
PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDSTHIERRY BARBOT AND S�ERGIO R. FENLEYAbstrat � We �rst prove rigidity results for pseudo-Anosov ows in prototypes of toroidal 3-manifolds: we showthat a pseudo-Anosov ow in a Seifert �bered manifold is up to �nite overs topologially onjugate to a geodesiow. We also show that a pseudo-Anosov ow in a solv manifold is topologially onjugate to a suspension Anosovow. Then we analyse immersed and embedded inompressible tori in optimal position with respet to a pseudo-Anosov ow. We also study the interation of a pseudo-Anosov ow with possible Seifert �bered piees in thetorus deomposition: if the �ber is assoiated to a periodi orbit of the ow, we produe a standard form for theow in the piee using Birkho� annuli. Finally we introdue several new lasses of examples, some of whih aregeneralized pseudo-Anosov ows whih have one prong singularities. The examples show that the results above inSeifert �bered and solvable manifolds do not apply to one prong pseudo-Anosov ows. In addition we also onstruta large new lass of examples in many graph manifolds, inluding in partiular the Bonatti-Langevin example.11. IntrodutionThe goal of this artile is to start a systemati study of pseudo-Anosov ows in toroidal 3-manifolds.More spei�ally we analyse suh ows in manifolds whih are not hyperboli or in piees of the torusdeomposition whih are not hyperboli. We study optimal position of tori with respet to arbitrarypseudo-Anosov ows and we also produe many new examples of pseudo-Anosov ows, inluding a largelass in graph manifolds.The study of hyperboli ows in toroidal manifolds was initiated by Ghys [Gh℄, who analysed Anosovows in 3-dimensional irle bundles. Ghys showed that up to �nite overs, the ow is topologially on-jugate to the geodesi ow in the unit tangent bundle of a hyperboli surfae. This was later strengthenedby the �rst author who showed that this holds if the manifold is Seifert �bered [Ba1℄. In the mid 70'sa generalization of Anosov ows alled pseudo-Anosov ows was introdued by Thurston [Th2℄. Heshowed that these are extremely important for the study of surfaes and 3-manifolds [Th1, Th2, Th3℄.The di�erene from Anosov ows is that one allows �nitely many singularities whih are eah of p-prongtype. In the appliations to the topology of 3-manifolds there is a requirement that p is at least 3, whihis the onvention here as well. Pseudo-Anosov ows have been used very suessfully to analyse thetopology and geometry of 3-manifolds [Mo1, Mo2, Mo3, Ga-Ka, Fe3, Fe7, Fe8℄. Pseudo-Anosov ows aremuh more ommon than Anosov ows [Fr, RSS, Fe6℄. They are muh more exible beause for instanethey survive most Dehn surgeries on losed orbits [Fr℄, see also setion 8. In addition as opposed toAnosov ows, pseudo-Anosov ows an be onstruted transverse to Reebless foliations in vast generality[Mo3, Fe4, Cal1, Cal2, Cal3℄, yielding deep geometri information.In this artile we analyse several aspets of pseudo-Anosov ows in toroidal manifolds. In the preseneof a pseudo-Anosov ow the manifold is always irreduible [Fe-Mo℄. By the geometrization theorem[Pe1, Pe2, Pe3℄ a three manifold with a pseudo-Anosov ow is either hyperboli, Seifert �bered, a solvmanifold or the torus deomposition of the manifold is non trivial.Notie that there is an ongoing broad study of pseudo-Anosov ows in losed, hyperboli manifolds bythe seond author [Fe3, Fe7, Fe8℄, whih is mostly orthogonal to this artile. In our situation lassial3-dimensional topology will play a muh bigger role.A topologial onjugay between two ows is a homeomorphism whih sends orbits to orbits. We �rstanalyse Seifert �bered manifolds. Despite the muh bigger exibility of pseudo-Anosov ows we prove astrong rigidity theorem, extending the result of [Ba1℄ for Anosov ows (Theorem 4.1):Reseah partially supported by NSF grant DMS-0305313.1AMS mathematis lassi�ation: Primary: 37D20, 37D50; Seondary: 57M60, 57R301



2 THIERRY BARBOT AND S�ERGIO R. FENLEYTheorem A � Let � be a pseudo-Anosov in a Seifert �bered 3-manifold. Then up to �nite overs, � istopologially onjugate to a geodesi ow in the unit tangent bundle of a hyperboli surfae.In partiular the ow does not have singularities and is topologially Anosov. The proof of theoremA splits into two ases depending on whether the �ber is homotopi to a losed orbit of the ow or not.In fat later on this dihotomy will be fundamental for the study of pseudo-Anosov ows restrited toan arbitrary Seifert �bered piee of the torus deomposition of the manifold. In the proof of theoremA we start by showing that the �rst ase annot happen. In the other ase we prove that there are nosingularities and also that the the stable/unstable foliations are slitherings as introdued by Thurston[Th4, Th5℄. This produes two ations of the fundamental group on the irle, whih are used to produea �1-invariant onjugay of the orbit spae with the orbit spae of the geodesi ow. This is enough toprove theorem A. Here orbit spae refers to the orbit spae of the ow lifted to the universal over. Fora pseudo-Anosov ow, this orbit spae is always homeomorphi to the plane [Fe-Mo℄ and hene the owin the universal over is topologially a produt.Next we analyse pseudo-Anosov ows in three manifolds with virtually solvable fundamental group.Here again there is a very strong rigidity result (Theorem 5.7):Theorem B � Suppose that � is a pseudo-Anosov ow in a three manifold with virtually solvablefundamental group. Then � has no singularities and is topologially onjugate to a suspension Anosovow.The proofs of theorem B is roughly as follows. Suppose �rst that the fundamental group is solvableand onsider a normal rank two abelian subgroup. The �rst ase is that this subgroup ats non freelyon the orbit spae. In this ase we show that the subgroup preserves a struture in the universal overalled a hain of lozenges (desribed below). By normality the whole fundamental group of the manifoldwill preserve this hain of lozenges. We also show that the stabilizer of a hain of lozenges is at mosta �nite extension of Z2, whih leads to a ontradition. It follows that the rank two abelian subgroupats freely on the orbit spae and by previous results this implies that the ow is topologially onjugateto a suspension Anosov ow [Fe4℄. If the manifold is virtually solvable then the ow is overed by asuspension Anosov ow and one an show that the original ow is also a suspension Anosov ow.The proof of both theorems A and B use the study of ations on the leaf spaes of the stable/unstablefoliations in the universal over. These topologial spaes already have a key role in the ontext ofAnosov ows [Gh, Ba1, Fe1, Fe2℄. In the more general ontext of pseudo-Anosov ows, these leaf spaesare generalizations of both trees and non Hausdor� simply onneted one manifolds and are alled nonHausdor� trees [Fe5℄. A key fat used, generalizing a previous result in the ase of non Hausdor� simplyonneted one manifolds [Ba5℄, is that a group element ating freely on the non Hausdor� tree has anaxis [Fe5, Ro-St℄. Notie that for a pseudo-Anosov ow, the axis may not be properly embedded in therespetive leaf spae.This theme of analysising the struture of the ow in the universal over is prevalent in a lot of thestudy of pseudo-Anosov ows and is entral to the results of this artile. This is used to give topologialand homotopi information about the manifold, and it also aids questions of rigidity of the ows andlarge sale geometry of the ow and the manifold.Given theorems A and B, we next onsider manifolds with non trivial torus deomposition. Theoverarhing goal is to understand the ow in eah piee of the torus deomposition and then analysehow the piees are glued. In this artile we do a substantial analysis of Seifert �bered piees and westudy the tori in the boundary of the piees of a torus deomposition. In terms of the relation withpseudo-Anosov ows, Seifert �bered piees in the torus deomposition fall in two ategories: if the pieeadmits a �bration for whih some �ber is freely homotopi to a losed orbit of the ow we say that thepiee is periodi, otherwise the piee is alled a free piee. Equivalently the Seifert piee is free if and onlyif the ation in the orbit spae of a dek transformation orresponding to a �ber in any possible Seifert�bration is free. This dihotomy between free piees and periodi piees is fundamental. For example ifthe whole manifold is Seifert then one main step in the proof of theorem A is to show that the piee isa free piee. For solvable manifolds, after utting along a �ber, the piee is also free. For Anosov ows,the ase of free Seifert piees has been extensively analysed in [Ba3℄, giving a nearly �nal onlusion in



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 3the following ase: R-overed Anosov ows on graph manifolds where all Seifert �bered piees are free.Reall that a graph manifold is an irreduible 3-manifold where the piees of the torus deomposition areall Seifert. An Anosov ow is R-overed if (say) its stable foliation is R-overed. A foliation is R-overedif the its lift to the universal over has leaf spae homeomorphi to the real numbers [Fe1℄.To understand pseudo-Anosov ows in piees of the torus deomposition one wants to ut the manifoldalong tori and analyse the ow in eah piee. Therefore one wants the utting torus to be in good positionwith respet to the ow. The best situation for a general given torus is that there is a torus isotopito it whih is transverse to the ow. But this is not always possible. A good representative of a muhmore ommon situation is the following: onsider the geodesi ow in the unit tangent bundle of a losedhyperboli surfae (an Anosov ow). Let � be a simple losed geodesi and let T be the torus of unitvetors along �. Then T is embedded and inompressible but is not tranverse to the ow: it ontainstwo opies of � orresponding to the two diretions along � and is otherwise transverse to the ow. Thisis the best position amongst all tori isotopi to T .Hene it is essential to understand the interation between �1-injetive tori and pseudo-Anosov ows.Consider a Z2 subgroup of the fundamental group: if it ats freely on the orbit spae then the ow istopologially onjugate to a suspension Anosov ow [Fe5℄. Otherwise some element in Z2 does not atfreely on the orbit spae and is assoiated to a losed orbit of the ow. Then the Z2 desribes a nontrivial free homotopy from a losed orbit to itself. Any free homotopy between losed orbits an be put ina anonial form as a union of immersed Birkho� annuli [Ba2, Ba3℄. A Birkho� annulus is an immersedannulus so that eah boundary omponent is a losed orbit of the ow and the interior of the annulusis transverse to the ow. A Birkho� torus or Birkho� Klein bottle is essentially one whih is a union ofBirkho� annuli (see setion 6). Given an embedded inompressible torus T , one looks for an isotopiopy whih is a Birkho� torus.A Birkho� annulus lifts to a lozenge in the universal over: the boundaries lift to periodi orbits and theinterior lifts to a partial ideal quadrilateral region D in the orbit spae: two opposite verties of D are liftsof the boundary orbits, two verties of D are ideal and the stable/unstable foliations in D form a produtstruture. The boundary orbits are the orners of the lozenge. Lozenges are the building bloks in theuniversal over assoiated to free homotopies between losed orbits and they are fundamental for muhof the theory of Anosov ows ([Ba2, Fe2℄) and more generally, of pseudo-Anosov ows [Fe3, Fe5℄. Unlessthe ow is suspension Anosov, then any Z2 in the fundamental group has assoiated to it an (essentially)unique hain of lozenges, where some elements of Z2 at �xing the orners and some elements at freely.In the next two results one goal is to look for the best position of embedded inompressible tori. InProposition 6.2, we prove (see de�nition 6.1 for the notion of a string of lozenges):Theorem C � Let T be a �1-injetive torus and let C be the �1(T ) invariant hain of lozenges. Supposethere is a orner � of C and a overing translation g with g(�) in the interior of a lozenge in C. Then Cis a string of lozenges. In addition T is homotopi into a free Seifert �bered piee.One relevane of this result is that we also prove the following: if no orner of C is mapped into theinterior of a lozenge in C then one an homotope T to a union of Birkho� annuli so that the periodiorbits in the annuli do not interset the union of the interiors of the Birkho� annuli. This is half way toproduing an embedded torus homotopi to T whih is a union of Birkho� annuli. The seond onlusionof theorem C implies for instane that if T is the boundary torus between 2 hyperboli piees in thetorus deomposition, then the situation of theorem C annot happen. The general result onerning bestposition of embedded tori is the following (Theorem 6.10):Theorem D � Suppose that M is orientable and that the pseudo-Anosov ow is not topologiallyonjugate to a suspension Anosov ow. Let T be an embedded, inompressible torus in M . Then either1) T is isotopi to an embedded Birkho� torus, or 2) T is homotopi to a weakly embedded Birkho�torus T 0 and T (or T 0) is ontained in a periodi Seifert �bered piee, or 3) T is isotopi to the boundaryof the tubular neighborhood of an embedded Birkho�-Klein bottle ontained in a free Seifert piee.Weakly embedded means that T 0 is embedded exept perhaps along the losed orbits ontained in theBirkho� annuli. All the possibilities in Theorem D indeed happen: 1) is the typial situation when the



4 THIERRY BARBOT AND S�ERGIO R. FENLEYow is a geodesi ow (or more generally, a Handel-Thurston example, see [Ha-Th℄), 2) ours in theBonatti-Langevin examples, and 3) ours in the geodesi ow on non-orientable losed surfaes (see thelast remark of setion 4).One onsequene of this study of standard forms for tori is the following (Proposition 6.9):Theorem E � Let � be a singular orbit of a pseudo-Anosov ow. Then � is homotopi into a piee ofthe torus deomposition of the manifold.If the manifold is atoroidal or Seifert �bered the statement is vauous. Notie that the result is learlynot true for regular periodi orbits as there are many transitive Anosov ows in graph manifolds whihare not Seifert �bered [Ha-Th℄.The results above help tremendously to understand anonial neighborhoods assoiated to periodiSeifert �bered piees (setion 7):Theorem F � Let P be a periodi Seifert �bered piee of the torus deomposition of M , where M isorientable. Then there is a �nite union Z of Birkho� annuli, whih is embedded exept perhaps at theboundaries of the Birkho� annuli and whih is a model for the ore of P : a suÆiently small neighborhoodof Z is a representative for the Seifert piee P . These neighborhoods are well de�ned up to ow isotopy.In the ourse of analysing the results of this artile we produed several very interesting examples ofgeneralized pseudo-Anosov ows where one also allows one prongs: these are alled one prong pseudo-Anosov ows. Classially they originated in Thurston's work [Th2℄ sine he onstruted pseudo-Anosovhomeomorphisms of the two sphere, having for example four one prong singularities. A suspension ofthese homeomorphisms produes a one prong pseudo-Anosov ow. In this ase the universal over isS2�S1 and hene M is not irreduible, but still the ow in the universal over is topologially a produtow and the orbit spae is S2 whih is a two manifold. Other examples with one prongs are obtaineddoing Dehn surgery on periodi orbits of pseudo-Anosov ows [Fr℄, but here very little is known aboutthe resulting ows. At the end of setion 4, we produe some interesting new examples:Theorem G � 1) There is an in�nite family of one prong pseudo-Anosov ows with two one prongsingular orbits and no other singular orbits where the manifold is Seifert �bered. They are doublybranhed overed by the Handel-Thurston examples [Ha-Th℄. 2) There are also in�nitely many examplesof one prong pseudo-Anosov ows whih are doubly branhed overed by a geodesi ow in a hyperbolisurfae and where the original manifolds are not irreduible.As remarked above the Handel Thurston examples are in graph manifolds whih are not Seifert �bered.Part 1) shows that theorem A does not hold in Seifert �bered manifolds if one allows one prong orbits.The manifolds in part 2) are not irreduible and neither homeomorphi to S2 � S1. At the beginning ofsetion 8, we improve these examples to show that a mixed behavior of Seifert �bered piees is possible:Theorem H � There are examples of pseudo-Anosov ows in graph manifolds with one periodi pieeand an arbitrary number of free piees.The ows in theorem H are obtained as branhed over onstrutions of the examples 2) in theoremG.The main family of examples we produe, in the same setion 8, is a vast generalization of the Bonatti-Langevin onstrution [Bo-La℄, showing that the desription given in Theorem F is atually realizable ina wide variety of ases, at least in the ase where one requires that the boundary of the periodi Seifertpiees are transverse to the ow:Theorem I � There is a large family of (possibly one prong) pseudo-Anosov ows in graph manifolds andmanifolds �bering over the irle with �ber a torus, where the ows are obtained by glueing simple buildingbloks. The building bloks are homeomorphi to solid tori and they are anonial ow neighborhoods ofintrinsi (embedded) Birkho� annuli. The building bloks have tangential boundary, transverse boundaryand only 2 periodi orbits. A olletion of bloks is �rst glued along annuli in their tangential boundaryto obtain Seifert �bered manifolds with boundary, and whih have a ow transverse to the boundary with



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 5�nitely many periodi orbits. Under very general and spei�ed onditions these an be glued along theirboundaries (transverse to the ow) to produe (possibly one prong) pseudo-Anosov ows in the resultinglosed manifolds. In addition one an do any Dehn surgery (exept for one) in the periodi orbits of themiddle step to obtain new (possibly one prong) pseudo-Anosov ows. Finally if M �bers over the irlewith �ber a torus and M is not T 3, then M has a one prong pseudo-Anosov ows with two one prongorbits and no other singularities.The onstrutions in theorem I are very general produing for example one prong pseudo-Anosov owsin all but one torus bundle over the irle. This shows that theorem B also does not hold if one allows oneprongs. In the onstrution in theorem I, if the middle step produes a ow without one prong periodiorbits, then the resulting �nal ow in the losed manifold will be pseudo-Anosov in a graph manifold.All the Seifert �bered piees are periodi piees. This onstrution is very general produing a very largelass of new examples.An appealing way to desribe these examples in the absene of the Dehn surgeries is the following:the manifolds with transverse boundary in the middle step are irle bundles, with �bers preserved bythe loal ow, and projeting to a loal ow of Morse-Smale type on a surfae S with boundary: thereis a �nite number of singular points (prong singularities) in S, stable and unstable manifolds joining thesingular points to the boundary, and all other orbits go from boundary omponent to another. Thispiture an be enoded in the ombinatorial data of a fat graph satisfying some onditions.When the ows of theorem I do not have p-prong singularities or one prongs, they are new examplesof Anosov ows. In this ase these Anosov ows are never ontat. This is beause all ontat Anosovows are R-overed [Ba6℄. In addition if an Anosov ow is R-overed and admits a transverse torus T ,then it has to be topologially onjugate to a suspension and T must be a ross setion [Fe1, Ba1℄. In oursituation onsider the transverse tori whih are the boundary omponents of the middle glueing piees:they do not interset all orbits of the ow and annot be ross setions. This proves that the ows arenot ontat.At this point there is no good understanding of the general struture of one prong pseudo-Anosov owsand they an be muh less well behaved than pseudo-Anosov ows. In this artile we do not analyse atall the struture of one prong pseudo-Anosov ows, but only onstrut many examples of these, some ofwhih highlight the di�erenes with pseudo-Anosov ows in Seifert �bered manifolds, solvable manifoldsand graph manifolds.The �rst examples of an Anosov ow in a graph manifold where the piees are periodi were onstrutedby Bonatti and Langevin [Bo-La℄: they are speial ases of the examples provided by theorem I. Thesystemati study of Anosov ows in graph manifolds was started in [Ba3, Ba4℄.2. BakgroundPseudo-Anosov ows � de�nitionsDe�nition 2.1. (pseudo-Anosov ows) Let � be a ow on a losed 3-manifold M . We say that � is apseudo-Anosov ow if the following onditions are satis�ed:- For eah x 2 M , the ow line t ! �(x; t) is C1, it is not a single point, and the tangent vetorbundle Dt� is C0 in M .- There are two (possibly) singular transverse foliations �s;�u whih are two dimensional, with leavessaturated by the ow and so that �s;�u interset exatly along the ow lines of �.- There is a �nite number (possibly zero) of periodi orbits fig, alled singular orbits. A stable/unstableleaf ontaining a singularity is homeomorphi to P � I=f where P is a p-prong in the plane and f is ahomeomorphism from P � f1g to P � f0g. In addition p is at least 3.- In a stable leaf all orbits are forward asymptoti, in an unstable leaf all orbits are bakwards asymp-toti.Basi referenes for pseudo-Anosov ows are [Mo1, Mo2℄ and [An℄ for Anosov ows. A fundamentalremark is that the ambient manifold supporting a pseudo-Anosov ow (without 1-prongs) is neessarilyirreduible - the universal overing is homeomorphi to R3 ([Fe-Mo℄).



