever the hyperboli
 surfa
e R admits an isometri
re
e
tion along a 
olle
tion of simple 
losed geodesi
s f�ig. For simpli
ity of exposition we des
ribe theexamples in 1) and 2) with a single geodesi
 �.2) The se
ond 
lass of examples is obtained by a modi�
ation of example 1) in order to be in a Seifert�bered manifold. The modi�
ation is that the glueing of the annuli in �N1 is done with a shearing. Thenotation is the same as in example 1): R is the hyperboli
 surfa
e with a geodesi
 � of symmetry andR1; R2 the 
losures of the 
omponents of R � �. The unit tangent bundle of R is M1 and N1; N2 arethe restri
tions to ve
tors in R1 and R2 respe
tively. We use 2 tori: �N1 = T1 and �N2 = T2. Theseare glued to form M1. Put 
oordinates (�1; �2) in T1, (a1; a2) in T2 as follows: T1 
onsists of the unitve
tors along �. Parametrize � by ar
 length parameter t where 0 � t � l0 and l0 is the length of �. Let�1 = 2�t=l0. Let �2 be the angle between the unit tangent ve
tor to � and the ve
tor v, where �2 = 0
orresponds to the dire
tion of �1. Also �2 = � 
orresponds to �2 and 0 < �2 < � are the ve
tors exitingN1 and entering N2. Put 
oordinates (a1; a2) in T2 so that the glueing map to 
reate M1 is � : T1 ! T2given by a1 = �1; a2 = �2 (essentially the same 
oordinates). Noti
e that ve
tors with 0 < a2 < � areentering N2 and ve
tors with � < a2 < 2� are entering N1.In N1 we 
onsider the restri
tion of the geodesi
 
ow of R. We 
ollapse �N1 = T1 to an annulus asfollows. Let A1 be the strip 0 � �2 � � in T1 and let A2 be the strip � � �2 � 2� in T1. We glue A1 toA2 by f(�1; �2) = (�1 + 2n�2; 2� � �2) (�)



20 THIERRY BARBOT AND S�ERGIO R. FENLEYLet M be the quotient of N1 by this glueing and let � be the indu
ed 
ow from the geodesi
 
ow inN1. Noti
e that the 
ow in N1 is outgoing in the interior of A1 and in
oming in the interior of A2. Inaddition, the angle between 
ow lines and T1 depends only on �2 and not on �1 (by de�nition) and soby formula (�) this produ
es a 
ow � in M whi
h is smooth outside of the 
losed orbits �1; �2. Here weabuse notation and 
ontinue to 
all �1; �2 their proje
tions to M .Let A be the annulus whi
h is the quotient of A1; A2 by the glueing. Let M2 be the double bran
hed
over ofM obtained by double bran
hed 
over (opening up) along A. ThisM2 
an be 
ut along the torusT whi
h is the preimage of A. The 
losure of the 2 
omplementary 
omponents of T are homeomorphi
to N1 and N2 and still denoted by N1; N2. We think of N1 as the unit tangent bundle of R1. We 
an alsothink of N2 as the unit tangent bundle of R2 � this is be
ause N2 under the bran
hed 
over is another
opy of N1, whi
h is isometri
 to N2 by the map �� indu
ed by the symmetry � of the surfa
e R. LetT1; T2 be the 
orresponding boundaries of R1; R2, with the 
orresponding 
oordinates (�1; �2) and (a1; a2)as above. Therefore M2 is obtained by a 
ertain glueing of map g from T1 to T2.We �rst extend the map f to an involution on the entire torus T1: in A2 (whi
h is the region � � �2 �2�), the map f has the same formula f(�1; �2) = (�1 + 2n�2; 2� � �2). Clearly f is an involution in T1.Claim � In order to obtain the 
ow � inM , the glueing from T1 to T2 in the (�1; �2), (a1; a2) 
oordinatesis given by: g : T1 ! T2; g(�1; �2) = (�1 + 2n�2; �2):In order to prove the 
laim we need to show that when restri
ted to the annulusA1 then f = ��g. Re
allthat �� restri
ted to T2 (whi
h is identi�ed with T ) has the form �� : T2 ! T1, ��(a1; a2) = (a1; 2�� a2).It is now 
lear that f = ��g in A1. By the extension of f to A2, this also holds in A2. This proves the
laim.Let �2 be the lift of the 
ow � to M2. This 
ow �2 is the geodesi
 
ow in R1 when restri
ted to N1and the the geodesi
 
ow of R2 when restri
ted to N2. The glueing is given by the map g des
ribed above.The map g is a shearing. In a very ni
e result, Handel and Thurston [Ha-Th℄ studied exa
tly this exampleand they proved that the 
ow �2 in M2 is an Anosov 
ow whi
h is volume preserving. Therefore this
ow has stable and unstable foliations whi
h proje
t to stable/unstable foliations of �: this is be
ause if2 orbits inM2 are asymptoti
 then their proje
tions to M are asymptoti
 and vi
e versa. The proje
tionfrom M2 to M is lo
ally inje
tive and smooth ex
ept along �1 and �2, where it is 2 to 1. Hen
e thestable/unstable foliations in M are non singular ex
ept possibly at �1; �2. Sin
e the proje
tion is 2 to1 and stable leaves go to stable leaves, then along the stable leaf of �1 the stable leaf folds in two andsimilarly for the unstable leaf and likewise for �2. Therefore � is smooth everywhere ex
ept at �1; �2whi
h are one prong singularities. We 
on
lude that � is a one prong pseudo-Anosov 
ow.Finally M 
an be thought as a Dehn �lling of N1 along T1. We determine the new meridian. Underthe map f from A1 to A2, the segment �1 = 0; 0 � �2 � � in A1 is glued to the the segment(2n�2; 2� � �2); 0 � �2 � � in A2. This last segment goes from (0; 2�) to (2n�; �) linearly. It followsthat this is the new meridian whi
h is then the (�n; 1) 
urve.When n = 0, this is exa
tly the same 
onstru
tion as in the �rst example whi
h makes the �ber in N1null homotopi
. When n 6= 0, the 
urve whi
h be
omes null homotopi
 is not fpg � S1. It follows thatthe resulting manifold M is Seifert �bered.Con
lusion � If one allows 1-prongs, then Seifert �bered manifolds 
an admit one prong pseudo-Anosov
ows with singularities as opposed to what happens with pseudo-Anosov 
ows. Theorem A does not holdfor one prong pseudo-Anosov 
ows.This poses the following questions: Suppose that � is a one prong pseudo-Anosov 
ow in M Seifert�bered (
losed). Can one show that there are no p-prongs with p � 3? Can one show that � has abran
hed 
over to an Anosov 
ow in a Seifert manifold?Remark: With this des
ription of geodesi
 
ows we now mention the following, whi
h will be extremelyuseful later on in the arti
le. Here is an expli
it example of a Klein bottle in a manifold with an Anosov
ow. Let � be the geodesi
 
ow of a nonorientable hyperboli
 surfa
e S and � an orientation reversing
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. Let A be the unit tangent bundle of � and �1; �2, the two orbits of � asso
iated tothe two dire
tions of �. Consider tubular neighborhoods of of �1, �2. These are solid tori, and A inthese neighborhoods wraps around ea
h of these periodi
 orbits twi
e produ
ing a M�obius band, whi
h
ontains the periodi
 orbit, and with boundary a 
losed 
urve homotopi
 to the double of the periodi
orbit. It follows that the 
losure of A is the union of an annulus (outside the solid tori) and two M�obiusstrips and therefore A is a Klein bottle. This is a typi
al example of Birkho�-Klein bottle, see formalde�nition in se
tion 6. A tubular neighborhood of this Klein bottle if homeomorphi
 to the twisted linebundle over the Klein bottle.5. Pseudo-Anosov 
ows in manifolds with virtually solvable fundamental groupIn this se
tion we �rst do a detailed analysis of maximal subgroups of �1(M) stabilizing a given 
hain oflozenges. Conversely given a subgroup of �1(M) isomorphi
 to Z2 we analyse the uniqueness of 
hains oflozenges invariant under this subgroup. These results are foundational for understanding any Z2 subgroupof �1(M) and they are fundamental for the analysis of pseudo-Anosov 
ows in manifolds with virtuallysolvable fundamental groups. The results are later used for other results in this arti
le. We also expe
tthat these results will be useful for further study of pseudo-Anosov 
ows in toroidal manifolds.In this se
tion let K denote the Klein bottle. We �rst need a result from 3-dim topology. Let F be a
ompa
t surfa
e with a free involution � . Then M = (F � I)=(x; t) � (�(x); 1 � t) is a twisted I-bundleover the surfa
e F 0 = F=x � �(x) and F is the asso
iated 0-sphere bundle, see [He℄, page 97.Lemma 5.1. Let N be an irredu
ible, 
ompa
t 3-manifold with �nitely generated fundamental groupwhi
h is torsion free and has a �nite index subgroup isomorphi
 to Z2. Then N is either an I-bundle ora twisted I-bundle over a surfa
e of zero Euler 
hara
teristi
. In parti
ular �1(N) is isomorphi
 to eitherZ2 or �1(K). In addition if N is orientable, then either N = T 2�I or N = (T 2�I)=(x; t) � (�(x); 1� t)is a twisted I-bundle over the Klein bottle T 2=x � �(x) whi
h is one sided in N .Proof. Suppose �rst that N is 
losed. Then take a �nite 
over N 0 with �1(N 0) = Z2. Sin
e the �nite
over is irredu
ible, this is not possible [He℄. Hen
e �N is not empty. Suppose that boundary of N is
ompressible. By the loop theorem [He℄ there is a 
urve in �N , not null homotopi
 in �N , but boundingan embedded dis
 D in N . Cutting along D, shows that �1(N) is either a free produ
t or an amalgamatedfree produ
t along a trivial group, hen
e a free produ
t with Z. In either 
ase the free produ
t wouldeither not 
ontain a Z2 (it would be in�nite 
y
li
) or would 
ontain a free group of rank � 2, in whi
h
ase it 
ould not 
ontain Z2 with �nite index. Hen
e �N is in
ompressible. If it has a 
omponent of genus� 2 then as above it would have a rank 2 free subgroup, again 
ontradi
tion. If it has a 
omponent whi
his a proje
tive plane, then �1(N) has elements of order 2, 
ontrary to hypothesis. Sin
e N is irredu
ible,no 
omponent of �N is a sphere, as �1(N) is not trivial. We 
on
lude that every boundary 
omponentof N is either a torus or a Klein bottle.Let F be one su
h 
omponent. Be
ause F is in
ompressible and �1(N) has a �nite index subgroupisomorphi
 to Z2, then �1(F ) has �nite index in �1(N). By theorem 10.5 of [He℄, either i) �1(N) = Z, orii) �1(N) = �1(F ) with N �= F � I or iii) �1(F ) has index 2 in �1(N) and N is a twisted I-bundle overa 
ompa
t manifold F 0, with F the asso
iated 0-sphere bundle. In our situation 
ase i) 
annot happen.In 
ase ii) �1(N) is either Z2 or �1(K) and we are done. In 
ase iii) �1(N) is isomorphi
 to �1(F 0) asthere is a deformation retra
t from N to F 0. Here F 0 is a 
losed surfa
e whi
h has a double 
over eitherthe torus or the Klein bottle. Hen
e again F 0 is the torus or the Klein bottle and we also 
on
lude that�1(N) is either Z2 or �1(K). The last stament is easy given the above. This �nishes the proof of thelemma. �Note that both the torus and the Klein bottle have double 
overs homeomorphi
 to themselves. Themanifolds in question above 
an be either orientable or not. It is easy to 
onstru
t a 
ompa
t manifoldN whi
h is a twisted I-bundle over the Klein bottle (with quotient surfa
e a Klein bottle). This manifoldhas boundary a Klein bottle and an orientation double 
over N2 whi
h is a twisted I-bundle over thetorus (with quotient surfa
e a Klein bottle, whi
h is one sided in N2). Finally N has an order 4 
overhomeomorphi
 to T 2 � I.



