
Study Problems 2 Applied Linear Algebra 2 Spring 2024

Problem 2.1

Consider a symmetric matrix A, i.e., A = AT .

2.1.a. Consider the use of Gauss transforms to factor A = LU where L is unit lower
triangular and U is upper triangular. You may assume that the factorization
does not fail. Show that A = LDLT where L is unit lower triangular and D
is a matrix with nonzeros on the main diagonal. i.e., elements in positions (i, i),
and zero everywhere else, by demonstrating that L and D can be computed by
applying Gauss transforms appropriately to the matrix A.

2.1.b. For an arbitrary symmetric matrix the LDLT factorization will not always
exist due to the possibility of 0 in the (i, i) position of the transformed matrix
that defines the i-th Gauss transform. Suppose, however, that A is a positive
definite symmetric matrix, i.e., xTAx > 0 for any vector x 6= 0. Show that the
diagonal element of the transformed matrix A that is used to define the vector li
that determines the Gauss transform on step i, M−1

i = I− lieTi , is always positive
and therefore the factorization will not fail. Combine this with the existence of
the LDLT factorization to show that, in this case, the nonzero elements of D are
in fact positive.

Problem 2.2

Suppose A ∈ Rn×n is a nonsymmetric nonsingular diagonally dominant matrix with the
following nonzero pattern (shown for n = 6)

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0
∗ 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0
∗ 0 0 0 ∗ 0
∗ 0 0 0 0 ∗


It is known that a diagonally dominant (row or column dominant) matrix has an LU factor-
ization and that pivoting is not required for numerical reliability.

2.2.a. Describe an algorithm that solves Ax = b as efficiently as possible.

2.2.b. Given that the number of operations in the algorithm is of the form Cnk +
O(nk−1), where C is a constant independent of n and k > 0, what are C and k?
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Problem 2.3

Let A ∈ Rn×n be a nonsingular matrix, with A and A−1 partitioned as follows

A =

(
A11 A12

A21 A22

)

A−1 =

(
Ã11 Ã12

Ã21 Ã22

)
where A11 ∈ Rk×k and Ã11 ∈ Rk×k.

2.3.a. Assume A−1
11 and A−1

22 exist. Let S11 = A22 − A21A
−1
11 A12 be the Schur com-

plement of A with respect to A11 and let S22 = A11 − A12A
−1
22 A21 be the Schur

complement of A with respect to A22 Show that

Ã11 = S−1
22 and Ã22 = S−1

11 .

2.3.b. The assumption of the existence of A−1 can be turned into a consequence of
the existence of the Schur complement. Show that if, S11 = A22 − A21A

−1
11 A12,

the Schur complement of A with respect to A11 exists then A is nonsingular if
and only if S11 is nonsingular. (A similar result can be stated for S22.)

Problem 2.4

Suppose an LU decomposition of a matrix A ∈ Rn×n is to be computed with some form of
pivoting to ensure existence. Suppose further that the matrix A is made available one row
at a time.

(2.4.a) Describe an algorithm such that when the i-th row of A is received the algorithm
computes the i-th row of L and the i-th row of U as well as an elementary
permutation matrix Pi that ensures existence (and enhances stability).

(2.4.b) What primitives are used on each step of the algorithm and what are the
dimensions of the matrices and vectors involved?

(2.4.c) Why does the pivoting strategy in the algorithm guarantee existence?