6 THIERRY BARBOT AND S�ERGIO R. FENLEYDe�nition 2.2. (one prong pseudo-Anosov ows) A ow � is a one prong pseudo-Anosov ow in M3 ifit satis�es all the onditions of the de�nition of pseudo-Anosov ows exept that the p-prong singularitiesan also be 1-prong (p = 1).Torus deompositionLet M be an irreduible losed 3{manifold. IfM is orientable, it has a unique (up to isotopy) minimalolletion of disjointly embedded inompressible tori suh that eah omponent ofM obtained by uttingalong the tori is either atoroidal or Seifert-�bered [Ja, Ja-Sh℄ and the piees are isotopially maximal withthis property. If M is not orientable, a similar onlusion holds; the deomposition has to be performedalong tori, but also along some inompressible embedded Klein bottles.Hene the notion of maximal Seifert piees in M is well-de�ned up to isotopy. If M admits a pseudo-Anosov ow, we say that a Seifert piee P is periodi if there is a Seifert �bration on P for whih a regular�ber is freely homotopi to a periodi orbit of �. If not, the piee is alled free.Remark. In a few irunstanes, the Seifert �bration is not unique: it happens for example when Pis homeomorphi to a twisted line bundle over the Klein bottle or P is T 2 � I. We stress out that ouronvention is to say that the Seifert piee is free if no Seifert �bration in P has �bers homotopi to aperiodi orbit.Orbit spae and leaf spaes of pseudo-Anosov owsNotation/de�nition: We denote by fM the universal overing ofM , and by �1(M) the fundamental groupof M , onsidered as the group of dek transformations on fM . The singular foliations lifted to fM aredenoted by e�s; e�u. If x 2M let W s(x) denote the leaf of �s ontaining x. Similarly one de�nes W u(x)and in the universal over fW s(x);fW u(x). Similarly if � is an orbit of � de�ne W s(�), et... Let also e�be the lifted ow to fM .We review the results about the topology of e�s; e�u that we will need. We refer to [Fe2, Fe3℄ for detailedde�nitions, explanations and proofs. The orbit spae of e� in fM is homeomorphi to the plane R2 [Fe-Mo℄and is denoted by O �= fM=e�. There is an indued ation of �1(M) on O. Let� : fM ! O �= R2be the projetion map: it is naturally �1(M)-equivariant. If L is a leaf of e�s or e�u, then �(L) � Ois a tree whih is either homeomorphi to R if L is regular, or is a union of p-rays all with the samestarting point if L has a singular p-prong orbit. The foliations e�s; e�u indue �1(M)-invariant singular1-dimensional foliations Os;Ou in O. Its leaves are �(L) as above. If L is a leaf of e�s or e�u, then asetor is a omponent of fM � L. Similarly for Os;Ou. If B is any subset of O, we denote by B �R theset ��1(B). The same notation B �R will be used for any subset B of fM : it will just be the union ofall ow lines through points of B. We stress that for pseudo-Anosov ows there are at least 3-prongs inany singular orbit (p � 3). For example, the fat that the orbit spae in fM is a 2-manifold is not true ingeneral if one allows one prongs.De�nition 2.3. Let L be a leaf of e�s or e�u. A slie of L is l �R where l is a properly embedded opyof the reals in �(L). For instane if L is regular then L is its only slie. If a slie is the boundary of asetor of L then it is alled a line leaf of L. If a is a ray in �(L) then A = a �R is alled a half leafof L. If � is an open segment in �(L) it de�nes a ow band L1 of L by L1 = � �R. We use the sameterminology of slies and line leaves for the foliations Os;Ou of O.If F 2 e�s and G 2 e�u then F and G interset in at most one orbit.We abuse onvention and all a leaf L of e�s or e�u periodi if there is a non trivial overing translationg of fM with g(L) = L. This is equivalent to �(L) ontaining a periodi orbit of �. In the same wayan orbit  of e� is periodi if �() is a periodi orbit of �. Observe that in general, the stabilizer of anelement � of O is either trivial, or a yli subgroup of �1(M).Produt regions



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 7Suppose that a leaf F 2 e�s intersets two leaves G;H 2 e�u and so does L 2 e�s. Then F;L;G;H forma retangle in fM , ie. every stable leaf between F and L intersets every unstable leaf between G and H.In partiular, there is no singularity in the interior of the retangle [Fe3℄.There will be two generalizations of retangles: 1) perfet �t, whih is a retangle with one orner orbitremoved (de�nition 2.8) and 2) lozenge, whih is a retangle with two opposite orners removed (de�nition2.9). We will also denote by retangles, perfet �ts, lozenges and produt regions the projetion of theseregions to O �= R2.De�nition 2.4. Suppose A is a ow band in a leaf of e�s. Suppose that for eah orbit � of e� in A thereis a half leaf B� of fW u(�) de�ned by � so that: for any two orbits ; � in A then a stable leaf intersetsB� if and only if it intersets B. This de�nes a stable produt region whih is the union of the B.Similarly de�ne unstable produt regions.The main property of produt regions is the following: for any F 2 e�s, G 2 e�u so that (i) F \ A 6=; and (ii) G \A 6= ;; then F \G 6= ;. There are no singular orbits of e� in A.Theorem 2.5. ([Fe3℄) Let � be a pseudo-Anosov ow. Suppose that there is a stable or unstable produtregion. Then � is topologially onjugate to a suspension Anosov ow. In partiular � is non singular.In partiular:De�nition 2.6. ([Fe1℄) A pseudo-Anosov ow is produt (or splitting in the terminology of [Fra℄) if theentire orbit spae is a produt region, ie if every leaf of its stable foliation e�s intersets every leaf of itsunstable foliation e�u.Proposition 2.7. A (topologial) Anosov ow is produt if and only if it is topologially onjugate to asuspension Anosov ow. In partiular M �bers over the irle with �ber a torus and Anosov monodromy.Hene, in the sequel, we will use produt pseudo-Anosov ow as an abbreviation for pseudo-Anosovow topologially onjugate to a suspension.Perfet �ts, lozenges and salloped hainsReall that a foliation F in M is R-overed if the leaf spae of eF in fM is homeomorphi to the realline R [Fe1℄.De�nition 2.8. ([Fe2, Fe3℄) Perfet �ts - Two leaves F 2 e�s and G 2 e�u, form a perfet �t if F \G = ;and there are half leaves F1 of F and G1 of G and also ow bands L1 � L 2 e�s and H1 � H 2 e�u, sothat the set F 1 [H1 [ L1 [G1separates M and forms an a retangle R with a orner removed: The joint struture of e�s; e�u in R isthat of a retangle with a orner orbit removed. The removed orner orresponds to the perfet of F andG whih do not interset.We refer to �g. 1, a for perfet �ts. There is a produt struture in the interior of R: there aretwo stable boundary sides and two unstable boundary sides in R. An unstable leaf intersets one stableboundary side (not in the orner) if and only if it intersets the other stable boundary side (not in theorner). We also say that the leaves F;G are asymptoti.De�nition 2.9. ([Fe2, Fe3℄) Lozenges - A lozenge R is a region of fM whose losure is homeomorphi toa retangle with two orners removed. More spei�ally two points p; q de�ne the orners of a lozenge ifthere are half leaves A;B of fW s(p);fW u(p) de�ned by p and C;D half leaves of fW s(q);fW u(q) de�ned byp; q, so that A and D form a perfet �t and so do B and C. The region bounded by the lozenge R doesnot have any singularities. The sides of R are A;B;C;D. The sides are not ontained in the lozenge,but are in the boundary of the lozenge. There may be singularities in the boundary of the lozenge. See�g. 1, b.There are no singularities in the lozenges, whih implies that R is an open region in fM .
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Figure 1: a. Perfet �ts in fM , b. A lozenge, . A hain of lozenges.Two lozenges are adjaent if they share a orner and there is a stable or unstable leaf interseting bothof them, see �g. 1, . Therefore they share a side. A hain of lozenges is a olletion fCig; i 2 I, whereI is an interval (�nite or not) in Z; so that if i; i + 1 2 I, then Ci and Ci+1 share a orner, see �g. 1, .Conseutive lozenges may be adjaent or not. The hain is �nite if I is �nite.De�nition 2.10. (salloped hain) Let C be a hain of lozenges. If any two suessive lozenges in thehain are adjaent along one of their unstable sides (respetively stable sides), then the hain is alleds-salloped (respetively u-salloped) (see �g. 2 for an example of a s-salloped region). Observe that ahain is s-salloped if and only if there is a stable leaf interseting all the lozenges in the hain. Similarly,a hain is u-salloped if and only if there is an unstable leaf interseting all the lozenges in the hain.The hains may be in�nite. A salloped hain is a hain that is either s-salloped or u-salloped.For simpliity when onsidering salloped hains we also inlude any half leaf whih is a boundaryside of two of the lozenges in the hain. The union of these is alled a salloped region whih is then aonneted set.We say that two orbits ; � of e� (or the leaves fW s();fW s(�)) are onneted by a hain of lozengesfCig; 1 � i � n, if  is a orner of C1 and � is a orner of Cn.Fat tree of lozengesDe�nition 2.11. (fat tree of lozenges G(�)) Let � be an orbit of e�. We de�ne G(�) as the graph suhthat:{ the verties G(�) are orbits of e� onneted to � by a hain of lozenges,{ there is an edge in G(�) between � and  if and only if there is a lozenge with orners �, �.One easily proves (see for example [Fe2℄ for Anosov ows):Proposition 2.12. For every � in O, G(�) is a tree.In partiular for any two orbits Æ;  onneted by a hain of lozenges, then there is a unique indivisibleor minimal hain of lozenges � where no baktraking on lozenges is allowed.The proposition implies that G(�) is naturally embedded in the 2-plane O. Hene, one �xed anorientation on O, there is, for every vertex �, a yli order on the set of edges of G(�) adjaent to �.Moreover, G(�) is naturally equipped with a struture of a fat graph: it is a retrat of an orientablesurfae with boundary (the tubular neighborhood of its embedding in O). This objet will be extremelyuseful in this artile.If C is a lozenge with orner orbits �;  and g is a non trivial overing translation leaving �;  invariant(and so also the lozenge), then �(�); �() are losed orbits of e� whih are freely homotopi to the inverseof eah other [Fe2℄. Here we onsider the losed orbits �(�); �() traversed in the positive ow diretionand we allow �(�); �() to be non indivisible losed orbits. In other words it is the losed orbit assoiatedto the dek transformation g, whih may not be indivisible.Theorem 2.13. ([Fe2, Fe3℄) Let � be a pseudo-Anosov ow in M3 losed and let F0 6= F1 2 e�s.Suppose that there is a non trivial overing translation g with g(Fi) = Fi; i = 0; 1. Let �i; i = 0; 1 be theperiodi orbits of e� in Fi so that g(�i) = �i. Then �0 and �1 are onneted by a �nite hain of lozengesfCig; 1 � i � n and g leaves invariant eah lozenge Ci as well as their orners.



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 9In partiular:Proposition 2.14. Let g be a non-trivial element of �1(M) �xing two orbits � and . Then G(�) = G().We think of a fat tree as a simpliial tree. Observe that g as above naturally ats simpliially on G(�).It does not neessarily preserve the yli order on links of verties in G(�), sine it does not neessarilypreserve the orientation of O.De�nition 2.15. (the tree G(g)) Let g in �1(M) �xing an orbit �. The g-�xed points in G(�) form aonneted subtree beause of simpliial ation. This subtree is denoted by G(g).From this observation we infer several interesting fats:Proposition 2.16. Let g be a non-trivial element of �1(M). All of the following statements are true:(1) For any n 6= 0, g admits a �xed point in O if and only if gn admits a �xed point in O .(2) Assume that g �xes an orbit � 2 O. Then, some positive power gp ats trivially on G(�).(3) Let p be an integer as in item 2. Let Z(gp) be the pseudoentralizer of gp in �1(M), ie. the subgroupomprised of elements f suh that fgpf�1 = g�p. Then Z(gp) ats on the tree G(�) = G(gp).(4) Assume that g preserves a lozenge L. Then, g preserves individually eah orner of L. Moreover,g preserves the orientation of O, and ats trivially on G(�) = G(�), where � and � are the ornersof L.Proof.(1) Suppose gn(�) = � with � orbit of e�. Then gn(g(�)) = g(�), so by theorem 2.13, � and g(�) areonneted by a hain of lozenges and therefore G(�) = G(g(�)) = g(G(�)). Hene g ats on G(�).The result now follows easily from the fat that if g ats freely on a tree, then gn ats freely onthe tree.(2) Let k be the number of prongs at �. Then g2 preserves the orientation of O, hene the yliordering of the link of �. Hene g2k �xes every vertex of G(�) adjaent to �. But if g2k �xes apoint  in G(�) and an edge in G(�) adjaent to , it �xes every vertex adjaent to  (one more,due to the preservation of orientation of O by g2k). Our laim follows by indution.(3) Let f in Z(gp) and � a vertex in G(�). Then gpf(�) = ff�1gpf(�) = f(g�p(�)) = f(�) by (2).By theorem 2.13 f(�) is in G(�) and so f ats on G(�).(4) Let �, � be the orners of L. Assume by way of ontradition that g(�) = � and g(�) = �. LetA, C be the stable half leaves of fW s(�), fW s(�) ontained in the losure of L. Then, g(A) = C,and omposing g with the holonomy map from C to A along leaves of e�u de�nes an orientationreversing map from A onto itself. This map must admit a �xed point, hene there is a leaf Uof e�s �xed by g and interseting L. Now g2 �xes U and A and hene leaves invariant the orbitU \A. This produes 2 distint periodi orbits in �(A), ontradition.Hene, g �xes � and �. Keeping the notation above, we have g(A) = A and g(B) = B (whereB is the g invariant unstable half-leaf of fW u(�) in the boundary of L). It follows that g preservesthe orientation of O. It therefore preserves the yli ordering along verties of G(�). It followsas in item 2 that g ats trivially on G(�). �The main result onerning non Hausdor� behavior in the leaf spaes of e�s; e�u is the following:Theorem 2.17. [Fe2, Fe3℄ Let � be a pseudo-Anosov ow in M3. Suppose that F 6= L are not separatedin the leaf spae of e�s. Then F is periodi and so is L. More preisely, there is a non-trivial element gof �1(M) suh that g(F ) = F and g(L) = L. Moreover, let �, � be the unique g-�xed points in F , L,respetively. Then, the hain of lozenges onneting � to � is s-salloped (see �gure 2).Non-Hausdor� treesA segment is a set with a linear order whih is isomorphi to an interval in R: [0; 1℄; [0; 1); (0; 1) or[0; 0℄. Type (0; 1) is alled an open segment and type [0; 0℄ is a degenerate segment. A losed segment isone of type either [0; 0℄ or [0; 1℄, ie. admitting a minimal and a maximal element. A half open segmentis one of type [0; 1), where we also onsider the reverse linear order. A subsegment C is a subset of a
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Figure 2: The orret piture between non separated leaves of e�s.segment I so that if x; y are in C and z in C satis�es x < z < y, then z is also in C. With the induedlinear order, C is also a segment. If a set Z is a union of segments, then given x in Z, a prong at xis a segment I in Z of type [0; 1) or [0; 1℄ with x 2 I orresponding to 0. A subprong of a prong I atx is a subsegment of I of type [0; 1) with x orresponding to 0. Two prongs I1; I2 at x are distint ifI1 \ I2 = fxg, or equivalently they do not share a subprong at x.De�nition 2.18. (non Hausdor� tree)[Fe5℄ A non Hausdor� tree is a spae H satisfying:1) H is a union of open segments,2) H is arwise onneted � for eah x; y 2 H, there is a �nite hain of segments I1; :::; In withx 2 I1; y 2 In and Ii \ Ii+1 6= ; for any 1 � i < n,3) Points separate H in the following way � for any x 2 H and I1; I2 distint prongs at x the followinghappens: Given y1 2 I1 � fxg; y2 2 I2 � fxg, then any �nite hain of segments from y1 to y2 (as in (2)above) must ontain x in at least one of the segments.If I1; I2 are two segments with I1 \ I2 a single point whih is an endpoint of both I1 and I2, then givenompatible orders in I1; I2 we extend them to an order in I1 [ I2, whih is then a segment of H.A priori there may be in�nitely or even unountably many distint prongs at x.De�nition 2.19. (topology of H � [Fe5℄) We say that a subset A of H is open in H if for any x 2 Athe following happens: for any prong I at x, there is a subprong I 0 at x (I 0 � I) so that I 0 � A.Equivalently A is open if for any open segment S and x in A \ S, there is an open subsegment S0ontaining x and ontained in A.It follows from ondition 3) of non Hausdor� trees that if I1 and I2 are two segments, then I1 \ I2 iseither empty or is a subsegment of both I1; I2, whih may be a point. A point x 2 H is regular if givenany two open segments I1; I2 with x 2 I1 \ I2, then I1 \ I2 is an open segment in H. Otherwise x issingular and H is \treelike" in x. Equivalently a point is regular if there are only two distint prongs atx. It is easy to hek that if V is an interval in R with the standard topology and f : V !H is an orderpreserving bijetion to a segment in H, then f is a ontinuous map.Given x 6= y then for any prong at y there is a subprong disjoint from x, hene ontained in H� fxg.It follows that H�fxg is an open set in H and therefore points are losed in H, that is, H satis�es the T1property of topologial spaes [Ke℄. In general H does not satisfy the Hausdor� property T2 [Ke℄. Givenx 2 H and I a prong at x letAI = f y 2 H� fxg j there is a segment path  � H� fxg from y to some point in I g:By the above remark, AI is arwise onneted. If I; J are prongs at x whih share a subprong then itis easy to see that AI = AJ . If I; J are distint prongs at x then I [ J is a segment of H with x in theinterior of the segment. If there is a segment path  � H� fxg from some y 2 AI to some z 2 AJ thenone onstruts a segment path  ontained in H�fxg from some y0 2 I to some z0 2 J . This ontraditsondition (3) of the de�nition of non Hausdor� tree. Hene AI \AJ = ;.In addition given y 2 AI and J a prong at y, there is a subprong J 0 � H�fxg. Clearly J 0 � AI . Thisimplies that any AI is open in H and hene AI is also losed in H � fxg. Eah AI is path onnetedhene onneted, so the olletion