22 THIERRY BARBOT AND S�ERGIO R. FENLEYLemma 5.2. Suppose that C is a bi-in�nite 
hain of lozenges. Let G be the stabilizer of C in �1(M).Then G is isomorphi
 to a subgroup of �1(K). In parti
ular, it 
ontains an unique maximal abeliansubgroup of index at most 2, whi
h is either trivial, (in�nite) 
y
li
 or isomorphi
 to Z2.Proof. The proof will reveal the stru
ture of the stabilizer of C and not just show that it is isomorphi
to a subgroup of �1(K). In this proof 
y
li
 means in�nite 
y
li
. Let � be a 
orner in C. The 
hain C
orresponds to a linear subtree T0 of the tree G(�). It de�nes a homomorphism � : G ! Aut(T0). Thekernel K of � stabilizes every 
orner of C, and thus, is either 
y
li
 or trivial.Assume �rst that G preserves the orientation on T0. Then �(G) is a group of translations along T0,ie. trivial or 
y
li
. In the former 
ase, G = K is either trivial or 
y
li
. In the latter 
ase, if K is trivialthen G is isomorphi
 to �(G) and hen
e trivial or 
y
li
. If K is 
y
li
 then G is an extension of Z by Z.It follows that G is either Z2 or �1(K). We are done.We are left with the 
ase where some element g of G reverses the orientation of T0. Hen
e g leaveseither a vertex or and edge of T0 invariant. Then, a

ording to proposition 2.16 item 4, g preserves a
orner �. Let s be a generator of the G-stabilizer of � � in parti
ular this stabilizer is not the identity.Then s reverses the orientation of T0 (otherwise all elements in G leaving � invariant would preserveorientation) and s2 is in K. On the other hand, every element of K �xes � and preserves the orientation:it must be a power of s2, whi
h therefore generates K. As usual there are two option for �(G). Oneoption is that �(G) = �(s) and therefore G is generated by s and is 
y
li
. Otherwise �(G) has at leastone translation. Sele
t h in G su
h that �(h) is a translation along T0 of minimal length. In this 
ase itis easy to see that s, h generate G.By 
onsidering the a
tion on the set of verti
es of T0 one sees that hsh preserves �. It is also in G sohsh = si. Similarly h�1sh�1 = sj . At this point we have exhausted the information we 
an obtain solelyfrom the 
ow and we appeal to 3-manifold topology.Let G0 be the subgroup of G preserving the orientation on T0. The previous arguments show that G0has a subgroup of order � 2 isomorphi
 to Z2, so G has a subgroup of order � 4 isomorphi
 to Z2. LetU be the 
over of M asso
iated to G. Then U is irredu
ible and �1(U) is torsion free. By S
ott's 
oretheorem [He℄ there is a 
ompa
t 
ore N for U . We 
an assume that no boundary 
omponent of N is asphere - by atta
hing 3 balls to su
h 
omponents, without a�e
ting the fundamental group. Now applythe previous lemma to show that G = �1(N) is isomorphi
 to either Z2 or �1(K).Finally if G is not abelian then G is isomorphi
 to �1(K) and it is an elementary algebra fa
t that Ghas a unique maximal abelian subgroup of index 2, whi
h is isomorphi
 to Z2. �Conversely:Lemma 5.3. Let G be a subgroup of �1(M) isomorphi
 to Z2. Assume that � is not produ
t. Then Gpreserves a bi-in�nite 
hain of lozenges.Proof. If G � Z � Z a
ts freely on the orbit spa
e O, then it was proved in [Fe5℄ that � is produ
t,
ontrary to hypothesis. Hen
e there is g in G with a �xed point in O. If g = (g0)n where g0 is in G andjnj > 1, then g0 also does not a
t freely on O (Proposition 2.16, item 1.). Hen
e we may assume that gis indivisible in G. Choose h in G so that h; g form a basis of G. Consider the tree T = G(g): sin
e Gis abelian, then G a
ts on T . If f is an element of G admitting a �xed point in T , then some power off leaves invariant all verti
es of T and likewise for g. It follows that g and f admit a 
ommon power:gp = f q. Sin
e f; g are in G �= Z2 then f; g generate a 
y
li
 group. But g is indivisible in G, implyingthat f is a power of g. Hen
e, G=hgi � Z is a 
y
li
 group a
ting freely on the verti
es of the tree T .A

ording to Proposition 2.16, item 4., an element in G= < g > 
annot reverse an edge of T . It followsthat G=hgi a
ts freely on T , and that there is an invariant axis for this 
y
li
 group therein. It provides abi-in�nite G-invariant 
hain of lozenges C. In parti
ular the arguments show that g �xes all the verti
esin C. �De�nition 5.4. ([Fe5℄) Let C be a s-s
alloped bi-in�nite 
hain of lozenges. The s-s
alloped region de�nedby C is the union of all lozenges in C with the half-leaves of e�u 
ommon to two adja
ent lozenges in C.One de�nes similarly u-s
alloped regions. A s
alloped region is a s-s
alloped or u-s
alloped region; it isan open subset of O.
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hain is not unique, but only in avery spe
ial situation:Lemma 5.5. Let G be a subgroup of �1(M) isomorphi
 to Z2. Assume that G preserves two di�erent
hains of lozenges. Then, one these 
hains is s-s
alloped, and the other is u-s
alloped. Moreover theasso
iated u-s
alloped and s-s
alloped regions are the same.Proof. In this proof we 
onsider all obje
ts in O. Let C, C0 be two di�erent G-invariant 
hains of lozenges.Let g be an element of G �xing every 
orner in C, and let f be an element of G �xing every 
orner of C0 �see proof of the previous lemma. Suppose �rst that g and f share a 
ommon non-trivial power: gp = f q,p; q 6= 0. Sin
e G is abelian it a
ts on G(gp) and also G(g) � G(gp), so C is an invariant axis for G a
tingon G(gp). Similarly C0 is a G-invariant axis in G(f q). Sin
e these trees are the same, it now follows thatC = C0, 
ontradi
tion.Hen
e, repla
ing G by a �nite index subgroup if ne
essary, one 
an assume that f , g form a basis ofG � Z2.Let � be a 
orner of C0. We 
laim that � 
annot be in C or in one of its boundary sides. Suppose not.There is h non trivial in G �xing � and therefore �xing every 
orner of C0. As h leaves C invariant, then �has to be a 
orner of C. This would produ
e an element in G �xing every 
orner of C and every 
orner ofC0 and hen
e some powers of f and g 
oin
ide. The previous paragraph shows this is impossible. Let now
 be a path in O joining � to an element Æ in the union of the lozenges in C, and disjoint from the 
ornersof C. We assume that 
 avoids the singular orbits in O. Noti
e that the union of 
orners of C forms adis
rete set in O. Consider the interse
tion V between 
 and the union of stable and unstable half-leaves
ontained in the boundary of the lozenges of C. By the above this interse
tion is non empty. Assume�rst that V is �nite. Let 
 be the �rst element of V met while traveling along 
 from � to Æ. Then 
 lieson the boundary of a lozenge C of C, let's say the boundary 
omponent is a stable half leaf L 
ontaininga 
orner � of C. Let C 0 be the other lozenge in C admitting also � as a 
orner: there is a half leaf K,
ontained in the boundary of C 0 and su
h that the union L [ K [ � is an embedded line in O, whi
hmoreover dis
onne
ts C from �. In addition this properly embedded line is unique with these properties.Sin
e C and � are f -invariant, it now follows that L [K [ � is f -invariant, and hen
e f(�) = �, where� is a 
orner of C. Contradi
tion.Therefore, V is not �nite: it admits an a

umulation point 
. Sin
e e�s and e�u are transverse outsidethe singular points, 
 is an a

umulation point of a sequen
e Fn \ 
, where the Fn are leaves in theboundary of lozenges in C. In addition we may assume that all Fn have all the same type, for exampleall Fn are leaves of e�s. Let L be the leaf of e�u through 
: it interse
ts all the Fn for n suÆ
iently big.It follows that C 
ontains an in�nite u-s
alloped sub
hain. Sin
e C is G-invariant, the entire 
hain C hasto be a bi-in�nite u-s
alloped 
hain. Hen
e it de�nes a u-s
alloped region U .Similarly, C0 has to be s
alloped, and de�nes a s
alloped region U 0.Now the key point is the following: in [Fe5℄ the following fa
ts are shown: i) We 
an 
hoose h in Ga
ting freely on O; ii) The leaves of e�s (respe
tively e�u) interse
ting U de�nes a G-invariant subline Isin Hs (respe
tively a G-invariant subline Iu in Hu); iii) Every leaf in Is interse
ts every leaf in Iu, andthis interse
tions o

urs in U ; iv) Every point in U is the interse
tion of a leaf in Is and a leaf in Iu.Similarly, the open s
alloped region U 0 provide G-invariant sublines Js, Ju in Hs, Hu, su
h that everyleaf in Js interse
ts every leaf in Ju at a point in U 0. But sin
e h a
ts freely, h-invariant lines in Hs, Huare unique [Fe5℄. Thus, Is = Js and Iu = Ju. The equality U = U 0 follows.If the 
hain C0 was u-s
alloped, as C, then it would be equal to C sin
e it de�nes the same s
allopedregion. Hen
e, C0 is s-s
alloped. The lemma follows. �Corollary 5.6. Let G be a subgroup of �1(M) isomorphi
 to Z2 and h an element of �1(M) su
h thathG0h�1 = G0, where G0 is a �nite index subgroup of G. Then h preserves any G-invariant 
hain oflozenges.Proof. Let C be a G-invariant 
hain of lozenges. Then, C is G0-invariant, and h(C) is hG0h�1 = G0-invariant. A

ording to lemma 5.5, if C is not s
alloped, then C is the unique G0-invariant 
hain: hen
ewe have h(C) = C. If not, C is s
alloped, for example suppose that C is s-s
alloped. Again by lemma 5.5,
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alloped G0-invariant 
hain, and sin
e h(C) is also s-s
alloped, the equality h(C) = Cfollows. �As a 
orollary of these results, we get the des
ription of pseudo-Anosov 
ows in manifolds with virtuallysolvable fundamental group (theorem B).Theorem 5.7. Let � be a pseudo-Anosov 
ow in M3 with �1(M) virtually solvable. Then � has nosingularities and is produ
t. In parti
ular � is topologi
ally 
onjugate to a suspension Anosov 
ow.Proof. First noti
e that the fa
t that ea
h leaf of e�s interse
t every leaf of e�u is invariant up to taking�nite 
overs and so is the existen
e of singularities. Hen
e we 
an take �nite 
overs at will. Up to a �nite
over, one 
an assume that �1(M) is solvable. Noti
e that as M has a pseudo-Anosov 
ow then M isirredu
ible. Sin
e �1(M) is solvable, 
lassi
al 3-manifold topology results [He℄ imply that M �bers overthe 
ir
le with �ber a surfa
e S whi
h has solvable fundamental group. The surfa
e S 
an only be thetorus or the Klein bottle K. Up to another �nite 
over one 
an assume that S is a
tually the torus.Assume that � is not produ
t. Then, a

