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1 Introduction

In this article we analyse the topological and geometrical consequences that foliations induce on 3-

manifolds. More speci�cally we study the transverse structure of an R-covered foliation in a 3-manifold,

where R-covered means that in the universal cover the leaf space of the foliation is Hausdor�. When the

manifold is aspherical we prove that either there is a region in the leaves where the geometry does not

change much transversely, yielding an incompressible torus in the manifold; or there is a transverse pseudo-

Anosov ow which captures the directions of maximal stretch/contraction transverse to the foliation.

Hence if the manifold is atoroidal and aspherical there is always a transverse pseudo-Anosov ow. As a

consequence manifolds with R-covered foliations satisfy the weak hyperbolization conjecture.

The goal of this article is to understand the geometrical/topological implications of the existence of

a foliation in a 3-manifold. First we review some basic facts of foliation theory. The main villain in

3-manifold foliation theory is the Reeb component: a foliation of the solid torus where the boundary is a

leaf and the interior leaves are topological planes spiralling towards the boundary leaf. Reebless foliations,

that is those without Reeb components, are extremely useful in understanding the topology of 3-manifolds:

fundamental work of Novikov, and later Rosenberg, Palmeira showed that leaves inject in the fundamental

group level (incompressible leaves) [No], the manifold is irreducible (that is every embedded sphere bounds

a ball) [Ro] and the universal cover is homeomorphic to R3 [Pa]. Such foliations have excellent properties

and they reect the topology of the manifold. On the other hand Gabai constructed Reebless foliations in

any irreducible, oriented, compact 3-manifold with non trivial second homology and derived fundamental

results in 3-manifold theory, such as property R and many other results [Ga1, Ga2, Ga3]. Roberts

also constructed many Reebless foliations in large classes of 3-manifolds which are not Haken [Rob] and

jointly with Delman used this to prove property P for alternating knots [De-Ro]. Notice that the Reebless

property is crucial here, since any closed 3-manifold admits a codimension one foliation [Li, Wo], most of

which are not useful for topology - for instance S3 has many foliations (with Reeb components).

Our focus will be on the transverse geometric structure of a Reebless foliation. Thurston [Th8,

Th9, Th10] recently showed that foliations are much better behaved in the transverse direction than

was previously expected: nearby leaves stay nearby forever in many directions of the leaf. This gives a

tremendous boost in understanding the global structure of foliations and it aids the understanding of the

geometry of the foliation and the manifold in connection with the geometrization conjecture [Th4].

There is a natural breakup into two cases here: the lifted foliation in the universal cover is a foliation

by planes (or spheres) and the leaf space of this lifted foliation is a 1-manifold which may be Hausdor�

or not. In a lot of situations the question of Hausdor�/non Hausdor� turns out to play an important role

and have strong consequences [Ve, Ba1, Ba2, Ba3, Fe2, Fe3, Fe4]. If the leaf space is Hausdor� then it is

homeomorphic to the real numbers R and the foliation is said to be R-covered [Pl2, Fe2].
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In this article we analyse R-covered foliations in 3-manifolds - the simplest case in studying the global

structure of foliations in the universal cover. Examples of this large class of foliations are: 1) �brations

over the circle; 2) foliations de�ned by non singular closed 1-forms; 3) stable/unstable foliations of large

classes of Anosov ows in 3-manifolds [Fe2]; 4) slitherings over the circle as de�ned by Thurston [Th7] -

roughly a slithering is a map from the universal cover of the manifold to the circle S1 which is a �bration

equivariant under covering translations, inducing a foliation in the manifold; 5) Uniform foliations: a

foliation is uniform if any two leaves in the universal cover are a bounded distance from each other (the

bound depends on the pair of leaves) - they are closely related to slitherings [Th7]; 6) Many examples

R-covered foliations not induced by slitherings [Cal2]. On the other hand, Reebless �nite depth foliations

[Ga1, Ga3] are not R-covered unless the compact leaf is a �ber of M over the circle [Go-Sh].

The case of �brations is very illuminating and is a precursor of the whole idea of analysing the

transverse geometry of foliations. In a seminal work Thurston proved that in the aspherical case either

there is an incompressible torus transverse to the �bration or there is a suspension ow which is a

pseudo-Anosov ow producing singular stable/unstable foliations [Th2, Bl-Ca]. He went on to prove

that the pseudo-Anosov case yields hyperbolic manifolds, establishing a deep relationship with geometry

[Th3, Th4, Th5]. We concentrate on the �rst step. Thurston's result can be summarized as follows from

the foliations point of view: any transversal ow to the �bration produces homeomorphisms between

leaves. There may be a region in the �ber whose geometry stays bounded under the transversal ow � this

produces an invariant curve and a transverse incompressible torus. The second option is that transversely

there will be unbounded distortion of the geometry everywhere and this produces a transverse ow which

is (pseudo) hyperbolic - a pseudo-Anosov ow.

The goal of this article is to extend this result to general R-covered foliations:

Main theorem - Let F be a transversely oriented, R-covered foliation in M3 closed, aspherical. Then

either there is a Z� Z in �1(M) or there is a (singular) pseudo-Anosov � transverse to F .

Calegari [Cal1] has independently also proved the main theorem. Many of the tools used by Calegari

are similar to those used in this article and the strategy for the proof of a preliminary result follows

general ideas of Thurston [Th9, Th10], which have never been written up. On the other hand this article

is more complete than [Cal1] and contains full details. This work was done independently of [Cal1].

The aspherical condition is only used to rule out manifolds �nitely covered by S2�S1, see below. As

in the �bering case this shows that either there is a region where the geometry varies boundedly in the

transverse direction or there are directions of maximal stretch/contraction everywhere.

Thurston produced a transverse pseudo-Anosov ow in the case that the foliation is associated to a

slithering, which implies that the foliation is uniform [Th7]. General R-covered foliations need not be

uniform: an easy example is the stable foliation of an Anosov ow which is the suspension of an Anosov

di�eomorphism of the torus. Thurston asked whether any R-covered foliation in atoroidal manifolds

had to be uniform. This is not true in general: recently Calegari [Cal2] has produced many examples

of R-covered, non uniform foliations in hyperbolic 3-manifolds. In the uniform situation Thurston used

the existence of projectively invariant measures in the appropriate setting to the produce transversal

laminations to the foliation. The proof in the general case is completely di�erent and is more topological.

We now explain the basic ideas in the proof. First of all the intrinsic geometry of the leaves plays

a fundamental role in our analysis. Two manifolds can be uniformized to be spherical, euclidean or

hyperbolic and to a great extent the same is true for 2-dimensional foliations. This study started with

Reeb's result [Re] on stability of compact leaves. Then there was the seminal work of Plante [Pl1] on

holonomy invariant transverse measures, which was extended by Sullivan [Sul] and put in the context

of spaces which are negatively curved in the large by Gromov [Gr]. As a result there is a fundamental

trichotomy for general foliations of 3-manifolds:

1) There is a sphere or projective plane leaf,

2) There is a holonomy invariant transverse measure of 0 Euler characteristic, approximated by a

torus (either transverse or in a leaf);

3) Leaves are uniformly Gromov negatively curved in the large.
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In case 1) Reeb showed that M is �nitely covered by S2 � S1 with the product foliation [Re]. In case

2) if the foliation is Reebless, then the torus in question is incompressible and the manifold is toroidal.

As spherical and toroidal manifolds are in some sense rare, this implies that 3) is the generic case if F is

Reebless. In addition if F is Reebless then in cases 1) and 2) the manifold M can be decomposed into

geometric pieces [Th3, Th4, Th5] and is well understood. More recently Candel [Can] showed that in

case 3) there is a metric in the manifold which makes all leaves hyperbolic (constant Gaussian curvature

equal to �1). Therefore case 3) is the remaining case to be analysed in the proof of the main result.

A �bration over the circle is very nice because any transverse ow which induces homeomorphisms

between leaves (in M or in the universal cover fM ). This homeomorphism was used to analyse the

transversal distortion of the geometry of leaves. General foliations have holonomy, so it only makes sense

to look for homeomorphisms between leaves in the universal cover. This is not possible for non R-covered

foliations, so the R-covered property is necessary here. One of the biggest diÆculties in general is the lack

of a transversal ow which gives homeomorphisms between leaves in the universal cover. Any transversal

ow gives local homeomorphism between subsets of leaves in fM but it is far from clear they should give

global homeomorphisms. In fact there are many natural counterexamples: for instance let 	 be a geodesic

ow on the unit tangent bundle of a closed hyperbolic surface R, so 	 is an Anosov ow [An, An-Si]. Let

F be the (weak) stable foliation of 	 which is R-covered and choose the transversal ow to be generated

by the strong unstable foliation of 	. This transversal ow produces local homeomorphisms between

leaves in fM which de�nitely are not global homeomorphisms [Ba1, Fe2].

But all is not lost. For foliations with hyperbolic leaves one useful strategy is to �rst analyse the

variation of distance between leaves of eF in fM to obtain relationships between ideal boundaries of leaves.

Each leaf of eF has a circle at in�nity. Thurston [Th9, Th10] explained how to use contracting directions

between di�erent leaves to locally and then globally collate these individual circles at in�nity into a single

universal circle which encodes all circles at in�nity. ForR-covered foliations it turns out the local stitching

between di�erent circles at in�nity is in fact a homeomorphism of ideal boundaries. There are two cases:

if leaves are a bounded distance from each other in fM (uniform case), this yields a quasi-isometry between

leaves and hence a homeomorphism between ideal boundaries. If leaves are not a bounded distance from

each other, this forces an arbitrary pair of leaves of eF to contract together in a dense set of directions also

producing a homeomorphism between circles at in�nity of leaves of eF . These boundary identi�cations

are group equivariant. The common identi�ed circle is called the universal circle of the foliation in this

setting [Th9, Th10]. Universal circles for foliations with hyperbolic leaves were introduced by Thurston

recently [Th9, Th10]. In general these ideal maps between circles at in�nity come from maps de�ned only

between strict subsets of leaves of eF even for R-covered foliations.

This identi�cation of circles at in�nity can be used to produce natural maps between the entire leaves

in the universal cover. Given any two leaves F;E of eF there is a homeomorphism � between the circles

at in�nity of F and E. If � can be continuously extended to an isometry between F and E, one calls

� a M�oebius map. In general one can quantify how far � is from a M�oebius map: one way is to look

for the best possible extension of � to a map from F to E - one such tighest extension was called an

earthquake map by Thurston [Th6]. Another way is to use the universal circle and check the distortion

on the geometry of various ideal quadrilaterals in leaves of the foliation. In either case one possibility

is that the distortion in geometry (measured via earthquakes or ideal quadrilaterals) is in some sense

globally bounded. This corresponds to the notion that the geometry does not change very much in the

transversal direction and yields an incompressible torus in the manifold. The other option is that the

analysis of the distortion produces either a Z� Z subgroup of the fundamental group �1(M) of M or a

transverse lamination to F - this result was announced by Thurston in 1997 [Th9, Th10].

We analyse the second option in much more detail here. First we show that if the homeomorphisms

between circles at in�nity are not uniformly bounded then there is always a transversal lamination to

F , that is, in this case even if there is Z� Z subgroup of �1(M) there will be one transverse lamination

which encodes regions of maximal distortion. Thurston had obtained either one or the other conclusion.

We then analyse the atoroidal case in much more detail: we show there are in fact two distinct transverse
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laminations which have the behavior of stable and unstable laminations. These laminations are transverse

to each other and �ll M . They intersect in an orientable 1-dimensional foliation producing a ow in the

intersection of the laminations. Collapse the complementary regions of the union of the laminations to

produce a ow � in M . The transverse laminations blow down to singular foliations Fs;Fu, which are

shown to have \hyperbolic" behavior, so � is pseudo-Anosov. In the �rst option of bounded distortion

of geometry we prove a rigidity result: up to topological conjugation the foliation F admits a transverse

foliation which is a local isometry between leaves - a transversely hyperbolic foliation [Ep, Th3].

The laminations constructed here are genuine essential laminations [Ga-Ka]. Using results of Gabai

and Kazez [Ga-Ka] it immediately implies the following result, also proved by Calegari [Cal1]:

Corollary � Suppose that M aspherical supports an R-covered foliation F . Then M satis�es the weak

hyperbolization conjecture: either there is Z� Z < �1(M) or �1(M) is Gromov negatively curved.

We mention a potential but extremely important possible use of the results here. In the atoroidal case

above the geometrization conjecture predicts that the manifold is hyperbolic [Th4]. The pseudo-Anosov

ow can be used to compare the geometries of leaves of eF and this can possibly be used as a starting

point to geometrize M . A similar approach was successfull in the case of �brations [Th5].

The ow � constructed here is is regulating for F . This means that every orbit of e� intersects every

leaf of eF and vice versa: there is a (topological) product picture in the universal cover. Hence e� produces

global homeomorphisms between leaves of eF - as was desired in the initial analysis of the R-covered

case. In [Fe5] we analyse when a transverse pseudo-Anosov ow to an R-covered foliation can fail to be

regulating. It turns out that this can only occur if � itself has an R-covered stable foliation of a ow.

In [Fe7] we use the results of this article and of [Fe5, Fe6] to prove that except in the case of R-

covered Anosov foliations, then up to topological conjugacy there is only one transverse pseudo-Anosov

ow transverse to the R-covered foliation. Hence our construction is in fact canonical.

We thank Bill Thurston for sharing with us his wonderful results, in particular his construction of

the universal circle for foliations and transverse laminations. We thank Danny Calegari for conversations

and ideas concerning R-covered foliations. We also thank the referee for an extremely careful reading

with inumerous corrections and suggestions which greatly improved the presentation of the paper. Most

of the research was done while the author visited Princeton University and we thank this institution for

its hospitality.

2 Uniform foliations, compact leaves and minimality

Throughout the article F will denote a 2-dimensional foliation of a closed 3-manifold M . The universal

cover of M will be denoted by fM and eF is the lifted foliation to fM . The map

� : fM !M

will always denote the universal covering map. The fundamental group �1(M) is identi�ed with the group

of covering translations of fM . For any subset B of fM , let I(B) denote the isotropy group of B, which is

the subgroup of �1(M) leaving B invariant. Finally H is the leaf space of eF , which is a topological space.

De�nition 2.1. ([Fe2]) F is R-covered if H is homeomorphic to the real numbers R.

A weaker property is equivalent to R-covered:

Lemma 2.2. F is R-covered if and only if H is Hausdor�.

Proof. Assume �rst that H is Hausdor�. Suppose there is a closed curve  in fM which is transverse

to eF . Then  bounds an immersed disk D which can be put into general position with respect to eF
[Ha, No, So]. An analysis of the induced (singular) foliation in D shows there are leaves �1; �2 so that

�1 is a closed curve and �2 spirals towards �1. Let Fi be the leaf of eF containing �i. Then F2 limits

on F1 so any neighborhood of F1 contains F2 and hence H is not Hausdor� contradiction. Hence any
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transversal curve to eF projects injectively to H, so H is a 1-manifold with a countable base. It is also

Hausdor� so it can only be the circle or the real line. In the circle case, construct a closed transversal to
eF , contradiction. Hence F is R-covered. The converse implication is immediate.

Here is how Reeb components interact with the R-covered property: if F is R-covered then F is

Reebless unless M is �nitely covered by S2 � S1 [Go-Sh]. The restriction is necessary: glue two Reeb

components along their boundaries to produce S2 � S1 with an R-covered foliation.

Most of the time we assume that F is transversely orientable. The non orientable case usually follows

from some additional considerations.

De�nition 2.3. (foliated I-bundle) A foliated I-bundle (in dimension 3) is a pair (N;G), with N home-

omorphic to a product R�I, where R is a surface, which may be compact or not, and may have boundary

or not; and I is the unit interval. In addition G is a foliation in N so that:

� R� f0g and R� f1g are leaves of G;

� G is transverse to the I-�bers in N (including @R� [0; 1]).

Up to topological conjugacy, the foliation G is completely determined by the monodromy, which is a map

from �1(R) to the group of homeomorphisms of I. Sometimes we abuse the notation and say that N or

G is a foliated I-bundle.

A fundamental concept here is that of a uniform foliation:

De�nition 2.4. ([Th7]) A foliation F is uniform if given any two leaves E;F of eF , there is a positive

constant b, so that the Hausdor� distance between E;F is smaller than b. Explicitly, for any point x of

E there is y in F so that d(x; y) is less than b and conversely. The bound depends on the pair E;F .

Obviously it is not at all important that leaves be hyperbolic to de�ne uniform foliations. In the case

of R-covered foliations, the existence of compact leaves implies that the foliation is uniform:

Lemma 2.5. (compact leaves) Let F be an R-covered foliation in M3, closed and not �nitely covered by

S2 � S1. Then F is taut. In addition if F has a compact leaf R then F is uniform.

Proof. If necessary lift to a �nite cover and assume that F is transversely orientable and M is orientable.

If the lifted foliation is taut then so it the original one. The uniform condition concerns objects in the

universal cover so the same holds concerning this property. Since F is R-covered and M is not �nitely

covered by S2 � S1 then F is Reebless as shown by Goodman and Shields [Go-Sh].

With the orientation conditions, if F is not taut then that there is a codimension 0 submanifold V

bounded by a union T1; :::; Tn of tori so the transversal ow is say outgoing along the boundary [Go].

Hence there are no transversals connecting distinct lifts of the Ti to fM . As F is R-covered any two leaves

of eF are connected by a transversal. The only possibility is that n = 1 and there is only one lift of T1
to fM . Hence �1(T1) surjects in �1(V ). But if T1 is incompressible this is impossible by theorem 10.5 of

[He]. But F is Reebless so T1 in incompressible. This contradiction shows that F is taut.

If in addition F has a compact leaf R, then Goodman and Shields proved that R is the �ber of a

�bration of M over the circle [Go-Sh] (this uses F transversely orientable). Cut M along R to produce

a manifold M1 homeomorphic to R � I with an induced foliation F1. We want to show that F1 is a

foliated I-bundle. Let A be an annulus in M1 of the form  � I where  is a simple closed curve in

R. Isotope A to be in general position with respect to F1. By Euler characteristic arguments A has no

singularities. Since F is taut, Gabai [Ga5] showed that A can be made transverse to F1. Cut along A

to produce a new manifold with a new foliation transverse to the vertical boundary. Continue cutting

along transverse annuli and disks until obtaining a union of manifolds homeomorphic to D2 � I, where

D2 is the closed disk. The foliation in the boundary of these balls has a tangential part D2 � @I and a

transverse part @D2 � I. The transverse part has no holonomy because this is a ball. Therefore (up to

topological conjugacy) this is a foliation by horizontal disks. Conclusion: we can isotope F1 so that it is

transverse to the I-�bers in M1 and hence F1 is a foliated I-bundle. Glue back along R and lift to fM .

As M1 is a foliated I-bundle, it now follows that F is uniform.
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When there are no compact leaves we can reduce to the minimal case:

Proposition 2.6. (minimal case) Suppose that F is R-covered, does not have compact leaves and its not

minimal. Then F can be collapsed to a minimal foliation: there is a foliation F 0 which is minimal and

which is obtained from F by collapsing at most countably many foliated I-bundles of F to single leaves.

Proof. Suppose �rst that F is transversely orientable.

Let Z be a minimal set of F . By hypothesis Z is not a compact leaf and not all of M . This implies

that Z intersects any transversal curve to F in a Cantor set.

Let U be a component of the complement of Z in M and bU the metric completion of U . The interior

of bU embeds inM and there is an induced map in the boundary, but the boundary may be a double cover

of a leaf B0 of F . In the last case the leaf B0 will be isolated on both sides. Since B0 is in a minimal set,

it follows that B0 is a compact leaf. This contradicts the hypothesis. Hence bU embedds in M .

We claim that bU is a foliated I-bundle. By the general theory of codimension one foliations [Di] the

set bU is equal to a union of two subsets K and A, intersecting only in their boundaries and satisfying:

� K is a compact, connected, codimension 0 submanifold of bU , which is called the core of bU ,

� A is a union of manifolds Qi which are homeomorphic to products Ri � I, where each Ri is a non

compact, connected surface with compact, connected boundary and F restricted to Qi is a foliated

I-bundle (see also [Ca-Co]).

In addition in the induced metric the I-�bers in Qi are very short, so we can choose them to be the

transversal ow segments of �.

Let eU be a component of ��1(bU). Since bU embedds in M and is not all of M , then eU is not all of

fM . Therefore it has boundary components. Then eU is closed, connected, has non empty interior and is

not all of fM . Since the leaf space of eF is R, then eU has leaf space which is a closed interval J . Here it is

fundamental that F is R-covered. Let L1; L2 be the boundary leaves of eU . If an element of the isotropy

group of eU switched L1 and L2 then F would not be transversely oriented, contradiction. It follows that

the isotropy group of eU is the same as the isotropy group of L1 or L2.

Let now

� eK be a component of ��1(K) contained in eU ;
� E be the intersection of eK and L1

� B1 be a component of E. Let C1 = �(B1) which is a subset of @K.

If there is another component B2 of E, then there is a curve � contained in @B1 separating B1 from B2

in L1. But � projects to a closed curve � in @K. Recall that @K is equal to @A (as subsets of bU) and
then � is contained in an annulus �� I in @K. The annulus �� I separates K from a component of A in
bU . The component C2 of �

�1(�� I) containing � separates eK from the component of eU �C2 containing

B2. Therefore the lift eK of K does not intersect B2. This is a contradiction. We conclude that E is

connected and therefore equal to B1. As any covering translation preserving eK, also preserves E then

it also preserves B1. It follows that the isotropy groups I(B1) and I( eK) are equal. Therefore �1(C1)

surjects in �1(K).

But K is compact and irreducible, so theorem 10.5 of Hempel [He] implies that K is homeomorphic

to C1 � I. As in the previous lemma isotope the foliation to be transverse to the I-�bers in K. This

proves the claim that bU is a foliated I-bundle.