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 11fAIg; I distint prongs at x (1)is the olletion of onneted omponents of H� fxg.In addition suppose that AI ; AJ are distint, but there is a path � in H� fxg from a point in AI toa point in AJ (notie here we onsider a general path). Then sine AI ; AJ are path onneted, it followsthat AI [ AJ [ � is path onneted and hene onneted in H � fxg ontraditing the fat that (1) isthe family of onneted omponents of H�fxg. It follows that the olletion (1) is also the olletion ofpath omponents of H� fxg.Conlusion: distint prongs at x are in one to one orrespondene with omponents (or path omponents)of H� fxg. For instane x has p prongs if and only if H� fxg has p omponents.Given x; y 2 H whih are not separated from eah other inH we write x � y. One says that z separatesx from y if x; y are in distint omponents of H�fzg. Given any two x; y 2 H there is a ontinuous path�(t); 0 � t � 1 from x to y. De�ne(x; y) = f z 2 H j z separates from y g and [x; y℄ = (x; y) [ fxg [ fyg;The �rst is the open blok of H with endpoints x; y and the seond is the losed blok of H with endpointsx; y. In [Fe5℄ it is proved that [x; y℄ is the intersetion of all ontinuous paths in H from x to y.We remark that when x; y are the endpoints of a segment I of H, the notation [x; y℄ also suggests thesegment I from x to y (there is a unique suh segment). In fat I and [x; y℄ are the same [Fe5℄. We willalso use the notation (x; y℄ for half open segments.As H may not be Hausdor� it may be that [x; y℄ is not onneted. It turns out that [x; y℄ is a unionof �nitely many losed segments of H homeomorphi to either [0; 0℄ or [0; 1℄:Lemma 2.20. ([Fe5℄) For any x; y 2 H then there are xi; yi 2 H with:[x; y℄ = n[i=1 [xi; yi℄; x1 = x; yn = y;a disjoint union, where [xi; yi℄ are losed segments in H. In addition yi � xi+1 for any 1 � i � n� 1 andsome or all segments [xi; yi℄ may be degenerate, that is, points.There is a natural pseudo distane in H: d(x; y) = #(omponents [x; y℄) � 1, see [Ba5, RSS℄. Sod(x; y) = 0 means there is a segment from x to y. Also d(x; y) is the minimum number of non immersedpoints of any path from x to y.We now onsider group ations on non Hausdor� trees. Let  be a homeomorphism of H. We say that separates points if (x) is separated from x for any x 2 H, that is, they have disjoint neighborhoodsin H. In partiular  ats freely on H. In [Ba5℄, the �rst author onstruted a fundamental axis A() if separates points in H and H has no singularities. In that ase H is a simply onneted 1-dimensionalmanifold and hene is orientable.De�nition 2.21. (fundamental axis)[Fe5℄ Let  be a homeomorphism of a non Hausdor� tree H so that has no �xed points. The fundamental axis of , denoted by A() isA() = f x 2 H j (x) 2 [x; 2(x)℄ g;or equivalently (x) separates x from 2(x).If (x) is not separated from x in H, we say that x is an almost invariant point under . In [Fe5℄ thefollowing easy fat is proved: Let  be a homeomorphism of a non Hausdor� tree H without �xed points.Then x 2 A() if and only if there is a omponent U to H� fxg so that (U) � U . The main result is:Theorem 2.22. ([Fe5℄) Let  be a homeomorphism of a non Hausdor� tree H without �xed points. ThenA() is non empty.Clearly A() is invariant under . Also applying �2 then �1(x) separates x from �2(x) and soA() = A(�1).Proposition 2.23. For any x 2 A(), then A() = [i2Z[i(x); i+1(x)℄.



12 THIERRY BARBOT AND S�ERGIO R. FENLEYRemark: In general it is not true that if  ats freely on H, then powers of  also do. For example let have an almost invariant point v with (v) 6= v, but 2(v) = v. In this ase A() is an open segmentwhih is not properly embedded in H.Let x 2 A(). If d(x; (x)) = 0, then x; (x) are onneted by a segment in H. Sine (x) separates xfrom 2(x) it follows that [x; (x)℄ [ [(x); 2(x)℄ = [x; 2(x)℄ is a segment of H. It follows that A() isan open segment of H, hene homeomorphi to R. If d(x; (x)) > 0, then x and (x) are onneted bya hain of losed segments. It is easy to see thatA() = [n2Z [zi; wi℄;where wi is not separated from zi+1. Then  ats as a translation on the set of segments, that is, thereis k 2 Z, so that ([zi; wi℄) = [zi+k; wi+k℄ for any i 2 Z. We abuse notation and say that  ats on Z.Notie that if  ats freely and  leaves invariant an open segment I of H, then A() = I. Thisis beause for any z 2 I, (x) separates x from 2(x) (free ation on I), so I � A(). But A() =[n2Z[n(x); n+1(x)℄ so I = A(). Finally it is also not hard to prove the following: Let ; � be twoommuting homeomorphisms of H whih at freely. Then A() = A(�), see [Fe5℄.3. Ations and pseudo-Anosov owsLet � be a pseudo-Anosov ow in M3. The foliations �s;�u have the following loal models: at a nonsingular point y there is a ball neighborhood U of y in M homeomorphi to D2 � [0; 1℄ where the leavesof (say) �s are of the form D2 � ftg. Near a singular p prong orbit the piture is the same as a p-prongsingularity of a pseudo-Anosov homeomorphism of a surfae times an interval. For example onsider thegerm near zero of the foliation of the plane whose leaves are the �bers of the omplex map z ! Re(zp�2).This foliation has a p-prong singularity at the origin. The 3-dimensional piture is obtained by multiplyingthis by an interval. Similarly for �u. Let C be an interval in R.De�nition 3.1. (transverse urves) Let � : C !M be a ontinuous urve. Then � is transverse to �s ifthe following happens: given t in C there is a small neighborhood Z of �(t) where � is an injetive mapto the set of loal sheets of �s. The same de�nition works for �u; e�s; e�u.Equivalently the urve is always rossing loal leaves. The foliations �s;�u blow up to essentiallaminations. Hene in fM being transverse to e�s is equivalent to � induing an injetive map in the leafspae of e�s. For non singular points this is the usual notion of transversality.We establish some notation. LetHs = the leaf spae of e�s and �s : fM !Hs the projetion map:Similarly de�ne Hu and �u. The results below whih will be proved for Hs, obviously work also for Hu.Lemma 3.2. Hs has a natural struture as a non Hausdor� tree, where the segments in Hs are projetionsof transversals to e�s. Similarly for Hu.Proof. We prove properties (1)-(3) of the de�nition of non Hausdor� tree. Given x in Hs let p in ��1s (x)and � an open transversal to e�s ontaining p. Then �s(�) is an open segment ontaining x. This proves(1). Let x; y in Hs and hoose p in ��1s (x), q in ��1s (y). Connet p; q by a path in fM and perturb itslightly to be a onatenation of transversals. This an be done beause it an be done loally. Henex; y are onneted by a �nite olletion of segments in Hs and this proves (2).Finally let I1; I2 be segments inHs interseting only in x. Let l1; l2 be transversals to e�s with Ii = �s(li),i = 1; 2. We an assume they share a point p in ��1s (x). Any two transversals to e�s entering the sameomponent of fM � fW s(p) will have subtransversals interseting the same leaves of e�s beause of theloal piture. Therefore l1 � fpg, l2 � fpg are ontained in di�erent omponents of fM �fW s(p). Let nowyk 2 Ik � fxg, k = 1; 2. Let Ji; 1 � i � n be a onatenation of segments from y1 to y2 in Hs. There aretransversals �i to e�s with �s(�i) = Ji. Let q1 in �1 \ ��1s (y1) and q2 in �n \ ��1s (y2). Sine Ji and Ji+1interset we an onnet a point in �i to a point in �i+1 by a path in a leaf of e�s. The onatenation of



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 13parts of �i and paths in leaves of e�s produes a path from q1 to q2 in fM . Sine fW s(p) separates fM andq1; q2 are in di�erent omponents of the omplement, then this path has to interset fW s(p). If it intersetsfW s(p) in a path in fW s(p) then the endpoints of this path are in some �i and hene its projetion, whihis x is in Ji. This proves (3). �We have two topologies in Hs: the quotient topology from �s and the non Hausdor� tree topology.These are the same:Lemma 3.3. The quotient topology in Hs (from �s : fM ! Hs) is the same as the non Hausdor� treetopology in Hs.Proof. Let A � Hs be an open set in the quotient topology and x in A. Let I be a prong at x. ThenI = �s(�) for some transversal � to e�s starting in some p 2 ��1s (x). Sine ��1s (A) is open in fM and pis in ��1s (A) there is a non degenerate subtransversal � 0 of � starting at p and ontained in ��1s (A). LetI 0 = �s(� 0). Then I 0 is a prong at x whih is a subprong of I. In addition I 0 is ontained in A. ThereforeA is open in the non Hausdor� tree topology.Conversely suppose that A is open in the non Hausdor� tree topology. By way of ontradition supposethat there is p in ��1s (A) whih is not in the interior of ��1s (A). Then we an �nd a sequene (pn)n2N infM onverging to p and with pn not in ��1s (A) for any n. It follows that pn 62 fW s(p) for any n as ��1s (A)is e�s saturated. Up to a subsequene assume there is a omponent Z of fM �fW s(p) ontaining pn forevery n. Here the ondition of �nitely many prongs at singular points is used. Let � be a transversalto e�s starting at p and entering the omponent Z. Let x = �s(p) and I = �s(�). Then I is a prong atp and sine A is open in the non Hausdor� tree topology, there is a subprong I 0 at x with I 0 ontainedin A. Let � 0 be the subtransversal of � orresponding to I 0. For n suÆiently large fW s(pn) intersets� 0 � ��1s (A). Hene pn is in ��1s (A). This ontradition shows that ��1s (A) is open in fM . Therefore Ais open in the quotient topology. �Remark � A variation of the proof works for non Hausdor� trees H whih are \leaf spaes" of lifts ofessential laminations. The di�erene is that it is very possible that there are singularities H whih havein�nitely many prongs.We say that two leaves L;F of e�s are non separated from eah other if there are p in L, q in F and asequene of leaves (Ln) of e�s having points pn; qn in Ln with (pn) onverging to p and (qn) onvergingto q. Up to subsequene we may assume that (Ln) is a nested sequene of leaves of e�s. By throwing outa few initial terms in (pn); (qn), this is equivalent to the existene of transversals �L; �F to e�s with �Lstarting at p, �F starting at q with �L ontaining all pn as above and �L ontaining all qn. Projet to Hs:let x = �s(p); y = �s(q); xn = �s(pn); yn = �s(qn); I = �s(�L); J = �s(�F ):Here I; J are segments in Hs, I is a prong at x and J is a prong at y. Also xn = yn. If In is thesubsegment of I from x1 to xn and Jn the subsegment of J from y1 to yn then In = Jn and thereforeI � fxg = J � fyg. Conversely if x; y have prongs I; J so that I � fxg = J � fyg it is easy to show thatL = ��1(x) and F = ��1(y) are leaves of e�s non separated from eah other. We say this is ondition (I).We laim that this ondition is also equivalent to ondition (II): L;F do not have disjoint, open, e�ssaturated neighborhoods in fM . In other words x; y do not have disjoint open neighborhoods in Hs.Clearly ondition (I) implies ondition (II). Conversely suppose that ondition (II) holds. If x = y thenlearly ondition (I) holds. Suppose then x; y are distint. We proved before that for any z in Hs, thentwo points are in the same path omponent of Hs � fzg if and only if they are onneted by a segmentpath in Hs whih does not ontain fzg and these path omponents are open in Hs. By ondition (II) itfollows that for any z in Hs�fx; yg, the points x; y are in the same omponent of Hs�fzg. Hene (x; y)is empty. By lemma 3.5, page 71 of [Fe5℄, there are prongs I at x and J at y so that I � fxg = J � fyg.This is ondition (I).If any of these 2 onditions holds for x; y in Hs we write x � y.



14 THIERRY BARBOT AND S�ERGIO R. FENLEYFor f in �1(M) let Fix(f) be those x in Hs with f(x) = x. Let Fix�(f) be the set of x in Hs withx � f(x). Considering the ation of f on the orbit spae O, let B(f) the set of u in O, �xed by f .Lemma 3.4. Let � be a pseudo-Anosov ow and f in �1(M). Then Fix�f is a losed subset of Hs.Proof. Let x not in Fix�(f), so x 6� f(x). Then x and f(x) have disjoint open neighborhoods U; V inHs. By ontinuity of f , there is a smaller open neighborhood W of x so that f(W ) is ontained in V .Hene any y in W satis�es y 6� f(y) and (Fix�(f)) is open. �Remark � In general Fix(f) is not losed � a sequene (xn) in Fix(f) may onverge to x whih is onlyin Fix�(f).The following will be useful later:Lemma 3.5. If f is in �1(M) and f is not the identity, then Fix�(f) is ountable.Proof. First we show that Fix(f) is ountable. Let L in e�s with f(L) = L. Then there is a periodiorbit in �(L). If L1; L2 are in Fix(f) then their periodi orbits are onneted by a hain of lozenges bytheorem 2.13. In addition the orbit spae O �= R2 is ountably ompat. If Fix(f) were unountable,then B(f) would be unountable and there would be aumulation points in B(f). This is disallowedbeause any two points in Fix(f) are onneted by a hain of lozenges.Now let N = fx 2 Hs; so that x is non separated from some y 2 Hsg. We will prove that N isountable, hene Fix�(f) is ountable. Assume by way of ontradition that N is unountable. Thespae Hs is a union of ountably many open segments and we �x one suh ountable olletion. For eahx in Hs, let Ix be one suh segment in the ountable family ontaining x. If N is unountable, then thereis an open segment I in Hs ontaining unountably many elements of N . Choose an order in I. Foreah z in I \ N , there is y distint from z with y � z. Suppose wlog that for unountably many suhz the orresponding y is non separated from the z in their positive sides, with respet to the order in I.For any suh z; z0 in I \N , let y; y0 be non separated from them respetively. We laim that Iy; Iy0 aredi�erent. Suppose for simpliity that z < z0 in I. Here z0 � y0 and non separated on their positive sides,so Iy0 does not ontain z0 or any point in I smaller than z0. But by onstrution Iy ontains y, so Iy; Iy0are di�erent. Hene all suh Iy are di�erent, ontraditing the fat that there are only ountably manyof these. This �nishes the proof of the lemma. �4. Pseudo-Anosov ows in Seifert �bered spaesThis setion is devoted to proving the following result:Theorem 4.1. If � is a pseudo-Anosov ow in M3 whih is a Seifert �bered spae, then up to �niteovers, � is topologially onjugate to a geodesi ow on a losed hyperboli surfae.Proof. If neessary lift to a double over so that the Seifert �bration is orientable, hene the enter of�1(M) is non-empty (it ontains for example the homotopy lass of the regular �bers). Let h be in theenter of �1(M). The yli subgroup < h > is a normal subgroup of �1(M). The proof splits in twoases, depending on whether Fix�(h) is empty or not.Case 1 � Fix�(h) is non empty.We show that this annot happen. Notie that if x � y in Hs and g is in �1(M) then g(x) � g(y). Letg in �1(M) and x in Fix�(h). Then g�1hg(x) = h(x) � x, so hg(x) � g(x) and g(x) is in Fix�(h). Bylemma 3.5 Fix�(h) is ountable. Therefore Fix�(h) is a ountable, losed, �1(M) invariant subset ofHs. Consider the union Z of the leaves L in e�s with �s(L) in Fix�(h). This set Z is losed, e�s saturated,�1(M) invariant and transversely ountable. It projets to a sublamination of �s whih is transverselyountable. Let L be a minimal sublamination of �(Z). Any suÆiently small transversal to a minimallamination intersets it in either a losed interval, a Cantor set or a point. The �rst two are disallowed bythe transverse ountability ondition. The last option implies that there is an isolated leaf in �s, whihis not possible for pseudo-Anosov ows. This shows that ase 1 annot happen.Case 2 � Fix�(h) is empty.