(2.4.d) What form of decomposition is computed given the pivoting strategy? (Recall,
partial pivoting of rows yields PRA = LU , complete pivoting yields PRAPC =
LU , where PR and PC are permutations of rows and columns respectively. Char-
acterize the decomposition produced by the algorithm in a similar manner.)
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Problem 2.5

(Restated Golub and Van Loan 3rd Ed. p. 103 Problem P3.2.5.)
Define the elementary matrix N−1

k = I − ykeTk ∈ Rn×n, where 1 ≤ k ≤ n is an integer,
yk ∈ Rn and ek ∈ Rn is the k-th standard basis vector. N−1

k is a Gauss-Jordan transform if
it is defined by requiring N−1

k v = ek νk for a particular given vector v ∈ Rn whose elements
are denoted νj = eTj v. For example, if n = 6 and k = 3 then

N−1
3 =


1 0 ∗ 0 0 0
0 1 ∗ 0 0 0
0 0 ∗ 0 0 0
0 0 ∗ 1 0 0
0 0 ∗ 0 1 0
0 0 ∗ 0 0 1

 and


ν1
ν2
ν3
ν4
ν5
ν6


where ∗ indicates a value that must be determined.

(2.5.a) Determine how to choose yk and define N−1
k given a vector v ∈ Rn, i.e.,

determine the values of the elements of yk in terms of the values of the elements
of v so that N−1

k v = ek νk.

(2.5.b) Determine when N−1
k exists and is nonsingular.

(2.5.c) Show how a series of N−1
k can be used to transform a nonsingular matrix

A ∈ Rn×n into a nonsingular diagonal matrix D ∈ Rn×n, i.e., all of the off-
diagonal elements of D are 0 and all of the diagonal elements are nonzero. You
may assume that A is such that all of the N−1

k exist.

(2.5.d) Does the factorization that this transformation induces have any structure
other than that in D?
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Problem 2.6

It is known that if partial or complete pivoting is used to compute PA = LU or PAQ = LU
of a nonsingular matrix then the elements of L are less than 1 in magnitude, i.e., |λij| ≤ 1.
Now suppose A ∈ Rn×n is a symmetric positive definite matrix, i.e., A = AT and x 6= 0 →
xTAx > 0. It is known that A has a factorization A = LLT where L is lower triangular with
positive elements on the main diagonal (the Cholesky factorization). Does this imply that
|λij| ≤ 1? If so prove it and if not give an n × n symmetric positive definite matrix with
n > 3 that is a counterexample and justify that it is indeed a counterexample.

Problem 2.7

Suppose PAQ = LU is computed via Gaussian elimination with complete pivoting. Show
that there is no element in eTi U , i.e., row i of U , whose magnitude is larger than |µii| =
|eTi Uei|, i.e., the magnitude of the (i, i) diagonal element of U .

Problem 2.8

Consider S ∈ Rn×n whose nonzero elements have the following pattern for n = 8:

S =



1 0 0 0 µ1 0 0 0
0 1 0 0 µ2 0 0 0
0 0 1 0 µ3 0 0 0
0 0 0 α β 0 0 0
0 0 0 γ δ 0 0 0
0 0 0 δ1 0 1 0 0
0 0 0 δ2 0 0 1 0
0 0 0 δ3 0 0 0 1


The pattern generalizes to any n easily. Assume that for any n, S is a nonsingular matrix.

2.8.a We have considered several basic transformations ( Gauss transforms, Gauss-
Jordan transforms, elementary permutations, Householder reflectors) that can be
used to compute factorizations efficiently. Assume that S is diagonally dominant
(both row-wise and column-wise).

Using whatever combination of these transformations you think appropriate, de-
scribe an algorithm to compute stably a factorization of S for any n that can be
used to solve Sx = b. Your algorithm should be designed to require as
few computations as possible. Your solution must include a description of
how you exploit the structure of the matrix and its factors.
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2.8.b Assume that you have the factorization of S defined by your algorithm from
Part (2.8.a), describe an algortihm to solve Sx = b. Your algorithm should
be designed to require as few computations as possible. Your solution
must include a description of how you exploit the structure of the matrix and its
factors.

2.8.c Determine the order of computational complexity, i.e., give k in O(nk), when
your factorization algorithm is applied to a matrix of any dimension n.

2.8.d Determine the order of computational complexity, i.e., give k in O(nk), when
your algorithm to solve Sx = b given the factorization is applied to a matrix of
any dimension n.
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