Notice that this discussion shows that there is a unique minimal set Z. This is because we just proved

that the complement of Z is a union of foliated I-bundles with non compact bases. Any leaf in the interior

of the I-bundles will limit in points that the boundary leaves also limit on, that is they will have limit

points in Z. But Z is a minimal set so the additional leaf is not part of a minimal set. It is fundamental

in all of this discussion that F is R-covered - clearly these results do not work in more generality.

So we can consider the at most countably many components of M �Z. There is a positive number �

so that any two points in M which are less than � apart, then their local leaves are connected by a very
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small transversal arc. At most �nitely components of M �Z many have thickness bigger than �, hence in

the other ones the transversal ow already produces an I-bundle structure. For the �nitely many other

ones change the original transversal ow in the core part (which is an I-bundle) to consist of the I-�bers

in the particular component. This is done only in �nitely many compact pieces - so we may assume the

ow is smooth. Finally blow down all the complementary regions of Z using the new transversal ow to

produce a foliation F 0. Because the minimal set Z intersects transversals to the original F in a Cantor

set, the collapsed object is still M with a foliation F 0. Also F 0 is minimal - if there is a non trivial

minimal set of F 0, it would generate a complementary component of Z which was not collapsed. This

�nishes the proof in the transversely orientable case.

Suppose now that F is not transversely orientable. In any case choose a transverse line �eld to F .

There is a double cover M2 and a lift F2 of F which is transversely orientable. The cover is normal and

there is an involution f of M2 so that M is the quotient of M2 by f . Certainly F2 is R-covered and the

results above work for F2.

Let Z be a minimal set of F and Z 0 be its inverse image in M2. Let Z2 be a minimal set contained

in Z 0. Then Z2 projects to a set in M which is closed and contained in Z, hence the projection is Z.

Furthermore f(Z2) is also a minimal set of F2, hence by the above discussion f(Z2) equals Z2. This now

implies that Z2 equals Z
0 and then Z is the unique minimal set of F .

Let U be a complementary region of Z which is an I-bundle. One option is that it projects homeomor-

phically to M and as above we can use I-�bers to collapse this to a single leaf. The other option is that

it double covers a set in M , which may have one or two boundary components. Isotope the I-�bration in
bU so that it is invariant under f � one only needs to do this in the compact pieces of the I-bundle. Then

one can collapse the resulting I-�bration in M . If the region has only one boundary component, then it

collapses to a leaf which is not transversely orientable. The resulting foliation is minimal as above.

Notice F is a blow up of at most countably many leaves of F 0. To prove the main theorem, if we �nd

a subgroup Z� Z in �1(M) we are done. If we �nd a pseudo-Anosov ow transverse to F 0, then it pulls

back by the blow up operation to a pseudo-Anosov ow transverse to F . Hence from now on assume that

F is minimal if it does not have compact leaves.

3 Ideal geometry and the universal circle

In order to prove the main theorem, the remaining case is when the leaves are Gromov hyperbolic.

Using Candel's theorem [Can] we assume each leaf of F is hyperbolic � notice the metric may vary only

continuously in the transversal direction [Can]. Thurston explained how to locally stitch the circles at

in�nity of di�erent leaves and then to globalize the local stitching to produce a universal circle which

encodes all circles at in�nity [Th9, Th10]. In the case of R-covered foliations we show how to do the

identi�cations so that the local maps are homeomorphisms between the circles at in�nity.

Remark. In this section and the next there are no orientability conditions.

If E;F are leaves of eF , let (E;F ) denote the set of leaves of eF separating E from F . As H is

homeomorphic to R, then if E;F are distinct the set (E;F ) is homeomorphic to an interval. Let [E;F ]

be the union of (E;F ) and the two leaves E;F . Each leaf of eF is isometric to the hyperbolic plane H2

and has an ideal circle at in�nity S1
1(F ). We now come to a key object of our study:

De�nition 3.1. (cylinder at in�nity) Let F be an R-covered foliation with hyperbolic leaves. Let

A =
[

F2 eF
S1
1(F ):

which is the cylinder at in�nity of eF - the union of all ideal circles of leaves of eF .
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Since F is R-covered, then set wise A is an in�nite cylinder S1�R. First of all we put a topology in

A so that it is also homeomorphic to a cylinder.

Notation: To be used throughout the article: given x 2 fM let F (x) denote the leaf of eF containing x.

The same holds for x in M .

Each geodesic ray in F (x) starting at x de�nes a unique ideal point in S1
1(F (x)) giving a homeomor-

phism between the unit tangent bundle of F (x) at x and S1
1(F (x)). Let T1 eF be the unit tangent bundle

of eF . Given any B � fM , let eFB be the union of leaves of eF which intersect B and

AB =
[

F2 eFB

S1
1(F ):

This is particularly useful if B = � is a transversal arc to eF . In addition if F is a leaf of eF , then dF
denotes the path distance in F . The term \open transversal" will be used for a transversal to F or eF
which is homeomorphic to an open interval (0; 1).

Lemma 3.2. (topology of A) Let � be an open transversal to eF . Then T1 eF restricted to � is home-

omorphic to an open cylinder S1 � (0; 1). This provides an identi�cation of A� with an open cylinder

S1 � (0; 1) and de�nes a topology in A making it homeomorphic to a cylinder. The union fM [ A has a

natural topology making it homeomorphic to D2�R, where D2 is the closed disk and D2�ftg correspond

to the union F [ S1
1(F ) for F a leaf of eF .

Proof. If �; �0 are two transversals to eF so that eF�; eF�0 intersect, we need to show that the topology

T� induced by � in the intersection of A� and A�0 is the same as the topology T�0 induced by �0 in this

intersection. By restricting to their intersection we can assume that the sets A�;A�0 are equal.

Since both topologies induced inA� are �rst countable it suÆces to consider the behavior of sequences.

Consider a sequence yi, i in N converging to y0 in T�. Then yi are in S
1
1(Fi), for uniquely de�ned leaves

Fi which are in eF� (equal to eF�0). Let

xi = Fi \ �; zi = Fi \ �
0:

Then the sequence Fi converges to F0 in H with x0 in F0 and F0 a leaf of eF�. Also

xi ! x0 in � and zi ! z0 in �0:

For each i let li; si geodesic rays in Fi from xi; zi respectively with ideal point yi in S1
1(Fi). These come

from identi�cations of the unit tangent bundle to eF at xi; zi with S
1
1(Fi) respectively. Since the sequence

yi converges to y0 in T�, then the directions of li at xi converge to the direction of l0 at x0.

Notice yi converges to y0 in T�0 if and only if the directions of si in Fi converge to the direction of s0
in F0. We use a couple properties of the hyperbolic metric. Since xi converges to x0 and zi converges to

z0 then dFi(xi; zi) is bounded above for all i. In addition the rays li; si, for i � 1 de�ne the same ideal

point yi in S1
1(Fi). Hence li and si are asymptotic in Fi. These two facts imply that given any positive

� there is a positive a(�) so that except for initial length a(�), the remainder of the rays li; si are within

� of each other in Fi for each i � 1. Notice that the constants are independent of i � this only uses the

fact that all leaves are hyperbolic and the distance between xi and zi in Fi is bounded above.

Consider any subsequence si(k) so that si(k) converges to a ray v0 in F0 or equivalently that the

directions of si(k) at zi(k) converge to the direction of v0 at z0. For notational simplicity assume this is

the original sequence si. As li converges to l0 and si converges to v0, the above property implies that

except for initial segments of length smaller than a(�), the remainder of the rays l0; v0 are within � of

each other in F0. Explicitly, if w is a point in l0 which is more than a(�) away from x0 in F0, then

w = lim
i!1

wi with wi 2 li and dFi(xi; wi) > a(�):
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Also dFi(xi; wi) is bounded above. By the property above there are ui in si with dFi(wi; ui) smaller than

� and up to subsequence again we may assume ui converges. As dFi(xi; wi) is bounded above, then so

is dFi(ui; vi). Therefore ui has to converge to a point u in v0. Then dF0(w; u) is bounded above by �

and conversely. This implies that l0; v0 have subrays which are at most � distant from each other, so

it again follows from hyperbolic geometry that they are asymptotic in F0. That means that v0 de�nes

the ideal point y0 in S1
1(F0). Therefore the rays v0; s0 are equal. This is equivalent to the sequence si

converging to s0: the directions of si converge to that of s0. But notice that this is in fact a subsequence

of the original sequence! This proves that any sequence yi converging to y0 in T� has a subsequence which

converges to y0 in T�0 . This then implies that the original sequence converges to y0 in T�0 as we wanted

to prove. This shows that the topology in A is well de�ned. Clearly

A =
[

i2N

A�i ;

with �i transversals intersecting more and more of the leaf space of eF . Each A�i is homeomorphic to a

cylinder hence A is homeomorphic to S1 �R.

Similar arguments show that there is a natural topology on

[

x2�

(F (x) [ S1
1(F (x)));

making it homeomorphic to D2 � (0; 1), where each leaf with its ideal circle corresponds to D2 � ftg. It

follows that fM [A is naturally homeomorphic to D2 �R.

If g is a covering translation of fM and L a leaf of eF , then g maps L to g(L) by an isometry which

extends to a homeomorphism gL1 between their circles at in�nity. This produces a bijection g1 from A

to itself. Similar arguments as in the lemma above show that g1 is a homeomorphism of A, which will

be called a covering homeomorphism. Many times we will abuse notation and write g instead of g1 for

this \ideal" map. In this way �1(M) acts in the cylinder at in�nity.

Clearly A �= S1 �R has a natural foliation by circles, which comes from the circles at in�nity of

leaves. This is what we call the \horizontal" foliation of A. Natural means that this foliation is left

invariant by the action of �1(M). In general the action of �1(M) on A �= S1 �R does not respect the

vertical foliation by fxg �R. The main goal of this section is to produce a natural \vertical" foliation

of A which also is associated to the geometry of the foliation. This will creat the universal circle of the

foliation F (or eF). First recall the de�nition of quasi-isometries:

De�nition 3.3. (quasi-isometry)[Th3] A quasi-isometry is a map ' : (M1; d1)! (M2; d2) between met-

ric spaces so that there is positive k satisfying: for any x; y in M1 then

1

k
d1(x; y) � k < d2('(x); '(y)) < kd1(x; y) + k

and in addition there is a positive k0 so that for any point z of M2 there is x of M1 with d2(z; '(x))

smaller than k0. If the constant is important we say that ' is a k-quasi-isometry.

First we produce the natural vertical foliation in the uniform case:

Proposition 3.4. (vertical foliation - uniform case) Let F be an uniform R-covered foliation with hyper-

bolic leaves. Then given any two leaves E;F of eF , there is a canonical homeomorphism between S1
1(E)

and S1
1(F ). This yields a universal circle which is naturally homeomorphic to any circle at in�nity.

There is a \vertical" foliation in A which is transverse to the horizontal foliation and is group invariant.

The homeomorphisms between S1
1(E) and S1

1(F ) are given by the holonomy of this vertical foliation.
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Proof. There is a brief proof of this result in [Th7] � for completeness we provide the details here.

Fix E;F in eF and positive b1 so that their Hausdor� distance is less than b1. De�ne a map ' : E ! F :

'(x) = y for some y in F with d(x; y) < b1:

The map ' is not well de�ned, but it is coarsely de�ned. This follows from a fundamental property of

R-covered foliations: If F is R-covered, then for any positive b2, there is positive b3 = f(b2) satisfying:

8 z; w 2 fM with w 2 F (z); then d(z; w) < b2 ) dF (z)(z; w) < b3;

see [Fe1]. The important thing is that b3 depends only on b2 and not on individual leaves or points. This

property is in fact equivalent to the R-covered property (for Reebless foliations) and does not hold in

general. Hence there is positive b4 so that if x in E and y; z in F with

d(x; y) < b1; d(x; z) < b1; then dF (y; z) < b4 = f(2b1):

We conclude that '(x) is well de�ned up to a set of diameter b4 in F . This is what we mean by coarsely

de�ned. We want to show that ' is a quasi-isometry from E to F .

For any x; y 2 E choose a geodesic arc from x to y in E, having length a1 and let n be the integer

ba1c where b c is the greatest integer function. Then dE(x; y) is a number in the interval [n; n+1). Split

 to produce points x0 = x; x1; :::; xn; xn+1 = y with dE(xi�1; xi) equal to 1 for any i smaller than n and

dE(xn; xn+1) less than 1. Then

d('(xi�1; '(xi))) � d('(xi�1); xi) + d(xi�1; xi) + d(xi; '(xi))

� b1 + 1 + b1 = (2b1 + 1):

Let b5 = f(2b1+1) so if w; z are in the same leaf of eF and d(w; z) is smaller than (2b1+1) then dF (z)(z; w)

is smaller than b5. It follows that

dF ('(x); '(y)) � (n+ 1)b5 < (dE(x; y) + 1)b5 = b5dE(x; y) + b5:

This shows one side of the required inequalies for quasi-isometries. In the same way there is a map �

from F to E with d(w; �(w)) smaller than b1 for all w in F . Hence

d(w;'�(w)) � 2b1 and so dF (w;'�(w)) � b4 = f(2b1)

for all w in F . This shows that ' is almost onto as required in the de�nition of quasi-isometry. Similarly

dE(x; �'(x)) is smaller than b4 for all x in E. Given x; y in E, let z = '(x); w = '(y). An argument as

above implies that

dE(�(z); �(w)) � b5dF (z; w) + b5:

So

dE(x; y) � dE(x; �'(x)) + dE(�'(x); �'(y)) + dE(�'(y); y)

� 2b4 + b5dF ('(x); '(y)) + b5;

or

1

b5
dE(x; y)�

�2b4
b5

+ 1
�

� dF ('(x); '(y)):
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We conclude that ' : E ! F is a quasi-isometry. Therefore it extends to a homeomorphism � between

S1
1(E) and S1

1(F ) [Gr, Th2]. This works for any pair of leaves L;G of eF , producing corresponding

maps: 'GL from L to G � a quasi-isometry; and �GL homeomorphism between S1
1(L) and S1

1(G).

We now produce a natural \vertical" foliation in A. Fix E in eF . For any y in S1
1(E) and any F in

eF , then �FE(y) is a point in S1
1(F ). Let

�y =
[

F2 eF
�FE(y):

By the above �y intersects every circle S1
1(F ) in a single point. We claim that �y is a continuous curve

in A. Let � be a transversal to eF and xi a sequence in � converging to x0. Let Fi = F (xi). We want to

show that yi = 'FiE (y) produces a sequence converging to y0 = 'F0E (y).

Consider li geodesic rays in Fi starting in xi and with ideal point yi. For simplicity assume that all

Fi, with i bigger than 1 are in the interval (F0; F1). Such Fi separate F0 from F1 in fM . The Hausdor�

distance is monotone increasing: if [F;G] is a subset of [L;H] in H, then dH(F;G) is smaller than

dH(L;H). Therefore

dH(F0; Fi) is bounded above by dH(F0; F1)

for all i. Using the arguments above and this uniform bound on dH(F0; Fi) this implies that that all 'FiF0
are uniform quasi-isometries � they are all k-quasi-isometries for some �xed k. The images 'FiF0(l0) are

uniform quasigeodesics in Fi with ideal point yi. Hence they are a bounded distance from a geodesic ray

in Fi starting in zi and with ideal point yi. Since they are uniform quasigeodesics starting in zi which is

a uniformly bounded distance from xi then the images 'FiF0 are a uniform bounded distance from li in Fi.

If the sequence li does not converge to l0, up to subsequence suppose that li converges to v0 not equal

to l0. But dH(li; l0) is bounded above by a0 for some globably de�ned a0, where this Hausdor� distance

is computed in fM . Hence dH(v0; l0) is bounded above by a0 as well. The R-covered property implies

that dF0(v0; l0) is bounded, contradicting the fact that v0 and l0 diverge exponentially in F0. Therefore

li converges to l0.

Hence �y is a continous curve in A. Consider the collection f�yg where y is arbitrary in S1
1(E). For

any point z of A, z is in S1
1(F ) for some F of eF and z = �FE(y) for a unique y in S1

1(E). Equivalently

z = �y \ S1
1(F (z)) and hence A =

[

y2S1
1
(E)

�y:

Furthermore the sets f�yg with y in S1
1(E) are disjoint for distinct y. Since they are continuous curves,

this collection produces a vertical triviliazation of A �= S1 � R. Since covering translations preserve

distances and relations between distances, it is very easy to check that this foliation of A is invariant

under covering translations, producing a \natural" vertical foliation in A. This will be used to analyse

how the geometry changes transverse to eF . This �nishes the proof of proposition 3.4.

Before we analyse the non uniform situation we introduce contracting directions and markers.

De�nition 3.5. (contracting direction) Let x be a point in a leaf L of eF and let f(t), t in [0;+1)g be

a geodesic ray in L starting in x and with tangent vector v at x. Let p in S1
1(L) be the ideal point of .

Then  (or v) is a contracting direction if the following happens: there is a transversal � to eF containing

x (maybe as an endpoint or maybe in the interior) so that for any leaf E of eF which intersects � the

distance d(E; (t)) converges to 0 as t ! 1. In other words holonomy along  (or in the v direction)

contracts a neighborhood of leaves towards L. Similarly de�ne contracting directions in F .
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Remarks: 1) Contracting directions can be de�ned for any foliation: it just means that nearby leaves get

contracted together in that direction. Using harmonic measures Thurston [Th8] showed that contracting

directions are quite common in codimension one foliations in closed manifolds (any dimension).

2) In our setting the contracting direction is really a property of the ideal point p in S1
1(L) and

is independent of the initial point x or the geodesic ray de�ning p. This is because all such rays are

asymptotic, so a packet of leaves gets contracted together irrespective of the initial point or ray.

Lemma 3.6. Let x in L with a contracting direction given by a geodesic ray f(t)g and � a transversal

to eF contracted in the  direction. For any E of eF intersecting �, the contracting direction  de�nes an

ideal point �(E) of E and any geodesic ray of E with ideal point �(E) is contracted to L. In addition for

any F in eF there is at most one direction in F which gets contracted towards .

Proof. Fix a transverse line �eld to F and lift to eF . Let E in eF intersecting �. For any positive a0 there

is positive t0 so that d((t); E) is smaller than a0 for t bigger than t0. If a0 is small, the translate of (t)

for t bigger than t0 to L along the transverse foliation is de�ned for all time (as they are very close) and

is a curve with arbitrarily small geodesic curvature in E. Hence the translate is a quasigeodesic in E

[Th3] and it de�nes an ideal point in S1
1(E) which is denoted by �(E). Also for smaller and smaller a0

the translates have smaller and smaller geodesic curvature and become more and more geodesic. Hence

a geodesic ray in E with ideal point �(E) is asymptotic with the initial ray  in E0.

Finally suppose there is F in eF and there are geodesic rays r1; r2 in F which are asymptotic to .

Therefore they are asymptotic to each other. But F is Reebless, so there are no closed transversals to eF .
This implies when r1 and r2 are close in fM , they have to be in the same local sheet of eF . This in turn

implies that r1; r2 are also asymptotic in F . Therefore they de�ne the same direction in F .

Contracting directions in eF in turn produce markers in the cylinder at in�nity:

De�nition 3.7. (marker) Let L in eF with a contracting direction given by the geodesic ray  which

contracts a transversal segment �. For any E intersecting � let �(E) be the unique ideal point of E

de�ned in the previous lemma. The set of f�(E)g with E intersecting � is a subset of A which de�nes

a marker in A associated to the pair (; �). For any E intersecting � we say there is a marker between

S1
1(L) and S

1
1(E) or equivalently a contracting direction between L and E. Sometimes we abuse notation

and say that this produces a marker between L and E. Let � denote the marker.

Remark: If F is a nonR-covered foliation with hyperbolic leaves there is not a global cylinder at in�nity.

However the union of the circles at in�nity associated to a transversal to eF still is a cylinder and one can

de�ne markers associated to intervals of leaves in the leaf space.

Some needed properties of markers are now established. If � is a marker and E in eF , let �(E) be the
intersection of � and S1

1(E) which is at most one point.

Lemma 3.8. If �; � are markers in A which intersect each other, then they do not intersect transversely,

that is: For any E in eF with �(E); �(E) not empty, then �(E) = �(E).

Proof. Let �; � be markers which intersect in a point p and let and E in eF with �(E); �(E) both non

empty. There is L in eF with p equal to �(L) and �(L). Let r be a geodesic ray in L with ideal point p.

Let

r1; r2 geodesic rays in E with ideal points �(E); �(E) respectively:

As p; �(E) are in � then r and r1 are asymptotic (in fM). Similarly r and r2 are asymptotic so r1 and

r2 are asymptotic. As in lemma 3.6 this implies that r1 and r2 are asymptotic in E. In other words

�(E); �(E) are equal.

Lemma 3.9. Markers are continuous curves in A.
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Proof. Consider a contracting direction in a leaf F of eF de�ned by the geodesic ray  = f(t), t in

[0;+1)g and ideal point p in S1
1(F ). There is a packet of leaves near F which contracts to F in the

 direction. For any positive � the whole packet is � near (t) for any t bigger than t0 for some t0 > 0,

depending only on �. Since the remainder is a compact initial segment ([0; t0]), if the packet is reduced

the whole ray  is � near any leaf in the (smaller) packet. Hence one can move  to curves in nearby

leaves using the transversal foliation. These curves have arbitrarily small geodesic curvature, which goes

to 0 as � goes to 0. Therefore the curves are closer and closer to being geodesics and their ideal points are

better and better determined by the initial directions. But the directions of the initial segments converge

to the direction of  at (0) and so the ideal points of the lifted curves in the nearby leaves converge to

the ideal point p in the topology of A. This shows continuity of the marker at p and as p is arbitrary this

completes the proof. The proof shows that a marker de�ned by a transversal arc � is a homeomorphic

image of � in A which is transverse to the horizontal foliation in A.