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 15By theorem 2.22, h has a non empty axis A(h) = fx 2 Hs j h(x) separates x from h2(x)g. This axishas a linear order where h ats as a translation. Clearly, for every g in �1(M):gA(h) = A(ghg�1) = A(h)hene A(h) is �1(M)-invariant.Either A(h) is an in�nite segment or a ountable union of disjoint losed segments:A(h) = [i2Z[xi; yi℄ = [i2ZBi (�)where yi � xi+1. We show that the seond option annot happen. Suppose by way of ontradition thatA(h) is of form (*). Every g in �1(M) permutes the omponents Bi, preserving or reversing the order onthe set Z of labels. Hene there is a morphism �1(M)! Aut(Z), whose kernel is the subgroup made ofelements g suh that gxi = xi for all i, ie. a trivial or yli normal subgroup. Sine Aut(Z) is the diedralgroup, ontaining a yli subgroup of index 2, it follows that �1(M) ontains a �nite index subgroupisomorphi to Z or Z�Z, whih is not possible for an irreduible Seifert �bered spae without boundary.We onlude that A(h) annot be an in�nite olletion of disjoint losed segments.Therefore A(h) is a real line parametrized as A(h) = flt; t 2 Rg. If A(h) is not properly embeddedin Hs, then (lt) onverges to a point x in Hs as t onverges to in�nity (and maybe other points as well).But then sine A(h) is invariant under h, this implies that h(x) � x, whih is not allowed in Case 2.Next we show that A(h) is all of Hs. Again suppose it is not and let l be a point of Hs not in A(h).Sine A(h) is onneted (as it is a line), then A(h) is ontained in a single omponent of Hs � flg. LetB be another omponent of Hs � flg. Let L = ��1s (l). It was proved in [Fe7℄ that any omplementaryomponent of L overs M . This implies that given x in A(h), there is g in �1(M) with g(x) in B, whihis disjoint from A(h). This ontradits the �1(M) invariane of A(h).We onlude that Hs is homeomorphi to R and similarly Hu is also homeomorphi to R. Thereforethere are no singularities of � and �s;�u are R-overed.Sine there is no singularity, the ow is atually (topologially) Anosov. The result was then provedin [Ba1℄. We present a di�erent proof here, whih improves some arguments in [Ba1℄ and whih followsarguments in the unpublished referene [Ba7℄.If there is a leaf of e�s interseting all leaves of e�u, then proposition 2.7 shows that � is a produtpseudo-Anosov ow. The manifold then would have solv geometry and ould not be Seifert �bered,ontradition.It follows from [Fe1, Ba1℄ that � has the skewed type: the orbit spae O is homeomorphi to an in�nitestrip inR2 bounded by parallel lines, say with slope one. The stable foliation is the foliation by horizontalsegments and the unstable foliation is the foliation by vertial segments (see �gure 3).Put a transverse orientation to e�s positive with inreasing y and to e�u positive with inreasing x(where (x; y) are the artesian oordinates in O). For eah stable leaf L, there is in the positive side of La unique unstable leaf S whih makes a perfet �t with L � in this model it is equivalent to S sharing anendpoint with L. This produes a �1(M) equivariant map �us from Hs to Hu, whih is a homeomorphism([Ba1, Fe1℄). Similarly for eah S in e�u there is a unique E of e�s in the positive side of S and sharingan endpoint with S. The omposition L ! S ! E is a translation �s in Hs and Hs=�s is a irle S1s .Similarly one has �u whih is inreasing from Hu to Hu and a irle S1u = Hu=�u. Both �s and �u are�1(M) equivariant homeomorphisms ([Ba1, Fe1℄), so �1(M) ats on S1s and S1u. We denote the �rst ationby �s : �1(M) ! Homeo(S1s ):In addition the map �us : L! S as above is also equivariant by the ation of �1(M) and hene induesa anonial homeomorphism from S1s to S1u with inverse denoted by �. So we an identify S1s � S1u withS1s � S1s by (z; w)! (z; �(w)). This indues an ation of �1(M) on S1s � S1s .For every orbit � of e�, there are unique leaves L of e�s and G of e�u so that � = L \G. Using L andG, the orbit � generates a point in S1s � S1u and hene a point (p; q) in S1s � S1s . We say that � projetsto (p; q). This de�nes a map
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Figure 3: Orbit spae of skewed type.� : O ! S1s � S1s :The projetion (p; q) is not in the diagonal �: points in the diagonal orrespond to L in e�s and S in e�uso that S = �us (�s)n(L) for some integer n. In partiular L and S do not interset and neither does Sinterset (�s)m(L) for any integer m. Conversely if (p; q) is in S1s �S1s ��, then one an lift p to a leaf Lof e�s and q lifts to a stable leaf, whih after the identi�ation S1s with S1u produes S in e�u with S \ Lnot empty.Note that if g ats trivially on Hs then g is the identity in �1(M). This follows for instane beausethe set of �xed points of non trivial elements of �1(M) is disrete in Hs.Claim 1 � h ats trivially on S1s .Let e� be a lift of a periodi orbit � assoiated to a overing translation g. Then g2h(e�) = hg2(e�) = h(e�),so e� and h(e�) are onneted by a hain of n lozenges by Theorem 2.13. Replaing g2 by g�2 if neessary,we an assume that e� is an attrating �xed point of the restrition of g2 to the stable leaf L through e�.Then h(e�) is also an attrative �xed point of the restrition of g2 to h(L). It follows (see �g. 3) thatn is even. In the �gure � is onneted to � by one lozenge and h(�) is onneted to � by a hain of 2lozenges. Therefore h(L) = (�s)i(L) for i = n=2.This implies that the projetions to S1s of periodi leaves are �xed points of �s(h). Sine periodi leavesare dense, we onlude that �s(h) is the identity map on S1s . The laim is proved.Reall that h was any element of the enter of �1(M). Here �1(M) annot be Z3 beause M has apseudo-Anosov ow. It follows that the enter of �1(M) is a yli subgroup [He, Ja-Sh℄. From now, weassume that h generates the enter; and we denote by l the integer suh that when ating on Hs, then� ls = h. In order to simplify the presentation, we identify in the sequel Hs with R in a way that �s is thetranslation x 7! x+ 1.Let now f in the kernel of �s. When ating on Hs, f(x) = x + j for some j in Z. In addition givenany g in �1(M) and onsidering the ation on Hs, it follows that for any x in Hs, for any i in Z, theng(x+ i) = g(x) + i. Now, for any g in �1(M), again when onsidering the ation on Hs we haveg�1f�1gf(x) = g�1f�1g(x+ j) = g�1f�1(g(x) + j) = g�1g(x) = x:Therefore g�1f�1gf ats trivially on Hs and is the identity in �1(M). Hene f is in the enter of �1(M)whih is < h >.Conlusion: ker �s = < h > = enter of �1(M).



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 17Let H =< h > and Q = �1(M)=H. Sine H is the kernel of �s, there is an indued ation �s of Q onS1s . Given g in �1(M) let g be its image in Q. By the onlusion above the ation �s is faithful.We now think of S1s as the ideal boundary of the hyperboli dis H2 and (p; q) as the hyperboligeodesi in H2 onneting these endpoints.Lemma 4.2. The ation �s of Q on S1s is a onvergene group ation.Proof. First we prove the following fat:Claim 2 � Two arbitrary orbits �1; �2 of e� are onneted by a hain of lozenges if and only if �1; �2projet to either the same point of S1s �S1s �� or one projets to some point (p; q) and the other projetsto (q; p). In the �rst ase they are onneted by an even number of lozenges and in the seond ase theyare onneted by an odd number of lozenges.Suppose �rst that �1; �2 are onneted by a hain of lozenges. The �rst lozenge in the hain has astable side L ontaining �1. There is an unstable side S of the lozenge making a perfet �t with L. Theother orner � of the lozenge is ontained in S. Suppose wlog that S is in the positive side of L. ThenS = �us (L). In addition fW u(�1);fW s(�) also make a perfet �t andfW u(�1) = �us (��1s (fW s(�)):So if �1 projets to (p; q) then � projets to (q; p). Following the lozenges in the hain proves that �2projets to either (p; q) or (q; p). Using these arguments one sees that �1 and � = �s(L) \ �u(fW u(�1))are onneted by a hain of two lozenges.Conversely suppose that �1 and �2 both projet to (p; q). Let F = fW s(�1); G = fW u(�1) and letalso E = fW s(�2); S = fW u(�2). Sine the projetions of both �1 and �2 have the same point p as �rstoordinate, there is n in Z so that E = �ns (F ). Similarly there is m in Z with S = �mu (G). In theolletion f� iu(G); i 2 Zg, there is only one element interseting �ns (F ) and that is �nu (G). It follows thatn = m. In addition �2 = �ns (F ) \ �nu (G):As explained above �1 and �s(F ) \ �u(G) are onneted by a hain of two lozenges and by indution �1and �2 are onneted by a hain with an even number of lozenges. The ase that �1 projets to (p; q)and �2 projets to (q; p) is very similar and is left to the reader. This proves laim 2.Let � be an arbitrary losed orbit of �, let e� be a lift to fM , whih is invariant under g in �1(M), withg assoiated to � in the positive diretion. Let (p; q) in S1s � S1s � � be �(e�). Reall that h in �1(M)represents the �ber of the Seifert �bration. Sine h ats trivially on S1s , then laim 2 implies that e� andh(e�) are onneted by a hain of lozenges with an even number of lozenges [Fe1℄. Therefore the set oforbits in the omplete hain of lozenges from e� is �nite modulo the ation by < h > and this set projetsto a �nite set V of orbits of � inM . But � is losed, so V is a �nite set of losed orbits and hene disretein M . Hene ��1(V ) is a disrete, �1(M) invariant set of orbits of e�. We onlude that �(�(��1(V ))) isa disrete set in S1s � S1s ��. It is also �1(M) invariant. This is the \orbit" of (p; q) under the ation of�1(M).Now given �; e�; g as above, let L = fW s(e�). Then g(L) = L and sine g is assoiated to the positivediretion of � then L is a ontrating �xed point of g ating on Hs. In the same way S = fW u(�) is also�xed by g and it is a repelling �xed point of g ating on Hu and hene p is the attrating �xed point ofg ating on S1s and q is the repelling �xed point. There are no other �xed points.In order to prove the onvergene group property for the ation �s of Q on S1s , we now onsider asequene bn of distint elements of Q and let gn in �1(M) with bn = gn. In the arguments below weabuse notation and also denote by �s the ation of �1(M) on S1s � S1s � the ontext makes lear whihone is being used.Consider a losed orbit � as above, with a given lift e�, orresponding points p; q in S1s and L = fW s(e�).Suppose �rst that up to subsequene



18 THIERRY BARBOT AND S�ERGIO R. FENLEY�s(gn)((p; q)) = (p; q) or �s(gn)((p; q)) = (q; p) for all n:Notie that it does not matter if we onsider �s(gn) or �s(gn). First a redution: if �s(gn)((p; q)) = (q; p)for all n, then replae e� by g1(e�) and gn by gng�11 . The new olletion satis�es �s(gn)((p; q)) = (p; q)for all n. Claim 2 implies that for every n, gn(e�) is onneted to e� by a hain of lozenges, with an evennumber of lozenges. For eah n there is an so that gn(L) = �ans (L). Reall the integer l above so thath = � ls when ating on Hs. There are bn and n in Z with 0 � n < l and an = bnl + n. Up to anothersubsequene we assume that n is onstant. Again up to taking g1(e�) instead of e� and gng�11 instead ofgn we may assume that n = 0 for all n. The above fats imply that for eah n there is in in Z so thathingn(e�) = e� (in fat in = �bn). Therefore hingn = f jn , for some jn in Z where f is a generator of theisotropy group of e� in the forward diretion. Notie that �s(hin) ats as the identity on S1s (and also onS1s � S1s ��). If there is a subsequene (jnk) whih is onstant, then the formulagnk = h�ink f jnkshows that all �s(gnk) at in exatly the same way on S1s . Then �s(gnk) is onstant and sine �s is faithful,then the sequene (gnk) is also onstant � ontradition to hypothesis. So up to subsequene we mayassume (say) that jn onverges to in�nity (as opposed to onverging to minus in�nity) when n ! 1.Then �s(gn) = �s(h�inf jn) = �s(f jn)and p is the sink for the sequene �s(gn) ating on S1s and q is the soure. This proves the onvergenegroup property in this ase.From now on we assume up to subsequene that �s(gn)((p; q)) 6= (p; q); (q; p) for all n. In fat by thesame arguments we an assume that all �s(gn)((p; q)) are distint. Sine the orbit of (p; q) under �1(M)is disrete in S1s � S1s ��, then up to subsequene �s(gn)((p; q)) onverges to a point (z; z) in S1s � S1s .These arguments work for any losed orbit �.We now show that �s(gn) has a subsequene with the soure/sink behavior. Fix an identi�ation of S1swith the unit irle S1. Sine � is R-overed, then the set of losed orbits is dense [Ba1℄. Find (p1; q1)orresponding to a periodi orbit, very lose to (�1; 1) and not disonneting these two points in S1.By the above arguments, up to subsequene �s(gn)((p1; q1)) onverges to a single point (z; z) in S1 � S1.Therefore one interval I1 of S1 de�ned by (p1; q1) onverges to z under �s(gn). The interval I1 has lengthlose to half the length of the irle S1. We work by indution assuming that an interval Ii has beenprodued. Let Ji be the losed omplementary interval to Ii. Find a periodi point (pi; qi) so that: qi isin Ji and almost uts it in half and pi is in the interior of Ii (swith pi and qi if neessary). We alreadyknow that �s(gn)(pi)) onverges to z. As before up to another subsequene one of the intervals de�nedby (pi; qi) onverges to a point under �s(gn), whih then must be z as pi is in Ii. Adjoin this interval toIi to produe Ii+1 whih onverges to z under �s(gn). Let Ji+1 be the losed omplementary interval.Sine eah step roughly redues the size of the remaining interval by a fator of 1=2, then the intervalsJi onverge to a single point w. Use a diagonal proess and obtain a sequene �s(gnk) with soure w andsink z. This �nishes the proof of the onvergene group property.Notie that as we mentioned before, we denoted by �s the ation on both S1s and S1s � S1s ��. �Convention �We lift to a double over if neessary so that e�s is transversely orientable. Every orientationpreserving onvergene group ating on the irle is onjugated in Homeo+(S1) to a Fuhsian group[Ga, Ca-Ju℄. Let � be �s(Q). Hene � is onjugate to a Fuhsian group T . Here O = H2=T is ahyperboli 2-dimensional orbifold.We have a onjugation  : S1s ! S1 between the ation of � on S1s and a Fuhsian ation T on S1.Lift  to a homeomorphims e : Hs ! R. Let g in �1(M) and we also think of g as ating on Hs. Then Æ �s(g) Æ  �1 =  Æ �s(g) Æ  �1



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 19is the ideal map of a Moebius transformation and hene e g( e )�1 is a projetive transformation of R.This shows that the foliation �s is transversely projetive. As shown by the �rst author in [Ba1℄, thisimplies that the ow � is up to a �nite over, topologially onjugate to a geodesi ow in the unittangent bundle of a hyperboli surfae. This �nishes the proof of theorem 4.1. �EXAMPLES and COUNTEREXAMPLESReall that in a one prong pseudo-Anosov ow we allow the existene of one prongs. One prong pseudo-Anosov ows an behave ompletely di�erently from pseudo-Anosov ows. In partiular it is well knownthat there are one prong pseudo-Anosov ows in S2�S1, so the manifoldM need not be irreduible andthe universal over need not be R3.Here we introdue 2 new lasses of examples of one prong pseudo-Anosov ows.1) Let R be a losed hyperboli surfae with an order 2 symmetry � whih is an isometri reetion alonga non separating simple losed geodesi � of R. Let M1 be the unit tangent bundle of R and �1 be thegeodesi ow in M1. The isometry � sends geodesis of R to geodesis and preserves the geodesi ow.It indues a map �� in M1 whih has order 2. Let M be the quotient of M1 by the map ��. The map�� does not at freely: the �xed points orrespond exatly to the tangent vetors to � � there are twolosed orbits �1; �2 of �1 whih are �xed pointwise by ��. These orrespond to the 2 diretions in �.Hene M is an orbifold, but admitting a natural manifold struture so that the projetion map M1 !Mis an order 2 branhed overing map. The ow �1 indues a ow � in M beause � sends geodesis togeodesis. The stable/unstable foliations of �1 are invariant under �� so indue stable/unstable foliationsof �. The stable leaf of �1 through �1 folds in two, produing a one prong singularity of � and similarlyfor �2. The ow � is an example of a one prong pseudo-Anosov ow. Alternatively the manifold M isobtained as follows: let R1; R2 be the losures of the 2 omponents of R��. The unit tangent bundle ofR1 is homeomorphi to R1 � S1, with boundary a torus Z with 2 losed urves orresponding to �1 and�2. The map �� identi�es one omplementary annulus of �1; �2 in Z to the other one with no shearing.This is obtained by a Dehn �lling of Z where ftg�S1 is the meridian. Therefore M is homeomorphi tothe union of N1 = R1 � S1 and a solid torus. This is almost a graph manifold: it is the union of Seifert�bered spaes, but M is not irreduible: Take a non peripheral ar l in R1. Then l� S1 is an annulus inR1 � S1 whih is apped o� with 2 diss in the solid torus to produe a sphere whih is non separatingin M and hene learly does not bound a ball in M .Remark � This example and the next work whenever the hyperboli surfae R admits an isometrireetion along a olletion of simple losed geodesis f�ig. For simpliity of exposition we desribe theexamples in 1) and 2) with a single geodesi �.2) The seond lass of examples is obtained by a modi�ation of example 1) in order to be in a Seifert�bered manifold. The modi�ation is that the glueing of the annuli in �N1 is done with a shearing. Thenotation is the same as in example 1): R is the hyperboli surfae with a geodesi � of symmetry andR1; R2 the losures of the omponents of R � �. The unit tangent bundle of R is M1 and N1; N2 arethe restritions to vetors in R1 and R2 respetively. We use 2 tori: �N1 = T1 and �N2 = T2. Theseare glued to form M1. Put oordinates (�1; �2) in T1, (a1; a2) in T2 as follows: T1 onsists of the unitvetors along �. Parametrize � by ar length parameter t where 0 � t � l0 and l0 is the length of �. Let�1 = 2�t=l0. Let �2 be the angle between the unit tangent vetor to � and the vetor v, where �2 = 0orresponds to the diretion of �1. Also �2 = � orresponds to �2 and 0 < �2 < � are the vetors exitingN1 and entering N2. Put oordinates (a1; a2) in T2 so that the glueing map to reate M1 is � : T1 ! T2given by a1 = �1; a2 = �2 (essentially the same oordinates). Notie that vetors with 0 < a2 < � areentering N2 and vetors with � < a2 < 2� are entering N1.In N1 we onsider the restrition of the geodesi ow of R. We ollapse �N1 = T1 to an annulus asfollows. Let A1 be the strip 0 � �2 � � in T1 and let A2 be the strip � � �2 � 2� in T1. We glue A1 toA2 by f(�1; �2) = (�1 + 2n�2; 2� � �2) (�)