ording to lemma 5.3, �1(S) preserves a 
hain of lozenges. Sin
e�1(S) is normal in �1(M), it follows from Corollary 5.6 that this 
hain of lozenges is �1(M)-invariant.A

ording to lemma 5.2, �1(M) is a �nite index extension of Z or Z2. This 
ontradi
ts the fa
t that M�bers over the 
ir
le with �ber T 2. This �nishes the proof. �6. �1-inje
tive tori in optimal positionGiven a �1-inje
tive torus, we look for a representative in its homotopy 
lass whi
h is in optimal position� this means that it is a union of Birkho� annuli, whi
h have very important dynami
al meaning. Ifthe initial torus is embedded we want to study when the optimal position torus is also embedded. Thisis tremendously important if one wants to 
ut the manifold along the tori whi
h separate pie
es in thetorus de
omposition.We �rst study under whi
h 
onditions a 
hain of lozenges C may admit a 
orner � su
h that for someelement g of �1(M) the image g(�) is 
ontained in a lozenge of C. Later on we explain how this 
on
ernsthe interse
tions of 
orner orbits in the Birkho� annuli with the interior of the annuli.De�nition 6.1. Let C be a 
hain of lozenges. If for any element g of �1(M) and for every 
orner � of Cthen the orbit g(�) is not in the interior of a lozenge in C, then C is 
alled simple. The 
hain C is 
alleda string of lozenges if no 
orner orbit is singular and 
onse
utive lozenges are never adja
ent.Proposition 6.2. Let G be a subgroup of �1(M) isomorphi
 to Z2 and let C be a G-invariant 
hain oflozenges. Suppose that C is not simple. Then C is a string of lozenges. In addition G is 
ontained in thefundamental group of a free Seifert �bered pie
e.Proof. Let � be a 
orner orbit of C and g in �1(M) with g(�) in the interior of a lozenge in C. We �rstprove that C is a string of lozenges. We denote by f�i; i 2 Zg the 
orners of C and by fCi; i 2 Zg thelozenges of C, so that �i, �i+1 are the 
orners of Ci for ea
h integer i. Moreover, we assume wlog � = �0.There is an integer k so that � = g(�) belongs to Ck. We will prove that both 
orners �k, �k+1 of Ck arein the interior of lozenges in g(C). Sin
e the orbit � is in the interior of a lozenge, then � is non singularand fW s(�);fW u(�) de�ne exa
tly 4 quadrants in fM . Two of the quadrants 
ontain the 
orners of Ck.Let W be one of the remaining quadrants. It 
ontains a perfe
t �t between sides of the lozenge Ck, saybetween L = fW s(p1) and S = fW u(p0), where p0; p1 are appropriately named.We 
laim that W does not 
ontain a lozenge with 
orner in �. Suppose not and 
all this lozenge D1.Then D1 has 2 sides in fW u(�) and fW s(�). There is a side of D1, 
all it E whi
h is 
ontained in anunstable leaf and makes a perfe
t �t with fW s(�). Sin
e fW s(�) interse
ts S = fW u(p0) transversely, itfollows that S separates E from the lozenge Ck. Therefore E 
annot interse
t any leaf whi
h makes aperfe
t �t with fW u(�). This is a 
ontradi
tion and proves the 
laim.It follows that the 2 quadrants de�ned by � whi
h 
ontain respe
tively �k and �k+1 
ontain lozenges ing(C). Let D2;D3 be these lozenges. Sin
e fW s(�k+1) interse
ts fW u(�) and fW u(�k+1) interse
ts fW s(�),the de�nition of lozenges implies that �k+1 is in the interior of (say) D3. As in the argument above itnow follows that the other 
orners of D2;D3 are in the interior of Ck�1; Ck+1. This 
an be iterated and
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h g(�i) (and 
onsequently the same for�i) is non singular and Ci, Ci+1 are not adja
ent. This shows that C is a string of lozenges.In order to 
on
lude, we have to show that up to 
onjugation G is 
ontained in the fundamental groupof a free Seifert pie
e. Let H be the stabilizer of C in �1(M), and let H0 be the maximal abelian subgroupof H (see lemma 5.2 whi
h shows that H0 has index � 2 in H). Then G � H0; hen
e we 
an assumeG = H0, ie. that G has index at most two in H.We stress the following very important fa
t: the above arguments show that for any 
orner 
 of Cthere are exa
tly 2 lozenges whi
h have 
orner 
. The remaining quadrants of 
 do NOT have lozengeswith 
orner 
. As a 
orollary, we obtain that the tree G(�) 
oin
ides with C. Similarly, G(�) = g(C). Inparti
ular C = G(�) is a simpli
ial linear tree.Claim 1 � One 
an assume that the manifold M is orientable.Suppose that M is not orientable and let M2 be the orientation double 
over ofM , with lifted 
ow �2.Let ls be the set of stable leaves either interse
ting a lozenge in C or 
ontaining a 
orner orbit in C. Thisset is order isomorphi
 to the reals R. Similarly de�ne lu. One 
an use the arguments above to showthat ls; lu are invariant under g. This is be
ause every g(�i) is in the interior of a lozenge in C � so thearguments above show that if q is any 
orner of C, then g(q) is also in the interior of a lozenge in C. Thisimplies the g invarian
e of ls; lu. If g preserves the order in ls then the arguments above imply that g alsopreserves the order in lu: this is be
ause one 
an order ls; lu so that \high elements" in ls interse
t highelements in lu. Sin
e interse
tion is preserved by the a
tion of g the statement follows. This implies thatg preserves orientation in O �= R2. If on the other hand g reverses order in ls, the same argument showsthat g also reverses order in lu and hen
e g again preserves orientation in O. Sin
e 
learly g preservesthe 
ow dire
tion it follows that in any 
ase g preserves orientation in M . Therefore g is an element of�1(M2).Similarly, one proves for every element a of G that if a reverses the orientation of ls, it also reversesthe orientation of lu: G is 
ontained in �1(M2). Now if P2 is a free Seifert pie
e whose fundamental group
ontains G, then P = p(P2) is a free Seifert pie
e in M whose fundamental group 
ontains G. Hen
e wemay assume that M =M2 in the statement of the proposition. Claim 1 is proved.Assumption � From now on we 
an assume that M is orientable.Sin
e g preserves ls, there are two options: Case I) g preserves orientation in ls. Then there is k in Zso that g(�i) is always in the interior of Ck+i, Case II) g reverses orientation in ls. Then up to 
hoosinga new �0 and perhaps 
hanging i to �i, it follows that g(�i) is in the interior of C�i for all i.Claim 2 � There is an element h0 of G su
h that the 
entralizer Z(h0) (in �1(M)) is not abelian.Let f denote a generator of the stabilizer in G of every �i, and let h be an element of G a
ting freelyon C: there is an integer p so that h(�i) = �i�p, h(Ci) = Ci�p.Assume �rst that we are in Case I). For every integer i, g(�pi) is 
ontained in Ck+pi, hen
e all thehig(�pi) lie in Ck. On the other hand, one 
an produ
e as in [Ba2℄ a f -invariant proper embedding of[0; 1℄�R into fM , so that f0; 1g �R maps into the 
orner orbits of Ck, (0; 1)�R maps into the interiorof the lozenge and transversely to e�. The image of this embedding proje
ts to an embedded annulus Âin fM=hfi, whi
h itself proje
ts to an immersed annulus A in M , transverse in its interior to the 
ow �.The key point is that A is 
ompa
t, hen
e the periodi
 orbit �(�) interse
ts A only a �nite number oftimes. It follows that �(�) = �(�0) = �(�) admits only �nitely many lifts in fM=hfi interse
ting Â. Inother words, there must be distin
t positive integers i; j and an integer q su
h that:hig(�pi) = f q(hjg(�pj))Let �0 = �pj = h�j(�) so �pi = h�i(�) = hj�i(�0)Hen
e: highj�i(�0) = f qhjg(�0)
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h highj�i = f qhjgsn, where s is the stabilizer in �1(M) of �pj = �0. Let m = i� j.Sin
e f and h are both in G they 
ommute, so the last equation impliesg�1f�qhmg = snhmNoti
e that s preserves G(�) = C. This is be
ause C is a string of lozenges and also the very importantfa
t mentioned above. Hen
e s belongs to H. Let h0 = (snhm)2 and v = (f�qhm)2. Also sin
e m is notzero then h0 is not the identity. The equation above implies that g�1vg = h0. Sin
e H0 has index � 2 inH then h0 is in H0.We 
on
lude that h0 is a non trivial element of G whose 
entralizer Z(h0) 
ontains G, but also g�1Gg.Now suppose we are in Case II) and we want to a
hieve the same 
on
lusion. This is similar to CaseI) and some details are left to the reader. Here g(�pi) is in C�pi and h�i(C�pi) = C0. As in 
ase I) thereare i; j positive and distin
t and q integer to thath�ig(�pi) = f qh�jg(�pj);So if �0 = �pj then h�ighj�i = f qh�jgsn, with s as above, leading �nally tog�1(f�qh�m)g = snhm; where m = i� j 6= 0Here take h0 = (snhm)2 non trivial in H0 and let v = (f�qh�m)2. So as before g�1vg = h0, so again h0is a non trivial element of H0 whose 
entralizer 
ontains G and also g�1Gg.Now assume by way of 
ontradi
tion that Z(h0) is abelian. A

ording to lemma 5.5, sin
e the 
hainC is not s
alloped, it is the unique G-invariant 
hain of lozenges. Sin
e g�1Gg is a subgroup of Z(h0), it
ommutes with G as Z(h0) is abelian. It follows that C is g�1Gg-invariant.But a similar argument shows that g�1(C) is the unique g�1Gg-invariant 
hain of lozenges. Hen
eg�1(C) = C. This is a 
ontradi
tion sin
e � = g(�) is not a 
orner of C. This �nishes the proof of 
laim2. Sin
e Z(h0) is not abelian, lemma VI.1.5 of [Ja-Sh℄ shows that there is a Seifert �bered pie
e P of thetorus de
omposition of M [Ja-Sh, Jo, Ja℄ so that Z(h0) � �1(P ). The hypothesis of lemma VI.1.5 of[Ja-Sh℄ require i) M is irredu
ible, ii) M is orientable, iii) M has an in
ompressible surfa
e. Conditioni) holds be
ause M has a pseudo-Anosov 
ow [Fe-Mo℄. Condition ii) holds be
ause of Claim 1. As for
ondition iii) we know that �1(M) has a Z2 subgroup. Gabai [Ga℄ proved that eitherM has an embeddedin
ompressible torus or M is a small Seifert �bered spa
e. But it M is Seifert �bered, then theorem 4.1shows that the �ber in M a
ts freely on O and we are done. So we 
an assume that 
ondition iii) alsoholds. An example of a non simple 
hain of lozenges in Seifert �bered spa
es is the following: let � be ageodesi
 