We will now consider the case of R-covered non uniform foliations. Again the goal is to produce a

natural vertical foliation in A. Lemma 2.5 shows that F has no compact leaves and by proposition 2.6

we may assume that that F is minimal. Hence:

Running hypothesis for the rest of the section: F is a minimal, R-covered, non uniform foliation

with hyperbolic leaves.

In the uniform case if one of the leaves has a point suÆciently far from the other, then the leaves can

never get too close to each other at all (for ideas on this see [Th7]). The non uniform case is completely

di�erent: any pair of leaves of eF has many directions where they are arbitrarily close.

We learned some ideas in this section from Danny Calegari in 1998 � at that point he was studying

foliations with \con�ned regions". This means there are F and L in eF and a half plane of F which is

asymptotic to L. His goal was to prove that if in addition F is minimal then it is conjugate to the stable

foliation of a suspension Anosov ow. We realized that some ideas of the con�ned case can be used to

treat the general case. The article [Cal1] has a similar treatment of the general non uniform situation.

Fix an orientation in H. We �rst prove several needed properties of non uniform R-covered foliations.

Lemma 3.10. No two leaves of F are a bounded distance from each other.

Proof. Suppose there are leaves E;F of eF which are a bounded distance from each other. Let J be the

interval [E;F ] of H and consider the union of J with all its translates under covering translations. Take

the component C containing J . Assume �rst that C is a bounded interval in H. Then translates of C

are either C itself or disjoint from C. It follows that the closure Ĉ of C in H is precisely invariant. But

then the leaves of eF corresponding to the translates of @C project to a non trivial closed set of F in M .

This is not possible by hypothesis. If C is unbounded below in H then it has to be invariant under all

of �1(M) and so it must be unbounded above, that is C is equal to H. But as the Hausdor� distance is

monotone increasing, that implies that any two leaves in eF are a bounded distance from each other or

that F is uniform, contrary to assumption. This �nishes the proof.

The following proposition is crucial for our results. It states that anything bounded can be put in

between two arbitrary leaves and then uses that to produce contracting directions between the leaves.

Proposition 3.11. (compression of the universal cover and contracting directions) Given arbitrary dis-

tinct leaves E;F of eF and B a bounded set, there is a covering translate of B contained between E and

F . As a consequence there is at least one contracting direction between E and F .

Proof. By hypothesis dH(E;F ) is in�nite. For simplicity we may assume without loss of generality that

F is transversely orientable, F is in front of E and choose

pi 2 E with d(pi; F ) converging to in�nity:
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Let B be a bounded set in fM . We are looking for a translate h(B) of B so that h(B) is in the front of E

and in the back of F , that is, between E and F . Choose covering translations gi with gi(pi) converging

to p0 and so gi(E) converge to E0 containing p0. Let L leaf of eF very near p0 and in front of E0.

We claim that we can choose a covering translate h(B) contained in the front of L. This seemingly

obvious fact is not true in general, even for Reebless foliations! For example, start with a Reeb foliated

annulus A and consider A� S1 with the product foliation. Then glue the two boundary tori to produce

a non taut, but Reebless foliation F . A noncompact leaf in A produces an annulus leaf of F . Lifting to

Z in eF , one of the complementary regions of Z in fM has every point a bounded distance from Z, and

there are sets of big diameter which cannot be mapped into that component. This example also shows

that for general F , given arbitrary leaves G;H of eF , the fact that G is in a bounded neighborhood of H

does not imply that H is in a bounded neighborhood of G - this relation is not symmetric.

To prove the claim we use that F is taut. Suppose there is a �nite supremum a0 of d(z; L) for z in

front of L. Let z in front of L with d(z; L) very near a0. Any geodesic arc from z to L with length very

close to a0 is almost perpendicular to L. There is positive � so we can choose foliated box neighborhoods

of these points in L with d(z; y) bigger than a0 + � for any y in the other side of L from these foliated

boxes. As F is taut there is a transversal from L to a translate f(L) in the back of L and not intersecting

those neighborhoods. Then z is in front of f(L) and d(z; f(L)) is greater than a0 + �. Hence f�1(z) is in

front of L and d(f�1(z); L) is bigger than a0 contradiction to assumption. This proves the claim.

As gi(E) converges to E0 then for i big enough L is in front of gi(E) and so is h(B). Then

d(gi(pi); gi(F )) ! +1; but d(gi(pi); h(B)) is bounded:

It follows that gi(F ) does not intersect h(B) and does not separate it from gi(E) for i big enough. Since

F is R-covered this implies that h(B) is in the front of gi(E) and in the back of gi(F ), that is between

gi(E) and gi(F ). Hence g�1
i h(B) is between E and F , see �g. ??. This proves the �rst statement,

compression of the universal cover.

Now take B intersecting E and F and choose g(B) to be between E and F , see �g. ??, a. This

implies that g(E); g(F ) are between E and F and so

g([E;F ]) � (E;F ):

As [E;F ] is an interval in H, there is F0 in (E;F ) with g(F0) equal to F0 and gi(F ) converging to F0

when i converges to in�nity. Hence there is a geodesic  in F0 with g() =  and which has contracting

holonomy in one side, that is g contracts the interval [F0; F ] to F0 as i converges to in�nity, see �g. ??,

b.

By the same arguments as above then for any two leaves U; V of eF one can map the interval [U; V ] of

H inside [F0; F ]. Since F0 has a contracting direction with F it produces a contracting direction between

any two leaves in [F0; F ]. Pulling back by a covering translation, this produces a contracting direction

between U and V . This �nishes the proof of the proposition.

The goal is to use these contracting directions to produce identi�cations of the circles at in�nity.

Lemma 3.12. There are at least two contracting directions between any two leaves E;F 2 eF .

Proof. Otherwise there are E0; F0 in eF with only one contracting direction between them. For any E;F

in eF we can map [E0; F0] inside [E;F ], so there is only one contracting direction between [E;F ] as well.

Choosing leaves Ei; Fi of eF with Ei, Fi escaping to opposite ends of H and the packets [Ei; Fi] increasing,

it follows that there is a unique \vertical" curve � in A, which contains all markers. For any leaf F let

�F be the intersection of � and F . The action of �1(M) on A sends markers to markers, therefore any

covering translation acts in A sending the unique vertical marker � to itself.
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Given a covering translation g not acting freely in H, there is a leaf F with g(F ) = F , so there is a

geodesic axis l in F invariant under g. Since g(�F ) = �F , then �F is one of the ideal points of l. Let

now f be any other covering translation with f(F ) and F distinct. Then

(fgf�1)(f(F )) = f(F ) and (fgf�1)(f(l)) = f(l)

so f(l) has an ideal point in �f(F ). This implies that l and f(l) are asymptotic in fM , which is impossible

since �(l) is a closed curve in M and there is a minimum distance between any two distinct lifts to fM .

We conclude that there are at least two markers connecting any two leaves.

Proposition 3.13. (local density of markers) Given F in eF , Y any open set in S1
1(F ), and A any

component of A� S1
1(F ), there is a marker with an endpoint in Y and contained in the closure of A.

Proof. This shows that there are markers on \both" sides of Y in A. The key property is that F is

minimal. Suppose the result is not true. Let

� F be a leaf of eF , Y an open set in S1
1(F );

� A component of A� S1
1(F ), so that there is no marker in A with an endpoint in Y and contained

in the closure of A.

Choose points pi in F with pi converging to p in Y . Fix a small transversal � to eF , let E;L be the

leaves of eF through the endpoints of �. Since F is minimal, there is a positive constant a0 so that any

point in a leaf of F is within a0 (in its leaf) of another point very near the center of �(�). Lifting to

fM , there are qi in F with dF (qi; pi) smaller than a0 and covering translations gi with gi(qi) in �. Up to

subsequence

gi(qi) converges to q0 2 �; q0 2 F0 2 eF :

Notice that in F [ S1
1(F ), qi also converges to p in Y , hence the visual measure of Y (in S1

1(F ))

as measured from qi is �i with �i converging to 2�. Hence from gi(qi), the visual measure of gi(Y ) in

S1
1(gi(F )) is �i also.

By lemma 3.12 there are at least two markers

�1; �2 from S1
1(E) to S

1
1(L):

Use the parametrization of the circles at in�nity between E and L given by T1 eFj�. The markers �1; �2
intersect S1

1(F0) in angles Æ1; Æ2 as measured by this identi�cation. Since the markers are continuous

in A and disjoint, there is positive a1 so that for any G in eF intersecting � the markers �1; �2 de�ne

directions in G which are at least a1 angles apart � as measured in T1 eF j (G\�). But gi(F ) converges to

F0 as i converges to in�nity and the markers in one side of S1
1(gi(F )) are restricted to have an endpoint

in S1
1(gi(F )) � gi(Y ). This set has visual measure smaller than 2� � �i which converges to zero with i.

These two facts contradict each other. This shows the local density of markers.

Markers were introduced by Thurston in [Th7]: he showed that markers are (locally) dense in A

(also in the non R-covered case). We will show a much stronger fact in our setting: there is a dense set

of contracting directions between any two leaves of eF . The markers will be the skeleton of the vertical

foliation in A. It is fundamental for all the analysis that markers are continuous curves in A. The

continuity of markers can be strengthened to a property that says markers are not too horizontal:

Lemma 3.14. Let L a leaf of eF and Z a closed subset of S1
1(L). For any open neighborhood N of Z in

A, there are neighborhoods V of L in H de�ned by transversal � to eF ( eF� = V ) and W of Z in A, so

that any marker � which intersects W then its intersection with A� is contained in N .
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Proof. If there were a horizontal marker - that is contained in some S1
1(F ) - it would clearly fail the

lemma. This is because no matter how small a neighborhood of S1
1(F ) in A, this curve still moves a

�xed amount in the horizontal direction. Still this is a continuous curve. The aim is to show that markers

cannot even get too close to horizontal arcs.

If the lemma is not true there are 1) a leaf L in F , 2) a closed subset Z of S1
1(L), and 3) an open

neighborhood N of Z in A satisfying: there are shrinking neighborhoods Vi of L in H (that is \Vi = L)

de�ned by transversals �i (that is eF�i = Vi), there are shrinking open neighborhoodsWi of Z in A (that

is \Wi = Z) and markers �i with

�i \Wi 6= ; but �i \A�i 6� N:

Choose points xi in the intersection of Wi and �i. As the Wi shrink to Z assume up to subsequence

that xi converges to x0 with x0 in Z. There are

yi 2 �i with yi 2 A�i but not in N:

Since A�i shrinks to S1
1(L), we can choose another subsequence so that yi converges to y0 a point in

S1
1(L). But yi is not in N , so y0 is not in Z, hence y0; x0 are di�erent points. For simplicity assume yi are

points in S1
1(Fi), with Fi above L and only consider the part of the markers on the corresponding side of

S1
1(L) in A. Since the markers are continuous curves in A, then up to another subsequence the markers

�i have to limit in at least one of the segments in S1
1(L) de�ned by x0 and y0. Let B be this segment.

If B has a marker � on that side of S1
1(L) in A, then because the �i limit on B, it follows that �i will

intersect � for i big enough. Lemma 3.8 shows that for each such i, � and �i are subpieces of a possibly

bigger marker � 0. Hence for i big enough the intersection of � 0 and A�i is equal to the intersection of �i
and A�i . The marker � 0 is a continuous curve in A, transverse to the horizontal foliation, so for i big

enough i,

� 0 \A�i � N which implies �i \A�i � N;

contradiction to assumption. We conclude that this is impossible.

The remaining option is that there are no markers on that side of S1
1(L) with endpoint in B. This

is disallowed by the previous proposition. The proof is complete.

The following lemma says that if a sequence of markers converges to a point in a marker � then the

whole markers also converge to �. It is needed later for the analysis of global density of markers.

Lemma 3.15. Let S; S0 leaves of eF and f�ig with i � 0 a sequence of markers from S1
1(S) to S1

1(S
0).

If the intersection ai of �i and S1
1(S) converges to a0 with i, then the �i converge to �0 in A, that is, for

any Z in [S; S0], the intersection bi of �i and S1
1(Z) converges to b0, the intersection of �0 and S1

1(Z).

Proof. Else there are f�ig; Z as above so that bi does not converge to b0. For simplicity suppose the

sequence ai for i bigger than 0 is nested (with i) in S1
1(S). The non transversal intersection of markers

implies that the bi are also nested in S1
1(Z). Let r be a geodesic ray in S with ideal point a0 and let v

be a geodesic ray in Z with ideal point b0. Let pj be a sequence in r converging to a0. We can choose

qj in v with d(qj ; pj) converging to zero since a0 de�nes a contracting direction from S to Z. For each

positive i let rj;i (respectively vj;i) be the ray in S starting in pj with ideal point ai (respectively in Z

starting in qj with ideal point bi). For each j we can choose i(j) big enough so that the directed angle in

S at pi between r and rj;i(j) is �j and �j converges to 0. Directed means it is measured from r to rj;i(j)
in the side the rj;i accumulates on r (when i grows). Since the bi(j) do not converge to b0, then as seen

from q0, the visual angle of the segment in S1
1(Z) from b0 to bi(j) does not converge to 0. It follows that

the directed angle �j at qj between the rays

v and vj;i(j)
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does not converge to zero (in fact it converges to �). Then choose covering translations fj so that fj(pj)

converges to a point p0, hence fj(qj) converges to p0 as well. At fj(pj) the angle between

fj(r) and fj(rj;i(j))

converges to 0, but at qj the angle between fj(v) and fj(vj;i(j)) does not converge to zero. This shows

that least one of the markers fj(�0) or fj(�i(j)) moves a de�nite amount horizontally in arbitrarily small

vertical displacement. For j big enough this contradicts lemma 3.14. This �nishes the proof.

De�nition 3.16. (invariant curves) An invariant curve in A is an embedded curve intersecting each

circle at in�nity exactly once and invariant under all covering homeomorphisms of A. An invariant

curve which is a limit of longer and longer markers is called a limit invariant curve.

For instance if F is the stable foliation of a suspension Anosov ow, form the curve of all the positive

ideal points of leaves of eF . This is continuous in A and invariant. This foliation is R-covered and not

uniform. The analysis of R-covered non uniform foliations will go roughly as follows:

If the set of contracting directions between a pair of leaves is not dense then one produces a limit

invariant curve L in A. One can show that the leaves are asymptotic away from the invariant curve - that

is all directions but one are contracting. So in any case one obtains a dense set of contracting directions.

The strategy here is to �rst analyse limit invariant curves in detail in lemmas 3.17 through 3.20 and

proposition 3.21 and then use that to produce the vertical foliation in proposition 3.22.

Lemma 3.17. Any limit invariant curve L has no points associated to contracting directions of F .

Proof. Suppose the limit invariant curve line L has a point q associated to a contracting direction. Then

there is a marker �0 through q. By hypothesis there are markers �j which converge pointwise to L.

The previous lemma shows that these markers converge pointwise to �0 in the circles at in�nity that �0
intersects. This shows that L contains the marker �0 � that is, L coincides with �0 locally. We can map

any interval [U;U 0] of H inside this small segment, hence the whole curve L is a marker. But since L is

�1(M) invariant, the argument of lemma 3.12 shows that this is impossible. This �nishes the proof.

We use the transversal ow distance between points and leaves: Fix a transversal line �eld to F

generating a foliation � with lift e� to fM . Given G in eF and z in fM , consider the transversal ow line

�z through z. As F is Reebless �z can intersect G at most once. If they do not intersect let d� (z;G) be

in�nity. Otherwise let d� (z;G) be the length of the segment of �z from z to the intersection with G. If

L is an invariant curve in A and L a leaf of eF let LL be the intersection of S1
1(L) and L.

Lemma 3.18. Let L be a limit invariant curve. Given L in eF and a side of L in fM there is G of eF
in that side so that: for any half plane H of L which does not limit on LL and any escaping sequence of

points zi in H then the limsup of d� (zi; G) is bounded above (depending only on H and G).

Proof. This is stronger than limsup d(zi; G) being bounded, which can occur even if d� (zi; G) is in�nite

for all i - for example if F is the stable foliation of an Anosov geodesic ow and � is given by the strong

unstable foliation. We do the proof for G above L, the same proof applies for G below L.

Roughly the proof goes as follows: if there is u in S1
1(L) distinct from LL so that d� \blows up" near

u, then one can map any transversal segment to one \near u". This produces covering translations with

invariant leaves in eF and a contracting �xed point in L - contradicting the previous lemma.

Suppose the proposition is not true. Let Gi be a sequence in eF converging to L. Given i there

is a sequence zi;j in H with d� (zi;j ; Gi) bigger than j and zi;j escapes in H (with j growing). Using

subsequences �nd

zi 2 H with d� (zi; Gi) > i and zi ! u 2 su(L); u distinct from LL:

Fix v in L. Let � be �v and �i the subsegments of � between L and Gi, whose lengths converge to 0.
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Since F is minimal any leaf is dense. Given positive a0 there is positive a1 so that if � is a segment

of the foliation � of length bigger than a0, w any point in M and W the leaf of F through w then the

following happens: W intersects � in a point w0 which is within a0=4 of the midpoint of � (in the ow

length of �) and w0 is at most a1 distant from w in the path distance of W .

Also there is positive a2 suÆciently small, so that for any segment �0 of � of length smaller than a2,

then if it is moved by holonomy so that starting point moves a distance less than a1 in its leaf (of F) then

the �nal segment of � has length bounded above by a0=4. Hence any segment of � of length bounded by

a2 can be moved by holonomy, with initial point moved a distance less than a1 within its leaf to have a

point in the segment � within a0=4 of the middle point of �. Since the length of the holonomy translate

is less than a0=4 the �nal holonomy translate is entirely contained in �.

By truncating �nitely many terms assume length of �i is bounded above by a2. Let �i be segments

in leaves of e� of length a0 with an endpoint in zi and contained in the positive side of L. The property

of the zi's implies that (at least for i big enough) all �i are in the union of leaves S of eF contained in

the interval [L;Gi) of H. Using the previous paragraph there are covering translations hi so that hi(v)

is in a leaf hi(L) of eF intersecting �i within distance a0=4 of the midpoint of �i and path distance from

hi(v) to �i is less than a1 in hi(L). By the previous paragraph the image of hi(�i) by holonomy will map

into �i. The endpoints of �i are in L;Gi and the endpoints of �i are in L and in another leaf between L

and Gi. This implies that on the level of the leaf space hi sends the interval [L;Gi] of H into a subset

of its interior (L;Gi) � so hi has a �xed point in (L;Gi). Then hni (L) converges to a leaf Li of eF when

n converges to in�nity (for each i!) and Li is invariant under hi. Notice that Li converges to L as i

converges to in�nity, because Li is in (L;Gi) and Gi converges to L in H.

Since hi(Li) = Li then hi acts as a hyperbolic isometry in Li and has two �xed points in S1
1(Li). Let

h+i = lim
n!+1

hni (x)

for any point x of Li. Let h
�
i be the other �xed point of hi. The key fact needed here is the following:

Lemma 3.19. h+i converges to u in A when i converges to in�nity.

Proof. Let N be a neighborhood of u 2 A in the top side of S1
1(L) (u de�ned at the beginning of the

proof lemma 3.18). Identify N to a subset of T1� using the ideal circles. Then N contains an open

segment T in S1
1(L) with u in T . As markers are locally dense in S1

1(L), there are markers

�1; �2 from S1
1(L) to S1

1(S1)

with S1 above L, intersecting S1
1(L) in �1(L); �2(L) respectively so that: the intersections with S1

1(L)

are in T and de�ne a small segment in S1
1(L) with u in the interior. Let r; r1; r2 be geodesic segments

in L starting in v and with ideal points u; �1(L); �2(L) respectively. Notice that r1; r2 are contracting

directions between L and S1. Let a3 positive, very small. Since r1; r2 are contracting directions between

L and S1, there is S2 in (L; S1) so that any point in r1; r2 is within a3 of S2, and hence within a3 of any

S between L and S2. For any such S we can move r1 and r2 to S using the transversal ow - if a3 is

suÆciently small. The geodesic curvature of the pushed curves in S is small tending to zero as a3 tends

to zero hence they are quasigeodesics in S and their initial directions give arbitrarily close estimates of

the direction de�ned by the lifts of r1; r2 to S. Hence these directions are in N and are close to the

direction of r in T1� (if N is small). The markers �1; �2 and the circles S1
1(L), S

1
1(S2) de�ne a small

neighborhood N1 of u in A in that side of S1
1(L) in A. We can choose N1 to be a subset of N .

Let vi be the intersection of � and Li. Then for i big zi is in the wedge of L de�ned by r1, r2, so

the intersection bi of �i and Li is in the wedge de�ned by the images of r1; r2 in Li. The direction of the

geodesic segment in Li from vi to bi is within this wedge and de�nes a point in N1 and hence in N . As

hi(vi) is boundedly close to bi in Li, then the direction of the geodesic segment in Li from vi to hi(vi)

also de�nes a point in N for i big enough. The points vi are in the �xed transversal � and very close to



x3. Ideal geometry and the universal circle 19

v, hence they are in a compact subset of Li. The points hi(vi) are boundedly close to �i hence also from

zi. As dL(v; zi) converges to in�nity then

dLi(vi; hi(vi))

is also converging to in�nity. Since hi is a hyperbolic isometry of Li, this now implies that hi(vi) is close

to h+i in the compacti�cation Li [ S1
1(Li). Notice this argument does not give any information about

h�i . This shows that the direction in Li de�ned by h+i is in N . As N is arbitrary this shows that h+i
converges to u. This �nishes the proof.

Remarks: 1) These arguments in fact show: if there is positive c0 and there are zi in L converging to u,

Gi in eF converging to L to that d� (zi; Gi) bigger than c0, then one obtains hi in �1(M) with �xed points

h+i in A converging to u.