20 THIERRY BARBOT AND S�ERGIO R. FENLEYLet M be the quotient of N1 by this glueing and let � be the indued ow from the geodesi ow inN1. Notie that the ow in N1 is outgoing in the interior of A1 and inoming in the interior of A2. Inaddition, the angle between ow lines and T1 depends only on �2 and not on �1 (by de�nition) and soby formula (�) this produes a ow � in M whih is smooth outside of the losed orbits �1; �2. Here weabuse notation and ontinue to all �1; �2 their projetions to M .Let A be the annulus whih is the quotient of A1; A2 by the glueing. Let M2 be the double branhedover ofM obtained by double branhed over (opening up) along A. ThisM2 an be ut along the torusT whih is the preimage of A. The losure of the 2 omplementary omponents of T are homeomorphito N1 and N2 and still denoted by N1; N2. We think of N1 as the unit tangent bundle of R1. We an alsothink of N2 as the unit tangent bundle of R2 � this is beause N2 under the branhed over is anotheropy of N1, whih is isometri to N2 by the map �� indued by the symmetry � of the surfae R. LetT1; T2 be the orresponding boundaries of R1; R2, with the orresponding oordinates (�1; �2) and (a1; a2)as above. Therefore M2 is obtained by a ertain glueing of map g from T1 to T2.We �rst extend the map f to an involution on the entire torus T1: in A2 (whih is the region � � �2 �2�), the map f has the same formula f(�1; �2) = (�1 + 2n�2; 2� � �2). Clearly f is an involution in T1.Claim � In order to obtain the ow � inM , the glueing from T1 to T2 in the (�1; �2), (a1; a2) oordinatesis given by: g : T1 ! T2; g(�1; �2) = (�1 + 2n�2; �2):In order to prove the laim we need to show that when restrited to the annulusA1 then f = ��g. Reallthat �� restrited to T2 (whih is identi�ed with T ) has the form �� : T2 ! T1, ��(a1; a2) = (a1; 2�� a2).It is now lear that f = ��g in A1. By the extension of f to A2, this also holds in A2. This proves thelaim.Let �2 be the lift of the ow � to M2. This ow �2 is the geodesi ow in R1 when restrited to N1and the the geodesi ow of R2 when restrited to N2. The glueing is given by the map g desribed above.The map g is a shearing. In a very nie result, Handel and Thurston [Ha-Th℄ studied exatly this exampleand they proved that the ow �2 in M2 is an Anosov ow whih is volume preserving. Therefore thisow has stable and unstable foliations whih projet to stable/unstable foliations of �: this is beause if2 orbits inM2 are asymptoti then their projetions to M are asymptoti and vie versa. The projetionfrom M2 to M is loally injetive and smooth exept along �1 and �2, where it is 2 to 1. Hene thestable/unstable foliations in M are non singular exept possibly at �1; �2. Sine the projetion is 2 to1 and stable leaves go to stable leaves, then along the stable leaf of �1 the stable leaf folds in two andsimilarly for the unstable leaf and likewise for �2. Therefore � is smooth everywhere exept at �1; �2whih are one prong singularities. We onlude that � is a one prong pseudo-Anosov ow.Finally M an be thought as a Dehn �lling of N1 along T1. We determine the new meridian. Underthe map f from A1 to A2, the segment �1 = 0; 0 � �2 � � in A1 is glued to the the segment(2n�2; 2� � �2); 0 � �2 � � in A2. This last segment goes from (0; 2�) to (2n�; �) linearly. It followsthat this is the new meridian whih is then the (�n; 1) urve.When n = 0, this is exatly the same onstrution as in the �rst example whih makes the �ber in N1null homotopi. When n 6= 0, the urve whih beomes null homotopi is not fpg � S1. It follows thatthe resulting manifold M is Seifert �bered.Conlusion � If one allows 1-prongs, then Seifert �bered manifolds an admit one prong pseudo-Anosovows with singularities as opposed to what happens with pseudo-Anosov ows. Theorem A does not holdfor one prong pseudo-Anosov ows.This poses the following questions: Suppose that � is a one prong pseudo-Anosov ow in M Seifert�bered (losed). Can one show that there are no p-prongs with p � 3? Can one show that � has abranhed over to an Anosov ow in a Seifert manifold?Remark: With this desription of geodesi ows we now mention the following, whih will be extremelyuseful later on in the artile. Here is an expliit example of a Klein bottle in a manifold with an Anosovow. Let � be the geodesi ow of a nonorientable hyperboli surfae S and � an orientation reversing



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 21simple geodesi. Let A be the unit tangent bundle of � and �1; �2, the two orbits of � assoiated tothe two diretions of �. Consider tubular neighborhoods of of �1, �2. These are solid tori, and A inthese neighborhoods wraps around eah of these periodi orbits twie produing a M�obius band, whihontains the periodi orbit, and with boundary a losed urve homotopi to the double of the periodiorbit. It follows that the losure of A is the union of an annulus (outside the solid tori) and two M�obiusstrips and therefore A is a Klein bottle. This is a typial example of Birkho�-Klein bottle, see formalde�nition in setion 6. A tubular neighborhood of this Klein bottle if homeomorphi to the twisted linebundle over the Klein bottle.5. Pseudo-Anosov ows in manifolds with virtually solvable fundamental groupIn this setion we �rst do a detailed analysis of maximal subgroups of �1(M) stabilizing a given hain oflozenges. Conversely given a subgroup of �1(M) isomorphi to Z2 we analyse the uniqueness of hains oflozenges invariant under this subgroup. These results are foundational for understanding any Z2 subgroupof �1(M) and they are fundamental for the analysis of pseudo-Anosov ows in manifolds with virtuallysolvable fundamental groups. The results are later used for other results in this artile. We also expetthat these results will be useful for further study of pseudo-Anosov ows in toroidal manifolds.In this setion let K denote the Klein bottle. We �rst need a result from 3-dim topology. Let F be aompat surfae with a free involution � . Then M = (F � I)=(x; t) � (�(x); 1 � t) is a twisted I-bundleover the surfae F 0 = F=x � �(x) and F is the assoiated 0-sphere bundle, see [He℄, page 97.Lemma 5.1. Let N be an irreduible, ompat 3-manifold with �nitely generated fundamental groupwhih is torsion free and has a �nite index subgroup isomorphi to Z2. Then N is either an I-bundle ora twisted I-bundle over a surfae of zero Euler harateristi. In partiular �1(N) is isomorphi to eitherZ2 or �1(K). In addition if N is orientable, then either N = T 2�I or N = (T 2�I)=(x; t) � (�(x); 1� t)is a twisted I-bundle over the Klein bottle T 2=x � �(x) whih is one sided in N .Proof. Suppose �rst that N is losed. Then take a �nite over N 0 with �1(N 0) = Z2. Sine the �niteover is irreduible, this is not possible [He℄. Hene �N is not empty. Suppose that boundary of N isompressible. By the loop theorem [He℄ there is a urve in �N , not null homotopi in �N , but boundingan embedded dis D in N . Cutting along D, shows that �1(N) is either a free produt or an amalgamatedfree produt along a trivial group, hene a free produt with Z. In either ase the free produt wouldeither not ontain a Z2 (it would be in�nite yli) or would ontain a free group of rank � 2, in whihase it ould not ontain Z2 with �nite index. Hene �N is inompressible. If it has a omponent of genus� 2 then as above it would have a rank 2 free subgroup, again ontradition. If it has a omponent whihis a projetive plane, then �1(N) has elements of order 2, ontrary to hypothesis. Sine N is irreduible,no omponent of �N is a sphere, as �1(N) is not trivial. We onlude that every boundary omponentof N is either a torus or a Klein bottle.Let F be one suh omponent. Beause F is inompressible and �1(N) has a �nite index subgroupisomorphi to Z2, then �1(F ) has �nite index in �1(N). By theorem 10.5 of [He℄, either i) �1(N) = Z, orii) �1(N) = �1(F ) with N �= F � I or iii) �1(F ) has index 2 in �1(N) and N is a twisted I-bundle overa ompat manifold F 0, with F the assoiated 0-sphere bundle. In our situation ase i) annot happen.In ase ii) �1(N) is either Z2 or �1(K) and we are done. In ase iii) �1(N) is isomorphi to �1(F 0) asthere is a deformation retrat from N to F 0. Here F 0 is a losed surfae whih has a double over eitherthe torus or the Klein bottle. Hene again F 0 is the torus or the Klein bottle and we also onlude that�1(N) is either Z2 or �1(K). The last stament is easy given the above. This �nishes the proof of thelemma. �Note that both the torus and the Klein bottle have double overs homeomorphi to themselves. Themanifolds in question above an be either orientable or not. It is easy to onstrut a ompat manifoldN whih is a twisted I-bundle over the Klein bottle (with quotient surfae a Klein bottle). This manifoldhas boundary a Klein bottle and an orientation double over N2 whih is a twisted I-bundle over thetorus (with quotient surfae a Klein bottle, whih is one sided in N2). Finally N has an order 4 overhomeomorphi to T 2 � I.



22 THIERRY BARBOT AND S�ERGIO R. FENLEYLemma 5.2. Suppose that C is a bi-in�nite hain of lozenges. Let G be the stabilizer of C in �1(M).Then G is isomorphi to a subgroup of �1(K). In partiular, it ontains an unique maximal abeliansubgroup of index at most 2, whih is either trivial, (in�nite) yli or isomorphi to Z2.Proof. The proof will reveal the struture of the stabilizer of C and not just show that it is isomorphito a subgroup of �1(K). In this proof yli means in�nite yli. Let � be a orner in C. The hain Corresponds to a linear subtree T0 of the tree G(�). It de�nes a homomorphism � : G ! Aut(T0). Thekernel K of � stabilizes every orner of C, and thus, is either yli or trivial.Assume �rst that G preserves the orientation on T0. Then �(G) is a group of translations along T0,ie. trivial or yli. In the former ase, G = K is either trivial or yli. In the latter ase, if K is trivialthen G is isomorphi to �(G) and hene trivial or yli. If K is yli then G is an extension of Z by Z.It follows that G is either Z2 or �1(K). We are done.We are left with the ase where some element g of G reverses the orientation of T0. Hene g leaveseither a vertex or and edge of T0 invariant. Then, aording to proposition 2.16 item 4, g preserves aorner �. Let s be a generator of the G-stabilizer of � � in partiular this stabilizer is not the identity.Then s reverses the orientation of T0 (otherwise all elements in G leaving � invariant would preserveorientation) and s2 is in K. On the other hand, every element of K �xes � and preserves the orientation:it must be a power of s2, whih therefore generates K. As usual there are two option for �(G). Oneoption is that �(G) = �(s) and therefore G is generated by s and is yli. Otherwise �(G) has at leastone translation. Selet h in G suh that �(h) is a translation along T0 of minimal length. In this ase itis easy to see that s, h generate G.By onsidering the ation on the set of verties of T0 one sees that hsh preserves �. It is also in G sohsh = si. Similarly h�1sh�1 = sj . At this point we have exhausted the information we an obtain solelyfrom the ow and we appeal to 3-manifold topology.Let G0 be the subgroup of G preserving the orientation on T0. The previous arguments show that G0has a subgroup of order � 2 isomorphi to Z2, so G has a subgroup of order � 4 isomorphi to Z2. LetU be the over of M assoiated to G. Then U is irreduible and �1(U) is torsion free. By Sott's oretheorem [He℄ there is a ompat ore N for U . We an assume that no boundary omponent of N is asphere - by attahing 3 balls to suh omponents, without a�eting the fundamental group. Now applythe previous lemma to show that G = �1(N) is isomorphi to either Z2 or �1(K).Finally if G is not abelian then G is isomorphi to �1(K) and it is an elementary algebra fat that Ghas a unique maximal abelian subgroup of index 2, whih is isomorphi to Z2. �Conversely:Lemma 5.3. Let G be a subgroup of �1(M) isomorphi to Z2. Assume that � is not produt. Then Gpreserves a bi-in�nite hain of lozenges.Proof. If G � Z � Z ats freely on the orbit spae O, then it was proved in [Fe5℄ that � is produt,ontrary to hypothesis. Hene there is g in G with a �xed point in O. If g = (g0)n where g0 is in G andjnj > 1, then g0 also does not at freely on O (Proposition 2.16, item 1.). Hene we may assume that gis indivisible in G. Choose h in G so that h; g form a basis of G. Consider the tree T = G(g): sine Gis abelian, then G ats on T . If f is an element of G admitting a �xed point in T , then some power off leaves invariant all verties of T and likewise for g. It follows that g and f admit a ommon power:gp = f q. Sine f; g are in G �= Z2 then f; g generate a yli group. But g is indivisible in G, implyingthat f is a power of g. Hene, G=hgi � Z is a yli group ating freely on the verties of the tree T .Aording to Proposition 2.16, item 4., an element in G= < g > annot reverse an edge of T . It followsthat G=hgi ats freely on T , and that there is an invariant axis for this yli group therein. It provides abi-in�nite G-invariant hain of lozenges C. In partiular the arguments show that g �xes all the vertiesin C. �De�nition 5.4. ([Fe5℄) Let C be a s-salloped bi-in�nite hain of lozenges. The s-salloped region de�nedby C is the union of all lozenges in C with the half-leaves of e�u ommon to two adjaent lozenges in C.One de�nes similarly u-salloped regions. A salloped region is a s-salloped or u-salloped region; it isan open subset of O.



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 23It may happen in the situation of lemma 5.3 that the G-invariant hain is not unique, but only in avery speial situation:Lemma 5.5. Let G be a subgroup of �1(M) isomorphi to Z2. Assume that G preserves two di�erenthains of lozenges. Then, one these hains is s-salloped, and the other is u-salloped. Moreover theassoiated u-salloped and s-salloped regions are the same.Proof. In this proof we onsider all objets in O. Let C, C0 be two di�erent G-invariant hains of lozenges.Let g be an element of G �xing every orner in C, and let f be an element of G �xing every orner of C0 �see proof of the previous lemma. Suppose �rst that g and f share a ommon non-trivial power: gp = f q,p; q 6= 0. Sine G is abelian it ats on G(gp) and also G(g) � G(gp), so C is an invariant axis for G atingon G(gp). Similarly C0 is a G-invariant axis in G(f q). Sine these trees are the same, it now follows thatC = C0, ontradition.Hene, replaing G by a �nite index subgroup if neessary, one an assume that f , g form a basis ofG � Z2.Let � be a orner of C0. We laim that � annot be in C or in one of its boundary sides. Suppose not.There is h non trivial in G �xing � and therefore �xing every orner of C0. As h leaves C invariant, then �has to be a orner of C. This would produe an element in G �xing every orner of C and every orner ofC0 and hene some powers of f and g oinide. The previous paragraph shows this is impossible. Let now be a path in O joining � to an element Æ in the union of the lozenges in C, and disjoint from the ornersof C. We assume that  avoids the singular orbits in O. Notie that the union of orners of C forms adisrete set in O. Consider the intersetion V between  and the union of stable and unstable half-leavesontained in the boundary of the lozenges of C. By the above this intersetion is non empty. Assume�rst that V is �nite. Let  be the �rst element of V met while traveling along  from � to Æ. Then  lieson the boundary of a lozenge C of C, let's say the boundary omponent is a stable half leaf L ontaininga orner � of C. Let C 0 be the other lozenge in C admitting also � as a orner: there is a half leaf K,ontained in the boundary of C 0 and suh that the union L [ K [ � is an embedded line in O, whihmoreover disonnets C from �. In addition this properly embedded line is unique with these properties.Sine C and � are f -invariant, it now follows that L [K [ � is f -invariant, and hene f(�) = �, where� is a orner of C. Contradition.Therefore, V is not �nite: it admits an aumulation point . Sine e�s and e�u are transverse outsidethe singular points,  is an aumulation point of a sequene Fn \ , where the Fn are leaves in theboundary of lozenges in C. In addition we may assume that all Fn have all the same type, for exampleall Fn are leaves of e�s. Let L be the leaf of e�u through : it intersets all the Fn for n suÆiently big.It follows that C ontains an in�nite u-salloped subhain. Sine C is G-invariant, the entire hain C hasto be a bi-in�nite u-salloped hain. Hene it de�nes a u-salloped region U .Similarly, C0 has to be salloped, and de�nes a salloped region U 0.Now the key point is the following: in [Fe5℄ the following fats are shown: i) We an hoose h in Gating freely on O; ii) The leaves of e�s (respetively e�u) interseting U de�nes a G-invariant subline Isin Hs (respetively a G-invariant subline Iu in Hu); iii) Every leaf in Is intersets every leaf in Iu, andthis intersetions ours in U ; iv) Every point in U is the intersetion of a leaf in Is and a leaf in Iu.Similarly, the open salloped region U 0 provide G-invariant sublines Js, Ju in Hs, Hu, suh that everyleaf in Js intersets every leaf in Ju at a point in U 0. But sine h ats freely, h-invariant lines in Hs, Huare unique [Fe5℄. Thus, Is = Js and Iu = Ju. The equality U = U 0 follows.If the hain C0 was u-salloped, as C, then it would be equal to C sine it de�nes the same sallopedregion. Hene, C0 is s-salloped. The lemma follows. �Corollary 5.6. Let G be a subgroup of �1(M) isomorphi to Z2 and h an element of �1(M) suh thathG0h�1 = G0, where G0 is a �nite index subgroup of G. Then h preserves any G-invariant hain oflozenges.Proof. Let C be a G-invariant hain of lozenges. Then, C is G0-invariant, and h(C) is hG0h�1 = G0-invariant. Aording to lemma 5.5, if C is not salloped, then C is the unique G0-invariant hain: henewe have h(C) = C. If not, C is salloped, for example suppose that C is s-salloped. Again by lemma 5.5,



24 THIERRY BARBOT AND S�ERGIO R. FENLEYC is the unique s-salloped G0-invariant hain, and sine h(C) is also s-salloped, the equality h(C) = Cfollows. �As a orollary of these results, we get the desription of pseudo-Anosov ows in manifolds with virtuallysolvable fundamental group (theorem B).Theorem 5.7. Let � be a pseudo-Anosov ow in M3 with �1(M) virtually solvable. Then � has nosingularities and is produt. In partiular � is topologially onjugate to a suspension Anosov ow.Proof. First notie that the fat that eah leaf of e�s interset every leaf of e�u is invariant up to taking�nite overs and so is the existene of singularities. Hene we an take �nite overs at will. Up to a �niteover, one an assume that �1(M) is solvable. Notie that as M has a pseudo-Anosov ow then M isirreduible. Sine �1(M) is solvable, lassial 3-manifold topology results [He℄ imply that M �bers overthe irle with �ber a surfae S whih has solvable fundamental group. The surfae S an only be thetorus or the Klein bottle K. Up to another �nite over one an assume that S is atually the torus.Assume that � is not produt. Then, aording to lemma 5.3, �1(S) preserves a hain of lozenges. Sine�1(S) is normal in �1(M), it follows from Corollary 5.6 that this hain of lozenges is �1(M)-invariant.Aording to lemma 5.2, �1(M) is a �nite index extension of Z or Z2. This ontradits the fat that M�bers over the irle with �ber T 2. This �nishes the proof. �6. �1-injetive tori in optimal positionGiven a �1-injetive torus, we look for a representative in its homotopy lass whih is in optimal position� this means that it is a union of Birkho� annuli, whih have very important dynamial meaning. Ifthe initial torus is embedded we want to study when the optimal position torus is also embedded. Thisis tremendously important if one wants to ut the manifold along the tori whih separate piees in thetorus deomposition.We �rst study under whih onditions a hain of lozenges C may admit a orner � suh that for someelement g of �1(M) the image g(�) is ontained in a lozenge of C. Later on we explain how this onernsthe intersetions of orner orbits in the Birkho� annuli with the interior of the annuli.De�nition 6.1. Let C be a hain of lozenges. If for any element g of �1(M) and for every orner � of Cthen the orbit g(�) is not in the interior of a lozenge in C, then C is alled simple. The hain C is alleda string of lozenges if no orner orbit is singular and onseutive lozenges are never adjaent.Proposition 6.2. Let G be a subgroup of �1(M) isomorphi to Z2 and let C be a G-invariant hain oflozenges. Suppose that C is not simple. Then C is a string of lozenges. In addition G is ontained in thefundamental group of a free Seifert �bered piee.Proof. Let � be a orner orbit of C and g in �1(M) with g(�) in the interior of a lozenge in C. We �rstprove that C is a string of lozenges. We denote by f�i; i 2 Zg the orners of C and by fCi; i 2 Zg thelozenges of C, so that �i, �i+1 are the orners of Ci for eah integer i. Moreover, we assume wlog � = �0.There is an integer k so that � = g(�) belongs to Ck. We will prove that both orners �k, �k+1 of Ck arein the interior of lozenges in g(C). Sine the orbit � is in the interior of a lozenge, then � is non singularand fW s(�);fW u(�) de�ne exatly 4 quadrants in fM . Two of the quadrants ontain the orners of Ck.Let W be one of the remaining quadrants. It ontains a perfet �t between sides of the lozenge Ck, saybetween L = fW s(p1) and S = fW u(p0), where p0; p1 are appropriately named.We laim that W does not ontain a lozenge with orner in �. Suppose not and all this lozenge D1.Then D1 has 2 sides in fW u(�) and fW s(�). There is a side of D1, all it E whih is ontained in anunstable leaf and makes a perfet �t with fW s(�). Sine fW s(�) intersets S = fW u(p0) transversely, itfollows that S separates E from the lozenge Ck. Therefore E annot interset any leaf whih makes aperfet �t with fW u(�). This is a ontradition and proves the laim.It follows that the 2 quadrants de�ned by � whih ontain respetively �k and �k+1 ontain lozenges ing(C). Let D2;D3 be these lozenges. Sine fW s(�k+1) intersets fW u(�) and fW u(�k+1) intersets fW s(�),the de�nition of lozenges implies that �k+1 is in the interior of (say) D3. As in the argument above itnow follows that the other orners of D2;D3 are in the interior of Ck�1; Ck+1. This an be iterated and