ow, 
 a non simple geodesi
 and T the torus asso
iated to 
 with 
orresponding 
hain C. ThenC is not simple.In order to 
on
lude, we just have to show that P is a free pie
e. Assume this is not the 
ase: let t bethe �ber of a Seifert �bration in P admitting �xed points in O.Claim 3 � For any � in �1(P ), �(C) = C.Sin
e G � �1(P ), for every a in G we have ata�1 = t�1. Let G0 be the subgroup of G made of elementsa2 where a is an arbitrary element of G. Then G0 is isomorphi
 to Z2 (it has index 4 in G) and G0 is
ontained in the 
entralizer Z(t). The 
hain C is the unique G0-invariant 
hain of lozenges (lemma 5.5).But sin
e G0 � Z(t), the 
hain t(C) is G0-invariant, hen
e equal to C. Then t has a �xed point whi
h is a
orner of C and so G(t) � G(�).Consider now the a
tion of G0 on the tree G(t). Sin
e G(t) is 
ontained in a linear tree and G0 isisomorphi
 to Z2, there is an element b of G0 a
ting freely on G(t). Sin
e G(t) � G(�) = C and thelast one is a simpli
ial linear tree, it now follows that G(t) = C. Claim 3 follows sin
e G(t) is obviously�1(P )-invariant.The fundamental group �1(P ) 
ontains Z(h0) whi
h itself 
ontains g�1Gg: it follows that g�1Ggpreserves C. We have already observed, while proving that Z(h0) is not abelian (
laim 2), that this is
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ontradi
tion proves that t a
ts freely on O. This �nishes the proof of proposition6.2. �De�nition 6.3. A Birkho� annulus is an immersed annulus in M so that ea
h boundary 
omponent isa periodi
 orbit of the 
ow, and su
h that the interior of the annulus is transverse to the 
ow. If theinterior is embedded, then the annulus is 
alled weakly embedded.The interior of a Birkho� annulus is transverse to the 
ow, and hen
e is also transverse to the weakfoliations �s, �u. They therefore indu
e foliations on the annulus denoted by ls, lu. These foliations 
anboth be extended to the boundary of the annulus as foliations tangent to the boundary. A singular orbitwith p prongs (here again we use that for pseudo-Anosov 
ows p � 3) indu
es a singularity of ls (or lu)in the interior of the annulus having negative index 1� p=2. Sin
e the Euler 
hara
teristi
 of the annulusis zero, Poin
ar�e-Hopf index formula implies that the interior of the annulus interse
ts no singular orbits.De�nition 6.4. A Birkho� annulus is elementary if ls; lu; do not have 
losed leaves in the interior.Observe that in the de�nition of weakly embedded Birkho� annuli, we did not require the whole annulusto be embedded: it may wrap around ea
h periodi
 orbit in its boundary, an arbitrary (�nite) numberof times. Noti
e however that the boundary 
annot interse
t the interior, as otherwise points near theboundary would produ
e self interse
tions in the interior.Let � : A ,!M be a Birkho� annulus (embedded or not). It lifts as an immersion ~� : ~A � R� [0; 1℄ ,!fM su
h that R�f0g, and R�f1g are orbits of e�, and su
h that the image by ~� of R�(0; 1) is transverseto e�: we 
all e� : eA ,! fM a Birkho� band. Moreover, this image is invariant under the a
tion of the
y
li
 subgroup ��(�1(A)) � Z. Finally, if � : A ,! M is elementary, every orbit of fM interse
ts theimage of the interior in at most one point, and the proje
tion in O is a ��(�1(A))-invariant lozenge ([Ba2,Proposition 5.1℄).Conversely, and as we already mentioned in the proof of Proposition 6.2, Claim 2, every lozenge in Oinvariant by a 
y
li
 subgroup of �1(M) is the proje
tion in O of an embedded Birkho� band in fM; thatproje
ts in M to an elementary Birkho� annulus. Moreover, if the lozenge is simple, ie. if its interior
ontains no iterate of its 
orner, then the Birkho� annulus 
an be sele
ted weakly embedded ([Ba2,Theorem D℄).More generally, let C be a string of lozenges invariant under a subgroup G of �1(M) isomorphi
 toZ2. Then, there is a 
y
li
 subgroup H of G �xing every lozenge in C. We lift all the lozenges in fM ,so that the lift of every two su

essive lozenges share a 
ommon H-invariant orbit. This 
an be done ina G-equivariant way. This lift proje
ts in the quotient of fM by G to an embedded torus and this torusproje
ts to an immersed torus in M whi
h is an union of elementary Birkho� annuli.De�nition 6.5. A Birkho� torus is an immersion � : T !M of a torus T , su
h that T is an union ofdistin
t annuli Ai for whi
h every restri
tion � : Ai !M is an elementary Birkho� annulus.Similarly, a Birkho�-Klein bottle is an immersion of the Klein bottle whose image is an union ofelementary Birkho� annuli.Noti
e the restri
tion to elementary Birkho� annuli.In the sequel, a 
losed Birkho� surfa
e means a Birkho� torus or a Birkho�-Klein bottle. A Birkho�surfa
e is an union of Birkho� annuli. It 
ontains a �nite number of periodi
 orbits of �, 
alled thetangent orbits, and is transverse to � outside these periodi
 orbits.De�nition 6.6. A 
losed Birkho� surfa
e � : S ! M is 
alled weakly embedded if the Birkho� annuli� : Ai !M are all weakly embedded, with interiors two-by-two disjoint.If moreover � : S !M is an embedding, then the 
losed Birkho� surfa
e is embedded.As explained above, the 
ondition that interiors are embedded and two by two disjoint implies thatnone of the tangent periodi
 orbits of �(S) interse
ts any interior of the annuli.Proposition 6.7. Let C be a string of lozenges in O invariant invariant under a subgroup G of �1(M)isomorphi
 to Z2 or �1(K). Then C is the proje
tion in O of the lift to fM of a 
losed Birkho� surfa
e� : S ! M . More pre
isely, � : S ! M is the 
omposition p̂ Æ �̂ of an embbeding �̂ : S ! 
M and the
overing map p̂ : 
M !M , where 
M is the quotient of fM by G.



28 THIERRY BARBOT AND S�ERGIO R. FENLEYMoreover, if C is simple, ie. if no element of �1(M) maps a 
orner of C in the interior of a lozenge ofC, then the 
losed Birkho� surfa
e 
an be sele
ted weakly embedded.Proof. The �rst part has been explained before in the 
ase where G is abelian, and is easily generalizedto the 
ase G � �1(K): the matter is to �nd a fundamental domain of the a
tion of G on the set oflozenges in C, to lift ea
h lozenge in this fundamental domain to a Birkho� band, and then to lift allother lozenges in C as Birkho� bands in a G-equivariant way.Assume now that the 
hain is simple. Every lozenge in it is simple. Then the 
losed Birkho� surfa
e isan union of weakly embedded Birkho� annuli, whose interiors are all disjoint from the tangent periodi
orbits. Sin
e the 
hain is simple, we 
an prove, using the te
hni
s in [Ba2, x 7℄ that through some isotopyalong the 
ow, the interiors of the elementary annuli 
an be made disjoint from ea
h other, that is, theBirkho� surfa
e is weakly embedded. �All of these results in [Ba2℄ were stated and proved for smooth Anosov 
ows. However, exa
tly thesame te
hniques work for general pseudo-Anosov 
ows.More generally, using the results above, then a

ording to lemma 5.3:Lemma 6.8. Let G be a subgroup of �1(M) isomorphi
 to Z2. Suppose that the pseudo-Anosov 
ow � isnot produ
t. Then G is the image ��(�1(T )) of the fundamental group of a Birkho� torus � : T !M .Observe that weakly embedded 
losed Birkho� surfa
es may fail to be embedded for various reasons:I) every Birkho� subannulus may be non-embedded, wrapping around one or both of the tangentperiodi
 orbit in its boundary. It means that some element g of �1(M) (
orresponding to the periodi
orbit) is not in G, but g preserves a 
orner in C (where C is the G �= Z2 invariant 
hain of lozenges).II) an element of �1(M) may map a 
orner � of C to another 
orner � of C whi
h is not in the G-orbitof �, ie. a tangent periodi
 orbit 
an be the boundary of more than two Birkho� subannuli. This is the
ase in the Bonatti-Langevin example ([Bo-La℄).III) even an element g of �1(M) not in G 
ould map a lozenge in C to another lozenge. This 
orrespondsat the Birkho� surfa
e level to the existen
e to two di�erent elementary Birkho� annuli sharing the sameboundary 
omponents and homotopi
 one to the other along the orbits of �. This situation typi
allyarises in Proposition 6.7 if G is a �nite index subgroup of a bigger group preserving the 
hain C.Remark: Let us �rst stress out that possibility I) 
an 
ertainly happen. For example let � be thegeodesi
 