2) Similarly if u in S1
1(L) is a contracting direction on the positive side (of eF), one switches the roles

of �i and �i to get: let Gi in eF converging to L all in the domain of contraction of holonomy in the

direction u. Fix geodesic ray r in L with ideal point u. Fix i and let c0 be the length of �i. As above

there is positive but very small c1 so that any segment of e� of length smaller than c1 can be transported

by a bounded distance holonomy to be in the interior of a covering translate of �i. As u is contracting

direction choose zi in r with d� (zi; Gi) smaller than c1. Let �i de�ned as before, now with length less than

c1. This produces gi in �1(M) with gi(�i) contained in the interior of the set of leaves of eF intersected

by �i. The g�1
i acting on A have (positive) �xed points ci which converge to u in A. This shows that

arbitrarily near any contracting direction there are contracting �xed points of covering homeomorphisms.

Conclusion of the proof of lemma 3.18. Let i be the geodesic in Li which is the axis of hi in Li so

hi(i) = i. The ideal points of i are h
+
i ; h

�
i . Then

hi sends [L;Li] inside L;Li]

and has no other invariant leaf in (L;Li]. Hence hi contracts the leaf space near Li and therefore the

direction of i associated to h+i is an expanding direction for eF : nearby leaves of eF diverge from Li in

this direction.

This implies that the direction of i associated to h�i is a contracting direction (or equivalently h�1
i

expands the leaf space near Li). But hi(L) = L, so one of the ideal points of  is in L. As h+ converges

to u and u is not LL then for i big enough h+i is not LLi . So for i big enough, h
�
i is LLi . But this would

imply L has a point h�i associated to a contracting direction. This contradicts lemma 3.17 and �nishes

the proof of lemma 3.18.

With more work we can show d� (zi; G) converges to 0:

Lemma 3.20. Suppose there is a limit invariant curve L. For any L in eF and a side of L in fM there is

G of eF in that side so that: for any u in S1
1(L) and distinct from LL and any sequence zi in L converging

to u then d� (zi; G) converges to 0. In particular u is a contracting direction between L and G.

Proof. Given L and a side of it pick a G as given by lemma 3.18. Suppose the proposition is not true.

Then �nd u in S1
1(L) distinct from LL and sequence zi with d� (zi; G) not converging to 0. By lemma

3.18 the limsup of d� (zi; G) is bounded above by a constant a4 which depends only on L;G and u. Since

d� (zi; G) does not converge to 0, up to subsequence assume d� (zi; G) converges to a5 positive. Up to

another subsequence choose fi in �1(M) with fi(zi) converging to a point z0. Then fi(L) converges to

L0 containing z0 and fi(G) converges to a leaf G0 because d� (zi; G) converges to a5. Here G0; L0 are

distinct leaves because a5 is positive. For any w in L0, dL0(w; z0) is �nite, so w is the limit of wi with wi

in fi(L) and dfi(L)(wi; fi(zi)) bounded (the bound depends on dL0(w; z0)). The points f
�1
i (wi) of L are

a bounded distance from zi and in particular
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f�1
i (wi) ! u 2 S1

1(L) when i ! +1:

Therefore the limsup of d� (f
�1
i (wi); G) is less than a4. Up to subsequence d� (f

�1
i (wi); G) converges to

a6, which is not 0 because dL(f
�1
i (wi); zi) is bounded above and d� (zi; G) is bounded below by a positive

constant. There are yi in G with yi; f
�1(wi) in the same leaf of e� and d� (yi; f

�1
i (wi)) converging to a6.

Then fi(yi) converges to a point y in �w and d� (w; y) is a6. But fi(yi) is in fi(G) and fi(G) converges

only to G0 hence y is in G0. This produces a map ' from L0 to G0 given by '(w) = y. Notice that for

any w in L0, the w;'(w) are in the same leaf of e� and d� (w;'(w)) is less than a4.

The map ' from L0 to G0 is injective because F is Reebless and hence it is a homeomorphism onto

its image. If '(L0) is not all of G0 then there is b in G0 with b in the boundary of '(L0) (as a subset of

G0). Choose sj in '(L0) converging to b. Let xj in L0 with '(xj) = sj. Then

d(xj ; sj) � d� (xj ; sj) � a4

hence d(xj ; b) is bounded and so is d(xj ; x1). As F is R-covered this implies that dL0(xj ; x1) is bounded

too (this is a key point!). Up to subsequence assume that xj converges to x0. Then sj = '(xj) converges

to '(x0) - a point in G0. But b is equal to '(x0) and is in '(L0) contradicting the hypothesis.

We conclude that ' is surjective and in fact for every point s in G0, d� (s; L0) is less than a4. Using

the fact that F is minimal this quickly shows that any two leaves of eF are a bounded distance from each

other, contradicting the non uniform hypothesis. This �nishes the proof of lemma 3.20.

Since L in H and u in S1
1(L) � LL are arbitrary, lemma 3.20 shows that every point u of A � L is

an interior point of some marker � in A. If two markers intersect then their union is a marker. This

produces a 1-dimensional foliation N in A�L consisting of the collection of all markers. The goal is to

show that any leaf of N intersects all circles at in�nity.

Proposition 3.21. Suppose there is a limit invariant curve L. For any E;F in eF and any v in S1
1(E)

distinct from LE then v is a contracting direction with F - that is every direction but those in L are

contracting direction between arbitrary leaves.

Proof. Let v in A� L be a �xed point of a covering homeomorphism f ; � the leaf of N through v and

R0 in eF with v in S1
1(R0). For simplicity assume that � misses some S1

1(R) with R above R0. Let R1

above R0 the smallest such that � misses - the set of R such that � intersects S1
1(R) is open in H because

every point in A�L is in the interior of a marker. Then

f(�) = � implies f(R1) = R1

because F is R-covered. Also for any R in the interval (R0; R1) of H one has f(R); R distinct, because

all such R are asymptotic to R0 in the v direction and cannot be left invariant by covering translations

associated to that direction. If needed switch f; f�1 so that v is the atracting �xed point of f in S1
1(R0).

Then R0 is an expanding point for the action of f in [R0; R1], see �g. ??, a. The action of f on the

closed interval

B = L \ ([R2[R0;R1]S
1
1(R))

has an expanding �xed point in LR0 . As f has no invariant leaf in (R0; R1), the action of f on B has LR1
as an attracting point, see �g. ??, a. As f(R1) = R1 this shows that LR1 corresponds to a contracting

direction in R1, contradicting lemma 3.17. We conclude that � intersects all circles at in�nity.

If a leaf � of N intersecting S1
1(S0) does not intersect all circles at in�nity; assume there is (say) a

top limit S1
1(S1). Then � limits to L near S1

1(S1), see �g. ??, b. It follows that �; S
1
1(S0) and L bound

a region Z which does not intersect S1
1(S1), see �g. ??, b. Any marker intersecting Z is bounded above.

Now just choose u in Z which is a �xed point of some covering translation � we showed before that any
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contracting direction is the limit of �xed points of covering translations. Let � 0 be the leaf of N through

v0. As v0 is in Z then � 0 is bounded above, which was previously disallowed.

The conclusion is that for any marker � in A, then � intersects all S1
1(R). In particular given E;F

in eF and u in S1
1(E) � LE then the marker � through u intersects S1

1(F ) - that is u is a contracting

direction between E and F . This �nishes the proof of proposition 3.21.

Using these results, we can now �nish the analysis of the non uniform case:

Proposition 3.22. (vertical foliation - non uniform case) Let F be a minimal, non-uniform R-covered

foliation with hyperbolic leaves. Given any F;E of eF , there is a dense set of directions in F contracting

towards E. The set of markers extends to a natural vertical foliation in A which is group invariant.

Proof. The argument goes like this: If markers are not dense, zoom in towards an interior point of the

markerless set. This pushes markers to the opposite end and de�nes an ideal point of the leaf - all markers

between suÆciently spaced leaves of eF have to pass near this point. This collection of points at in�nity

produces a curve L in A which is a limit invariant curve. Then appeal to the previous proposition.

Suppose the proposition is not true. Then there are F in eF and E in eF (say above F ) and not a

dense set of contracting directions from F to E � this is from the point of view of F ! Hence there is an

open interval J0 in S1
1(F ) so that no point in J0 corresponds to a contracting direction from F to E.

Let q0 in J0. Since q0 is not a contracting direction between F and E, there is positive � and pi in F

converging to q0 along a geodesic ray l and so that d(pi; E) is bigger than �.

In the leaf F , the visual measure of J0 from the point of view of pi is �i with �i converging to 2� as i

converges to in�nity. Up to a subsequence of pi choose covering translations gi with gi(pi) converging to

p0 and gi(l) converging to a geodesic ray l0. Let F0 in eF containing p0. Let

O = f G 2 eF j G = f(F0); for some f 2 �1(M) g � H:

We will de�ne a function � from O to A which picks out the \limit" marker direction and will produce

a limit invariant curve. Since d(gi(E); gi(pi)) is bigger than � then gi(E) does not have any subsequence

converging to F0. A marker from gi(F ) to gi(E) must start in the set

Ui = S1
1(gi(F )) � gi(J0):

From the point of view of gi(pi) in gi(F ), the visual measure of Ui is 2� � �i which converges to 0. Also

visually from gi(pi) the set Ui is very close to the direction of the segment of gi(l) from gi(p1) to gi(pi).

Because the directions of gi(l) converge to that of l0 and the topology of A is given by the visual topology

from transversals to eF , it follows that the segments Ui converge to a unique point in S1
1(F0).

De�nition 3.23. (function �) De�ne � : O ! A by

�(F0) = lim
i!1

Ui = lim
i!1

(S1
1(gi(F )� gi(J0))

and for any covering translation f de�ne �(f(F0)) = f(�(F0)).

The leaves F;E; F0 of eF as well as the covering translations gi will be �xed in this proof.

Lemma 3.24. The function � from O to A extends to an embedding � : H �= R! A.

Proof. Roughly the idea is: if the lemma is not true we produce spaced enough leaves A;B in eF with no

markers between S1
1(A) and S1

1(B), contradiction.

Suppose the lemma is not true. There is L in eF and two sequences Lj;Hj converging to L with �(Lj)

converging to a, �(Hj) converging to b, with a; b distinct points in S1
1(L). The Lj;Hj are covering

translates of F0:

Lj = fj(F0); Hj = hj(F0) for chosen fj; hj 2 �1(M):
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Choose small disjoint open neighborhoods Va; Vb of a; b respectively in A. Lemma 3.14 shows that there

are small disjoint open neighborhoods V 0a; V
0
b of a; b respectively in A, and a small neighborhood Y of L

in H de�ned by transversal �, so that any marker through V 0a and contained in A� is contained in Va and

similarly any marker intersecting V 0b is contained in Vb. In particular the two sets of markers contained

in A� through V 0a and V 0b are disjoint from each other. Lemma 3.8 implies that any marker in A through

V 0a does not intersect V 0b .

Fix j big enough so that �(Lj) is in V 0a and �(Hj) is in V 0b . As Lj = fj(F0) then

�(Lj) = fj(�(F0)) = fj( lim
i!1

Ui) = lim
i!1

fj(Ui) 2 V 0a:

Similarly �(Hj) is the limit of hj(Ui) with i converging to in�nity. Now �x i big enough so that fj(Ui)

is contained in V 0a and hj(Ui) is contained in V 0b . By the property of V 0a and V 0b , this implies that any

marker through fj(Ui) is disjoint from a marker through hj(Ui), see �g. ??.

Choose A in eF with A less than L in the linear ordering of H. By taking j; i big enough we can

assume that Lj ;Hj are bigger than A and so are

fj(gi(F )); hj(gi(F )):

Also choose B in eF with B bigger than both fj(gi(E)) and hj(gi(E)) in H. A marker from S1
1(A) to

S1
1(B) has to pass through S1

1(fj(gi(F ))) and through S1
1(fj(gi(E))), since the leaves fj(gi(F )) and

fj(gi(E)) separate A from B. By the property of Ui, it follows that the marker has to pass through fj(Ui)

contained in V 0a. Similarly any such marker has to pass through S1
1(hj(gi(F ))) and S

1
1(hj(gi(E))) hence

it has to pass through hj(Ui) contained in V 0b . But we just showed no marker can pass through both V 0a
and V 0b . This would imply there is no marker from S1

1(A) to S
1
1(B) which contradicts proposition 3.11.

These arguments show that � can be extended to a continuous function from the closure of O to A. But

F is a minimal foliation so O is dense in H so there is a continuous extension � : H �= R ! A. The

image is a curve L which is transverse to the horizontal foliation and intersects every circle at in�nity.

This �nishes the proof of the lemma.

Conclusion of the proof of proposition 3.22.

The set

f�(f(F0))g f 2 �1(M)

is an equivariant subset of A. By the previous lemma the curve L is left invariant by every covering

homeomorphism - it is an invariant curve. Also given any covering translation g with an invariant leaf L

(g(L) = L), then one of the �xed points of g in S1
1(L) is in L.

Let L in O, L = g(F0). Then L is the limit of g(gi(F )) as i converges to in�nity. Any marker from

S1
1(g(gi(F )) to S1

1(g(gi(E))

has to start in in g(Ui). Recall that g(Ui) converges to �(L) as i converges to in�nity. Choose a collection

of leaves Gk; Rk in eF , escaping to opposite ends of H and Gk always smaller than Rk in H. For each k

choose a marker �k from S1
1(Gk) to S

1
1(Rk). Fix a neighborhood N of �(L) in A. Choose i big enough

so that g(Ui) is contained in N . For k big enough the leaves Gk; g(gi(F )); g(gi(E)) and Rk are linearly

ordered in increasing order in H, hence �k has to pass through some point zk in g(Ui), so zk is in N .

Therefore

for all L in O; �(L) = lim
k!1

(�k \ S
1
1(L)) (�):

As O is dense in H, and � is continuous in H, lemma 3.14 implies that equation (�) holds for any G

in eF . We conclude that L is the limit of the sequence of longer and longer markers �k and L is a limit
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invariant curve.. But in that case proposition 3.22 implies that given any G;H leaves in eF and any u in

S1
1(G) � LG then u is a contracting direction between G and H. This now contradicts the assumption

in the proof of proposition 3.22 that there is not a dense set of contracting directions from F to E. So in

any case for any G;H in eF there a dense set of contracting directions between G and H.

We now �nish the proof of proposition 3.22. Given arbitrary G;H in eF , the dense set of markers

between S1
1(G) and S

1
1(H), extends uniquely to a vertical foliation of the region of A between S1

1(G) and

S1
1(H). This is because it is dense from the point of view of both G and H! In addition if G0; G;H;H 0

are linearly ordered in H and one does the same operation using G0;H 0, the resulting foliation is an

extension of the foliation between S1
1(H) and S1

1(G). This is because markers from S1
1(G

0) to S1
1(H

0)

produce markers from S1
1(G) to S1

1(H) and there is a unique extension of the foliation to the bigger

annulus. Consequently there is a well de�ned vertical foliation in A. Since the collection of markers in

A is invariant under covering homeomorphisms, the vertical foliation also is and is a natural foliation

associated to F . This �nishes the construction of the vertical foliation in the non uniform case.

4 The uniformly quasisymmetric case

As shown in the previous section, if F is R-covered, with hyperbolic leaves, then both in the uniform or

non uniform cases there is a vertical foliation in A which is equivariant. No need of transverse orientability

for these results. The leaf space of the vertical foliation is a circle, which is the universal circle of the

foliation as de�ned by Thurston [Th9, Th10] and is denoted by U . For the arguments in this and the

following sections, �x once and for all a leaf F � 2 eF and identify U to the circle at in�nity S1
1(F �) � for

each point in U associate the intersection of the corresponding vertical leaf with S1
1(F

�). The leaf F �

is isometric to the hyperbolic plane H2 and we use the model of F � as the unit disk in the plane, hence

S1
1(F

�) homeomorphic to U is the unit circle S1 in the complex plane C.

Notation: If g is in �1(M), let �(g) denote the induced homeomorphism of U �= S1.

The transverse change in geometry of leaves of eF is encoded by how the hyperbolic metrics vary from

leaf to leaf. The distortion can also be measured in the ideal circles in the following way: We say that a

homeomorphism of U �= S1 is M�oebius if it continuously extends to an isometry of H2. Since hyperbolic

isometries act freely and transitively on triples of distinct points in S1, one cannot verify directly whether

f in Homeo(S1) is M�oebius by looking at the action on triples of points. However one can do that by

considering the action on quadruples of points. Given 4 distinct points Z = fz1; z2; z3; z4g in S1, that

follow each other in the positive counterclockwise direction, recall that the cross ratio of the set is

C(Z) =
z4 � z1

z4 � z2
:
z3 � z2

z3 � z1
:

Then C(Z) is always real and in (0; 1). The 4 points in Z de�ne an unique ideal quadrilateral in H2 with

ideal points in Z, which is regular if and only if C(Z) is equal to 1=2. For any homeomorphism f of U

let fZ = ff(z1); f(z2); f(z3); f(z4)g. Let K bigger than 1. Then f is said to be K-quasisymmetric if

(2K)�1 � C(fZ) � 1� (2K)�1;

whenever C(Z) = 1=2 [Hi1, Hi2]. This means regular quadrilaterals do not get too distorted. The

notation is f is K-qs [Hi1]. It is easy to see that f is M�oebius if and only if C(Z) = C(fZ) for all sets of

4 distinct points � equivalently f is 1-qs. This de�nition is the analogue in dimension 1 of the concept

of a quasiconformal map in a complex domain of dimension � 2.

There is a rich theory of quasisymmetric maps [Hi1, Hi2, Le]. A group � acting on S1 is uniformly

quasisymmetric if there is K so that for any f 2 �, then f is a K-quasisymmetric homeomorphism of S1.

We denote this by � is K-qs [Hi1]. In this section we deal with following the situation:

Case 1 � �1(M) acts on U as a uniformly quasisymmetric group.
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This is the rigid case and it implies that the action is always topologically conjugate to a M�oebius

action in S1: there is f in Homeo(S1) so that for every g in �1(M), f Æ �(g) Æ f�1 is M�oebius on S1. This

has already been done in the literature using works of various authors. We just outline the possibilities.

Suppose �rst that �1(M) acts a non discrete group on U . Given that �1(M) acts a K-qs group, it

was proved by Hinkkanen in chapter 9 of [Hi1] that the action of �1(M) is conjugate to a M�oebius group.

Suppose now that �1(M) acts as a discrete group of homeomorphisms of U . This means that given a

sequence gn; n 2 N in �1(M) with fn = �(gn) and fn converging to the identity then fn is the identity for

n big enough. The idea is to �rst prove that �1(M) is a convergence group: that is, �1(M) acts discreetly

in the triple space which is the set of triples fa; b; cg in S1�S1�S1 with a; b; c distinct [Ge-Ma, Ga4]. In

general the convergence group property is stronger than discreteness of the group, but not in the case of

uniformly quasisymmetric groups. This is because there is a normal property associated to K-qs groups:

Let gn in �1(M), with fn = �(gn) and suppose there are a; b; c distinct in U so that

fn(a); fn(b); fn(c)

converge to 3 distinct points. It follows that there is a subsequence which converges uniformly to a K-qs

homeomorphism. Gehring and Martin [Ge-Ma] do this is detail for uniformly quasiconformal maps in

higher dimension and the result for K-qs groups acting in the circle is mentioned by Hinkkanen in [Hi1],

page 62, even though the proof is not written down there. The key ideas are well known, for instance:

choose z in U so that Z = fa; b; c; zg form the vertices of an ideal quadrilateral in F �. The key fact is

that C(fn(Z)) is bounded away from 0 and 1 so that the quadrilaterals associated to these points are

never too thin (meaning that two opposite sides of the quadrilateral do not have points very close to

each other). Hence there is a subsequence fni with fni(z) converging to w di�erent from the limits of

fn(a); fn(b); fn(c). Starting with the initial ideal triangle in F � with ideal points a; b; c we can tesselate

F � �= H2 with ideal triangles so that any two adjacent ones form a regular ideal quadrilateral. Then

as above there is a subsequence fni which converges in all the ideal points of the triangles, hence in a

dense set of the circle U . Again using the K-qs property of the action of �1(M) one shows that the limit

map extends to a continuous map h from U to S1, which is a homeomorphism and the convergence is in

fact uniform. Also the inverses converge to h�1. This implies that the compositions f�1
ni+1

Æ fni converge

uniformly to the identity. As the group is discrete fni are all equal for i suÆciently big. This shows that

�1(M) acts discretly in the triple space and is a convergence group. Fundamental work of Tukia [Tu],

Gabai [Ga4] and Casson-Jungreis [Ca-Ju] then implies that �1(M) is conjugate to a M�oebius group.

Let f in Homeo(S1) be the conjugating homeomorphism. We prove a rigidity result. First produce

a transversely hyperbolic [Th3, Ep] 1-dimensional foliation in a manifold M 0 as follows:

Identify the leaf space H to R and parametrize it as fFtg with t a real number and F0 = F �. Given

g in �1(M), let g� be the induced homeomorphism of H. Let fM 0 be the product H2�R. Let �1(M) act

on fM 0 as follows. By hypothesis for any g in �1(M), the homeomorphism f Æ �(g) Æ f�1 is M�oebius and

it extends to an isometry of H2, still denoted by f Æ �(g) Æ f�1. De�ne the action on fM 0
by

g(u; t) = (f Æ �(g) Æ f�1(u); g�(t)); u in H2; t in R:

We analyse properties of this action to prove the rigidity result.

Claim 1 � The action is free.