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 25so all g(�i) are in the interior of lozenges in C. It follows that eah g(�i) (and onsequently the same for�i) is non singular and Ci, Ci+1 are not adjaent. This shows that C is a string of lozenges.In order to onlude, we have to show that up to onjugation G is ontained in the fundamental groupof a free Seifert piee. Let H be the stabilizer of C in �1(M), and let H0 be the maximal abelian subgroupof H (see lemma 5.2 whih shows that H0 has index � 2 in H). Then G � H0; hene we an assumeG = H0, ie. that G has index at most two in H.We stress the following very important fat: the above arguments show that for any orner  of Cthere are exatly 2 lozenges whih have orner . The remaining quadrants of  do NOT have lozengeswith orner . As a orollary, we obtain that the tree G(�) oinides with C. Similarly, G(�) = g(C). Inpartiular C = G(�) is a simpliial linear tree.Claim 1 � One an assume that the manifold M is orientable.Suppose that M is not orientable and let M2 be the orientation double over ofM , with lifted ow �2.Let ls be the set of stable leaves either interseting a lozenge in C or ontaining a orner orbit in C. Thisset is order isomorphi to the reals R. Similarly de�ne lu. One an use the arguments above to showthat ls; lu are invariant under g. This is beause every g(�i) is in the interior of a lozenge in C � so thearguments above show that if q is any orner of C, then g(q) is also in the interior of a lozenge in C. Thisimplies the g invariane of ls; lu. If g preserves the order in ls then the arguments above imply that g alsopreserves the order in lu: this is beause one an order ls; lu so that \high elements" in ls interset highelements in lu. Sine intersetion is preserved by the ation of g the statement follows. This implies thatg preserves orientation in O �= R2. If on the other hand g reverses order in ls, the same argument showsthat g also reverses order in lu and hene g again preserves orientation in O. Sine learly g preservesthe ow diretion it follows that in any ase g preserves orientation in M . Therefore g is an element of�1(M2).Similarly, one proves for every element a of G that if a reverses the orientation of ls, it also reversesthe orientation of lu: G is ontained in �1(M2). Now if P2 is a free Seifert piee whose fundamental groupontains G, then P = p(P2) is a free Seifert piee in M whose fundamental group ontains G. Hene wemay assume that M =M2 in the statement of the proposition. Claim 1 is proved.Assumption � From now on we an assume that M is orientable.Sine g preserves ls, there are two options: Case I) g preserves orientation in ls. Then there is k in Zso that g(�i) is always in the interior of Ck+i, Case II) g reverses orientation in ls. Then up to hoosinga new �0 and perhaps hanging i to �i, it follows that g(�i) is in the interior of C�i for all i.Claim 2 � There is an element h0 of G suh that the entralizer Z(h0) (in �1(M)) is not abelian.Let f denote a generator of the stabilizer in G of every �i, and let h be an element of G ating freelyon C: there is an integer p so that h(�i) = �i�p, h(Ci) = Ci�p.Assume �rst that we are in Case I). For every integer i, g(�pi) is ontained in Ck+pi, hene all thehig(�pi) lie in Ck. On the other hand, one an produe as in [Ba2℄ a f -invariant proper embedding of[0; 1℄�R into fM , so that f0; 1g �R maps into the orner orbits of Ck, (0; 1)�R maps into the interiorof the lozenge and transversely to e�. The image of this embedding projets to an embedded annulus Âin fM=hfi, whih itself projets to an immersed annulus A in M , transverse in its interior to the ow �.The key point is that A is ompat, hene the periodi orbit �(�) intersets A only a �nite number oftimes. It follows that �(�) = �(�0) = �(�) admits only �nitely many lifts in fM=hfi interseting Â. Inother words, there must be distint positive integers i; j and an integer q suh that:hig(�pi) = f q(hjg(�pj))Let �0 = �pj = h�j(�) so �pi = h�i(�) = hj�i(�0)Hene: highj�i(�0) = f qhjg(�0)



26 THIERRY BARBOT AND S�ERGIO R. FENLEYSo there is n for whih highj�i = f qhjgsn, where s is the stabilizer in �1(M) of �pj = �0. Let m = i� j.Sine f and h are both in G they ommute, so the last equation impliesg�1f�qhmg = snhmNotie that s preserves G(�) = C. This is beause C is a string of lozenges and also the very importantfat mentioned above. Hene s belongs to H. Let h0 = (snhm)2 and v = (f�qhm)2. Also sine m is notzero then h0 is not the identity. The equation above implies that g�1vg = h0. Sine H0 has index � 2 inH then h0 is in H0.We onlude that h0 is a non trivial element of G whose entralizer Z(h0) ontains G, but also g�1Gg.Now suppose we are in Case II) and we want to ahieve the same onlusion. This is similar to CaseI) and some details are left to the reader. Here g(�pi) is in C�pi and h�i(C�pi) = C0. As in ase I) thereare i; j positive and distint and q integer to thath�ig(�pi) = f qh�jg(�pj);So if �0 = �pj then h�ighj�i = f qh�jgsn, with s as above, leading �nally tog�1(f�qh�m)g = snhm; where m = i� j 6= 0Here take h0 = (snhm)2 non trivial in H0 and let v = (f�qh�m)2. So as before g�1vg = h0, so again h0is a non trivial element of H0 whose entralizer ontains G and also g�1Gg.Now assume by way of ontradition that Z(h0) is abelian. Aording to lemma 5.5, sine the hainC is not salloped, it is the unique G-invariant hain of lozenges. Sine g�1Gg is a subgroup of Z(h0), itommutes with G as Z(h0) is abelian. It follows that C is g�1Gg-invariant.But a similar argument shows that g�1(C) is the unique g�1Gg-invariant hain of lozenges. Heneg�1(C) = C. This is a ontradition sine � = g(�) is not a orner of C. This �nishes the proof of laim2. Sine Z(h0) is not abelian, lemma VI.1.5 of [Ja-Sh℄ shows that there is a Seifert �bered piee P of thetorus deomposition of M [Ja-Sh, Jo, Ja℄ so that Z(h0) � �1(P ). The hypothesis of lemma VI.1.5 of[Ja-Sh℄ require i) M is irreduible, ii) M is orientable, iii) M has an inompressible surfae. Conditioni) holds beause M has a pseudo-Anosov ow [Fe-Mo℄. Condition ii) holds beause of Claim 1. As forondition iii) we know that �1(M) has a Z2 subgroup. Gabai [Ga℄ proved that eitherM has an embeddedinompressible torus or M is a small Seifert �bered spae. But it M is Seifert �bered, then theorem 4.1shows that the �ber in M ats freely on O and we are done. So we an assume that ondition iii) alsoholds. An example of a non simple hain of lozenges in Seifert �bered spaes is the following: let � be ageodesi ow,  a non simple geodesi and T the torus assoiated to  with orresponding hain C. ThenC is not simple.In order to onlude, we just have to show that P is a free piee. Assume this is not the ase: let t bethe �ber of a Seifert �bration in P admitting �xed points in O.Claim 3 � For any � in �1(P ), �(C) = C.Sine G � �1(P ), for every a in G we have ata�1 = t�1. Let G0 be the subgroup of G made of elementsa2 where a is an arbitrary element of G. Then G0 is isomorphi to Z2 (it has index 4 in G) and G0 isontained in the entralizer Z(t). The hain C is the unique G0-invariant hain of lozenges (lemma 5.5).But sine G0 � Z(t), the hain t(C) is G0-invariant, hene equal to C. Then t has a �xed point whih is aorner of C and so G(t) � G(�).Consider now the ation of G0 on the tree G(t). Sine G(t) is ontained in a linear tree and G0 isisomorphi to Z2, there is an element b of G0 ating freely on G(t). Sine G(t) � G(�) = C and thelast one is a simpliial linear tree, it now follows that G(t) = C. Claim 3 follows sine G(t) is obviously�1(P )-invariant.The fundamental group �1(P ) ontains Z(h0) whih itself ontains g�1Gg: it follows that g�1Ggpreserves C. We have already observed, while proving that Z(h0) is not abelian (laim 2), that this is



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 27impossible. This ontradition proves that t ats freely on O. This �nishes the proof of proposition6.2. �De�nition 6.3. A Birkho� annulus is an immersed annulus in M so that eah boundary omponent isa periodi orbit of the ow, and suh that the interior of the annulus is transverse to the ow. If theinterior is embedded, then the annulus is alled weakly embedded.The interior of a Birkho� annulus is transverse to the ow, and hene is also transverse to the weakfoliations �s, �u. They therefore indue foliations on the annulus denoted by ls, lu. These foliations anboth be extended to the boundary of the annulus as foliations tangent to the boundary. A singular orbitwith p prongs (here again we use that for pseudo-Anosov ows p � 3) indues a singularity of ls (or lu)in the interior of the annulus having negative index 1� p=2. Sine the Euler harateristi of the annulusis zero, Poinar�e-Hopf index formula implies that the interior of the annulus intersets no singular orbits.De�nition 6.4. A Birkho� annulus is elementary if ls; lu; do not have losed leaves in the interior.Observe that in the de�nition of weakly embedded Birkho� annuli, we did not require the whole annulusto be embedded: it may wrap around eah periodi orbit in its boundary, an arbitrary (�nite) numberof times. Notie however that the boundary annot interset the interior, as otherwise points near theboundary would produe self intersetions in the interior.Let � : A ,!M be a Birkho� annulus (embedded or not). It lifts as an immersion ~� : ~A � R� [0; 1℄ ,!fM suh that R�f0g, and R�f1g are orbits of e�, and suh that the image by ~� of R�(0; 1) is transverseto e�: we all e� : eA ,! fM a Birkho� band. Moreover, this image is invariant under the ation of theyli subgroup ��(�1(A)) � Z. Finally, if � : A ,! M is elementary, every orbit of fM intersets theimage of the interior in at most one point, and the projetion in O is a ��(�1(A))-invariant lozenge ([Ba2,Proposition 5.1℄).Conversely, and as we already mentioned in the proof of Proposition 6.2, Claim 2, every lozenge in Oinvariant by a yli subgroup of �1(M) is the projetion in O of an embedded Birkho� band in fM; thatprojets in M to an elementary Birkho� annulus. Moreover, if the lozenge is simple, ie. if its interiorontains no iterate of its orner, then the Birkho� annulus an be seleted weakly embedded ([Ba2,Theorem D℄).More generally, let C be a string of lozenges invariant under a subgroup G of �1(M) isomorphi toZ2. Then, there is a yli subgroup H of G �xing every lozenge in C. We lift all the lozenges in fM ,so that the lift of every two suessive lozenges share a ommon H-invariant orbit. This an be done ina G-equivariant way. This lift projets in the quotient of fM by G to an embedded torus and this torusprojets to an immersed torus in M whih is an union of elementary Birkho� annuli.De�nition 6.5. A Birkho� torus is an immersion � : T !M of a torus T , suh that T is an union ofdistint annuli Ai for whih every restrition � : Ai !M is an elementary Birkho� annulus.Similarly, a Birkho�-Klein bottle is an immersion of the Klein bottle whose image is an union ofelementary Birkho� annuli.Notie the restrition to elementary Birkho� annuli.In the sequel, a losed Birkho� surfae means a Birkho� torus or a Birkho�-Klein bottle. A Birkho�surfae is an union of Birkho� annuli. It ontains a �nite number of periodi orbits of �, alled thetangent orbits, and is transverse to � outside these periodi orbits.De�nition 6.6. A losed Birkho� surfae � : S ! M is alled weakly embedded if the Birkho� annuli� : Ai !M are all weakly embedded, with interiors two-by-two disjoint.If moreover � : S !M is an embedding, then the losed Birkho� surfae is embedded.As explained above, the ondition that interiors are embedded and two by two disjoint implies thatnone of the tangent periodi orbits of �(S) intersets any interior of the annuli.Proposition 6.7. Let C be a string of lozenges in O invariant invariant under a subgroup G of �1(M)isomorphi to Z2 or �1(K). Then C is the projetion in O of the lift to fM of a losed Birkho� surfae� : S ! M . More preisely, � : S ! M is the omposition p̂ Æ �̂ of an embbeding �̂ : S ! M and theovering map p̂ : M !M , where M is the quotient of fM by G.



28 THIERRY BARBOT AND S�ERGIO R. FENLEYMoreover, if C is simple, ie. if no element of �1(M) maps a orner of C in the interior of a lozenge ofC, then the losed Birkho� surfae an be seleted weakly embedded.Proof. The �rst part has been explained before in the ase where G is abelian, and is easily generalizedto the ase G � �1(K): the matter is to �nd a fundamental domain of the ation of G on the set oflozenges in C, to lift eah lozenge in this fundamental domain to a Birkho� band, and then to lift allother lozenges in C as Birkho� bands in a G-equivariant way.Assume now that the hain is simple. Every lozenge in it is simple. Then the losed Birkho� surfae isan union of weakly embedded Birkho� annuli, whose interiors are all disjoint from the tangent periodiorbits. Sine the hain is simple, we an prove, using the tehnis in [Ba2, x 7℄ that through some isotopyalong the ow, the interiors of the elementary annuli an be made disjoint from eah other, that is, theBirkho� surfae is weakly embedded. �All of these results in [Ba2℄ were stated and proved for smooth Anosov ows. However, exatly thesame tehniques work for general pseudo-Anosov ows.More generally, using the results above, then aording to lemma 5.3:Lemma 6.8. Let G be a subgroup of �1(M) isomorphi to Z2. Suppose that the pseudo-Anosov ow � isnot produt. Then G is the image ��(�1(T )) of the fundamental group of a Birkho� torus � : T !M .Observe that weakly embedded losed Birkho� surfaes may fail to be embedded for various reasons:I) every Birkho� subannulus may be non-embedded, wrapping around one or both of the tangentperiodi orbit in its boundary. It means that some element g of �1(M) (orresponding to the periodiorbit) is not in G, but g preserves a orner in C (where C is the G �= Z2 invariant hain of lozenges).II) an element of �1(M) may map a orner � of C to another orner � of C whih is not in the G-orbitof �, ie. a tangent periodi orbit an be the boundary of more than two Birkho� subannuli. This is thease in the Bonatti-Langevin example ([Bo-La℄).III) even an element g of �1(M) not in G ould map a lozenge in C to another lozenge. This orrespondsat the Birkho� surfae level to the existene to two di�erent elementary Birkho� annuli sharing the sameboundary omponents and homotopi one to the other along the orbits of �. This situation typiallyarises in Proposition 6.7 if G is a �nite index subgroup of a bigger group preserving the hain C.Remark: Let us �rst stress out that possibility I) an ertainly happen. For example let � be thegeodesi ow in the unit tangent bundle of an orientable hyperboli surfae and let T be the set of unitvetors along a simple losed geodesi. Let  be one losed orbit in T . Put oordinates in the torus�N() so that (0; 1) is the meridian and (1; 0) is the trae of say the stable foliation. The onstrutionhere is more general, the key fat used is that the trae of the stable foliation intersets the meridianone. Do Dehn surgery on  so that the new meridian is (1; n) where n is an integer > 1. Isotoping theold torus slightly to a torus T 0 avoiding  we see that it survives the Dehn surgery. After Dehn surgeryT 0 is homotopi to a Birkho� torus, with Birkho� annuli whih wrap n times around the orbit . Sineit is a Birkho� torus, it is �1-injetive and so is T 0. This gives the desired examples. In fat the surgeryproedure an be done by blowing up the orbit  into a boundary torus and then blowing bak usingthe new meridian information [Fr℄. Therefore the new Birkho� torus an be taken as the result of theoriginal Birkho� torus under this proedure.A Birkho� torus is �1-injetive beause of the following: a losed urve is homotopi to either a losedorbit in the Birkho� torus or to a urve transverse to say the stable foliation in the torus. In the �rstase the urve represents a power of a losed orbit, whih is not null homotopi [Fe-Mo℄. In the seondase, as it is transverse to the stable foliation, it is also not null homotopi [Fe3, Ga-Oe℄.The notion of weakly embedded tori is suÆient to analyse the relationship between (possible) singularorbits of the ow and the torus deomposition of M .Proposition 6.9. Let � be a singular orbit of a pseudo-Anosov ow � in M . Then � is homotopi intoa piee of the torus deomposition of M .Remarks � 1) Clearly this is not true for regular periodi orbits: for example there are (non Seifert)graph manifolds with Anosov ows whih are transitive � for example the ows onstruted by Handeland Thurston [Ha-Th℄, whih are atually volume preserving. Then there are dense orbits and hene