ow in the unit tangent bundle of an orientable hyperboli
 surfa
e and let T be the set of unitve
tors along a simple 
losed geodesi
. Let 
 be one 
losed orbit in T . Put 
oordinates in the torus�N(
) so that (0; 1) is the meridian and (1; 0) is the tra
e of say the stable foliation. The 
onstru
tionhere is more general, the key fa
t used is that the tra
e of the stable foliation interse
ts the meridianon
e. Do Dehn surgery on 
 so that the new meridian is (1; n) where n is an integer > 1. Isotoping theold torus slightly to a torus T 0 avoiding 
 we see that it survives the Dehn surgery. After Dehn surgeryT 0 is homotopi
 to a Birkho� torus, with Birkho� annuli whi
h wrap n times around the orbit 
. Sin
eit is a Birkho� torus, it is �1-inje
tive and so is T 0. This gives the desired examples. In fa
t the surgerypro
edure 
an be done by blowing up the orbit 
 into a boundary torus and then blowing ba
k usingthe new meridian information [Fr℄. Therefore the new Birkho� torus 
an be taken as the result of theoriginal Birkho� torus under this pro
edure.A Birkho� torus is �1-inje
tive be
ause of the following: a 
losed 
urve is homotopi
 to either a 
losedorbit in the Birkho� torus or to a 
urve transverse to say the stable foliation in the torus. In the �rst
ase the 
urve represents a power of a 
losed orbit, whi
h is not null homotopi
 [Fe-Mo℄. In the se
ond
ase, as it is transverse to the stable foliation, it is also not null homotopi
 [Fe3, Ga-Oe℄.The notion of weakly embedded tori is suÆ
ient to analyse the relationship between (possible) singularorbits of the 
ow and the torus de
omposition of M .Proposition 6.9. Let � be a singular orbit of a pseudo-Anosov 
ow � in M . Then � is homotopi
 intoa pie
e of the torus de
omposition of M .Remarks � 1) Clearly this is not true for regular periodi
 orbits: for example there are (non Seifert)graph manifolds with Anosov 
ows whi
h are transitive � for example the 
ows 
onstru
ted by Handeland Thurston [Ha-Th℄, whi
h are a
tually volume preserving. Then there are dense orbits and hen
e
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 orbits whi
h are not homotopi
 into any Seifert �bered pie
e. 2) If M is atoroidal, the lemmais va
uous. 3) Noti
e that � may be homotopi
 into several pie
es � for example, a priori there 
an beannuli 
rossing through atoroidal pie
es.Proof. Let T1; :::; Ta be the 
utting tori in a torus de
omposition ofM � with 
omplementary 
omponentsP1; :::; Pb, whi
h are either Seifert �bered or atoroidal. By a small isotopy assume that � is transverse tothe 
olle
tion fTig. Fix a lift e� to fM and let g in �1(M) be asso
iated to � so that g(e�) = e�. Considerthe 
olle
tion of all lifts of the fTig.Case 1 � Suppose that e� eventually stops interse
ting lifts of the fTig.Sin
e � is 
losed, this shows that � is 
ontained in a 
omponent of the 
omplement of fTig.Case 2 � Suppose that e� keeps interse
ting a �xed lift eT in points pk = e�tk(p0) where tk 
onverges toin�nity.Let V be the tree, whose verti
es are the 
omponents fM� (lifts of fTig) and edges are the lifts of fTig.Then �1(M) a
ts on V .By transversality, the interse
tion of � and fTig is �nite. Up to subsequen
e we may assume that �(pk)is a single point. The proje
tion to M of e�[tk;tk0 ℄(p0) is the orbit � being traversed a number n of times.This shows that �n is freely homotopi
 into some Ti. It follows that gn preserves an edge in V and sodoes not a
t freely on V . Therefore g also does not a
t freely on V . There are two options: If g a
ts asan inversion in the tree V , then it �xes an edge asso
iated to a lifted torus eT� and then � is homotopi
into the torus T� = �( eT�). Then we are done. Otherwise g �xes a vertex in V and hen
e � is homotopi
into a pie
e of the Seifert �bered de
omposition.Case 3 � e� interse
ts distin
t lifts eT j; j 2N of elements in fTig.By the proof of 
ase 2, it follows that the assumption of 
ase 2 does not hold. Therefore e� eventuallystops interse
ting any single lift eT of the fTig. In addition if distan
e between e� and any single lift eTdoes not 
onverge to in�nity as time goes to in�nity then: up to subsequen
e we may may assume thereare pk in e� with d(pk; eT ) bounded. We may then assume that �(pk) 
onverges in M and up to a smalladjustment and subsequen
e we may assume that �(pk) is 
onstant. In addition pk is a bounded distan
efrom zk in eT . Up to another subsequen
e assume that �(zk) 
onverges in M and sin
e �(T ) is 
ompa
t,we may assume that �(zk) is 
onstant. The proje
tion of e�[tk;tk0 ℄ is � being traversed n times. Theproje
tion of an ar
 in eT from zk to zk0 is a 
losed 
urve in T . Up to another subsequen
e assume thatthe geodesi
 ar
s from zk to pk have images in M whi
h are very 
lose. This produ
es a free homotopyfrom �n and a 
losed 
urve in �(T ). Now the proof is exa
tly as in Case 2.Hen
e assume that d(pk; eT ) 
onverges to in�nity for any �xed lift eT . If e� keeps returning to the same
omponent of fM� (lifts of fTig), then some power of � preserves this 
omponent and an argument as in
ase 2 �nishes the proof.Finally we 
an assume that e� 
rosses eT j for ea
h j and eventually swit
hes from one 
omponent offM � eT j to the other. There is a smallest separation distan
e a0 > 0 between any two lifts of fTig.Homotope ea
h Ti to a Birkho� Torus, union of Birkho� annuli fBmg and lift these homotopies to fM .Ea
h point is moved at most a 
onstant a1. Fix j and let j0 vary. The fa
t that d( eT j ; eT j0) goes to in�nitymeans that e� has to 
ross some lift eBm of some Birkho� annulus Bm and 
annot be 
ontained in eBm.But this is a 
ontradi
tion be
ause the orbits interse
ting the interior of a Birkho� annulus are neversingular. This �nishes the proof of lemma 6.9. �Theorem 6.10. Suppose that M is orientable and that � is not produ
t. Let T be an embedded, in
om-pressible torus in M . Then either 1) T is isotopi
 to an embedded Birkho� torus, or 2) T is homotopi
 toa weakly embedded Birkho� torus and 
ontained in a periodi
 Seifert �bered pie
e, or 3) T is isotopi
 tothe boundary of the tubular neighborhood of an embedded Birkho�-Klein bottle 
ontained in a free Seifertpie
e.Proof. Using proposition 6.7, let �0 : T ! M be an immersed Birkho� torus homotopi
 to T and letT� = �0(T ). Let C be the 
hain of lozenges invariant under �1(T ) and asso
iated with the torus T � (a
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ould be two �1(T )-invariant 
hains, if they are s
alloped). The proof of this proposition hassimilarities with that of proposition 6.2, but noti
e that some of the 
on
lusions are opposite.Step 1 � Claim: C is simple.Suppose this is not true. Then there is a 
orner orbit � in C and f in �1(M) with f(�) = � interse
tingthe interior of a lozenge in C. Let g be a generator of the isotropy group of �. Let eT� be the lift of T� to fMwhi
h is invariant under �1(T ). Similarly let eT be the lift of T invariant under �1(T ). Then � interse
tseT� in a single point p. Let �+, �� be the two rays of � de�ned by p. Noti
e that eT� is embedded andseparates fM . Hen
e �+ and �� are in distin
t 
omponents of fM � eT�. In addition eT also separates fM .Assume that �+ and �� are not at bounded distan
e from eT�: for any R > 0, there are points q�R , q+Rin ��, �+, ea
h at distan
e > R from eT�. But T and T� are freely homotopi
: there is some R0 su
h thateT is 
ontained in the R0-neighborhood of eT�: for any R > 2R0, any path joining a point q� to a pointq+ su
h that d(q�; q�R) < R must interse
t eT .On the other hand, the 
losed orbit �(�) is homotopi
 in M to a 
urve in T . But T is embedded andM is orientable, so T is two sided and �(�) is homotopi
 to a 
urve disjoint from T (it is 
ru
ial that Tis embedded here!). Lift this to a homotopy from � to a 
urve �1 disjoint from eT . The homotopies fromfrom � to �1 move points a bounded distan
e. Hen
e, there is a positive number r su
h that for everyR > 0, there are points m�R on �1 su
h that d(m�R; q�R) < r. Take R > 2R0, R > r: a

ording to theabove, the segment in �1 between m�R and m+R must interse
t eT . Contradi
tion.Therefore, one of the two rays (say �+) is at bounded distan
e � a1 from eT�. Consider a sequen
e ofpoints pi = gni(p) in �+ whi
h all proje
t to the same point �(p1) in M .Let qi in eT� a distan
e � a1 from pi. Up to subsequen
e assume that �(qi) 
onverges in M . Sin
e T�is 
ompa
t, we 
an assume that �(qi) is 
onstant. Now up to another subsequen
e assume that there aregeodesi
 segments ui in fM from pi to qi so that �(ui) 
onverges in M . Again by small adjustments we
an assume that �(ui) is 
onstant for i big. Consider the following 
losed 
urve in fM : a segment in �from pi to pk, k > i, then the segment uk, then a segment in eT� from qk to qi and �nally a segment fromqi to pi along ui. Sin
e �(ui) = �(uk) this proje
ts to a free homotopy from a power of the loop �(�) toa 
losed 
urve in T�. In other words, gn(qi) = qk for some n in Z. Hen
e for some n di�erent from 0, gnleaves eT� invariant.But this implies that gn leaves C invariant. Sin
e gn(�) = �, then gn leaves invariant the lozenge C ofC 
ontaining � in its interior and gn is not the identity. But then gn does not leave invariant any orbitin the interior of C � 
ontradi
tion to it leaving � invariant. This proves the 
laim.Let G = �1(T ). A

ording to proposition 6.7 we 
an 
hoose the Birkho� torus �0 : T ! M weaklyembedded. As we already observed, if this Birkho� torus is not embedded, some element g of the set(�1(M)� �1(T )) maps a 
orner of C to a 
orner of C. Our strategy is to enlarge G to a bigger subgroupof �1(M), 
ontaining all these elements.Let G denote the tree G(�) where � is a 
orner in C. The 
hain C 
orresponds to a G-invariant line inG. Let H be the subset of �1(M) of those h su
h that there is a vertex � of G su
h that h(�) is also avertex of G. In parti
ular G(�) = G(�) = G(h(�)). Then, for every h in H:h(G(�)) = h(G(�)) = G(h(�)) = G(�);hen
e H is the stabilizer of G. In parti
ular H is a subgroup of �1(M).Let H0 the subgroup of H a
ting trivially on G: H0 is a 
y
li
 normal subgroup of H, generated by anelement h0. Let H 0 be the 
entralizer of H0 (or h0) in H: it is a normal subgroup of H of index at most2.Step 2 � The 
ase where H 0 is abelian.Here H 0 �= Z2. Sin
e G \H 0 has �nite index in H 0 whi
h is abelian, it follows that C is H 0-invariant(Corollary 5.6 ). Now sin
eH 0 is normal inH, the same result shows that C isH-invariant. By Lemma 5.2,H is isomorphi
 to Z2 or �1(K) � sin
e it 
ontains a Z2. This is the 
ru
ial 
on
lusion in this 
ase.



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 31Apply Proposition 6.7 to H using that C is simple: there is a weakly embedded 
losed Birkho� surfa
e�1 : S !M with (�1)�(�1(S)) = H. It follows from the dis
ussion following lemma 6.8 that �1 : S !Mis an embedding, sin
e any element of �1(M) mapping a 
orner of C to a 
orner of C lies in H.Suppose �rst that S is a torus, that is, H is isomorphi
 to Z2. If S is one sided, then M is nonorientable, 
ontrary to hypothesis. Therefore there is a neighborhood N of S homeomorphi
 to S� [0; 1℄.As the initial embedded torus T �M is homotopi
 into N , it now follows from 
lassi
al 3-dim topology[He℄ that T is homotopi
 and in fa
t isotopi
 to the embedded Birkho� torus �1(S). In other words, Tis isotopi
 to an embedded Birkho� torus: we are done (
ase 1) of the statement of the proposition).Consider now the 
ase where S is the Klein bottle. Sin
e M is oriented, �1(S) admits a tubularneighborhood U in M di�eomorphi
 to the non-trivial line bundle over K. The boundary of U is anembedded torus T 0. As above T is homotopi
 into U and has to be homotopi
 and in fa
t isotopi
 to T 0.Now observe that U is a Seifert submanifold whi
h is not a produ
t of surfa
e 
ross interval. It followsthat U is 
ontained in a Seifert pie
e P of the torus de
omposition ofM (that is S is not in the boundaryof two interse
ting atoroidal/hyperboli
 pie
es). If P is periodi
 then proposition 6.7 implies that T ishomotopi
 to a weakly embedded Birkho� torus � this is 
ase 2) of the statement of the proposition. IfP is not periodi
 then we are in 
ase 3). We are done in this 
ase.Step 3 � The 
ase where H 0 is not abelian.Sin
e H 0, 
ontained in the 
entralizer of H0, is not abelian, lemma VI.1.5 of [Ja-Sh℄ shows that there isa Seifert �bered pie
e P of the torus de
omposition of M so that H 0 � �1(P ). Let t be a representativeof the regular �bers of �1(T ). Then the 
entralizer Z(t) of t in �1(P ) (the 
hara
teristi
 subgroup) hasindex at most 2 in �1(P ). Sin
e H 0 � �1(P ), the 
entralizer Z(t) 
ontains a �nite index subgroup G00 ofG. Hen
e, a