Suppose there is g in �1(M) and (u; t) in fM 0 with g �xing (u; t). Then g� �xes t so g leaves Ft
invariant. If g is not the identity in Ft, then g is a non trivial isometry in Ft which must be of hyperbolic

type. Hence g acts on S1
1(Ft) with two �xed points, one contracting one expanding and the same is true

for the action of �(g) on U and the action of f Æ �(g) Æ f�1 in S1. As the extension of f Æ �(g) Æ f�1 to H2

is an isometry it has to have hyperbolic type and has no �xed points in H2. This contradiction shows

that g acts as the identity in Ft and hence g is the identity. This proves claim 1.
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At this point we need the following simple but extremely useful continuity property which relates

curves in A with geodesics in leaves of eF . We establish notation which will be used often: if a; b are

two ideal points of a leaf L of eF , let ab be the geodesic in L de�ned by the ideal points a; b if they are

di�erent and let this be the emptyset if a; b are equal. We show a basic continuity property of geodesics:

Lemma 4.1. Let Li, i in N be a sequence of leaves of eF converging to L0. Let pi; qi distinct points in

S1
1(Li) with pi converging to p0, qi converging to q0 in A. Then piqi converges in fM to p0q0.

Proof. First suppose that p0; q0 are equal. Let � be a transversal to eF through x0 in L0, which intersects

Li in a point xi. Identify the unit tanget bundle to the leaves T 1

eF
j� to the union of circles at in�nity

near S1
1(L0). From the point of view of �, the visual angle seen by piqi is converging to 0, because pi; qi

are both converging to p0. Hence dLi(xi; piqi) converges to in�nity. As F is R-covered d(xi; piqi) also

converges to in�nity. Therefore the geodesics piqi escape in fM and have no limit point in L0.

Suppose now that p0; q0 are distinct points. With the notation as in option 1, the visual angle of piqi
as seen from xi converges to the visual angle of p0q0 as seen from x0 � this last one is not 0, so we may

assume all of them are bounded away from 0. Hence the geodesics piqi have points yi a bounded distance

from xi. There is a subsequence yin converging to y0 which is in L0 and so that directions at yin also

converge. Choose a transversal �0 to eF through y0 and containing yin . From the new point of view still

pin converges to p0 and qin converges to q0 in A. Hence the two rays of pinqin de�ned by yin converge

to two rays in L0 starting in y0 and with ideal points p0; q0. In addition the angle between the rays of

pinqin is always equal to �, hence so is the angle between the two rays in L0 starting at y0. This means

that the union of these two rays in L0 is a geodesic, which is none other than p0q0. So pinqin converges

to p0q0. Since any such sequence has a convergent subsequence to p0q0 this proves the lemma.

It follows that if �;  are continuous curves in A which are transverse to the horizontal foliation, then

the geodesics in L de�ned by the intersections of � and  with S1
1(L) vary continuously in fM as L varies

in eF . In particular this occurs if �;  are contained in leaves of the vertical foliation of A.

Claim 2 � The action of �1(M) on fM 0
is properly discontinuous.

Let C compact in fM 0. Let gi in �1(M) so that there are xi in C with xi also in (gi)
�1(C). Let yi be

gi(xi). Up to subsequence xi converges to x0 and yi converges to y0 = (u0; t0). Let

xi = (ui; ti) with ui 2 H2; ti 2 R; ui ! u0; ti ! t0:

Choose triples of points (zi; wi; vi) in @H
2 = S1 with ui the barycenter of the ideal triangle in H

2 de�ned

by these 3 points. Assume that zi converges to z0 which implies wi; vi also converge to distinct points

w0; v0. Up to another subsequence f Æ �(gi) Æ f
�1(zi) converges to z

0
0, so also f Æ �(gi) Æ f

�1(wi) converges

to w00 and f Æ�(gi)Æf
�1(vi) converges to v

0
0, distinct in S

1. Hence yi is equal to (si; ri) with si converging

to the barycenter of the triangle de�ned by z00; w
0
0; v

0
0. Using the conjugacy by f , it follows that in U the

sequences

f�1(zi); f�1(wi); f�1(vi) converge to distinct points f�1(z0); f�1(w0); f�1(v0)

respectively. Let ai in Fti which are the barycenters of the ideal triangles in Fti de�ned by the points

b1i ; b
2
i ; b

3
i in S1

1(Fti) associated to f�1(wi); f
�1(zi); f

�1(vi) of U . As these points converge to 3 distict

points in A, the lemma above implies that b1i b
2
i ; b

1
i b

3
i ; b

2
i b

3
i converge to geodesics in the limit leaf. The

associated barycenters ai also converge to the barycenter a0 in Ft0 of the limit ideal triangle. But

�(gi)(f
�1(zi)) = f�1(f Æ �(gi) Æ f

�1(zi)) ! f�1(z00) in U ;

similarly for wi; vi. The gi(ai) are barycenters of ideal triangles in Fg�
i
(ti) with ideal points associated to
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�(gi)(f
�1(zi)); �(gi)(f

�1(wi)); �(gi)(f
�1(vi))

and they converge to the barycenter c0 of the ideal triangle in Ft0 de�ned by f�1(z00); f
�1(w00); f

�1(v00).

That means gi(ai) converges to c0. As the action of �1(M) on fM is properly discontinuous there are only

�nitely many distinct gi. This proves claim 2.

Let � be the action of �1(M) induced in fM 0. Claims 1) and 2) imply that M 0 = fM 0=� is a manifold.

Claim 3 � M 0 is a compact manifold.

Let xi in M 0 and lift to xi in fM 0. Similarly to arguments in claim 2, �nd associated points ai in fM .

Up to subsequence there are covering translates gi(ai) converging in fM . Again similarly to claim 2 show

that gi(xi) is in a compact subset of fM 0
, implying compactness of M 0. We leave the details to the reader.

Notice that M is homotopy equivalent to M 0.

There are two product foliations in fM 0
one by leaves H2�ftg and another by vertical lines fxg�R.

Both of these foliations are invariant by the action of � producing two transverse foliations in M 0. The

two dimensional foliation implies that M 0 is irreducible. The foliation by vertical lines fxg �R induces

a 1-dim V foliation in M 0 which is transversely hyperbolic: there is a transversal H2 structure which is

preserved by holonomy [Th3, Ep]. Under these circumstances Thurston [Th3, Ep] showed that either

1) M 0 is a Seifert �bered manifold with V a Seifert �bration, or

2) M 0 is a torus bundle over S1 with Anosov monodromy and V is (say) the strong unstable foliation

of the corresponding suspension Anosov ow.

In case 2) M 0 is Haken and as M is homotopy equivalent to M 0, then M is in fact homeomorphic to

M 0 [He, Wa]. In case 1) M 0 is homotopy equivalent to a Seifert �bered space and since M is irreducible,

Scott [Sc] proved that M is homeomorphic to M 0.

Using averaging techniques one can show that F is topologically conjugate to F 0. These techniques

have been used for instance by Ghys [Gh] and others in the one dimensional setup. The two dimensional

case is more involved and for brevity we only do the following: In situation 1) M is a Seifert �bered

space, and work of Brittenham [Br] (see also [Th1]), implies that F is either vertical (a union of circle

�bers in the Seifert �bration) or horizontal (transverse to the circle �bers). The �rst option cannot occur

because the leaves of F are hyperbolic. Hence F can be put transverse to the Seifert �bration and by

careful choices, the transversal ow in M lifts to a ow in fM which produces global homeomorphims

between leaves of eF which are isometries of the hyperbolic metric. No change in geometry! In any case

it is easy to see that in this case there is a Z� Z subgroup of �1(M).

In case 2), M �bers over S1 with Anosov monodromy. One can put the incompressible torus T

transverse to F [Rou, Th1, Ga5] and hence there is an induced foliation in T . This foliation is invariant

by the monodromy of the �bration and hence has to be the stable or unstable foliation of the monodromy.

Hence F is conjugate to (say) the (weak) stable foliation of the associated Anosov ow and the transversal

ow can be chosen to be the strong unstable foliation of this ow. As in case 1) no transversal change of

the leaf metrics. In any case there is a Z� Z subgroup of �1(M).

This �nishes the proof of the main theorem in the case �1(M) acts by uniformly quasisymmetric

homemorphisms of U .

5 The non uniformly quasisymmetric case

For the rest of the article we we analyse the following situation:

Case 2 � The action of �1(M) on U is not uniformly quasisymmetric.

Theorem 5.1. If the action of �1(M) on U is not uniformly quasisymmetric and F is transversely

orientable, then there is a lamination G transverse to F intersecting leaves of F in geodesics.
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Proof. The goal of this section is to prove this theorem. Thurston [Th9, Th10] announced a very similar

result with an additional possibility in the conclusion: a Z�Z subgroup of �1(M). He explained to us the

main steps of his proof [Th9]. We extend Thurston's result by always obtaining a transverse lamination.

The detailed constructions in this section are essential for the results in the next section.

Roughly the proof goes like this: using the hypothesis on the action we produce ideal quadrilaterals

in leaves of eF which get arbitrarily distorted. They shrink to geodesics in leaves of the foliation. Using

the universal circle one can sweep these geodesics across the foliation to produce an immersed lamination

transverse to F . The diÆcult part will be to show they are embedded.

We use the same notation as in the previous section: the universal circle U is identi�ed to a circle S1

and also to the circle at in�nity S1
1(F �) of a �xed leaf F � of eF , where F � is identi�ed to H2. Given a

covering translation g, then �(g) denotes the induced homeomorphism in U (or in S1
1(F

�)). The set H

(the leaf space of eF) is parametrized as fFtg with t in R. The proof is divided into several steps.

Step 1 - Constructing ideal quadrilaterals which get stretched in opposite directions.

By hypothesis there are quadruples Zi of points in U with C(Zi) = 1=2 and gi in �1(M) with the

cross ratio C(�(gi)(Zi)) arbitrarily close to 0 or 1. There is a way to produce the transverse laminations

to F using earthquake maps on the hyperbolic plane [Th6] as explained by Thurston [Th9]. Here we use

simple properties of the cross ratio to obtain the laminations.

If Z = fz1; z2; z3; z4g is a positively oriented quadruple of points in S1, then C(Z) is very near 0 or 1

if and only if the ideal quadrilateral inH2 associated to it is very thin: there are two opposite sides of the

quadrilateral which are very close to each other in the hyperbolic metric. This obviously implies that the

other two opposite sides are very far from each other and is equivalent to it. Given an ideal quadrilateral

we de�ne the waist to be the minimum distance between opposite sides. Using the formula for C(Z) it is

very easy to verify that C(Z) is very near 0 if and only if the geodesic z1z2 of H
2 de�ned by z1; z2 has a

point very near z3z4 and that C(Z) is very near 1 if and only if z2z3 has a point very near z4z1.

De�nition 5.2. Given a quadruple U of points in a circle at in�nity S1
1(L) of a leaf L of eF , let W(U)

denote the ideal quadrilateral in L with endpoints in U .

Let Z be a quadruple in S1
1(F �). For g in �1(M) the map �(g) acts on U (identi�ed to S1). This

de�nes an action on geodesics and ideal quadrilaterals of F �, for simplicity of notation also denoted by

�(g). In particular

�(g)(W(Z)) = W(�(g)(Z)):

We stress that

�(g)(W(Z)) � F �; usually not isometric to W(Z);

whereas g(W(Z)) � g(F �) is always isometric to W(Z):

First check the action in F �. Let Zi be a sequence of quadruples in U and gi in �1(M) with C(Zi) = 1=2

(that is, theW(Zi) are regular ideal quadrilaterals in F
� = H2) but the cross ratios C(�(gi)(Zi)) converge

to either 0 or 1. Circularly rename the points in Zi so that these cross ratios converge to 0.

Lemma 5.3. There are ideal quadrilaterals Ci in H2 de�ned by quadruples Yi in U and covering trans-

lations gi with C(Yi) converging to 0, but C(�(gi))(Yi)) converging to 1.

Proof. This means that with the ordering in the quadruples, the map �(hi) sends quadrilaterals very thin

in one direction (C(Z) near 0) to quadrilaterals very thin in the other direction (C(Z) near 1). Given

n in N and any waist size b0 suÆciently small, there is a waist size b1 much smaller than b0 so that any

quadrilateral of waist b1 can be covered by n quadrilaterals
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fEmg; 1 � m � n;

of waist smaller than b0 (the associated cross ratio is very close to 0) satisfying: the interiors of the Em
are disjoint from each other, consecutive quadrilaterals are adjacent, see �g. ??, a.

Now if W(�(gi)(Zi)) has waist size less than b1, cover it by quadrilaterals fEmg with m in [1; n] all of

waist size smaller than b0 as above, see �g. ??, a. Let �(g
�1
i ) act on this. The union of

�(gi)
�1(Em)

will cover the regular quadrilateral W(Zi). Since the quadrilaterals �(gi)
�1(Em) are restricted in one

direction to be inside the regular quadrilateralW(Zi) (see �g. ??, b) then: If n is suÆciently big, at least

one of the quadrilaterals �(gi)
�1(Em) is very thin in the other direction, that is the associated cross ratio

is very close to 1. Let Ci be one such quadrilateral Em. This �nishes the proof of lemma 5.3.

De�nition 5.4. If l is a geodesic in a leaf a leaf F of eF , it has two ideal points in S1
1(F ) and therefore

two distinct points in U . The set l�R consists of the union of the geodesics in leaves of eF associated to

the same points in U de�ned by l. The curves in A de�ned by each point in U are continuous hence the

set l �R is a topological plane which is properbly embedded in fM . In the same way if V is a convex set

in a leaf of eF bounded by geodesics si, one forms si �R and jointly they bound the set V �R.

Step 2 - The distortion parallelepipeds.

We will use the thin quadrilaterals

W(Yi); W(�(gi)(Yi))

of the previous step to produce immersed transverse laminations to F . First construct a distorted ideal

parallelepiped in fM as follows. For simplicity suppose that F � is in the back of g�1
i (F �). Notice that

�(gi)(Yi) de�nes an ideal quadrilateral in F � with cross ratio very close to 1. Since gi acts as isometries

between leaves of eF , then

Zi = g�1
i (W(�(gi)(Yi))) � g�1

i (F �)

is isometric to W(�(gi)(Yi)) and has cross ratio very close to 1. The ideal points of

g�1
i (W(�(gi)(Yi))) in S1

1(g�1
i (F �))

de�ne the same points b1; b2; b3; b4 in U that Yi does. For each F in H between F � and g�1
i (F �) form the

ideal quadrilateral with the ideal points corresponding to b1; b2; b3; b4 in U . The 4 curves in A de�ned

by these points in U are continuous curves in A, hence lemma 4.1 implies that the sides of the ideal

quadrilaterals in F vary continuously with the leaf F . The union of these ideal quadrilaterals between

F � and g�1
i (F �) is a parallepiped Pi in fM , see �g. ??. That is

Pi =
[

f (W(Yi)�R) \ F j F 2 [F �; g�1(F �)] g:

The bottom of Pi is the quadrilateral W(Yi) in F �, the top is the quadrilateral Zi in g�1
i (F �) and there

are 4 sides which are transverse to eF , which are b1b2 � R and so on. The tops of the parallelepipeds

will shrink to geodesics producing one lamination and likewise for the bottoms. We will change the

parallelepipeds Pi in the next step.

Remark: Lemma 4.1 implies that for any geodesic � in a leaf of eF , then the geodesics in � �R vary

continuously in fM . Hence ��R is an embedded plane in fM . It follows that all objects constructed here

(D� �R, D+ �R, G, G�, G+, etc..) are continuous.
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Step 3 - Convergence of the bottoms of the parallelepipeds.

We use the distortion parallelepipeds Pi from step 2. We take limits: First project to leaves of F in

M . The quadrilateralsW(Yi) have associated cross ratios C(Yi) converging to 0. Let xi in the boundary

of the waist of W(Yi). Up to subsequence assume that �(xi) converges to x0 in M and the directions of

the geodesic sides of �(Wi) at �(xi) also converge. In M the quadrilaterals �(W(Yi)) shrink to geodesics

in leaves. Lift x0 to ex0 in fM with the limit geodesic in the leaf of F lifting to a geodesic l0 in a leaf F 0

of eF through ex0. This geodesic de�nes two points in U and hence a geodesic l1 in F � � the geodesic l1
is exactly l0 �R intersected with F �. We de�ne two important sets:

D� =
[

h2�1(M)

f�(h)(l1)g � F � and D� �R =
[

l02D
�

(l0 �R) � fM:

We now change the Pi so that bottoms converge to l1. Up to covering translations we may assume that

the bottoms Bi of Pi converge to the geodesic l0 in a leaf F 0 of eF . This changes the Pi so the bottoms

are not in F � anymore - we adjust that as follows: For F in eF between F � and F 0 let

Ai(F ) = (Bi �R) \ F:

These are ideal quadrilaterals in F . The ideal endpoints of Bi converge to the 2 ideal points of l0 as

i grows, so the ideal points of Ai(F
�) collapse to the 2 ideal points of l1 - because the leaves of the

vertical foliation in A vary continuously. This produces a thin wall from F � to F 0. Since the horizontal

quadrilaterals in Pi eventually have cross ratio close to 1 (when going up), the Pi extends beyond F
0. We

can extend or contract the parallepipeds Pi so that the bottoms are now always in F � and they converge

to l1.

Conclusion 1 - Up to subsequences, covering translations and extension or contractions we may assume

that the parallelepipedsPi have bottoms Bi which are ideal quadrilaterals in F
� with cross ratio converging

to 0 and Bi converging to the geodesic l1 of D�, so that the waists of Bi converge to a �xed point of l1.

The tops of Pi have cross ratio converging to 1.

Step 4 - Convergence of the tops of the parallelepipeds.

We want to do the same approach for the tops of Pi. Since the bottoms of the Pi will stay in F �

clearly the tops cannot do the same. As in step 3, up to another subsequence the waists of �(Ti) converge

to a point in M and so do the directions of the sides of �(Ti). Lifting to fM this de�nes a geodesic in a

leaf of eF and using the vertical foliation this de�nes a geodesic l2 in F �. De�ne

D+ =
[

h2�1(M)

f�(h)(l2)g � F � and D+ �R =
[

l02D+

(l0 �R) � fM:

In the same way as above we can extend or contract the tops Pi so that:

Conclusion 2 - In addition to conclusion 1: There are covering translations gi in �1(M) so that the

tops gi(Ti) are contained in F � and converge to a geodesic l2 of F �. The waists of gi(Ti) converge to a

single point of l2. Finally in the case there is a leaf of D� transversely intersecting a leaf of D+ then up

to renaming l2 by covering translations we can assume that these are l1 and l2. If this does not happen

but D� and D+ share a leaf assume that l1 is equal to l2. Fix the Pi;Bi;Ti; gi from now on.

Using covering translations one gets the same conclusions for any leaves of D� and D+. In fact using

a diagonal process on sequences the same is true for any limit of leaves of D� or D+. We stress this:

Lemma 5.5. Using covering translations, extensions/contractions of parallelepipeds and limits; the fol-

lowing happens: suppose that l is either the intersection of a leaf of D��R with a leaf F of eF (a geodesic

in a leaf of eF) or a limit of such intersections. Then there is a sequence Qi of parallelepipeds so that 2
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opposite sides of bottoms converge to l and so that cross ratio of bottoms (respectively tops) converges to

0 (respectively 1). The same holds if l comes from D+ �R in which case the tops converge to l.

Step 5 - Producing the (a priori only immersed) laminations.

We will eventually prove (in the next section) that each of D��R; D+�R does not have transverse

self intersections. But the �rst step is to obtain some embedded lamination which may not be one of

these two a priori. There are 3 cases to consider (we will keep coming back to these options in the next

section):

Option A - No leaf of D� transversely intersects another leaf of D� (similarly for D+).

Then D� �R � fM is a collection of properly embedded planes without any transverse intersections

which is invariant under covering translations. Its closure is a �1(M) invariant lamination in fM which

intersects leaves of eF in a union of geodesics. The image in M is a lamination transverse to F .

Option B - No leaf of D� transversely intersects a leaf of D+.

If no two leaves of D� intersect transversely, then as in option A, we produce a lamination in M

transverse to F . Otherwise by option B, no leaf of D� is also a leaf of D+. Consider a connected

component in F � of the union of leaves in D�. Then the convex hull C of this set (in the hyperbolic

metric of F �) is not all of H2. Let B be the boundary of C. The translates of B under �(g) with g in

�1(M) do not intersect B transversely. Therefore �(B�R) produces a lamination as in option A above.

Notice that in this case maybe all leaves of the lamination are neither in D� nor D+.

Option C - There is a leaf of D� transversely intersecting a leaf of D+.

This is the most interesting case. The rest of the proof of theorem 5.1 is devoted to an analysis of

this case. By conclusion 2, here we can choose the l1 in D� and l2 in D+ with a transverse intersection.

The goal is to show that leaves of D� do not intersect transversely and likewise for D+, that is, option C

implies option A. We stress that options A and B can happen concurrently, but B and C are contradictory.

An important remark here is that in all options A, B, C, these laminations are obtained as a union

of r �R for a collection of geodesics r in F �. If r1 �R intersects r2 �R then there is F in eF so that

u1 = (r1 �R) \ F intersects u2 = (r2 �R) \ F;

both geodesics in F . If u1 = u2, then r1�R is equal to r2�R. In particular r1�R cannot be tangent to

r2 �R at level F and then cross from one side of r2 �R to the other when passing through F . If on the

other hand u1 and u2 intersect transversely in F then r1�R and r2�R will have transverse intersection

for all G in eF . This is one big advantage of producing these laminations using the universal circle.

To prove that option C implies option A, then by way of contradiction suppose there is l3 in D� which

transversely intersects l1. There is a covering translation h with �(h)(l1) = l3. Fix h for the rest of the

analysis of option C. It follows that �(h�1)(l1) also intersects l1 transversely. We use the setup in much

more detail in this case. Notice that the bottoms Bi of the parallelepipeds Pi converge to l1, in fact two

opposite sides of Bi do and likewise two opposite sides of �(gi)(Ti) converge to l2 of D+.