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 29periodi orbits whih are not homotopi into any Seifert �bered piee. 2) If M is atoroidal, the lemmais vauous. 3) Notie that � may be homotopi into several piees � for example, a priori there an beannuli rossing through atoroidal piees.Proof. Let T1; :::; Ta be the utting tori in a torus deomposition ofM � with omplementary omponentsP1; :::; Pb, whih are either Seifert �bered or atoroidal. By a small isotopy assume that � is transverse tothe olletion fTig. Fix a lift e� to fM and let g in �1(M) be assoiated to � so that g(e�) = e�. Considerthe olletion of all lifts of the fTig.Case 1 � Suppose that e� eventually stops interseting lifts of the fTig.Sine � is losed, this shows that � is ontained in a omponent of the omplement of fTig.Case 2 � Suppose that e� keeps interseting a �xed lift eT in points pk = e�tk(p0) where tk onverges toin�nity.Let V be the tree, whose verties are the omponents fM� (lifts of fTig) and edges are the lifts of fTig.Then �1(M) ats on V .By transversality, the intersetion of � and fTig is �nite. Up to subsequene we may assume that �(pk)is a single point. The projetion to M of e�[tk;tk0 ℄(p0) is the orbit � being traversed a number n of times.This shows that �n is freely homotopi into some Ti. It follows that gn preserves an edge in V and sodoes not at freely on V . Therefore g also does not at freely on V . There are two options: If g ats asan inversion in the tree V , then it �xes an edge assoiated to a lifted torus eT� and then � is homotopiinto the torus T� = �( eT�). Then we are done. Otherwise g �xes a vertex in V and hene � is homotopiinto a piee of the Seifert �bered deomposition.Case 3 � e� intersets distint lifts eT j; j 2N of elements in fTig.By the proof of ase 2, it follows that the assumption of ase 2 does not hold. Therefore e� eventuallystops interseting any single lift eT of the fTig. In addition if distane between e� and any single lift eTdoes not onverge to in�nity as time goes to in�nity then: up to subsequene we may may assume thereare pk in e� with d(pk; eT ) bounded. We may then assume that �(pk) onverges in M and up to a smalladjustment and subsequene we may assume that �(pk) is onstant. In addition pk is a bounded distanefrom zk in eT . Up to another subsequene assume that �(zk) onverges in M and sine �(T ) is ompat,we may assume that �(zk) is onstant. The projetion of e�[tk;tk0 ℄ is � being traversed n times. Theprojetion of an ar in eT from zk to zk0 is a losed urve in T . Up to another subsequene assume thatthe geodesi ars from zk to pk have images in M whih are very lose. This produes a free homotopyfrom �n and a losed urve in �(T ). Now the proof is exatly as in Case 2.Hene assume that d(pk; eT ) onverges to in�nity for any �xed lift eT . If e� keeps returning to the sameomponent of fM� (lifts of fTig), then some power of � preserves this omponent and an argument as inase 2 �nishes the proof.Finally we an assume that e� rosses eT j for eah j and eventually swithes from one omponent offM � eT j to the other. There is a smallest separation distane a0 > 0 between any two lifts of fTig.Homotope eah Ti to a Birkho� Torus, union of Birkho� annuli fBmg and lift these homotopies to fM .Eah point is moved at most a onstant a1. Fix j and let j0 vary. The fat that d( eT j ; eT j0) goes to in�nitymeans that e� has to ross some lift eBm of some Birkho� annulus Bm and annot be ontained in eBm.But this is a ontradition beause the orbits interseting the interior of a Birkho� annulus are neversingular. This �nishes the proof of lemma 6.9. �Theorem 6.10. Suppose that M is orientable and that � is not produt. Let T be an embedded, inom-pressible torus in M . Then either 1) T is isotopi to an embedded Birkho� torus, or 2) T is homotopi toa weakly embedded Birkho� torus and ontained in a periodi Seifert �bered piee, or 3) T is isotopi tothe boundary of the tubular neighborhood of an embedded Birkho�-Klein bottle ontained in a free Seifertpiee.Proof. Using proposition 6.7, let �0 : T ! M be an immersed Birkho� torus homotopi to T and letT� = �0(T ). Let C be the hain of lozenges invariant under �1(T ) and assoiated with the torus T � (a



30 THIERRY BARBOT AND S�ERGIO R. FENLEYpriori there ould be two �1(T )-invariant hains, if they are salloped). The proof of this proposition hassimilarities with that of proposition 6.2, but notie that some of the onlusions are opposite.Step 1 � Claim: C is simple.Suppose this is not true. Then there is a orner orbit � in C and f in �1(M) with f(�) = � intersetingthe interior of a lozenge in C. Let g be a generator of the isotropy group of �. Let eT� be the lift of T� to fMwhih is invariant under �1(T ). Similarly let eT be the lift of T invariant under �1(T ). Then � intersetseT� in a single point p. Let �+, �� be the two rays of � de�ned by p. Notie that eT� is embedded andseparates fM . Hene �+ and �� are in distint omponents of fM � eT�. In addition eT also separates fM .Assume that �+ and �� are not at bounded distane from eT�: for any R > 0, there are points q�R , q+Rin ��, �+, eah at distane > R from eT�. But T and T� are freely homotopi: there is some R0 suh thateT is ontained in the R0-neighborhood of eT�: for any R > 2R0, any path joining a point q� to a pointq+ suh that d(q�; q�R) < R must interset eT .On the other hand, the losed orbit �(�) is homotopi in M to a urve in T . But T is embedded andM is orientable, so T is two sided and �(�) is homotopi to a urve disjoint from T (it is ruial that Tis embedded here!). Lift this to a homotopy from � to a urve �1 disjoint from eT . The homotopies fromfrom � to �1 move points a bounded distane. Hene, there is a positive number r suh that for everyR > 0, there are points m�R on �1 suh that d(m�R; q�R) < r. Take R > 2R0, R > r: aording to theabove, the segment in �1 between m�R and m+R must interset eT . Contradition.Therefore, one of the two rays (say �+) is at bounded distane � a1 from eT�. Consider a sequene ofpoints pi = gni(p) in �+ whih all projet to the same point �(p1) in M .Let qi in eT� a distane � a1 from pi. Up to subsequene assume that �(qi) onverges in M . Sine T�is ompat, we an assume that �(qi) is onstant. Now up to another subsequene assume that there aregeodesi segments ui in fM from pi to qi so that �(ui) onverges in M . Again by small adjustments wean assume that �(ui) is onstant for i big. Consider the following losed urve in fM : a segment in �from pi to pk, k > i, then the segment uk, then a segment in eT� from qk to qi and �nally a segment fromqi to pi along ui. Sine �(ui) = �(uk) this projets to a free homotopy from a power of the loop �(�) toa losed urve in T�. In other words, gn(qi) = qk for some n in Z. Hene for some n di�erent from 0, gnleaves eT� invariant.But this implies that gn leaves C invariant. Sine gn(�) = �, then gn leaves invariant the lozenge C ofC ontaining � in its interior and gn is not the identity. But then gn does not leave invariant any orbitin the interior of C � ontradition to it leaving � invariant. This proves the laim.Let G = �1(T ). Aording to proposition 6.7 we an hoose the Birkho� torus �0 : T ! M weaklyembedded. As we already observed, if this Birkho� torus is not embedded, some element g of the set(�1(M)� �1(T )) maps a orner of C to a orner of C. Our strategy is to enlarge G to a bigger subgroupof �1(M), ontaining all these elements.Let G denote the tree G(�) where � is a orner in C. The hain C orresponds to a G-invariant line inG. Let H be the subset of �1(M) of those h suh that there is a vertex � of G suh that h(�) is also avertex of G. In partiular G(�) = G(�) = G(h(�)). Then, for every h in H:h(G(�)) = h(G(�)) = G(h(�)) = G(�);hene H is the stabilizer of G. In partiular H is a subgroup of �1(M).Let H0 the subgroup of H ating trivially on G: H0 is a yli normal subgroup of H, generated by anelement h0. Let H 0 be the entralizer of H0 (or h0) in H: it is a normal subgroup of H of index at most2.Step 2 � The ase where H 0 is abelian.Here H 0 �= Z2. Sine G \H 0 has �nite index in H 0 whih is abelian, it follows that C is H 0-invariant(Corollary 5.6 ). Now sineH 0 is normal inH, the same result shows that C isH-invariant. By Lemma 5.2,H is isomorphi to Z2 or �1(K) � sine it ontains a Z2. This is the ruial onlusion in this ase.



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 31Apply Proposition 6.7 to H using that C is simple: there is a weakly embedded losed Birkho� surfae�1 : S !M with (�1)�(�1(S)) = H. It follows from the disussion following lemma 6.8 that �1 : S !Mis an embedding, sine any element of �1(M) mapping a orner of C to a orner of C lies in H.Suppose �rst that S is a torus, that is, H is isomorphi to Z2. If S is one sided, then M is nonorientable, ontrary to hypothesis. Therefore there is a neighborhood N of S homeomorphi to S� [0; 1℄.As the initial embedded torus T �M is homotopi into N , it now follows from lassial 3-dim topology[He℄ that T is homotopi and in fat isotopi to the embedded Birkho� torus �1(S). In other words, Tis isotopi to an embedded Birkho� torus: we are done (ase 1) of the statement of the proposition).Consider now the ase where S is the Klein bottle. Sine M is oriented, �1(S) admits a tubularneighborhood U in M di�eomorphi to the non-trivial line bundle over K. The boundary of U is anembedded torus T 0. As above T is homotopi into U and has to be homotopi and in fat isotopi to T 0.Now observe that U is a Seifert submanifold whih is not a produt of surfae ross interval. It followsthat U is ontained in a Seifert piee P of the torus deomposition ofM (that is S is not in the boundaryof two interseting atoroidal/hyperboli piees). If P is periodi then proposition 6.7 implies that T ishomotopi to a weakly embedded Birkho� torus � this is ase 2) of the statement of the proposition. IfP is not periodi then we are in ase 3). We are done in this ase.Step 3 � The ase where H 0 is not abelian.Sine H 0, ontained in the entralizer of H0, is not abelian, lemma VI.1.5 of [Ja-Sh℄ shows that there isa Seifert �bered piee P of the torus deomposition of M so that H 0 � �1(P ). Let t be a representativeof the regular �bers of �1(T ). Then the entralizer Z(t) of t in �1(P ) (the harateristi subgroup) hasindex at most 2 in �1(P ). Sine H 0 � �1(P ), the entralizer Z(t) ontains a �nite index subgroup G00 ofG. Hene, aording to orollary 5.6, t preserves the hain C: in partiular t belongs to H.Assume that P is periodi, ie. that t an be seleted ating non-freely on O. Then, aording toproposition 6.7, T is homotopi to a weakly embedded Birkho� torus, ontained (up to homotopy) in P .We are in ase 2) of the proposition. Notie that in general there may be identi�ations in the boundaryorbits as already desribed. A priori any of problems I), II) or III) desribed after lemma 6.8 may our.The last ase to onsider is the ase where t ats freely on O. Then C represents the axis of t in thetree G. When t ats freely it may not leave invariant a unique hain of lozenges, for example as happensin the geodesi ow ase. However the key fat here is that H preserves G and then C is the unique axisof t in G. Sine H 0 is ontained in �1(P ), some �nite index normal subgroup H 00 of H is ontained inZ(t). For any g in H 00, then tg(C) = g(C) so by the uniqueness above, g(C) = C, or C is preserved by H 00.Sine H 00 is normal in H then again it follows that H preserves C. Now we onlude almost as in step 2:if H is isomorphi to Z2 then H 0 is abelian, ontradition to assumption in ase 3). If H is isomorphito �1(K) then T is isotopi to the boundary of a tubular neighborhood of an embedded Birkho�-Kleinbottle ontained in P , whih an be periodi (ase 2) or free (ase 3)). �Remark: We remark that tori homotopi to a double over of a Birkho�-Klein bottle appearing in step2 and 3 atually our in the free ase and in the periodi ase too. The periodi ase ours for examplein the Bonatti-Langevin ow [Bo-La℄. An example of the free ase was desribed in the remark at theend of setion 4.Remark: The hypothesis of orientability for M in proposition 6.10 ours beause several results fortorus deompositions and maps of Seifert spaes into manifolds are only learly stated in the literaturefor orientable manifolds, for example [Ja-Sh℄.7. Periodi Seifert �bered pieesThis setion is devoted to the proof of theorem F � in partiular we assume that M is orientable. Let Pbe a (non trivial) Seifert �bered piee of a 3-manifold M with a pseudo-Anosov ow �. We will analysehere only the ase that the regular �ber h0 in �1(P ) does not at freely on O, that is P is a periodipiee. By theorem 4.1 this implies that P is not all of M . We start by onstruting a anonial tree oflozenges assoiated to P . First onsider the ation on O: there is � in O with h0(�) = �. Let T be thefat tree G(�). Given g in �1(P ), then gh0g�1 = h�10 so h0g(�) = g(�) and g(�) is in G(�). It follows



32 THIERRY BARBOT AND S�ERGIO R. FENLEYthat T = G(�) is a �1(P )-invariant tree. The kernel of the �1(P )-ation on T is a normal yli subgroupH0 of �1(M), whih ontains a non-trivial power hn0 of h0 (f. proposition 2.16).Notie that there is at least a Z� Z in �1(P ) so there are elements in �1(P ) ating freely on T . Wenow go through several steps to produe a normal form of the ow in P .Pruning the tree TWe �rst onstrut a subtree of T whih is still �1(P )-invariant and has no verties of valene one.Given g in �1(P ) ating freely on T let A(g) be the axis of g in T . Let now T 0 be the union of all axesA(g), for all g in �1(P ) ating freely on O. Clearly T 0 is �1(P ) invariant and has no verties of valeneone, sine they are all in axes. All that is left to prove is that T 0 is onneted and hene a subtree.Let 0; 1 in T 0 so that there are f; g in �1(P ) with 0 in A(f), 1 in A(g). If A(f); A(g) interset,then there is a path in T 0 from 0 to 1. Suppose then that they do not interset. There is a well de�nedbridge in T from A(f) to A(g) denoted by [x; y℄ � it is a losed segment interseting A(f) only in theextremity x and interseting A(g) only in y. Let z = f�1(x). Consider the element gf whih is in �1(P ).Then x separates z from y and so separates z from gf(x) whih is in gA(f). Also gf(z) = g(x) separatesx from gf(x) whih is in gA(f). It follows that z; x; gf(z) and gf(x) are all distint and linearly orderedin a segment ontained in T . Hene gf ats freely on T and x; gf(x) are in A(gf). In partiular x andy are in A(gf) ontained in T 0 so there is a path in T 0 from 0 to 1. This shows that T 0 is onneted.Weakly embedded Birkho� annuliSuppose there is a vertex q of T 0 and an element g of �1(M) (not neessarily in �1(P )) and a lozenge Cin T 0 with g(q) interseting the interior of C. The lozenge C is part of an axis A(f) for some f in �1(P ).Sine g(q) intersets C, then a proof exatly as in proposition 6.2 shows that T 0 has to be a string oflozenges. Then f; h2n0 generate a Z� Z subgroup of �1(M) preserving this string of lozenges. Moreover,q is a vertex of T 0 and g(q) is in the interior of C. Proposition 6.2 again implies that the piee P has tobe a free piee � ontrary to assumption in this ase.We onlude that eah lozenge in T 0 orresponds to a weakly embedded elementary Birkho� annulusin M . We want to show that the union of the Birkho� annuli an be adjusted to be embedded in theinteriors.Weakly embedded union of Birkho� annuliAs in the proof of Proposition 6.10, we onsider the stabilizer H in �1(M) of T 0. The ation of H onT 0 is not faithful, sine the kernel ontains a non trivial group. Therefore, H ontains an in�nite ylinormal subgroup, but also ontains �1(P ). It follows that H = �1(P ), sine P is a maximal Seifert piee.In addition the same arguments show that the stabilizer in �1(M) of T is also �1(P ).Suppose that g in �1(M) maps a vertex � of T 0 to a vertex of T 0. Hene it also sends a vertex of Tto a vertex of T . In that ase we already observed during the proof of proposition 6.10 that g stabilizesT and hene belongs to �1(P ).Consider the quotient of the tree T 0 by �1(P ). It is a graph, that we denote by A. Sine it is a graph,the fundamental group of A is a free group, and sine �1(P ) is �nitely generated, then the fundamentalgroup of A has �nite rank. Moreover, by onstrution, A does not ontain an in�nite ray (sine everyelement of T 0 lies on the axis of some element of �1(P ) ating freely on T 0). It follows that A is a �nitegraph.Consider a fundamental domain of the ation of �1(P ) on T 0. We lift every lozenge of this fundamentaldomain to a Birkho� band in fM , and then lift all other lozenges in T 0 in a �1(P )-equivariant way. Itprojets to an union of weakly embedded Birkho� annuli in M . One more, we an then use ut andpaste tehniques of [Ba2℄ to have the union of the Birkho� annuli to be embedded in the interior of theannuli � with possible identi�ations in the boundary orbits.Flow adapted neighborhoods of periodi pieesLet B be the union of the weakly embedded elementary Birkho� annuli as in the previous item. Let Ube the neighborhood of B obtained by taking a tubular neighborhood of every periodi orbit ontained inB (the \tangent periodi orbits"), attahing to them tubular neighborhoods of the elementary Birkho�annuli. Topologially, this orresponds to the following: start with a �nite olletion of solid tori and



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 33attah several handles di�eomorphi to [�1; 1℄ � [�1; 1℄ � S1, where in eah handle, f0g � [�1; 1℄ � S1is ontained in the orresponding weakly embedded Birkho� annulus. Handles attahed to a given solidtorus (orresponding to one of the tangent periodi orbits) are pairwise disjoint. One an perform aDehn surgery on U along tangent periodi orbits so that now the handles are attahed along longitudesof the solid tori: we get a 3-manifold U 0 whih is learly a irle bundle over a surfae with boundary �.Moreover, � retrats to the graph A:It follows that U is di�eomorphi to a Seifert manifold, obtained by Dehn surgeries around �bers inU 0 above verties of A. More preisely, there is a Seifert �bration � : U ! �� where �� is an orbifold,whose singularities orrespond to verties of A; singular �bers are tangent periodi orbits where attahedBirkho� annuli wrap non trivially.Now observe that U is the projetion of a \tubular neighborhood" in fM of Birkho� bands, whih ishomeomorphi to the produt of the tree T 0 by R. This neighborhood is therefore simply onneted,and U is an inompressible Seifert submanifold with fundamental group isomorphi to P . Therefore, Pis isotopi to U . This ahieves the proof of Theorem F.Remark � The only periodi orbits ontained in U orrespond to the projetions of the verties of T 0.Here is why: The interiors of the �nitely many Birkho� annuli in question are transverse to � and soorbits interseting these interiors exit U if U is suÆiently small. The other orbits are in the solid torineighborhoods. If these neighborhoods are small enough then the only orbits entirely ontained in themare the ore orbits.In partiular a singular orbit  annot interset the interior of the Birkho� annuli, hene either  is oneof the periodi orbits in U or an be hosen disjoint from U if U is small. Previously we had proved thata singular orbit is homotopi into a piee of the torus deomposition. In a graph manifold, if a singularorbit is homotopi into a free piee Z, we onjeture that it must be homotopi into the boundary of thepiee Z.8. New lasses of examples of pseudo-Anosov ows in graph manifoldsIn setion 4 we desribed some new examples of (one prong) pseudo-Anosov ows. In this setion wewill desribe two new lasses of examples, whih are extremely interesting: The �rst lass onsists ofatual pseudo-Anosov ows. The examples in the seond lass, whih is a muh larger lass, may haveone prongs.1) Consider the lass of examples 1) of setion 4. Eah example had a 2-fold branhed over whih is thegeodesi ow in T1S, where S is losed, hyperboli and has a reetion along �nitely many geodesis.For simpliity we assume here that S has a single losed geodesi � of symmetry. Let N be the quotientmanifold. In N , there is a quotient annulus C whih is the branhed quotient of the unit tangent bundleof �. Now for any integer n > 0 we an do the n-fold branhed over of N along C. If n = 2 this reoversthe original geodesi ow. Otherwise the boundary of C lifts to 2 losed orbits whih are n-prongs. LetMn be this n-fold over and C 0 be the lift of the annulus C. The set C 0 utsMn into Seifert �bered piees� eah a opy of T1S0, where S0 is one omponent of S ut along � (notie both omponents of S � �are isometri by the symmetry along �). Eah of these omponents is a omponent (up to isotopy) of thetorus deomposition of Mn. In eah of these omponents the �ber ats freely on the orbit spae, so theseare free piees. There is one additional Seifert omponent whih is a small neighborhood of C 0. There isa planar graph X whih has 2 verties (orresponding to the 2 diretions on the geodesi �) and n edgesfrom one vertex to the other. The set C 0 is homeomorphi to X � S1. This is a Seifert �bered piee ofMn, where the �ber orresponds to a periodi orbit � this is a periodi piee.This highlights an important fat: there are examples of graph manifoldsM supporting pseudo-Anosovow �, so that in the torus deomposition of M there are periodi piees glued to free piees.2) The next lass of examples will be on graph manifolds where all piees are periodi. It is muh moreinvolved and muh more interesting.