ording to 
orollary 5.6, t preserves the 
hain C: in parti
ular t belongs to H.Assume that P is periodi
, ie. that t 
an be sele
ted a
ting non-freely on O. Then, a

ording toproposition 6.7, T is homotopi
 to a weakly embedded Birkho� torus, 
ontained (up to homotopy) in P .We are in 
ase 2) of the proposition. Noti
e that in general there may be identi�
ations in the boundaryorbits as already des
ribed. A priori any of problems I), II) or III) des
ribed after lemma 6.8 may o

ur.The last 
ase to 
onsider is the 
ase where t a
ts freely on O. Then C represents the axis of t in thetree G. When t a
ts freely it may not leave invariant a unique 
hain of lozenges, for example as happensin the geodesi
 
ow 
ase. However the key fa
t here is that H preserves G and then C is the unique axisof t in G. Sin
e H 0 is 
ontained in �1(P ), some �nite index normal subgroup H 00 of H is 
ontained inZ(t). For any g in H 00, then tg(C) = g(C) so by the uniqueness above, g(C) = C, or C is preserved by H 00.Sin
e H 00 is normal in H then again it follows that H preserves C. Now we 
on
lude almost as in step 2:if H is isomorphi
 to Z2 then H 0 is abelian, 
ontradi
tion to assumption in 
ase 3). If H is isomorphi
to �1(K) then T is isotopi
 to the boundary of a tubular neighborhood of an embedded Birkho�-Kleinbottle 
ontained in P , whi
h 
an be periodi
 (
ase 2) or free (
ase 3)). �Remark: We remark that tori homotopi
 to a double 
over of a Birkho�-Klein bottle appearing in step2 and 3 a
tually o

ur in the free 
ase and in the periodi
 
ase too. The periodi
 
ase o

urs for examplein the Bonatti-Langevin 
ow [Bo-La℄. An example of the free 
ase was des
ribed in the remark at theend of se
tion 4.Remark: The hypothesis of orientability for M in proposition 6.10 o

urs be
ause several results fortorus de
ompositions and maps of Seifert spa
es into manifolds are only 
learly stated in the literaturefor orientable manifolds, for example [Ja-Sh℄.7. Periodi
 Seifert �bered pie
esThis se
tion is devoted to the proof of theorem F � in parti
ular we assume that M is orientable. Let Pbe a (non trivial) Seifert �bered pie
e of a 3-manifold M with a pseudo-Anosov 
ow �. We will analysehere only the 
ase that the regular �ber h0 in �1(P ) does not a
t freely on O, that is P is a periodi
pie
e. By theorem 4.1 this implies that P is not all of M . We start by 
onstru
ting a 
anoni
al tree oflozenges asso
iated to P . First 
onsider the a
tion on O: there is � in O with h0(�) = �. Let T be thefat tree G(�). Given g in �1(P ), then gh0g�1 = h�10 so h0g(�) = g(�) and g(�) is in G(�). It follows



32 THIERRY BARBOT AND S�ERGIO R. FENLEYthat T = G(�) is a �1(P )-invariant tree. The kernel of the �1(P )-a
tion on T is a normal 
y
li
 subgroupH0 of �1(M), whi
h 
ontains a non-trivial power hn0 of h0 (
f. proposition 2.16).Noti
e that there is at least a Z� Z in �1(P ) so there are elements in �1(P ) a
ting freely on T . Wenow go through several steps to produ
e a normal form of the 
ow in P .Pruning the tree TWe �rst 
onstru
t a subtree of T whi
h is still �1(P )-invariant and has no verti
es of valen
e one.Given g in �1(P ) a
ting freely on T let A(g) be the axis of g in T . Let now T 0 be the union of all axesA(g), for all g in �1(P ) a
ting freely on O. Clearly T 0 is �1(P ) invariant and has no verti
es of valen
eone, sin
e they are all in axes. All that is left to prove is that T 0 is 
onne
ted and hen
e a subtree.Let 
0; 
1 in T 0 so that there are f; g in �1(P ) with 
0 in A(f), 
1 in A(g). If A(f); A(g) interse
t,then there is a path in T 0 from 
0 to 
1. Suppose then that they do not interse
t. There is a well de�nedbridge in T from A(f) to A(g) denoted by [x; y℄ � it is a 
losed segment interse
ting A(f) only in theextremity x and interse
ting A(g) only in y. Let z = f�1(x). Consider the element gf whi
h is in �1(P ).Then x separates z from y and so separates z from gf(x) whi
h is in gA(f). Also gf(z) = g(x) separatesx from gf(x) whi
h is in gA(f). It follows that z; x; gf(z) and gf(x) are all distin
t and linearly orderedin a segment 
ontained in T . Hen
e gf a
ts freely on T and x; gf(x) are in A(gf). In parti
ular x andy are in A(gf) 
ontained in T 0 so there is a path in T 0 from 
0 to 
1. This shows that T 0 is 
onne
ted.Weakly embedded Birkho� annuliSuppose there is a vertex q of T 0 and an element g of �1(M) (not ne
essarily in �1(P )) and a lozenge Cin T 0 with g(q) interse
ting the interior of C. The lozenge C is part of an axis A(f) for some f in �1(P ).Sin
e g(q) interse
ts C, then a proof exa
tly as in proposition 6.2 shows that T 0 has to be a string oflozenges. Then f; h2n0 generate a Z� Z subgroup of �1(M) preserving this string of lozenges. Moreover,q is a vertex of T 0 and g(q) is in the interior of C. Proposition 6.2 again implies that the pie
e P has tobe a free pie
e � 
ontrary to assumption in this 
ase.We 
on
lude that ea
h lozenge in T 0 
orresponds to a weakly embedded elementary Birkho� annulusin M . We want to show that the union of the Birkho� annuli 
an be adjusted to be embedded in theinteriors.Weakly embedded union of Birkho� annuliAs in the proof of Proposition 6.10, we 
onsider the stabilizer H in �1(M) of T 0. The a
tion of H onT 0 is not faithful, sin
e the kernel 
ontains a non trivial group. Therefore, H 
ontains an in�nite 
y
li
normal subgroup, but also 
ontains �1(P ). It follows that H = �1(P ), sin
e P is a maximal Seifert pie
e.In addition the same arguments show that the stabilizer in �1(M) of T is also �1(P ).Suppose that g in �1(M) maps a vertex � of T 0 to a vertex of T 0. Hen
e it also sends a vertex of Tto a vertex of T . In that 
ase we already observed during the proof of proposition 6.10 that g stabilizesT and hen
e belongs to �1(P ).Consider the quotient of the tree T 0 by �1(P ). It is a graph, that we denote by A. Sin
e it is a graph,the fundamental group of A is a free group, and sin
e �1(P ) is �nitely generated, then the fundamentalgroup of A has �nite rank. Moreover, by 
onstru
tion, A does not 
ontain an in�nite ray (sin
e everyelement of T 0 lies on the axis of some element of �1(P ) a
ting freely on T 0). It follows that A is a �nitegraph.Consider a fundamental domain of the a
tion of �1(P ) on T 0. We lift every lozenge of this fundamentaldomain to a Birkho� band in fM , and then lift all other lozenges in T 0 in a �1(P )-equivariant way. Itproje
ts to an union of weakly embedded Birkho� annuli in M . On
e more, we 
an then use 
ut andpaste te
hniques of [Ba2℄ to have the union of the Birkho� annuli to be embedded in the interior of theannuli � with possible identi�
ations in the boundary orbits.Flow adapted neighborhoods of periodi
 pie
esLet B be the union of the weakly embedded elementary Birkho� annuli as in the previous item. Let Ube the neighborhood of B obtained by taking a tubular neighborhood of every periodi
 orbit 
ontained inB (the \tangent periodi
 orbits"), atta
hing to them tubular neighborhoods of the elementary Birkho�annuli. Topologi
ally, this 
orresponds to the following: start with a �nite 
olle
tion of solid tori and
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h several handles di�eomorphi
 to [�1; 1℄ � [�1; 1℄ � S1, where in ea
h handle, f0g � [�1; 1℄ � S1is 
ontained in the 
orresponding weakly embedded Birkho� annulus. Handles atta
hed to a given solidtorus (
orresponding to one of the tangent periodi
 orbits) are pairwise disjoint. One 
an perform aDehn surgery on U along tangent periodi
 orbits so that now the handles are atta
hed along longitudesof the solid tori: we get a 3-manifold U 0 whi
h is 
learly a 
ir
le bundle over a surfa
e with boundary �.Moreover, � retra
ts to the graph A:It follows that U is di�eomorphi
 to a Seifert manifold, obtained by Dehn surgeries around �bers inU 0 above verti
es of A. More pre
isely, there is a Seifert �bration � : U ! �� where �� is an orbifold,whose singularities 
orrespond to verti
es of A; singular �bers are tangent periodi
 orbits where atta
hedBirkho� annuli wrap non trivially.Now observe that U is the proje
tion of a \tubular neighborhood" in fM of Birkho� bands, whi
h ishomeomorphi
 to the produ
t of the tree T 0 by R. This neighborhood is therefore simply 
onne
ted,and U is an in
ompressible Seifert submanifold with fundamental group isomorphi
 to P . Therefore, Pis isotopi
 to U . This a
hieves the proof of Theorem F.Remark � The only periodi
 orbits 
ontained in U 
orrespond to the proje
tions of the verti
es of T 0.Here is why: The interiors of the �nitely many Birkho� annuli in question are transverse to � and soorbits interse
ting these interiors exit U if U is suÆ
iently small. The other orbits are in the solid torineighborhoods. If these neighborhoods are small enough then the only orbits entirely 
ontained in themare the 
ore orbits.In parti
ular a singular orbit 
 
annot interse
t the interior of the Birkho� annuli, hen
e either 
 is oneof the periodi
 orbits in U or 
an be 
hosen disjoint from U if U is small. Previously we had proved thata singular orbit is homotopi
 into a pie
e of the torus de
omposition. In a graph manifold, if a singularorbit is homotopi
 into a free pie
e Z, we 
onje
ture that it must be homotopi
 into the boundary of thepie
e Z.8. New 
lasses of examples of pseudo-Anosov 
ows in graph manifoldsIn se
tion 4 we des
ribed some new examples of (one prong) pseudo-Anosov 
ows. In this se
tion wewill des
ribe two new 
lasses of examples, whi
h are extremely interesting: The �rst 
lass 
onsists ofa
tual pseudo-Anosov 
ows. The examples in the se
ond 
lass, whi
h is a mu
h larger 
lass, may haveone prongs.1) Consider the 
lass of examples 1) of se
tion 4. Ea
h example had a 2-fold bran
hed 
over whi
h is thegeodesi
 
ow in T1S, where S is 
losed, hyperboli
 and has a re
e
tion along �nitely many geodesi
s.For simpli
ity we assume here that S has a single 
losed geodesi
 � of symmetry. Let N be the quotientmanifold. In N , there is a quotient annulus C whi
h is the bran
hed quotient of the unit tangent bundleof �. Now for any integer n > 0 we 
an do the n-fold bran
hed 
over of N along C. If n = 2 this re
oversthe original geodesi
 
ow. Otherwise the boundary of C lifts to 2 
losed orbits whi
h are n-prongs. LetMn be this n-fold 
over and C 0 be the lift of the annulus C. The set C 0 
utsMn into Seifert �bered pie
es� ea
h a 
opy of T1S0, where S0 is one 
omponent of S 
ut along � (noti
e both 
omponents of S � �are isometri
 by the symmetry along �). Ea
h of these 
omponents is a 
omponent (up to isotopy) of thetorus de
omposition of Mn. In ea
h of these 
omponents the �ber a
ts freely on the orbit spa
e, so theseare free pie
es. There is one additional Seifert 
omponent whi
h is a small neighborhood of C 0. There isa planar graph X whi
h has 2 verti
es (
orresponding to the 2 dire
tions on the geodesi
 �) and n edgesfrom one vertex to the other. The set C 0 is homeomorphi
 to X � S1. This is a Seifert �bered pie
e ofMn, where the �ber 
orresponds to a periodi
 orbit � this is a periodi
 pie
e.This highlights an important fa
t: there are examples of graph manifoldsM supporting pseudo-Anosov
ow �, so that in the torus de
omposition of M there are periodi
 pie
es glued to free pie
es.2) The next 
lass of examples will be on graph manifolds where all pie
es are periodi
. It is mu
h moreinvolved and mu
h more interesting.