For the rest of the proof �x i0 big enough so that: If p1; p2; p3; p4 in U are the ideal points of Bi0 then

p1p2 and p3p4 are very close to l1 and so

p1p2; p3p4 intersect l2; l3 = �(h)(l1) and �(h�1)(l1) transversely:

Also �(gi0)(Ti0) has two opposite sides very close to l2. Let

g = g2i0 ; h1 = �(h); g1 = �(g) and qj = g1(pj) = �(g)(pj) 2 U :

For simplicity we omit the notational dependence of pj; qj; h; h1; g; g1 on the index i0.
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Step 6 - Analysing the dynamics of h1 = �(h) and g1 = �(g) in U .

First we explain why we consider g the square of gi0 instead of just gi0 . Let I be the open interval of

U de�ned by p1; p2 and not containing p3 and similarly J de�ned by p3; p4 and not containing p1. One

possibility is that �(gi0)(p1) and �(gi0)(p2) are in I. Another possibility is that the quadrilateral �(gi0)(Ti0)

is rotated 180 degrees, that is, �(gi0)(p1) and �(gi0)(p2) are in J . In any case �(g2i0)(p1) (equal to q1) and

q2 are in I and q1 is the one closest to p1, see �g. ??, a. Also

g1(Ti0) = �(g2i0)(Bi0)

is even thinner than �(gi0)(Bi0). Similarly q3; q4 are in J and q3 is closest to p3. The dynamics of g1 in U

is as follows: g1(cl(I)) is contained in I producing at least one �xed point in I and similarly g1(cl(J )) a

subset of J yields a �xed point in J , where here cl denotes the closure in U . Similarly there are at least

two �xed points outside fI [ J g: one near p1; p2 and another near p3; p4. In any case g1 has at least 4

�xed points in U . It follows that g acts freely in H: if g(F ) = F for some leaf F of eF , then g �xes only

two points in S1
1(F ) and similarly for g1 acting in U .

We de�ne 8 points in U from the dynamics of �(g): Let

aj = lim
n!�1

gn1 (pj); bj = lim
n!+1

gn1 (pj):

Notice b1; b2 are in I; b3; b4 are in J and none of the aj are in I or J . Let

�  = a1a2 which is very close to p1p2 and to l1,

� �1 = b1b4 and �2 = b2b3, both both very close to q1q4.

We de�ne 8 closed intervals in U : �rst I1 is the interval of U from a4 to a1 not containing the other

points aj ; bj , then similarly

I2 : from a1 ! b1; I3 : b1 ! b2; I4 : b2 ! a2; I5 : a2 ! a3; I6 : a3 ! b3; I7 : b3 ! b4 and I8 : b4 ! a4;

see �g. ??, b, Notice that g1(Ik) = Ik for all k. In addition g1 acts as a homeomorphism with only two

�xed points in I2, the repelling is a1 and the attracting is b1. Similarly for I4; I6; I8. Any of the intervals

I1; I3; I5; I7 may be a single point � that is, if a1 = a4 then I1 is a single point. On the other hand none

of I2; I4; I6; I8 is a single point.

One key point here is that by choice of i0, none of the endpoints of h1(l1) = l3 are in I1 or in I5 and

we may assume the same happens for the endpoints of h1() and for h1(pj) (make i0 bigger if necessary).

Let

A =  �R; B = h(A) = l3 �R:

Then g(A) = A and A is a properly embedded plane in fM . Also B transversely intersects A, because

l3 transversely intersects l1. Using the dynamics of g1 we show that the intersections of the surfaces

�(A); �(B) stay in compact parts of both �(A) and �(B) and derive a contradiction.

Step 7 - Analysing intersection of walls A =  �R and B = h(A).

Consider �1 �R a properly embedded plane which intersects A in an in�nite curve �1. Then

g(�1 �R) = �1 �R; g(A) = A; so g(�1) = �1:

Hence �1 projects to a closed curve �1 in the annulus A=g. Similarly �2 produces a closed curve �2 in

A=g. Notice �1 is equal to �2 if and only if �1 = �2. Let N be the annulus (possibly degenerate) in A=g

bounded by �1 and �2 and let eN be its lift to A. Recall the parametrization of eF as fFtg with t in R

and F � equal to F0. The curve
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� = (B \A) \ (
[

t�0

Ft)

is an in�nite curve of transverse intersection of A and B.

The geodesic l3 of H2 has one endpoint c1 in I2; I3 or I4 and the other c2 in I6; I7 or I8. Suppose

�rst the endpoints are in I2 and I8 respectively. Notice that gi0(Ti0) is contained in F �, so g sends a leaf

above F � to F �, or g�1 acts as an increasing homeomorphism in H. Let

s = h1() \  = (B \ A) \ F0 2 �:

We consider how the points � move in A as t increases. The action by g�1
1 = (�(g))�1 brings the

endpoints of l3 closer to I1 because the endpoints of l3 are in I2 and I8, see �g. ??, b. Looking at the

action g�1 in A, it sends s to a point with same distance from eN , see �g. ??, a ( eN is invariant under

g�1). Hence s1 = � \ g�1(F �) is closer to eN than g�1(s) is, see �g. ??, a. This means that going up

brings the intersection of B and A closer to eN in A. In the same way let

sn = � \ g�n(F �)

Then gn(sn) is in a geodesic in F � with endpoints �(gn)(c1) and �(gn)(c2). But

�(gn)(c1) ! b1; �(gn)(c2) ! b4 when n! +1:

As �1 has ideal points b1; b4, the above convergence implies that � is actually asymptotic to �1 going up.

Hence � projects in A=g to a curve asymptotic to the closed curve �1=g see �g. ??, b.

Let � be the projection of �1 to M , that is, � = �(�1). Since �1 is invariant under g, it follows that

� is a closed curve in M and since �1=g is already closed it follows that

� = gn; for some n 6= 0:

This means that the curve � represents the element gn in the fundamental group.

Now reverse the roles of A and B. The points in U �fI1 [ I5g get contracted towards I3 and I7 under

the action of g1 = �(g). Let

Æ = hgh�1:

Notice that the points aj are not in the union of h1(I1) and h1(I5), by choice of i0. Hence the aj are in

the regions of U which get contracted by the action of �(Æ) towards h1(I3) and h1(I7). From the point

of view of B the same arguments as above show that the intersection of B with A going up (in the

positive direction) is also trapped closer to a band of B unvariant under Æ. Here we use the fact that F

is transversely orientable - h preserves orientation in H, so going up in A (action by g�1) corresponds to

going up in B (action by Æ�1) as well. An argument as the one done in for the curve � as seen in A shows

that there is a curve �2 in this band invariant under Æ and so that � is asymptotic to �2 in the positive

direction. Let �1 be the projection of �2 in M . Similarly as above one shows that

Æ = hgh�1 = �m1 for some m 6= 0:

Now � is asymptotic to �1 and to �2 both of which project to closed curves in M . Therefore � is equal

to �1. Since the intersection of B and A is a single curve, then in fact �1 is equal to �2.

Step 8 - Incompatible actions in U .

In the previous step we proved that

g = �n and also hgh�1 = �m; n;m 6= 0:
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It follows that

gm = �nm = (hgh�1)n = hgnh�1:

This is obtained when l3 has endpoints in I2; I8. The other cases are similar. An argument as above

shows that the curve � when viewed in A is always asymptotic to a curve � which is invariant under g.

The curve � is obtained as the intersection

� = (l �R) \ A;

where l is a geodesic in F � with endpoints

a = lim
i!+1

�(gi)(c1); b = lim
i!+1

�(gi)(c2):

Recall that c1; c2 are the endpoints of l3. This occurs because c1 is in the union of I2; I3 and I4 and so is

a. Similarly for b. Now the same arguments as above imply the same conclusion. The important fact is

that the endpoints of l3 are not in I1 or I5!

Conclusion: In all cases there are n;m non zero integers with gn = h�1gmh.

We now prove this is impossible. Notice that g and hence h�1gh act freely in H and both act as

decreasing homeomorphisms of H. This again uses the fact that h preserves orientation of H! Hence if n

is positive then m is positive as well. Assume this is the case. Given u in U , if

g1(u) = u; then gn1 (u) = u = h�1
1 gm1 h1(u) or gm1 h1(u) = h1(u):

Since g1 has �xed points in U this implies g1h1(u) = h1(u). The same applies to h�1
1 so h1 leaves the set

of �xed points of g1 invariant. These �xed points are in I1; I3; I5 and I7. By construction h1(I1) is disjoint

from I1 and I5 therefore it is a subset of I3 or I7 and likewise for h1(I5). Similarly h�1
1 (I1); h

�1
1 (I5) are

subsets of I3 or I7, so h1(I3); h1(I7) are contained in I1 or I5. Together these imply that

h1(Ij) = Ik(j) for any j 2 [1; 8]:

There are 4 cases to consider all similar. Suppose �rst that h1(I1) = I3 and h1 preserves orientation of

U . Since h1(Ij) = Ik(j), this implies the very important consequence that h1(I2) = I4.

Now consider the action of gn1 and h�1
1 gm1 h1 in I2. The key is that both n;m are positive!

� gn1 only �xes @I2 in I2, with a1 repelling �xed point for gn1 and b1 attracting,

� h�1
1 gm1 h1 conjugates the action of gm1 in I4 to act in I2. As h1 preserves orientation in U then

h1(a1) = b2 and h1(b1) = a2. In I4, g
m
1 �xes only @I4 and b2 is attracting, a2 is repelling. Hence

the action of h�1
1 gm1 h1 on I2 �xes only @I2 and has a1 attracting, b1 repelling.

Hence the actions of gn1 and h�1
1 gm1 h1 are incompatible in I2 and therefore they cannot be equal.

Consider the other 3 cases: When h1(I1) = I3 but h1 reverses orientation in U , then h1(I2) = I2 ipping

the endpoints. The same argument produces a contradiction. When h1(I1) = I7 and h1 preserves the

orientation then h1(I2) = I8 but it sends the attracting �xed point in I2 (of g1) to the repelling one in

I8 (of g1) again contradiction. Finally if h1(I1) = I7 and h1 reverses orientation in U then h1(I8) = I8,

ipping the endpoints, again a contradiction.

As all cases are impossible this �nally shows that h1(l1) and l1 intersecting transversely is impossible.

The same proof applied to D+ shows that �(h0)(l2) transversely intersecting l2 for some h0 in �1(M) is

impossible. Hence both D� and D+ generate laminations in M :

Lemma 5.6. If a leaf of D� transversely intersects a leaf of D+ then both the sets cl(�(D� �R)) and

cl(�(D+ � R)) are embedded laminations in M which are transverse to each other � here cl denotes

closure in M . In particular option C implies option A for both D� and D+.
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This �nishes the proof of theorem 5.1

6 The two transverse laminations

In the previous section we proved that if F is R-covered with hyperbolic leaves, then either M is Seifert

�bered, or a torus bundle over S1 or there is a lamination transverse to F . We use the constructions and

notations of the previous section. In this section we show that in the atoroidal case both D� and D+

produce laminations transverse to F which are also transverse to each other. Unless otherwise stated, from

non on assume thatM is homotopically atoroidal. We �rst obtain some general results about laminations

transverse to R-covered foliations and then use these results to study the laminations constructed in the

previous section.

We say that a lamination G transverse to a foliation F is a lamination by geodesics if leaves of G

intersect leaves F of F in geodesics of F . Now restrict to R-covered foliations with hyperbolic leaves.

If in addition for each leaf G of eG, the ideal points of G \ F as F varies in eF de�ne two leaves of the

vertical foliation of A, then we say that G is a universal lamination by geodesics � like the laminations

constructed in the last section. First we analyse complementary regions of general universal geodesic

laminations in a series of results from proposition 6.1 till lemma 6.4.

If F is a leaf of eF (or of F) let eGF (GF respectively) denote the lamination by geodesics induced by
eG (or G) in F .

Proposition 6.1. Let F be R-covered with hyperbolic leaves and M homotopically atoroidal. Suppose

that G is an universal lamination by geodesics transverse to F . Then for any leaf F of eF , the comple-

mentary regions of eGF (that is, eG \F ) are all �nite sided ideal polygons in F with an upper bound on the

number of boundary sides. Complementary regions of G in M are either solid tori or solid Klein bottles

bounded by �nitely leaves of G.

Proof. We �rst show that geodesics which are boundary leaves of eGF and which get suÆciently close in

F are asymptotic in F :

Lemma 6.2. There is positive � so that for any F in eF then any neck of size smaller than � in a

complementary region of eGF will produce asymptotic leaves in F . Similarly for G and F .

Proof. Here a neck is a geodesic segment � in a leaf F of eF so that its boundary is in eGF but the interior

of � is disjoint from eGF . There are two leaves u1; u2 of eGF through the endpoints of � and the goal is to

show that if � has small length then u1; u2 are asymptotic. Suppose the lemma is not true. Find necks

of size smaller than 1=i from points in leaves

si; ri of eGLi ; with Li 2 eF ; but si; ri not asymptotic in Li:

Since si; ri are not asymptotic we may assume these are the closest points in Li from si to ri. Since si; ri
are distinct they eventually diverge (in some direction), so �nd necks �i of size 1 between si; ri with angles

between the necks and the geodesics si; ri bounded away from 0 and �. Let pi be the middle points of �i.

Let fi in �1(M) with fi(pi) converging to p with necks fi(�i) also converging, and so that the geodesics

fi(si); fi(ri) converge to leaves s; r in L0 of eF . Here L0 is the limit of fi(Li).

If s; r are not asymptotic L0, there is a minimum positive distance b0 between them and they diverge

from each other in each direction. For nearby fi(pi) the leaves fi(si); fi(ri) also get roughly b0 away from

each other and then start to diverge from each other - this is all happening in a compact set near the leaf

L0. But in hyperbolic geometry, once a pair of geodesics starts to diverge from each other they will never

get close anymore. Hence for i big the minimum distance between fi(si) and fi(ri) in fi(Li) is close to

b0. This contradicts dLi(si; ri) converging to 0. We conclude that s; r are in fact asymptotic in L0.

The leaves fi(si); fi(ri) are boundary leaves of eGfi(Li). Using the universal circle identi�cation,

(fi(si)�R) \ L0; (fi(ri)�R) \ L0
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are also boundary leaves of eGL0 with necks of size very close to 1 near p0. But the only boundary leaves

of eGL0 near p0 and with neck size near 1 are s; r, hence fi(si) is contained in say (s �R) and fi(ri) is

contained in (r �R) for i big enough.

Equivalently this argument says that nearby gaps of eG in fact map to each other by moving transversaly

to eF . This uses the fact that the laminations are made of sets l �R associated to the universal circle -

a universal geodesic lamination. This argument that if necks are very near, then the geodesics through

the endpoints are contained in the same leaves of eG will be often used here � we call it the matching

boundary e�ect.

But now the leaves s; r de�ne the same ideal point in S1
1(L0) and again by hypothesis of the proposi-

tion this implies that leaves fi(si); fi(ri) also de�ne the same ideal point in S1
1(fi(Li)), that is, fi(si); fi(ri)

are asymptotic for i big enough. This contradicts the fact that si; ri are not asymptotic in Li and �nishes

the proof of lemma 6.2.

We stress that this works for boundary leaves. In general there are in�nitely many pairs of leaves si; ri

of eGF which have necks of arbitrarily small size but are not asymptotic in F . But if they are boundary

leaves of the same complementary region of eGF then they have to be asymptotic.

We now return to the proof of proposition 6.1. If G is a foliation proposition 6.1 is trivial. Otherwise

consider �0 much smaller than �=2 (� as in lemma 6.2). We de�ne an open set B�0 in M : let u be a point

in a leaf E of F . Then

u 2 B�0 if dE(u;GE) < �0;

where dE is measured in E. Choose �0 small enough so that B�0 is not M and let Z be a component of the

boundary of B�0 . We consider how Z intersects the foliation F . Let p be a point in Z which is in a leaf

E of F . If p is �0 away from two leaves l1; l2 of GE, then l1; l2 are 2�
0 away from each other, which is less

than �. By lemma 6.2, l1 and l2 are asymptotic in E and in that direction their distance decreases: any

point between them is less than �0 from at least one of l1 and l2 and therefore Z does not intersect that

direction anymore. Now consider the opposite direction: in that direction l1; l2 diverge from each other

and become more than 2�0 from each other, this means that the intersection of Z and E has a corner at

p and in the diverging direction two arcs of

Z \E emanate from p:

On the other hand if p is not a corner then p is � distant from a single boundary leaf l1 of GE and

the intersection of Z with E tracks this leaf l1 nearby. Conclusion: the intersections of Z with E track

boundary leaves of GE until they hit a corner and start to track another leaf of GE (they can also never

hit a corner).

What happens transversely to F in a nearby leaf L? If p is not a corner point, then for nearby L,

the set Z intersects L in a curve �0 away from GL and near the one in E. This means that Z is a two

dimensional manifold near p. If on the other hand p is a corner point, then l1; l2 are asymptotic in E. For

nearby L there are unique boundary leaves of GL associated to l1; l2 � by the matching boundary e�ect,

and these leaves in L are also asymptotic. The associated corner point in L is near the corner point in E,

which shows that near p, the set Z is a two dimensional set. This also shows that Z is transverse to F .

This is a crucial point: if boundary leaves of GE could get close to each other without being asymptotic,

there are two corners associated to these leaves. Moving transversely to F could push those boundary

leaves apart from each other. In terms of Z this would mean two corners coming together and spliting to

two curves without corners tracking the two boundary leaves, producing a saddle tangency of Z and F .

In addition to being two dimensional it is easy to see by de�nition that Z cannot limit on itself

transversely: one side would have to be closer to G. Hence Z is compact surface transverse to F , so Z is

either the torus or the Klein bottle. Let FZ be the induced foliation in Z by F .
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Lemma 6.3. The leaves of FZ are closed curves which are null homotopic in their respective leaves of

F . The set Z bounds a solid torus or solid Klein bottle in M .

Proof. If Z is �1-injective then there is a Z�Z subgroup in �1(M), contrary to the atoroidal hypothesis.

Hence there is a simple closed curve  in Z which is null homotopic in M .

First we show there are no Reeb annuli in FZ . Suppose there is a Reeb annulus C bounded by leaves

�; �, which are the limit of �x with x converging to in�nity. Consider lifts

eC; e�; e�; e�x; to fM:

Since C is a Reeb annulus, the curves e�; e� are in leaves of eF which are not separated from each other.

But F is R-covered, so they are in the same leaf of eF , let it be F . Then e�; e� do not track the same

geodesics of eGF , because they are distinct curves. Now look at nearby leaves e�x: by construction they

track a chain of consecutively asymptotic boundary leaf geodesics of eG in the respective leaves of eF . By
the matching boundary e�ect this chain pulls to F to a chain of consecutively asymptotic geodesics in
eGF . But some of then are tracked by e� and some are tracked by e�. This can only happen if e� is equal

to e� which is impossible. As in the previous lemma this is basically saying that the combinatorics of the

intersections of Z with F do not change transversely to F .

Given that there are no Reeb annuli in FZ the curve  is homotopic to one which is either a leaf of

FZ or transverse to it. A transversal to FZ is transverse to F and as F is Reebless, the transversal is not

null homotopic in M . Hence we can assume that  is a leaf FZ - by Reebless again,  is null homotopic

in its leaf. Nearby leaves of FZ are also closed since  has no holonomy. The limit of compact leaves

is compact [Ha], so all leaves of FZ are closed and bound disks in their respective leaves of F . It now

follows that Z bounds a solid torus or solid Klein bottle in M . This �nishes the proof.

We now �nish the proof of proposition 6.1. If U is a complementary region of G, let �0 be small enough

so that B�0 does not contain U and let Z be a component of @B�0 contained in U . Let E be a leaf of F

intersecting Z and � a component of the intersection of E and Z. By lemma 6.3, � is a closed curve in

E which is null homotopic in E and tracks boundary leaves of GE . Hence the associated complementary

region in E is a �nite sided ideal polygon in E. Moving transversely does not change the combinatorics

or the number of boundary sides in this polygon and since Z is closed, it follows that the complementary

region U is a solid torus or solid Klein bottle. This also shows that for any F in eF any complementary

region of eGF is a �nite sided ideal polygon.

We know show there are �nitely many complementary regions of G. Do the argument in fM . A

complementary region of eG contains an ideal triangle in a leaf of eF . Suppose for a moment there are

in�nitely many complementary regions Vi which are not equivalent under covering translations. Let vi be

the barycenter of an ideal triangle contained in a leaf Li of eF and also in Vi. Up to covering translations

and a subsequence the vi converge to a point v0 in a leaf L0. Also

dLi(vi;
eGLi) > c0;

for some positive constant c0, because vi is the barycenter of an ideal triangle in Li� eGLi . By continuity

v0 is not in eG so there is a complementary component V0 of eG with v0 in V0. As V0 is open then Vi is

equal to V0 for i suÆciently big, contradiction.

Hence there are only �nitely many complementary regions of G in M and there is an upper bound

to the number of sides in any complementary region of eGF for any F in eF . This �nishes the proof of

proposition 6.1.

Lemma 6.4. Let F be a transversely oriented foliation with hyperbolic leaves in M orientable and G a

minimal, universal lamination by geodesics transverse to F . If s1; s2 are asymptotic leaves of eGF then

s1; s2 are in the boundary of a complementary region of eGF . Similarly for asymptotic leaves of G.
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Proof. Here we use the notation of the previous section where F � is the distinguished leaf. In addition

if g is in �1(M) then g acts in U and geodesics of F � by �(g). We also use the notation l �R for any

geodesic l in a leaf of eF . Let V0 be eGF � . It suÆces to prove the lemma for V0.