34 THIERRY BARBOT AND S�ERGIO R. FENLEYIn the previous setion we proved that the periodi Seifert piees an be obtained as neighborhoods ofunions of Birkho� annuli. Here we will introdue standard models for ertain neighborhoods of Birkho�annuli and then use them to produe many examples.Model of neighborhood of an embedded Birkho� annulusLet I = [��=2; �=2℄. Let N = I � S1 � I with oordinates (x; y; z). Think of S1 as [0; 1℄=0 � 1.Convention: the inreasing or positive diretion in S1 orresponds to inreasing in [0; 1℄.For every positive real number �, we onsider the C1 vetor �eld X� de�ned by:_x = 0_y = � sin(x) os2(z)_z = os2(x) + sin2(z) sin2(x)Let  � be the loal ow in N generated by X�. It has the following properties:� it preserves the �bration by irles (x; y; z) 7! (x; z).� There are only 2 losed orbits:�1 = f��=2g � S1 � f0g; �2 = f�=2g � S1 � f0g:In �1 the ow is dereasing the y oordinate (in the ow forward diretion) and in �2 the ow isinreasing the y oordinate. Hene as oriented orbits, �1 is freely homotopi in N to (�2)�1.� The ow is inoming and perpendiular to the boundary I � S1 � f��=2g and outgoing andperpendiular to I � S1 � f�=2g. The ow is tangent to �I � S1 � I.� The annuli x = onstant are ow saturated.� The orbits in f��=2g � S1 � f��=2g enter N and spiral towards �1 in the negative y diretion.Hene in N , W s(�1) = f��=2g�S1� [��=2; 0℄. In f��=2g�S1� (0; �=2℄ the orbits spiral (owbakwards) to �1 in the positive y diretion, so W u(�1) = f��=2g � S1 � [0; �=2℄. We have asimilar behavior (with the y oordinate inreasing when moving ow forward) in f�=2g �S1 � I.� The ow is invariant under the any rotation in the y oordinate: (x; y; z) ! (x; y + a; z) wherethe y oordinate is mod 1. The ow is invariant under (x; y; z) ! (�x; �y (mod 1); z). This issymmetry (I).� Let F0 = (��=2; �=2) � S1 � f��=2g; F1 = (��=2; �=2) � S1 � f�=2g, both parametrized by thex; y oordinates. In (��=2; �=2) � S1 � I all orbits enter N in F0 and exit N in F1. An easyomputation shows that the variation of time spent between the entrane and the exit is:�t = �j os(x) jThere is an indued homeomorphism f : F0 ! F1 given by the exit point in the x; y oordinates.It has the form f(x; y) = (x; y + a(x));where the funtion a(x) is C1 and depends only on x. It an also be omputed:a(x) = ��[tan(x)� tan(x=2)℄Observe that a(0) = 0. In fat, the orbits in the enter annulus have y oordinate onstant.Also, a(x) onverges to minus in�nity when x onverges to ��=2 and a(x) onverges to in�nitywhen x onverges to �=2. In addition, a(�x) = �a(x).Finally: a0(x) = ��[12 + (tan2(x)� 12 tan2(x=2)℄ � ��2By the formula above, the map f is a non linear shearing in the y diretion. The bigger the � thestronger the shearing.
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y

x

zFigure 4: Figure 4: The loal ow (N; �). The top and bottom are identi�ed, that is, the vertial oordinate y isde�ned modulo 1.One anonial Birkho� annulus assoiated to the blok N is B = [��=2; �=2℄ � S1 � 0. If �1; �2are traversed in the positive ow diretion then B is a free homotopy from �1 to (�2)�1. The ow istransverse to B outside of �1; �2. The formulas above are onvenient and give expliit models, but theyare not essential: Up to topologial onjugay any embedded Birkho� annulus has a neighborhood withthis desription.Glueing the tangential boundaries of the bloksObserve that the same formula de�nes a vetor �eld ~X� on ~N := R�S1�I, whih is 2�-periodi on theoordinate x. Atually, due to the invariane of X� under the symetry (I), we see that the transformation�(x; y; z) = (x+�;�y; z) preserves ~X�. The quotient of ~N by the yli group generated by � is a Seifertmanifold N1, homeomorphi to the produt K � I, where K is the Klein bottle. The indued loal owhas a single 1-prong singular orbit; ~N has two boundary omponents, one whih is a inoming Kleinbottle, the other an outgoing Klein bottle.More generally, we an take the quotient by the group generated by �k where k is a positive integer.We get a Seifert 3-manifold Pk, di�eomorphi to K � I or T2 � I (aording to the parity of k), withone inoming boundary omponent and one outgoing omponent, ontaining exatly k singular 1-prongperiodi orbits.Now, more generally, we an glue several opies of (N;X�) in a muh more involved way. The blueprintenoding suh a glueing will be a �nite fat graph X; ie. a graph embedded in a surfae � with boundary,suh that X is a retrat of � � here, we do not require that � be oriented.We moreover require the following onditions:Condition (I): the valene of every vertex is an even number.Condition (II): the set of boundary omponents of � an be partitioned in two subsets so that for everyedge e of X, the two sides of e in � lie in di�erent subset of this partition.Use as labels \inoming" and \outgoing" for this partition of the set of boundary omponents of �:Now every edge has an inoming side, and an outgoing side.Given suh information we onstrut a ow in a 3-manifold. Assoiate to every edge e of X a opy Neof N as above. Then, every inoming boundary omponent  of � orresponds to a yli sequene ofedges (e1; e2; :::; ek). We glue all the assoiated Nei along the stable manifolds f��=2g � S1 � [��=2; 0)in the same yli order; more preisely, we map every point of oordinate (�=2; y; z) (z < 0) in Neito the point of oordinate (��=2;�y; z) in the following opy N(ei+1). The result, for eah boundaryomponent , is a Seifert 3-manifold (with boundary and orner). The Seifert 3-manifold has interiordi�eomorphi to Pk with the unstable manifolds f��=2g�S1� [��=2; 0℄ and the inoming and outgoingboundaries removed. It has an inoming boundary omponent, obtained by glueing opies of losures ofthe inoming annulus F0 for eah Nei . This boundary omponent is di�eomorphi to the torus if k is



36 THIERRY BARBOT AND S�ERGIO R. FENLEYeven and to the Klein bottle if k is odd. This manifold also has \outgoing" annular omponents. Observethat up to di�eomorphism, the result depends only on the yli order (e1; e2; :::; ek).Next we do the similar glueing along outgoing boundary omponents, but now glueing the opiesof N along the unstable annuli. The result is a Seifert manifold N(X), with inoming and outgoingomponents, but no tangential boundary omponents. Moreover, to every vertex v of X orresponds atubular neighborhood of the periodi orbit whih is homeomorphi to a solid torus. The ow is obviouslyhomeomorphi to a p-branhed over of a tubular neighborhood of the singular orbit in P1 � here 2p isthe valene of v. This is a ompat Seifert manifold. Observe that N(X) is orientable if and only if all kare even.By onstrution, N(X) is equipped with a vetor �eld X� for every � > 0. The boundary of N(X) isan union of inoming omponents and outgoing omponents, whih are tori or Klein bottles. Due to the�nal proess in the onstrution, this vetor �eld is not smooth along the vertial orbits orresponding tothe verties of X; exept if the valene of the vertex is 2 or 4, a speial situation where we an performthe glueing so that the vetor �eld is smooth in the neighborhood of the assoiated singular orbit. Inpartiular, if all verties have valene 4, then there is no singular orbit.This is exatly the ase in the Bonatti-Langevin [Bo-La℄ example, where the fat tree X is a �gure eight(with one vertex) embedded in a one-puntured M�obius strip.Remark: Notie that N(X) is a irle bundle over the surfae �, with �bers the vertial irles withonstant x, z omponents. Moreover, the loal ow generated by X� preserves this �bration, hene thereis an indued vetor �eld �X� on �. The vetor �eld �X� is Morse-Smale. Its singularities are the vertiesof X; it is transverse to ��. There is three types of non-singular trajetories of �X�:{ trajetories in the stable line of a singularity, entering �,{ trajetories in the unstable line of a singularity, exiting �,{ trajetories joining two boundary omponents.Observe that the data (�;X) is equivalent to the data (�; �X�) up to isotopy.Glueing the transverse boundary omponentsThe next step is to glue outgoing boundary omponents to inoming boundary omponents. Observethat these omponents are naturally isomorphi to boundary omponents in the manifolds Nk, and thusadmit natural oordinates (x; y).Let T 0 be the union of the inoming boundary omponents and let T be the union of the outgoingboundary omponents. Let � denote the line �eld in T or T 0 assoiated to x being onstant. In orderto perform the glueing, we have one obvious ondition: there must be the same number of outgoing andinoming tori, and the same number of outgoing and inoming Klein bottles!Under this ondition, we an selet a map A : T ! T 0 whih is linear in the x; y-oordinates oneah omponent. The only assumption we will have is that A does not preserve any of the line �elds �.Equivalently A does not send any unstable manifold of the periodi orbits to a urve isotopi into thestable manifold of a periodi orbit.Given this ondition we �rst show that there are no omponents of T whih are Klein bottles. Supposethere is one suh omponent denoted by K1 to be glued to a omponent K2 of T 0. Notie that upto isotopy there are only two foliations by irles of the Klein bottle K. One foliation has two irleswhih are orientation reversing and the nearby leaves over suh a leaf two to one. The leaf spae isa 1-dim orbifold, with two \boundary" orbifold points of order 2. This is type I. The other foliationomes from a produt foliation by irles of the annulus and glueing the boundaries by an orientationreversing homeomorphism. This is type II. Sine there are only two suh foliations up to isotopy andthey are intrinsially di�erent (one has orientation reversing leaves and the other does not), then: anyhomeomorphism between a Klein bottle K and another K 0 has to preverse eah type up to isotopy.The onstrution of the ow shows that the line �eld � indues foliations of type II in K1 and K2. Bythe above explanation A has to preserve the line �eld � up to isotopy, whih we do not want. Hene wehave a neessary ondition:Conlusion � In order for the last step to produe a pseudo-Anosov ow, then all the omponents of Thave to be tori.



PSEUDO-ANOSOV FLOWS IN TOROIDAL 3-MANIFOLDS 37In partiular the manifolds in the middle step will all be orientable.By glueing T 0 onto T by A we obtain a losed 3-manifold M = M(X;A) equipped with a family ofvetor �elds Y�. Hene it provides a ow 	� on M for eah � > 0. The periodi orbits of X� provide a�nite number of periodi orbits of 	� that we all vertial orbits. Observe that sine X� is orthogonal tothe boundary, Y� is smooth outside of the vertial orbits.Our goal is to prove that, if � is big enough, then 	� is pseudo-Anosov.Let lu0 be the union of the irles in T ontained in the loal unstable manifolds of the vertial orbits(they are assoiated to the irles x = ��=2, z = �=2 in eah blok), and similarly let ls0 be the union ofthe irles in T 0 ontained in the loal stable manifolds of the vertial orbits. Let ' be the �rst returnmap from a maximal subset of T to itself. Its domain is the omplement in T of �s0 = A�1(ls0). For everyn > 0, let �sn be the preimage of �s0 by 'n: T n �sn is the domain of 'n+1. Eah omponent of �sn is aurve in T , interseting every irle in lu0 , and spiraling around two irles in �s0. The omplement 
+of the union �s1 of all �sn is the domain of points where all the positive iterates 'n (n � 0) are de�ned.Observe that 
+ may not be not open: it is the omplement of �s1, whih is an union of ountably many1-manifolds: the intersetion with T of the stable manifolds of the vertial orbits.Let C0 be a smooth small one �eld on T , entered around �, and onstant in the oordinates x, y.If C0 is small enough, then A(C0) is a one �eld in T 0 whose losure avoids the line �eld � in T 0. If inaddition � > �0 >> 1, that is, a0(x) � ��=2 > a0 >> 1, then the image of A(C0) aross the fundamentalbloks will be very lose to the onstant x diretion � that is �. This is beause A is a linear map,so A(C0) is a de�nite positive distane away from the line �eld �. In addition if the shearing is strongenough as above then the �rst return of A(C0) will be very lose to the line �eld �. This implies thatwhenever ' is de�ned, then '�(C0) is stritly ontained in C0. Moreover, this ontration from C0 insideitself is uniform, sine the bound from below of a0(x) is uniform. Furthermore: '�(C0) � C0 is loseto �, hene every tangent vetor in C0 has a non-trivial y-omponent, whih is uniformly expanded bythe di�erential of '. It follows that, again inreasing �0 if neessary, all vetors in '�(C0) have a normuniformly expanded under the di�erential of ', let us say have norm at least multiplied by 2.Given these properties, standart arguments (see for example [Ha-Th℄) show that the intersetion of alliterates 'n� (C0) de�nes an invariant diretion at every point of 
+. Vetors in this diretion are uniformlyexponentially expanded under the ation of '�.Consider now more losely the set �s1. Let F be a omponent of the omplement in T of lu0 : it is aopy of the annulus F1 (from the de�nition of model neighborhoods of Birkho� annuli). The intersetionbetween F and �s0 (after the glueing by A) is an union of straight segments, with no tangent vetors in C0,and joining the two boundary omponents of F . The seond generation urves, that is, the omponentsof �s1 = '�1(�s0)) are obtained by pushing bakward the �rst generation lines through all bloks. Thesebeome urves in T 0 with diretion very lose to � if the urves are lose to ls0. Then apply A�1: in everyannular omponent F they are still a union of urves joining the boundary of F , and these urves arenearly horizontal, that is, with tangent diretions outside C0. Iterating the argument, we get that everyonneted omponent of �s1 has these properties: in every annular omponent F , it is a disjoint unionof graphs y = g(x) of smooth funtions, with uniformly bounded derivative g0. They are of ourse allinluded in the stable manifold of vertial orbits.Claim � 
+ has empty interiorThis is the key property. Suppose this is not true and let q be a point in the interior of 
+. Its positiveorbit intersets T in�nitely many times; hene there is an annular omponent F of T � lu0 visited in�nitelymany times.Consider now all paths  in Int(
+), with tangent diretions ontained in C0. Due to the desriptionabove, the length of these paths is uniformly bounded from above.On the other hand, let  be suh a path ontaining q. There are in�nitely many iterates 'nk(q)ontained in F . Sine  is onneted, and sine the image of ' avoids lu0 , the paths 'nk() are allontained in F \ Int(
+). But they all have tangent vetors ontained in C0 as '�(C0) � C0, and theirlength is exponentially inreasing as proved above: ontradition. The laim is proved.



38 THIERRY BARBOT AND S�ERGIO R. FENLEYIt follows that �s1 is dense. Hene, every annular omponent F is foliated by graphs of ontinuousfuntions y = g(x), whih are even C1 sine they are limits of smooth funtions with uniformly boundedderivatives. Pushing along the ow, we obtain a foliation �s inM of odimension one, whih is C1 outsidethe vertial orbits. Observe that this foliation is C1 on T , where it de�nes a one-dimensional foliation.This foliation admits losed leaves (the irles �s0) and all other leaves in T spiral towards these losedleaves. There is no Reeb omponent.Reversing the ow diretion, we onstrut a odimension one foliation �u. These two foliations aretransverse to T and T 0. Moreover, there are transverse one to the other: indeed, in T , near lu0 thefoliation �s is very lose to A�1(�), whereas �u is very lose to �. Iterating by powers of ' this worksin all of T . Moreover, the stable (respetively unstable) manifolds of the vertial orbits are leaves of �s(respetively �u), and their union is dense in M . The foliations �s and �u are the natural andidatesfor being the stable and unstable foliations of 	�.Let q be a point in T . If q is in �s1, ie. the stable manifold of a vertial orbit, then the leaf of �sontaining q is obviously in the stable manifold of q: for t big enough, the vetors tangent to �s(q) at qare divided at least by 2 by the di�erential of 	t�.Now assume that q lies in 
+, ie. that all iterates 'n(q) are de�ned. At eah of these points, thereis a tangent one C0('n(q))), whih is exponentially expanded. But there is also a one �eld C 00('n(q)),onstruted by onsidering the reversed ow, and whih is exponentially expanded by '�1� , thereforeexponentially ontrated by '�. Sine �s is '-invariant, and also �s has no tangent vetor in C0, thentangent vetors at �s('n(q)) must lie in C 00('n(q)), hene are exponentially ontrated. It follows that�s is the stable foliation for 	�, and similarly, �u is the unstable foliation.Conlusion � There are stable and unstable foliations of 	�, whih is a (possibly one-prong) pseudo-Anosov ow.Observe that the ow is a 1-prong pseudo-Anosov ow if and only if X admits verties of degree 2. Ifthere are only 2-prong orbits before the last glueing, ie. if all verties of X have valene 4, then 	� is anAnosov ow. If there are no 1-prong orbits, then 	� is a pseudo-Anosov ow.This proves Theorem I.Remark � Notie that this produes in�nitely many examples of pseudo-Anosov ows in non orientablegraph manifolds. These are obtained by appropriate arrangements of orientation reversing glueing mapsfrom tori T to T 0.An interesting sublass of the lass of ows onstruted here is the lass where the graph X is airle: all the verties have degree two, that is all the vertial orbits are 1-prong. Observe that ondition(II) implies that the surfae � must be an annulus. The intermediate glueing N(X) is then one of themanifolds Nk. The resulting manifold M(X;A) is then a torus bundle over the irle (k must be even bythe disussion above).Sine the only requirement on A is that it does not preserve the vertial diretion, we obtain inpartiular:Corollary 8.1. In any torus bundle over S1 whih is not T 3 there are 1-prong pseudo-Anosov ows withany even number of 1-prong orbits.In partiular notie that there are in�nitely many one prong suh examples in nil manifolds. Thefundamental groups of these manifolds have polynomial growth as opposed to exponential growth, whihis obtained by taking a hyperboli linear map A.Remark � In the onstrution of periodi Seifert �bered piees in this setion the following happens:For every vertial orbit Æ in the piee and for every quadrant W assoiated to Æ, then W ontains alozenge Z with a orner in Æ. This is not true for every periodi Seifert �bered piee with respet to apseudo-Anosov ow. It follows that the onstrution in this setion does not attain all possibles periodiSeifert �bered piees. In partiular in the onstrution in this setion the neighborhoods of the periodipiees always have boundaries whih are transverse to the ow. This does not our in general periodipiees.
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