34 THIERRY BARBOT AND S�ERGIO R. FENLEYIn the previous se
tion we proved that the periodi
 Seifert pie
es 
an be obtained as neighborhoods ofunions of Birkho� annuli. Here we will introdu
e standard models for 
ertain neighborhoods of Birkho�annuli and then use them to produ
e many examples.Model of neighborhood of an embedded Birkho� annulusLet I = [��=2; �=2℄. Let N = I � S1 � I with 
oordinates (x; y; z). Think of S1 as [0; 1℄=0 � 1.Convention: the in
reasing or positive dire
tion in S1 
orresponds to in
reasing in [0; 1℄.For every positive real number �, we 
onsider the C1 ve
tor �eld X� de�ned by:_x = 0_y = � sin(x) 
os2(z)_z = 
os2(x) + sin2(z) sin2(x)Let  � be the lo
al 
ow in N generated by X�. It has the following properties:� it preserves the �bration by 
ir
les (x; y; z) 7! (x; z).� There are only 2 
losed orbits:�1 = f��=2g � S1 � f0g; �2 = f�=2g � S1 � f0g:In �1 the 
ow is de
reasing the y 
oordinate (in the 
ow forward dire
tion) and in �2 the 
ow isin
reasing the y 
oordinate. Hen
e as oriented orbits, �1 is freely homotopi
 in N to (�2)�1.� The 
ow is in
oming and perpendi
ular to the boundary I � S1 � f��=2g and outgoing andperpendi
ular to I � S1 � f�=2g. The 
ow is tangent to �I � S1 � I.� The annuli x = 
onstant are 
ow saturated.� The orbits in f��=2g � S1 � f��=2g enter N and spiral towards �1 in the negative y dire
tion.Hen
e in N , W s(�1) = f��=2g�S1� [��=2; 0℄. In f��=2g�S1� (0; �=2℄ the orbits spiral (
owba
kwards) to �1 in the positive y dire
tion, so W u(�1) = f��=2g � S1 � [0; �=2℄. We have asimilar behavior (with the y 
oordinate in
reasing when moving 
ow forward) in f�=2g �S1 � I.� The 
ow is invariant under the any rotation in the y 
oordinate: (x; y; z) ! (x; y + a; z) wherethe y 
oordinate is mod 1. The 
ow is invariant under (x; y; z) ! (�x; �y (mod 1); z). This issymmetry (I).� Let F0 = (��=2; �=2) � S1 � f��=2g; F1 = (��=2; �=2) � S1 � f�=2g, both parametrized by thex; y 
oordinates. In (��=2; �=2) � S1 � I all orbits enter N in F0 and exit N in F1. An easy
omputation shows that the variation of time spent between the entran
e and the exit is:�t = �j 
os(x) jThere is an indu
ed homeomorphism f : F0 ! F1 given by the exit point in the x; y 
oordinates.It has the form f(x; y) = (x; y + a(x));where the fun
tion a(x) is C1 and depends only on x. It 
an also be 
omputed:a(x) = ��[tan(x)� tan(x=2)℄Observe that a(0) = 0. In fa
t, the orbits in the 
enter annulus have y 
oordinate 
onstant.Also, a(x) 
onverges to minus in�nity when x 
onverges to ��=2 and a(x) 
onverges to in�nitywhen x 
onverges to �=2. In addition, a(�x) = �a(x).Finally: a0(x) = ��[12 + (tan2(x)� 12 tan2(x=2)℄ � ��2By the formula above, the map f is a non linear shearing in the y dire
tion. The bigger the � thestronger the shearing.
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y

x

zFigure 4: Figure 4: The lo
al 
ow (N; �). The top and bottom are identi�ed, that is, the verti
al 
oordinate y isde�ned modulo 1.One 
anoni
al Birkho� annulus asso
iated to the blo
k N is B = [��=2; �=2℄ � S1 � 0. If �1; �2are traversed in the positive 
ow dire
tion then B is a free homotopy from �1 to (�2)�1. The 
ow istransverse to B outside of �1; �2. The formulas above are 
onvenient and give expli
it models, but theyare not essential: Up to topologi
al 
onjuga
y any embedded Birkho� annulus has a neighborhood withthis des
ription.Glueing the tangential boundaries of the blo
ksObserve that the same formula de�nes a ve
tor �eld ~X� on ~N := R�S1�I, whi
h is 2�-periodi
 on the
oordinate x. A
tually, due to the invarian
e of X� under the symetry (I), we see that the transformation�(x; y; z) = (x+�;�y; z) preserves ~X�. The quotient of ~N by the 
y
li
 group generated by � is a Seifertmanifold N1, homeomorphi
 to the produ
t K � I, where K is the Klein bottle. The indu
ed lo
al 
owhas a single 1-prong singular orbit; ~N has two boundary 
omponents, one whi
h is a in
oming Kleinbottle, the other an outgoing Klein bottle.More generally, we 
an take the quotient by the group generated by �k where k is a positive integer.We get a Seifert 3-manifold Pk, di�eomorphi
 to K � I or T2 � I (a

ording to the parity of k), withone in
oming boundary 
omponent and one outgoing 
omponent, 
ontaining exa
tly k singular 1-prongperiodi
 orbits.Now, more generally, we 
an glue several 
opies of (N;X�) in a mu
h more involved way. The blueprinten
oding su
h a glueing will be a �nite fat graph X; ie. a graph embedded in a surfa
e � with boundary,su
h that X is a retra
t of � � here, we do not require that � be oriented.We moreover require the following 
onditions:Condition (I): the valen
e of every vertex is an even number.Condition (II): the set of boundary 
omponents of � 
an be partitioned in two subsets so that for everyedge e of X, the two sides of e in � lie in di�erent subset of this partition.Use as labels \in
oming" and \outgoing" for this partition of the set of boundary 
omponents of �:Now every edge has an in
oming side, and an outgoing side.Given su
h information we 
onstru
t a 
ow in a 3-manifold. Asso
iate to every edge e of X a 
opy Neof N as above. Then, every in
oming boundary 
omponent 
 of � 
orresponds to a 
y
li
 sequen
e ofedges (e1; e2; :::; ek). We glue all the asso
iated Nei along the stable manifolds f��=2g � S1 � [��=2; 0)in the same 
y
li
 order; more pre
isely, we map every point of 
oordinate (�=2; y; z) (z < 0) in Neito the point of 
oordinate (��=2;�y; z) in the following 
opy N(ei+1). The result, for ea
h boundary
omponent 
, is a Seifert 3-manifold (with boundary and 
orner). The Seifert 3-manifold has interiordi�eomorphi
 to Pk with the unstable manifolds f��=2g�S1� [��=2; 0℄ and the in
oming and outgoingboundaries removed. It has an in
oming boundary 
omponent, obtained by glueing 
opies of 
losures ofthe in
oming annulus F0 for ea
h Nei . This boundary 
omponent is di�eomorphi
 to the torus if k is