If the lemma is false �nd s1 boundary leaf of a complementary region Q of V0 and s2 not in @Q but

asymptotic to s1, see �g. ??, a. Assume that s1 separates s2 from Q. Let u1 be the common ideal point

of s1; s2 and u2 the other ideal point of s1. Let s3 be the other boundary leaf of Q with ideal point u2.

Fix z in s1. Let � given by lemma 6.2. Here s1 is not isolated in the s2 side, since it is isolated in the

s3 side and G is minimal. Let wi be a sequence in s1 converging to u2. As G is minimal, there are vi in

(s1 �R) which are a bounded distance (depending on �) from wi in (s1 �R) and

fi in �1(M) with d(fi(vi); z) < �=2; but fi(vi) not in (s1 �R):

As s1; s3 are asymptotic and d(vi; wi) is bounded, then there are yi in (s3 �R) with d(yi; vi) converging

to zero. So d(fi(yi); z) is smaller than �=2 for i big enough. We may assume that fi(yi) and fi(vi) are in

V0. By the property of �, the leaves of V0 through fi(yi) and fi(vi) are asymptotic in the u1 direction,

see �g. ??, a. Since s1; s3 are asymptotic in the u2 direction this implies that

�(fi)(u2) = u1 for i big enough:

To simplify notation �x i suÆciently big and let h = �(fi). By assumption h preserves the orientation of

U . It follows that h(Q) is asymptotic to Q along s1; h(s1) and in the same way h2(Q) is asymptotic to

h(Q) along h(s1); h
2(s1), see �g. ??, b. This shows that h(s1) is asymptotic to both s1 and h

2(s1). Recall

that h(s1) is not isolated in V0. But it is isolated on the h(Q) side. On the other side it is asymptotic to

s1; h
2(s1) both in V0, so again it is isolated. This contradiction shows that s1; s2 cannot be asymptotic

and �nishes the proof of the lemma.

Notice that M atoroidal is not needed for this lemma.

De�nition 6.5. Let Qi be a sequence of distortion parallelepipeds in fM so that bottoms are ideal quadri-

laterals in leaves of eF with cross ratios converging to 0, while tops are ideal quadrilaterals in leaves of eF
with cross ratios converging to 1. We call Qi a shrinking sequence of distortion parallepipeds. For sim-

plicity we sometimes omit the word shrinking and refer to Qi as a sequence of distortion parallelepipeds.

We now analyse the laminations constructed in the last section in detail in particularly in relation to

the options in step 5 of the proof of theorem 5.1. The eventual goal of this section is

Goal: Show that option B does not occur.

Hence option C will occur and as shown in the previous section option A holds for both D� and D+

and there will be two transverse laminations in M . We use the notations and constructions of section 5.

In order to analyse this situation recall the options in step 5 to produce laminations by geodesics in M :

� If leaves of D� do not self intersect transversely (option A which can also happen when option B

occurs) then let G� be the closure of �(D� �R) and this is a lamination.

� Suppose there are transverse self intersections of leaves of D�. Then since option C implies option A,

we have that no leaf of D� transversely intersects a leaf of D+. Let A be the connected component

of the union of leaves of D� containing l1 and let C be its convex hull. Then C is not all of H2 by

hypothesis here. Let B be @C and in this case let G� be the closure of �(C�R), also a lamination.

Here we are in option B.

Similarly for D+ producing a lamination G+. Hence there are always two laminations, which a

priori may be equal. In addition let

� Gm� be a minimal sublamination of G� and
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� Gm+ a minimal sublamination of G+.

The 4 laminations G�;G+;G
m
� and Gm+ will be �xed from now on. As we will see later Gm� and Gm+ are

uniquely de�ned and in the end we will prove that Gm� is equal to G� and similarly for Gm+ . Let

V� = eG� \ F �; V+ = eG+ \ F
�; V m

� = eGm� \ F �; V m
+ = eGm+ \ F �;

all laminations in F � (could be foliations too). Also V m
� is contained in V� and V m

+ is contained in V+.

We �rst derive general properties of leaves of V m
� ; V m

+ . Let l be a leaf of V m
� . If D� does not

transversely self intersect, then Gm� is contained in cl(�(D��R)) so there are leaves ui in D� converging

to l. On the other hand, if D� has transverse self intersections, say l1 with l4; then l1 does not intersect
eG�, so l1 has to be in a complementary region of V m

� � a �nite sided ideal polygon. Therefore a ray of

l1 is asymptotic to a leaf of V m
� . But since Gm� is minimal this implies that �(l1 �R) limits on every leaf

of Gm� , so again there are leaves ui of D� converging to l. The same happens for D+ so if l is a leaf of

V m
+ there are leaves vi of D+ converging to l. Lemma 5.5 now implies:

Conclusion 3: - If l is a leaf of V m
� there is a shrinking sequence of parallelepipeds Qi with bottoms in

F � so that two opposite sides of the bottoms converge to l, the cross ratio of bottoms (respectively tops)

converges to 0 (respectively 1). In the same way if l is a leaf of V m
+ there are parallelepipeds Qi with the

same cross ratio characteristics with tops converging to l. The same holds for intersections of eGm+ ; eG
m

�

with any leaf F of eF .

If Q is an ideal polygon in F � (or H2) let @1Q be the ideal points of Q.

We will now prove a crucial technical lemma which will help in analysing option B later on and also

help produce a transverse pseudo-Anosov ow to F . Consider the case that Gm� is not a foliation. Recall

that if g is in �1(M), then �(g) acts in U and in convex sets of F �. Let C1 be a complementary region of

V m
� . By proposition 6.1, �(C1�R) is a solid torus or solid Klein bottle, and the core is a curve transverse

to F . So there is a non trivial g in �1(M) with �(g)(C1) equal to C1. Taking powers we may assume

�(g) �xes all points of @1C1, Here we are identifying S
1
1(F

�) with U so �(g) acts on S1
1(F

�). There are

at least 3 points in @1C1, therefore g acts freely in H. Up to taking inverse assume that g is monotone

decreasing in H, that is F � is in the front of g(F �).

Lemma 6.6. Suppose that Gm� is not a foliation and C1 is a complementary region of V m
� . Let g in

�1(M) non trivial with �(g)(C1) equal to C1 and �(g) �xing all ideal points of C1. Suppose that g is

monotone decreasing in H. Let J1 be a component of U � @C1. Then �(g) acts as a contraction in J1
with a single �xed point. Similarly if Gm+ is not a foliation and C1 is a complementary region of V m

+ with

g; J1 as above (g acts decreasing in H) then �(g�1) acts as a contraction in J1 with a single �xed point.

Proof. First we do the proof for Gm� . Let s0 be a side of C1, hence �(g)(s0) is equal to s0. Let e1; e2 be

the ideal points of s0 and

J1 = closure of interval of U � fe1; e2g not containing other ideal points of C1:

We analyse the action of �(g) in J1. Notice �(g) �xes C1 hence �xes e1; e2. Notice s0 is isolated on

the C1 side, so not isolated on the other side. Choose s1 in V m
� arbitrarily close to s0 hence with ideal

points in J1. By conclusion 3 above there are parallepipeds Qi with bottoms Ri having two opposite

sides converging to s1 and tops Si with cross ratios of bottoms converging to 0 and cross ratios of tops

converging to 1. Let Ft in eF with Si contained in Ft, the t here depends on i. Since g is monotone

decreasing in H, there is a unique positive n so that either

Ft = g�n(F �) or Ft is between g�n(F �) and g�(n+1)(F �)

(notice that g�n(F �) is above F �). The quadrilateral Ri has ideal points e3; e4; e5; e6 in U , so that

e3e4; e5e6 are the sides close to each other and close to s1, see �g. ??, a. By lemma 6.4, if s1 is
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asymptotic to s0 then s0 and s1 are boundary sides of a complementary region of V0. But then s0 would

be isolated on both sides contradiction to minimality of G. Hence once s1 is �xed, then for i big enough

all the ideal points e3; e4; e5; e6 are in J1 � @J1. Choose the points so that s2 = e5e6 is farther from s0
than e3e4. Notice t; n; e3; :::; e6 all depend on i, which is omitted for simplicity.

Map Si back by gn, pushing it down in the leaf space. Then gn(Si) is either in F � or is between F �

and g�1(F �). Also gn(Si) is an ideal quadrilateral with cross ratio very close to 1. Suppose that both

�(gn)(e5) and �(gn)(e6) are very close to e5; e6 respectively. Projecting gn(Si) to F
� using U , that is,

(gn(Si)�R) \ F �;

we get an ideal quadrilateral in F � with cross ratio very close to 0. This is because �(gn) �xes e1 and e2
and �(gn)(e3) is between e1 and �(g

n)(e5) and �(g
n)(e4) between e2 and �(g

n)(e6). The same will happen

for the cross ratio of the intersection

(gn(Si)�R) \ F; for any F between F � and g�1(F �):

All of them are very near the intersection of F and s0 � R. This contradicts the fact that cross ratio

of gn(Si) is very close to 1. Hence at least one of �(gn)(e5) and �(gn)(e6) is very far from e5 or e6
respectively.

One option is say that �(gn)(e5) is very close to e2. But if this keeps happening as s1 gets closer to

s0 and i converges to in�nity, then the only possibility for the dynamics of �(gn) in J1 is that �(g
n) has a

repelling �xed point in e1, an attracting �xed point in e2 and no other �xed points. In fact since �(g)(J1)

is equal to J1, this implies that �(g) acts in J1 with the same dynamics. Take s leaf of V m
� very close to

s0 with ideal points a; b, a close to e1, b close to e2. By lemma 6.4, a is not e1 and b is not e2. Hence for

a; b suÆciently close to e1; e2 respectively, the points

e1; a; �(g)(a); b; �(g)(b); e2;

are circularly ordered in J1. In other words the endpoints of s separate the endpoints of �(g)(s) in U , or

s intersects �(g)(s) transversely. This contradicts the fact that Gm� is a lamination.

It follows that J1 contains an interval J2 bounded by e5; e6, with �(gn)(J2) a subinterval of J2. The

cross ratio of �(gn)(Si) is very close to 1, so this quadrilateral is very thin in the other direction, see �g.

??, b. Since �(gn)(e5); �(gn)(e6) cannot be near e5 or e6, it follows that �(g
n)(J2) is a very small interval

contained in J2.

This is the fundamental property of a curve which is in the boundary of a complementary region of

V m
� so that it is the limit of bottoms of a shrinking sequence of distortion parallelepipeds. Choosing now

s1 closer and closer to s0 and cross ratio of Ri converging to 0, cross ratio of Si converging to 1, we can

get e5 arbitrarily close to e1 and e6 arbitrarily close to e2. In addition the subinterval of J1 from �(gn)(e5)

to �(gn)(e6) is shrinking to a point (recall here that n varies with s1 and i). This yields the conclusion:

Conclusion 4: � Using that s0 is the limit of bottoms of distortion parallelepipeds, we obtain that �(g)

acts in J1 � @J1 as a contraction with a unique �xed point y not in @J1.

This proves the �rst part of the lemma. If on the other hand C1 is a complementary component of

V m
+ (assumed not to be F �) and s0; J1 are de�ned as above, the same analysis applies. But now there is

a sequence of distortion parallepipeds with the tops converging to s0. The di�erence is that Ri is below

Si, hence use a translate gm to bring Ri closer to F �, with m negative. Using the same arguments as

above, we conclude that �(g�1) acts as a contraction in J1 � @J1 or that �(g) acts as an expansion in

J1 � @J1. This �nishes the proof of lemma 6.6.

We will now show that option B does not occur.

Proposition 6.7. Suppose that M is orientable and F is transversely orientable. There is a leaf of D�
intersecting a leaf of D+ transversely.
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Proof. Suppose that this is not true. Then option B holds and it implies that no leaf of G� transversely

intersects a leaf of G+. If G� (or G+) is a foliation then G� is minimal, for a non trivial sublamination

would have complementary regions in leaves of eF which are �nite sided ideal polygons and could not be

�lled with a foliation by geodesics. This also implies G�;G+ are equal. In this case all of the laminations

G�; G+; G
m
� and Gm+

are the same.

If none of G�;G+ are foliations then a complementary region of V m
� is a �nite sided ideal polygon Q

in F �. Since Gm+ does not intersect Gm� transversely then V m
+ cannot intersect @Q transversely. So any

intersection of V m
+ with Q is a geodesic in the interior of Q. There are only �nitely many such geodesics

and these would be isolated contradicting minimality of Gm+ . Hence G
m
+ does not intersect the interior of

Q and so Gm+ is contained in Gm� . Similarly Gm� is contained in Gm+ and so they are equal. These arguments

also show that in general Gm� and Gm+ are uniquely de�ned laminations. In any case we proved:

Fact: In option B, then Gm� is equal to Gm+ .

This is the fact that will lead to a contradiction.

Suppose �rst that G� and G+ are not foliations. Then Gm� ;G
m
+ are also not foliations. Let C1 be a

complementary region of V m
� and s0 a boundary leaf of C1. Let g be nontrivial in �1(M) with �(g) �xing

all points in @1C1 and let J1 be a component of U �@1C1 with endpoints the ideal points of s0. Since s0
is a leaf of V m

� , the �rst part of lemma 6.6 shows that �(g) acts as a contraction in J1. As G
m
� is equal to

Gm+ , then s0 is also a leaf of V m
+ . The second part of lemma 6.6 implies that �(g�1) acts as a contraction

in J1.

These two conclusions are contradictory, so we obtain that D� and D+ not intersecting transversely

is impossible when at least one of G� or G+ is not a foliation.

The next proposition shows that none of G�;G+;G can be foliations, so this �nishes the proof of

proposition 6.7.

Proposition 6.8. The lamination G� (or G+) cannot be a foliation in M .

Proof. This is presented separately because here we do not a priori assume that D� and D+ have no

transversal intersection. It will be used later as well, see remark 1. Also no orientability conditions here.

Suppose that say G� is a foliation in M . Then as seen before G� is minimal, hence Gm� = G�. Since

V� = eG� \ F

is a foliation by geodesics in F � then its leaf space is Hausdor� and hence homeomorphic to the reals.

We analyse this in detail. Fix q0 in F �, let s0 be the leaf of V� through q0. Let  be a �nite transversal

to V� in F � starting at q0 and look at all geodesics of V� through . Suppose one is asymptotic to s0 in

the direction of the ray r0 of s0. Then all leaves between these two are also asymptotic to s0 and hence

in any case there is a direction so no nearby leaf is asymptotic to s0 (the opposite direction to r0 if there

is r0). As points in s0 escape in that direction their distance to nearby leaves grows without bound. For

any natural n there are points qn in these nearby leaves of V� which are centers of balls Bn of F � of

radius n so that all leaves in Bn will eventually intersect a subsegment of  of length less than 1=n. Up

to subsequence choose fn in �1(M) with fn(qn) converging to q0 and q0 in a leaf L of eF . Let s be the

leaf through q0 of the lamination eG� \ L of L. Let v another leaf of this lamination. If s and v are not

asymptotic there is a minimum distance between them which is achieved in a �xed distance from starting

points. Pairs of geodesics limiting on s and v will also have a minimum distance between them close to

this distance, contradiction to the construction.

Conclusion � All leaves of eG� \ L are asymptotic in L de�ning a unique ideal point in S1
1(L).
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As G� is a universal geodesic lamination the same holds for all leaves of eF and let u in S1
1(F �) be

the distinguished ideal point in F �. Hence leaves of eG� are described exactly as s� �R, where s� is an

arbitrary geodesic in F � with one ideal point u. Every point in S1
1(F

�) is an ideal point of some leaf in

V�.

We claim that this implies that G� and G+ are equal. Let l� be a leaf of V+. Then l� is asymptotic

to a leaf l0 of V� so the angle between l�; l0 converges to 0. Take a limit in M and obtain F in eF and

a common leaf of eG� \ F and eG+ \ F , so a common leaf of eG+ and eG�. As G� is minimal, then G� is

contained in G+, which implies that G� is equal to G+ (because G� is a foliation). Hence all laminations

G�; G+; Gm� and Gm+

are equal and they are foliations. In that case let V0 be V� (same as V+ and so on).

The proof now is similar to arguments in lemma 6.6. However in that situation there were comple-

mentary regions of V�, and these naturaly produced covering tranlations acting freely on H and leaving

invariant the complementary region and one needs to �rst �nd appropriate g acting freely in H. First lift

to a �nite regular cover so that the manifold is orientable and all foliations are transversely oriented and

for simplicity in this proof we assume they are the original M;G�;G+. Notice G�;G+ are still minimal

since they are foliations. Notice U is still the same and the action of �1(M) on U is still not uniformly

quasisymmetric because of compactness of the �nite cover.

Let �1 be a leaf of V�. Then �1 is the limit of bottoms Ri of a shrinking sequence of distortion

parallelepipeds with cross ratios of Ri converging to 0. There are 2 points in @Ri very close to the

distinguished point u of U .

Suppose �rst that u is in the interior of the small interval of U with these endpoints. We split the

quadrilateral into thinner quadrilaterals: cover the quadrilateral Ri by two thin quadrilaterals Q1;Q2

both of which have ideal point in u and another in v, see �g. ??, a. There are two corresponding

parallelepipeds V1;V2 with tops S1;S2 in a leaf L of eF . For simplicity we omit the dependence of L on

i. We now choose the point v carefully so that at least one of S1;S2 has cross ratio very close to 1. Let

u01; u
0
2; u

0; v0 be the points in S1
1(L) corresponding to u1; v1; u; v respectively under the universal circle U ,

see �g. ??, b. The top of the original parallelepiped is a quadriletaral S very thin in the other direction,

see �g. ??, b. If for example u0 is not very near either of u01; u
0
2, then choose v0 very close to one of the

other ideal points of T , see �g. ??, b. Then one of S1 or S2 is thin in the other direction, in the picture

S2 is thin. Conversely if u0 is very near u01 or u02 choose v0 in the middle between the other ideal points

of T . Regardless one obtains a thin quadrilateral in the other direction.

If on the other hand the small interval from u1 to u2 does not contain u, then enlarge Ri to include

u. For high enough i, the new Ri will still have cross ratio very close to 0. But clearly the top of the

associated parallelepiped is an ideal quadrilateral which is even thinner, so its cross ratio is even closer

to 1.

A priori this process has changed G�;G+, so let us consider this carefully. The splitting or enlarging

does not distort the bottoms Ri substantially, so G� is not changed. Therefore G� is still a foliation.

Since G� is a foliation, then regardless of what the new D+ is, the �rst part of the proof implies that G+

is equal to G�. Hence G+ is not changed either. This fact will be used in the arguments below.

Conclusion � Any leaf of V� is a limit of bottoms Ri of a shrinking sequence of distortion parallepipeds

with all ideal quadrilaterals Ri having a vertex in u.

In order to mimic the proof of lemma 6.6 we �rst construct a suitable g in �1(M) with at least 3 �xed

points in U . Put any orientation in U . Let ideal points of Ri as positively oriented in U be denoted by

u1; u2; u3; u4;

where u1 is equal to u. Up to subsequence and choosing orientation to U assume u2 is very close to u1,

see �g. ??, a. We are stil using the �xed leaf �1 introduced before. The points uj are �xed in this proof.



x6. The two transverse laminations 42

Now choose a leaf �2 of V+ having an ideal point in the interval de�ned by u2 and u3, not containing

u and not near u2 or u3, see �g. ??, a. This is possible since G+ is equal to G�. The tops Si of the

sequence of distortion parallepipeds have cross ratio very close to 1. For i big enough there is a covering

translation g so that �(g)(Ri) is very close to �2 and with cross ratio very close to 1. This is because

�2 is a leaf of G+. The element g depends on �1, �2 and i. Notice that �(g) �xes u1 and preserves the

orientation in U . The fact that �(g)(Ri) is very close to �2 and has cross ratio very close to 1 together

with �(g)(u1) being equal to u1 implies the following:

� �(g)(u4) is very close to u1,

� �(g) moves u4 counterclockwise (as seen in �g. ??, a);

� �(g)(u2); �(g)(u3) are very close to the ideal point of �2 (the other one besides u1) and

� �(g) moves u2 counterclockwise, moves u3 clockwise, see �g. ??, a.

This implies there are at least 3 �xed points of �(g) in U : u1, plus one �xed point near u3 and one

near �(g)(u3). Hence g acts freely in H. Assume it is decreasing in H.

Once the suitable g is found the argument follows the analysis in the proof of lemma 6.6. We only

sketch the main ideas. The element g is �xed here. Let �3 be another a leaf in V� invariant under

�(g) with an ideal point u5 not equal to u and u5 near u3 (u3 de�ned above). Let J be the interval of

U � fu1; u5g containing �(g)(u2). By the above there is a �xed point of �(g) in J . There is a sequence

of ideal quadrilaterals which are bottoms of distortion parallelepipeds, for simplicity still denoted by Ri,

so that Ri converges to �3 and Ri has ideal points u; v2; v3; v4 positively circularly oriented in U and

v2; v3; v4 all in J (v2; v3; v4 depend on i). This is possible because u2 (in the prior construction) was

chosen in J and using covering translates we can map �3 to arbitrarily near �4 with ideal point in J .

Going up transversely to eF using the universal circle we obtain quadrilaterals Si with cross ratios very

close to 1 and map back by gn, n positive.

We check the action of �(gn) in J : �rst of all it �xes the boundary of J . Notice �(gn) has a �xed point

in J , hence �(gn) cannot map v2 very near u5 and cannot map v3; v4 very near u. Hence the arguments

in lemma 6.6 show that �(gn) moves v2; v3; v4 close together. In the limit one obtains that the action of

�(g) in J is a contraction with a single �xed point.

Using the same arguments with �3 a leaf of G+, that is �3 being the limit of tops of a sequence of

distortion parallelepipeds we obtain �(g) acts as an expansion in J .

This is contradiction and shows that G� (or G+) cannot be a foliation. This �nishes the proof of

proposition 6.8.

These results imply the following:

Corollary 6.9. Suppose that M is orientable and F transversely orientable. Neither G� nor G+ can be

a foliation. Also by proposition 6.7, there is a leaf of D� intersecting a leaf of D+ transversely. This

shows that option C in step 5 of theorem 5.1 occurs. As seen in the proof of theorem 5.1 this implies that

both D� and D+ have no transverse self intersections. This means that option A occurs for both of them.

Therefore G� is cl(�(D� �R)). Similarly G+ is cl(�(D+ �R)). In addition there is positive r1 so that

for every G in eG�, F in eF and p in the intersection l of G and F , there is a point in the intersection

of eG+ and l at most r1 distant from p in l. Otherwise taking limits we �nd one such l not intersecting
eG+ and a leaf of eG� not intersecting eG+ which was disallowed. Finally if l0 is a leaf of the intersection

of eG+ and F and l0 intersects l in q then the angle between l; l0 in F � at q is bounded away from 0 and �.

Similarly for eGm� ; eG
m

+ .

To sum up what we have obtained so far:

Corollary 6.10. Suppose that F is an R-covered foliation with hyperbolic leaves, M is atoroidal and not

a Seifert �bered space. Suppose that F is transversely oriented and M orientable. Let G� and G+ be the

universal geodesic laminations constructed in the previous section. Then neither G�;G+ is a foliation.

They are transverse to each other and with solid torus complementary components.
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Remark: At this point it is useful to make the following remark: In some situations it may seem

at �rst that the main theorem is trivial: Consider ' an Anosov ow so that its stable foliation Fs is

R-covered and transversely orientable (there are many examples [Fe2]). The ow ' is tangent to Fs

and since Fs is transversely orientable one can perturb ' slightly to a new ow '0 transverse to Fs.

By Anosov's fundamental results '0 is also an Anosov ow [An]. However if in addition M is atoroidal

then the ow � transverse to Fs which will be constructed here is not a perturbation of ' as above.

It has substantially di�erent properties. In particular � is not an Anosov ow � it has singularities.

This is because � is obtained by blowing down complementary regions of G�;G+ and the solid torus

complementary components will produce singularities. In fact this is the key property that implies the

weak hyperbolization conjecture for M . Also the ow � will be regulating for G: every orbit of the ow
e� in fM intersects every leaf of eF and vice versa, as opposed to what happens for small perturbations of

the Anosov ows above [Fe2, Fe5].

We now relate eG� and eG+.

Proposition 6.11. For every complementary region Q of V� there is an unique associated complemen-

tary region Q0 of V+ having the same number of sides as Q. Let g in �1(M); non trivial with �(g) �xing

all points in @1Q. Suppose that g acts as a decreasing homeomorphism in H. Then the �xed point set

of �(g) in U is exactly the union of @1Q and @1Q
0; the points in @1Q are repelling �xed points, those

in @1Q
0 are attracting and they alternate in U . There is a unique compact complementary region of the

union of Q and Q0 in F � which is a compact �nite sided polygon.

Proof. First we will prove this result for the minimal sublaminations Gm� , G
m
+ of G�;G+. Then we show

that G�;G+ are minimal, that is Gm� is equal to G� proving the result for G� and G+ as well.

Let Q be a complementary region of V m
� (which is the intersection of eGm� with F �) and j the number

of ideal points of Q. The proof of lemma 6.6 shows that the action of �(g) on each component of

U � @1Q

is a contraction with a single �xed point. This is because each component of the boundary of Q (a

geodesic in F �) is a leaf of V m
� . This shows that there are exactly 2j �xed points of �(g) in U . Let l1

be a boundary leaf of Q and l2 another leaf asymptotic to it, de�ning the common ideal point w1 � a

repelling �xed point of �(g), see �g. ??. Let J1 be the complementary interval of @1Q in U de�ned by

l1 and similarly de�ne J2. Let

pj in l1 \ V m
+ with pj ! w1:

Let j be the leaves of V
m
+ through pj. Since the angle between j and l1 is bounded away from 0 and

� the endpoints of j are eventually in the union of J1 and J2 and close to w1. Let  be one such leaf.

Then �(gn)() is a leaf of V m
+ and as n converges to +1, the endpoints of �(gn)() converge to the �xed

points y1; y2 of �(g) in J1; J2 respectively, see �g. ??, a. As V
m
+ is a lamination in F � this produces s1 a

leaf of V m
+ with ideal points y1; y2. Also �(g)(s1) is equal to s1.

In the same way associated to any ideal point wj of Q we �nd sj leaf of V
m
+ . Consecutive sj's are

asymptotic, creating a �nite sided ideal polygon Q0 with the same number of sides as Q and Q0 invariant

under �(g). If there is any leaf of V m
+ in the interior of Q0 it would be isolated in V m

+ contradiction. Hence

Q0 is a complementary region of V m
+ . This proves the conclusion of of lemma 6.11 for V m

� and V m
+ .

This analysis implies that G� is minimal and so equal to Gm� . Otherwise there is Q complementary

region of V m
� left invariant under �(g) with g non trivial in �1(M) and l a leaf of V� in the interior of

Q. Hence Q has at least 4 ideal points. Let Q0 be the associated complementary region of V m
+ � by

construction it has at least two ideal points on each component of U � l, let p1; p2 in one component and

p3; p4 in the other component. The pj are all �xed by �(g). Consider a sequence of ideal quadrilaterals

Ri converging to l which are the bottoms of a sequence of distortion parallepipeds. Then one can show

that the associated tops Si have cross ratio bounded away from 1 � the �xed points p1; p2 and p3; p4 of
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�(g) in @1Q
0 keep the quadrilateral Si from being too thin in the other direction. The Si are trapped

between two walls

(p1p2 �R) and (p3p4 �R):

These walls are invariant under g, so the cross ratios (with the correct order) cannot get too close to 1.

This contradiction shows that Gm� is equal to G�, that is G� is a minimal lamination.

Similarly G+ is minimal. As we already proved the results for Gm� and Gm+ this �nishes the proof of

proposition 6.11.

Before producing the transversal ow we check the non orientable situations:

Proposition 6.12. Suppose that F is transversely oriented and R-covered with hyperbolic leaves and

that M is homotopically atoroidal. Then there are laminations by geodesics G+;G� transverse to F and

transverse to each other and which satisfy the conclusions of lemma 6.11.

Proof. The di�erence here is that M may be non orientable. The covering translations reversing orien-

tation in M are exactly those which reverse orientation in U , because F is transversely orientable. If M

is orientable previous results apply. Otherwise let M2 be the orientable double cover so �1(M2) is a nor-

mal subgroup of index 2 in �1(M). Using that M2 is homotopically atoroidal construct the laminations

G��;G
�
+ in M2 as before. Let f in �1(M) which is orientation reversing. It induces an involution f2 of M2

so that M =M2=f .

We claim that f leaves invariant the laminations eG��; eG
�

+. Lift F to F2 in M2. Notice that the

universal circle is the same for F and F2. Let

V� = eG�� \ F �; V+ = eG�+ \ F �

as before. Suppose that �(f)(V�) is not equal to V�. Since V� is a lamination in F � with no isolated

leaves and �nite sided complementary regions, then �(f)(V�) has some transverse intersection with V�.

Let Q be a complementary region of V� with a boundary leaf l and a leaf l0 of �(f)(V�) intersecting l

transversely. Let g be a non trivial covering translation in �1(M2) with �(g)(Q) equal to Q and �xing

all ideal points of Q. Assume that g acts as a decreasing homeomorphism of H. The arguments in the

proof of proposition 6.11, show that the sequence of geodesics �(gn)(l0) converges to a geodesic l" which

is asymptotic to a leaf r of V+. This is because the ideal points of l" are attracting �xed points of �(g),

so the rays in l" are asymptotic to leaves in V+. We do not know a priori that l00 is a leaf of V+, it could

be a diagonal in a complementary component of V+.

But since �1(M2) is normal in �1(M), then for any h in �1(M2) it follows that hf = fh0 for some h0

in �1(M2). Hence

hf(eG��) = fh0(eG��) = f(eG��):

So �1(M2) preserves f(eG
�

�) and therefore �(�1(M2)) preserves f(V�). Hence

�(gn)(l0) 2 f(V�) and l" 2 f(V�)

also. Since r in V+ and l" in �(f)(V�) are asymptotic, then taking limits this implies that �(f)(V�) and

V+ share a leaf. But f(G��) and G
�
+ are minimal so �(f)(V�) is equal to V+. However leaves in �(f)(V�)

are still limits of bottoms of sequences of distortion parallelepipeds. As in the proof of proposition 6.7

this contradicts the properties of leaves of V+ (that is they are limits of tops of sequences of distortion

parallelepipeds), because �(f)(V�) is equal to V+. We conclude that

�(f)(V�) = V�; �(f)(V+) = V+; so f(eG��) = eG��; f(eG�+) = eG�+:
Therefore G��;G

�
� are invariant under f2 and induce laminations G�;G+ in M which are transverse to F

and to each other and satisfy the properties of lemma 6.11. This �nishes the proof of lemma 6.12.
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Remark 1 � By proposition 6.8 the lamination G� is never a foliation. Also in the atoroidal case

the complementary regions of G� are solid tori (or solid Klein bottles). Therefore G� is a an essential

lamination [Ga-Oe] and it is a genuine lamination [Ga-Ka], that is, complementary regions are not I-

bundles. A theorem of Gabai and Kazez [Ga-Ka] then implies that:

Corollary 6.13. If M is aspherical and has an R-covered foliation, then M satis�es the weak hyper-

bolization conjecture: either there is a Z�Z subgroup of �1(M) or �1(M) is Gromov negatively curved.

Since M is irreducible [Ro] there are many important consequences for the geometry of M . In

particular M is conjecturally hyperbolic [Th4].

Remark 2 � The �nal case to be considered is F not transversely orientable. Lift to double cover M 0

so that the lifted F 0 is transversely orientable. Using the proposition 6.12 produce laminations G�;G+

in M 0. Let B be �1(M
0) and f in (�1(M)�B). Then f reverses orientation in H. Hence leaves of f(V�)

are now the limit of thin quadrilaterals which get distorted when moving down transverse to eF . The

same arguments as in the previous proposition show that

�(f)(V�) = V+ and �(f)(V+) = V�;

that is, f switches the invariant laminations. This is because f reverses the orientation to H so something

which is limit of bottoms of sequences of distortions parallelepipeds, has image under �(f) which is the

limit of tops of sequences of distortion parallelepipeds. This would produce a nonorientable line �eld in

the intersection of the two laminations in M , which is tranverse to F . We think this situation in fact

cannot occur, but at this point we cannot rule it out. In any case M has a �nite regular cover M 0 with an

essential lamination G�. Remark 1 shows that �1(M
0) is negatively curved in the large and so is �1(M),

because �1(M
0) has �nite index in �1(M) [Gr].

Remark 3 � If there is a Z� Z subgroup of �1(M), it can be represented by an immersed incompressible

torus T which is in general position with respect to F . Following classical ideas of Thurston [Th1],

Roussarie [Rou] and more recently Gabai [Ga5], it follows that T can be put in tight position with

respect to F . As F is R-covered and Reebless it follows that F is taut [Fe5, Go]. Given that F is taut

Gabai [Ga5] showed that T can be homotoped to be either contained in a leaf of F or transverse to F

(here T may fail to be embedded!). Taut is used to avoid circles of tangency. In the �rst case not all

leaves of F are hyperbolic. In the second case T represents a region in leaves whose geometry is only

boundedly distorted moving tranversely to the foliation � this explains the dichotomy mentioned in the

introduction.

7 The transverse pseudo-Anosov ow

Here F is a transversely oriented, R-covered foliation with hyperbolic leaves; M homotopically atoroidal.

By section 6 there are universal laminations by geodesics G+;G�, transverse to F and to each other. We

use the notations and constructions from the previous sections. A complementary region Q of V� is an

ideal polygon and has associated complementary region Q0 of V+, producing a complementary region

P = Q \Q0 of F � � (V+ [ V�)

with compact closure. This region has at least 6 boundary sides, see �g. ??, a; and there is g in

�1(M) with �(g) leaving both Q and Q0 invariant, hence also leaving their intersection invariant. In M

these produce complementary regions of G+ [ G� which are solid tori or solid Klein bottles. They are

homeomorphic to

P � I=�;
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where � is a homeomorphism of P . All other complementary regions P 0 of V� [ V+ are in \cusps" of V�
and V+, hence are relatively compact quadrilaterals in F �. Up to the action of �1(M) there are �nitely

many complementary components of (V� [ V+) in F � with 6 sides or more,

There is a ow transverse to F de�ned in the intersection of G+ and G�: just consider the orientable

line �eld which is the intersection of leaves of G+;G�. Now collapse the complementary regions of G+[G�
along leaves of F to produce 2 invariant singular foliations in M . In F � each closure of complementary

region of V�[V+ collapses to a point. This produces a ow � inM which is transverse to F . The collapsing

of G+ produces the singular foliation Fu (unstable) and G� produces Fs (stable). This operation of

collapsing along leaves was described in great detail in Mosher's articles [Mo1, Mo2]. A complementary

region of V� with p sides (see �g. ??, a) blows down to a p-prong singular leaf of eFs in F �, see �g. ??, b.

These complementary regions are periodic under some �(g) with g in �1(M) and therefore produce closed

orbits of � in M . The local cross section is given in �gure ??, b. All other points in M are topologically

non singular for the ow � and foliations Fs;Fu. The ow lines of � are \tangent" to Fu;Fs. Since

the laminations G�;G+ are minimal it follows that all leaves of Fs and Fu are dense in M . There is a

homotopy equivalence � : M ! M preserving leaves of F and sending G+ to Fu, G� to Fs. There is a

lift e� : fM ! fM preserving leaves of eF and moving points a bounded distance.

We now show that � is a pseudo-Anosov ow.

De�nition 7.1. (topological pseudo-Anosov) A ow ' in a manifold N3 is a topological pseudo-Anosov

ow if there are no point orbits of ' and orbits of ' are contained in two (possibly singular) foliations

Es; Eu stable and unstable satisfying:

1 � All owlines in a leaf of Es are forward asymptotic, all ow lines in a leaf of Eu are backward

asymptotic.

2 � The (topological) singularities of Es; Eu are all of p-prong type. The singular locus is a �nite

union of closed orbits of ' and p-local leaves of Es abut this singular orbit and similarly for Eu.

3 � The foliations Es; Eu are transverse to each other and intersect exactly along the ow lines of '.

The ow � constructed above is transverse to F and its ow lines are contained in leaves of Fs;Fu.

Under a small perturbation so that � is still transverse to F we can assume that: the orbits of � are C1

and leaves of Fs;Fu are C1 submanifolds in the complement of the singularities and in the singularities

we have a standard topological p-prong picture. We stress that is not clear whether these ows can be

made \smooth" pseudo-Anosov as de�ned by Mosher in [Mo2]. In particular it is not clear whether one

can de�ne the strong stable/unstable foliations associated to the ow.

Notice that for any g in �1(M), �(g) acts on V� and V+ hence acts on the points of the intersection.

This action is still denoted by �(g). A leaf of Fs or eFs is periodic if it contains a periodic orbit of � or

the lift of a periodic orbit. Given x 2 M let W s(x) be the leaf of Fs containing x and likewise de�ne

W u(x). Let eFs; eFu; e� be the lifts to fM . If y 2 fM de�ne fW u(y);fW s(y) similarly to the above.

Proposition 7.2. (topological hyperbolicity) For any two points x; y in a leaf E of eFs their orbits are

asymptotic in future time. In negative time the distance between orbits converges to in�nity, in the

intrinsic metric of E. The opposite behavior occurs in leaves of Fu.

Proof. The dynamics of � is entirely encoded by the dynamics of the orientable line �eld G+ \ G�. This

is what is going to be used here. We �rst analyse the case that �(E) contains a singular orbit of �. Then

E is a blow down of p leaves of eG� in fM . Let L in eG� be one of them. The intersection l of L and F � is

in the boundary a complementary region Q of V� and there is an associated complementary region Q0 of

V+. There is g in �1(M) non trivial, with g acting as a decreasing homeomorphism of H and �(g) �xing

only @1Q, @1Q
0 in S1

1(F �), so that points in @1Q
0 are attracting and points in @1Q are repelling.

This dynamics of �(g) is the fundamental point here. There are two boundary leaves of Q0 intersecting

L, let s be one of them. Let

S = (s�R); e� = S \ L and z = (S \ L) \ F � = s \ l:
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Also

l � @Q is a leaf of V�; s � @Q0 is a leaf of V+; s \ l 6= ;:

Then �(g)(s) = s and g(S) = S. The map g is associated to the closed orbit � = �(e�) in �(L). Orbits
of e� in L correspond to leaves of eG+ intersecting L, so let

H 2 eG+ with H \ L = e;

orbit of the ow. Start with the intersection a0 of H and L at level F � - which is a point in l. Go up to

g�1(F �) along the ow line e. Mapping the intersection of e and g�1(F �) down by g produces a point

a1 in l - this is like the �rst return map associated to the closed orbit �. The action of �(g) in S1
1(F �)

moves the ideal points of of H \ F � closer to the ideal points of s, because the ideal points of s are in

@1Q
0 and are attracting for �(g). This implies that a1 is closer to z than a0 is. This is exactly the same

argument as in step 7 of the proof of theorem 5.1. Iterating this procedure the images in l converge to z,

that is,

an = gn(e \ g�n(F �))

converges to z. Hence in fM the orbit e is asymptotic to the orbit e� in the forward direction as one moves

up. All orbits in L on that side of S are asymptotic to the orbit e�. Orbits through the corners of Q\Q0

collapse to a single orbit in the blow down. Hence all orbits are asymptotic to the closed orbit in �(E)

after the collapsing. This proves the result for singular leaves. The key is the action of �(g) in U .

If now � is any periodic orbit of �, which is non singular then e� is the intersection of two leaves of eFs

and of eFu which come from unique leaves

L of eG� and S of eG+:

Let

l = L \ F �; s = S \ F �; e� = S \ L

and let b1; b2 the ideal points of l. Let g in �1(M) non trivial with g(e�) equal to e� so that g leaves both

components of L � S invariant. Then �(g) has at least 4 �xed points and therefore acts freely in H,

assume as a decreasing homeomorphism. Given that, use an analysis similar to the proof of lemma 6.6:

let Ri be quadrilaterals converging to a leaf l0 of V� near but not equal to l. The analysis of lemma 6.6

shows that

�(g) is a contraction in that interval of U � fb1; b2g:

Therefore �(g) has exactly 4 �xed points in U which are the ideal points of l and s. Then the same

analysis as in the singular case yields that all orbits in L are forward asymptotic to e� so after collapse

all orbits are forward asymptotic to e�.
This takes care of periodic leaves of eFs; eFu. We now deal with general leaves. Notation: if x; y are in

the same leaf of the intersection of eF and eFs, let d0(x; y) be their distance along that leaf. Consider x; y

in the same leaf F \E where F is a leaf of eF and E a leaf of eFs. If the orbits of e� through x; y are not

asymptotic in future time we can �nd positive a0 so that

e�ti(x);
e�si(y) 2 Fi 2 eF ; d0(e�ti(xi);

e�si(y)) > a0 and ti; si ! +1:

Hence we can �nd segments �i in the intersection of leaves of eFs with leaves of eF with endpoints xi; yi
in leaves of eF which have length of �i converging to a0 and so that

e��ti(xi); e��si(yi) 2 F; and d0(e��ti(xi); e��si(yi)) < a1; for some �xed a1 > 0:



REFERENCES 48

Up to subsequence there are covering translations hi with hi(�i) converging to �0.

Since a periodic leaf of Fu is dense in M let  orbit of e� with �() periodic and non singular so

that fW u() intersects �0, see �g. ??. Hence for i big fW u() and hi(�i) intersect. Making �i; �0 smaller

if necessary we may assume that: for any p in �i, the leaf fW u(p) does not intersect a singular orbit

between fW s(�i) and fW s(). Equivalently fW u(p) intersects fW s(). Now ow back. The points in �0

ow back very near fW s() and from then on always near fW s(), see �g. ??. So for i big hi(�i) also

does. Flowing backwards in fW s(), the segments which intersect  in the interior blow up, because all

orbits in fW s() are forward asymptotic to  and fW s() is periodic � hence the lengths will blow up past

2a1 and will never again be smaller than 2a1. Therefore nearby segments obtained owing back pieces

of hi(�i) will also have big length. But the segments hi(�i) ow back to segments of length smaller than

a1 for arbitrarily long time when i is big � hence this is a contradiction. Hence orbits in E are forward

asymptotic.

The same argument shows that owing in the negative direction blows up distance along stable

leaves without bound � because this happens in periodic leaves and then use the argument above of the

intersection with fW u(). This �nishes the proof of the proposition.

Finally we get the metric pseudo-Anosov property for the ow �.

Proposition 7.3. (metric hyperbolic) For every positive a2, there is positive a3 so that: let � be a segment

in the intersection of a leaf of eF with a leaf of eFu of length at least a2. Flow forward every point of �

to obtain another segment �0 in another leaf of eF . If every point of � moves at least a3 ow length, then

the length of the �nal segment is at least double the length of �.

Proof. Otherwise get segments �i so that there are longer and longer times so that length of ow of �i is

smaller than 2a2. Call these segments in leaves Fi of eF to be �i. Then the �i have length less than 2a2
and it takes longer and longer for them in the negative direction to decrease to length a2. The arguments

in the previous proposition disallow this. This �nishes the proof.

Remark: A very important question is to analyse geometric properties of the transverse ow �. For

instance is the ow quasigeodesic? That means ow lines of e� are uniformly eÆcient in measuring

distance [Fe2]. This has several important consequences, for intance the continuous extension property

for leaves of eF [Ca-Th]. When G is an uniform foliation, it is very easy to see that � is quasigeodesic,

because � is regulating [Th7]. In general this is an open question.
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