36 THIERRY BARBOT AND S�ERGIO R. FENLEYeven and to the Klein bottle if k is odd. This manifold also has \outgoing" annular 
omponents. Observethat up to di�eomorphism, the result depends only on the 
y
li
 order (e1; e2; :::; ek).Next we do the similar glueing along outgoing boundary 
omponents, but now glueing the 
opiesof N along the unstable annuli. The result is a Seifert manifold N(X), with in
oming and outgoing
omponents, but no tangential boundary 
omponents. Moreover, to every vertex v of X 
orresponds atubular neighborhood of the periodi
 orbit whi
h is homeomorphi
 to a solid torus. The 
ow is obviouslyhomeomorphi
 to a p-bran
hed 
over of a tubular neighborhood of the singular orbit in P1 � here 2p isthe valen
e of v. This is a 
ompa
t Seifert manifold. Observe that N(X) is orientable if and only if all kare even.By 
onstru
tion, N(X) is equipped with a ve
tor �eld X� for every � > 0. The boundary of N(X) isan union of in
oming 
omponents and outgoing 
omponents, whi
h are tori or Klein bottles. Due to the�nal pro
ess in the 
onstru
tion, this ve
tor �eld is not smooth along the verti
al orbits 
orresponding tothe verti
es of X; ex
ept if the valen
e of the vertex is 2 or 4, a spe
ial situation where we 
an performthe glueing so that the ve
tor �eld is smooth in the neighborhood of the asso
iated singular orbit. Inparti
ular, if all verti
es have valen
e 4, then there is no singular orbit.This is exa
tly the 
ase in the Bonatti-Langevin [Bo-La℄ example, where the fat tree X is a �gure eight(with one vertex) embedded in a on
e-pun
tured M�obius strip.Remark: Noti
e that N(X) is a 
ir
le bundle over the surfa
e �, with �bers the verti
al 
ir
les with
onstant x, z 
omponents. Moreover, the lo
al 
ow generated by X� preserves this �bration, hen
e thereis an indu
ed ve
tor �eld �X� on �. The ve
tor �eld �X� is Morse-Smale. Its singularities are the verti
esof X; it is transverse to ��. There is three types of non-singular traje
tories of �X�:{ traje
tories in the stable line of a singularity, entering �,{ traje
tories in the unstable line of a singularity, exiting �,{ traje
tories joining two boundary 
omponents.Observe that the data (�;X) is equivalent to the data (�; �X�) up to isotopy.Glueing the transverse boundary 
omponentsThe next step is to glue outgoing boundary 
omponents to in
oming boundary 
omponents. Observethat these 
omponents are naturally isomorphi
 to boundary 
omponents in the manifolds Nk, and thusadmit natural 
oordinates (x; y).Let T 0 be the union of the in
oming boundary 
omponents and let T be the union of the outgoingboundary 
omponents. Let � denote the line �eld in T or T 0 asso
iated to x being 
onstant. In orderto perform the glueing, we have one obvious 
ondition: there must be the same number of outgoing andin
oming tori, and the same number of outgoing and in
oming Klein bottles!Under this 
ondition, we 
an sele
t a map A : T ! T 0 whi
h is linear in the x; y-
oordinates onea
h 
omponent. The only assumption we will have is that A does not preserve any of the line �elds �.Equivalently A does not send any unstable manifold of the periodi
 orbits to a 
urve isotopi
 into thestable manifold of a periodi
 orbit.Given this 
ondition we �rst show that there are no 
omponents of T whi
h are Klein bottles. Supposethere is one su
h 
omponent denoted by K1 to be glued to a 
omponent K2 of T 0. Noti
e that upto isotopy there are only two foliations by 
ir
les of the Klein bottle K. One foliation has two 
ir
leswhi
h are orientation reversing and the nearby leaves 
over su
h a leaf two to one. The leaf spa
e isa 1-dim orbifold, with two \boundary" orbifold points of order 2. This is type I. The other foliation
omes from a produ
t foliation by 
ir
les of the annulus and glueing the boundaries by an orientationreversing homeomorphism. This is type II. Sin
e there are only two su
h foliations up to isotopy andthey are intrinsi
ally di�erent (one has orientation reversing leaves and the other does not), then: anyhomeomorphism between a Klein bottle K and another K 0 has to preverse ea
h type up to isotopy.The 
onstru
tion of the 
ow shows that the line �eld � indu
es foliations of type II in K1 and K2. Bythe above explanation A has to preserve the line �eld � up to isotopy, whi
h we do not want. Hen
e wehave a ne
essary 
ondition:Con
lusion � In order for the last step to produ
e a pseudo-Anosov 
ow, then all the 
omponents of Thave to be tori.
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ular the manifolds in the middle step will all be orientable.By glueing T 0 onto T by A we obtain a 
losed 3-manifold M = M(X;A) equipped with a family ofve
tor �elds Y�. Hen
e it provides a 
ow 	� on M for ea
h � > 0. The periodi
 orbits of X� provide a�nite number of periodi
 orbits of 	� that we 
all verti
al orbits. Observe that sin
e X� is orthogonal tothe boundary, Y� is smooth outside of the verti
al orbits.Our goal is to prove that, if � is big enough, then 	� is pseudo-Anosov.Let lu0 be the union of the 
ir
les in T 
ontained in the lo
al unstable manifolds of the verti
al orbits(they are asso
iated to the 
ir
les x = ��=2, z = �=2 in ea
h blo
k), and similarly let ls0 be the union ofthe 
ir
les in T 0 
ontained in the lo
al stable manifolds of the verti
al orbits. Let ' be the �rst returnmap from a maximal subset of T to itself. Its domain is the 
omplement in T of �s0 = A�1(ls0). For everyn > 0, let �sn be the preimage of �s0 by 'n: T n �sn is the domain of 'n+1. Ea
h 
omponent of �sn is a
urve in T , interse
ting every 
ir
le in lu0 , and spiraling around two 
ir
les in �s0. The 
omplement 
+of the union �s1 of all �sn is the domain of points where all the positive iterates 'n (n � 0) are de�ned.Observe that 
+ may not be not open: it is the 
omplement of �s1, whi
h is an union of 
ountably many1-manifolds: the interse
tion with T of the stable manifolds of the verti
al orbits.Let C0 be a smooth small 
one �eld on T , 
entered around �, and 
onstant in the 
oordinates x, y.If C0 is small enough, then A(C0) is a 
one �eld in T 0 whose 
losure avoids the line �eld � in T 0. If inaddition � > �0 >> 1, that is, a0(x) � ��=2 > a0 >> 1, then the image of A(C0) a
ross the fundamentalblo
ks will be very 
lose to the 
onstant x dire
tion � that is �. This is be
ause A is a linear map,so A(C0) is a de�nite positive distan
e away from the line �eld �. In addition if the shearing is strongenough as above then the �rst return of A(C0) will be very 
lose to the line �eld �. This implies thatwhenever ' is de�ned, then '�(C0) is stri
tly 
ontained in C0. Moreover, this 
ontra
tion from C0 insideitself is uniform, sin
e the bound from below of a0(x) is uniform. Furthermore: '�(C0) � C0 is 
loseto �, hen
e every tangent ve
tor in C0 has a non-trivial y-
omponent, whi
h is uniformly expanded bythe di�erential of '. It follows that, again in
reasing �0 if ne
essary, all ve
tors in '�(C0) have a normuniformly expanded under the di�erential of ', let us say have norm at least multiplied by 2.Given these properties, standart arguments (see for example [Ha-Th℄) show that the interse
tion of alliterates 'n� (C0) de�nes an invariant dire
tion at every point of 
+. Ve
tors in this dire
tion are uniformlyexponentially expanded under the a
tion of '�.Consider now more 
losely the set �s1. Let F be a 
omponent of the 
omplement in T of lu0 : it is a
opy of the annulus F1 (from the de�nition of model neighborhoods of Birkho� annuli). The interse
tionbetween F and �s0 (after the glueing by A) is an union of straight segments, with no tangent ve
tors in C0,and joining the two boundary 
omponents of F . The se
ond generation 
urves, that is, the 
omponentsof �s1 = '�1(�s0)) are obtained by pushing ba
kward the �rst generation lines through all blo
ks. Thesebe
ome 
urves in T 0 with dire
tion very 
lose to � if the 
urves are 
lose to ls0. Then apply A�1: in everyannular 
omponent F they are still a union of 
urves joining the boundary of F , and these 
urves arenearly horizontal, that is, with tangent dire
tions outside C0. Iterating the argument, we get that every
onne
ted 
omponent of �s1 has these properties: in every annular 
omponent F , it is a disjoint unionof graphs y = g(x) of smooth fun
tions, with uniformly bounded derivative g0. They are of 
ourse allin
luded in the stable manifold of verti
al orbits.Claim � 
+ has empty interiorThis is the key property. Suppose this is not true and let q be a point in the interior of 
+. Its positiveorbit interse
ts T in�nitely many times; hen
e there is an annular 
omponent F of T � lu0 visited in�nitelymany times.Consider now all paths 
 in Int(
+), with tangent dire
tions 
ontained in C0. Due to the des
riptionabove, the length of these paths is uniformly bounded from above.On the other hand, let 
 be su
h a path 
ontaining q. There are in�nitely many iterates 'nk(q)
ontained in F . Sin
e 
 is 
onne
ted, and sin
e the image of ' avoids lu0 , the paths 'nk(
) are all
ontained in F \ Int(
+). But they all have tangent ve
tors 
ontained in C0 as '�(C0) � C0, and theirlength is exponentially in
reasing as proved above: 
ontradi
tion. The 
laim is proved.



38 THIERRY BARBOT AND S�ERGIO R. FENLEYIt follows that �s1 is dense. Hen
e, every annular 
omponent F is foliated by graphs of 
ontinuousfun
tions y = g(x), whi
h are even C1 sin
e they are limits of smooth fun
tions with uniformly boundedderivatives. Pushing along the 
ow, we obtain a foliation �s inM of 
odimension one, whi
h is C1 outsidethe verti
al orbits. Observe that this foliation is C1 on T , where it de�nes a one-dimensional foliation.This foliation admits 
losed leaves (the 
ir
les �s0) and all other leaves in T spiral towards these 
losedleaves. There is no Reeb 
omponent.Reversing the 
ow dire
tion, we 
onstru
t a 
odimension one foliation �u. These two foliations aretransverse to T and T 0. Moreover, there are transverse one to the other: indeed, in T , near lu0 thefoliation �s is very 
lose to A�1(�), whereas �u is very 
lose to �. Iterating by powers of ' this worksin all of T . Moreover, the stable (respe
tively unstable) manifolds of the verti
al orbits are leaves of �s(respe
tively �u), and their union is dense in M . The foliations �s and �u are the natural 
andidatesfor being the stable and unstable foliations of 	�.Let q be a point in T . If q is in �s1, ie. the stable manifold of a verti
al orbit, then the leaf of �s
ontaining q is obviously in the stable manifold of q: for t big enough, the ve
tors tangent to �s(q) at qare divided at least by 2 by the di�erential of 	t�.Now assume that q lies in 
+, ie. that all iterates 'n(q) are de�ned. At ea
h of these points, thereis a tangent 
one C0('n(q))), whi
h is exponentially expanded. But there is also a 
one �eld C 00('n(q)),
onstru
ted by 
onsidering the reversed 
ow, and whi
h is exponentially expanded by '�1� , thereforeexponentially 
ontra
ted by '�. Sin
e �s is '-invariant, and also �s has no tangent ve
tor in C0, thentangent ve
tors at �s('n(q)) must lie in C 00('n(q)), hen
e are exponentially 
ontra
ted. It follows that�s is the stable foliation for 	�, and similarly, �u is the unstable foliation.Con
lusion � There are stable and unstable foliations of 	�, whi
h is a (possibly one-prong) pseudo-Anosov 
ow.Observe that the 
ow is a 1-prong pseudo-Anosov 
ow if and only if X admits verti
es of degree 2. Ifthere are only 2-prong orbits before the last glueing, ie. if all verti
es of X have valen
e 4, then 	� is anAnosov 
ow. If there are no 1-prong orbits, then 	� is a pseudo-Anosov 
ow.This proves Theorem I.Remark � Noti
e that this produ
es in�nitely many examples of pseudo-Anosov 
ows in non orientablegraph manifolds. These are obtained by appropriate arrangements of orientation reversing glueing mapsfrom tori T to T 0.An interesting sub
lass of the 
lass of 
ows 
onstru
ted here is the 
lass where the graph X is a
ir
le: all the verti
es have degree two, that is all the verti
al orbits are 1-prong. Observe that 
ondition(II) implies that the surfa
e � must be an annulus. The intermediate glueing N(X) is then one of themanifolds Nk. The resulting manifold M(X;A) is then a torus bundle over the 
ir
le (k must be even bythe dis
ussion above).Sin
e the only requirement on A is that it does not preserve the verti
al dire
tion, we obtain inparti
ular:Corollary 8.1. In any torus bundle over S1 whi
h is not T 3 there are 1-prong pseudo-Anosov 
ows withany even number of 1-prong orbits.In parti
ular noti
e that there are in�nitely many one prong su
h examples in nil manifolds. Thefundamental groups of these manifolds have polynomial growth as opposed to exponential growth, whi
his obtained by taking a hyperboli
 linear map A.Remark � In the 
onstru
tion of periodi
 Seifert �bered pie
es in this se
tion the following happens:For every verti
al orbit Æ in the pie
e and for every quadrant W asso
iated to Æ, then W 
ontains alozenge Z with a 
orner in Æ. This is not true for every periodi
 Seifert �bered pie
e with respe
t to apseudo-Anosov 
ow. It follows that the 
onstru
tion in this se
tion does not attain all possibles periodi
Seifert �bered pie
es. In parti
ular in the 
onstru
tion in this se
tion the neighborhoods of the periodi
pie
es always have boundaries whi
h are transverse to the 
ow. This does not o

ur in general periodi
pie
es.
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e the examples in family 2 are 
onstru
ted, then one 
an perform any Dehn surgeryon the verti
al orbits. As long as the new meridian is not the original longitude, the resulting 
ows will bea (possibly one prong) pseudo-Anosov 
ow. In addition ea
h middle step manifold is still Seifert �bered,so the resulting manifolds are still graph manifolds. This tremendously expands the 
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