Homework 3 Introduction to Computational Finance Spring
2023

Solutions due Friday March 10, 2023

Note that this due date is the day after the exam. Working on this assignment
is an effective part of studying for the exam. Do not wait until the last minute
to work on this program.

Answers to the homework problems and programming tasks should be submitted using
the class canvas page.

You should submit pdf files. Do not sent Word files or any other text processing
tool’s input file.

As with all homework assignments you are allowed and encouraged to consult the relevant
literature. You are also expected to cite all literature that is used to generate your
solutions and your solutions must make clear your understanding of the work
cited.

Programming Assignment

Algorithms Required:
Assume you are given distinct points @ = zg,...,z, = b, on the interval [a,b] and a
function f(x) defined on the interval. Implement the following algorithms

1. Newton form of the interpolating polynomial:. There should be two routines.
The first computes the required divided differences and returns them for use by the
second which evaluates the Newton form of the polynomial for a given x value. You
may find it useful to implement this so that a set of x values can be given as input and
the set of the values of the polynomial at those points is returned. In your solutions
denote this polynomial N4(z) when it has degree d. This first routine should accept
any mesh of x; points on the interval of interest, i.e., it is not restricted to any specific
set of x; values like Chebyshev points or equidistant points. The second routine should
accept any set of x values on which the polynomial is to be evaluated including points
on the mesh used to generate the divided differences.

2. Piecewise interpolating polynomial: The routine for the piecewise interpolating
polynomial g4(z), on [a, b] where the degree s should support choosing s to be 1 or 2,
i.e., piecewise linear or piecewise quadratic.

Code Comments:

e Your codes should be able to run in single or double precision (assumed to be IEEE
standard FP).

e Your codes must be efficient in time and space and make sure you discuss these aspects
of your implementations.

e Compute the divided differences using the divided difference table approach. Your
implementation must be efficient in storage, i.e., O(n) space. Therefore, you must
decide what form of Ng(x) you will use, i.e., the one starting with f, and adding
the values at zy,...,2,-1, x, or the one starting with f, and adding the f; values
at x,_1,...,T1, To. In either case when computing the divided difference table your
algorithm must use only O(n) work space and should not store the entire table.

e The piecewise interpolating polynomial algorithm should use a simple selection mecha-
nism for the degree, i.e., do not write separate routines for each degree in some assumed
range of degrees.

e The piecewise interpolating polynomials must be continuous. So the mesh of interpo-
lation points used in each subinterval must include the two end points. Therefore, the
piecewise linear polynomial, ¢;(z), will define a linear polynomial, p; ;(x) for each of
the n intervals, [z;, x;11], 7 =0,...,n — 1. The piecewise quadratic polynomial, go(z),
will define a quadratic polynomial, ps;(x) for each of the n/2 intervals with n = 2k,
i.e., n is assumed to be even. The intervals are [zy;, T9;42], 7 = 0,...,(n/2) — 1. Note
that the points with the odd indices are contained in these intervals.

e The low degree of s = 1, 2 implies that 1 or 2 divided differeces are required per
interval. You may implement this simple computation separately from the Newton
divided difference polynomial code above that must handle a much wider range of
degree and table size.

e The piecewise polynomial codes must be able to specify a general mesh of points and
a uniform mesh of points.

When investigating the performance and correctness of your codes:

e You should carefully choose the functions to interpolate and demonstrate the predicted
error holds for both global and piecewise interpolants.

e Recall the error should be very near zero at the interpolation points.

e To approximate || f(z) — gs(z)||oo and || f(z) — Ng()||s0, sample f(x) and the approx-
imating function at a large number of points, z;, in the interval and take the largest
value of the magnitude of the difference between f(z;) and the approximating function
at z;. When the number of z; is sufficiently large this will give a good approximation
of the error.

Tasks:

Task 1 Discuss the complexity of preprocessing and evaluation for each method. Note this
complexity analysis should include the search for the interval in which the value resides for
piecewise interpolating and how assumptions about the mesh can influence the complexity
of the search.

Task 2 It is known from the error bounds that Ny(z) is identical to f(z) as long as f(z)
is a polynomial of degree less than or equal to d. Use this as one debugging/validation test
for your Newton interpolating polynomial code by producing Ny(z) for d = 1,2, ...c where
f(z) is a polynomial of degree c¢. Do this for many such f(x) and present the results in such
a way that it is convincing that your code reproduces polynomials correctly.

Task 3 Apply the error bounds of the notes for piecewise polynomial interpolation with
degrees 1 < s < 2 to determine the subinterval sizes that guarantee a desired error || f — gs/oo
and verify this by experiment. Comment on whether the experiments indicate that the error
bounds are tight or loose for the particular functions you choose to interpolate.

Task 4 Empirically investigate the convergence and divergence to f(z) for: interpolation
with a single polynomial and interpolation with the piecewise polynomials as the number of
points increases in terms of the infinity norm of each of the interpolation approaches.

It is known that divergence will occur for a uniform mesh and some functions. Make sure
that you present your results in a convincing manner for these cases, e.g., the one in the
notes. Avoid brakdown of your code, e.g., generating overflow, as the polynomials diverge
from f(x). You can compute || f — gs||oo and || f — Na(z)|| for each mesh and stop when it
is clear that there is a trend of increasing error.

Functions:

For the tasks, your experiments should include, as appropriate, the following functions
n [—1,1] from the notes

J(@) = laa| + 5 —a”

B 1
1+ ax?

f(z)

You must also consider other functions to demonstrate or evaluate hypotheses and properties
of the routines in your solution.

Meshes:

You should include uniform spacing of the interpolating points that allows the generation
of a uniform spacing of the w; for any n, i.e., z; — 2,1 = (b — a)/n defines the family of
uniform meshes as a function of the number of points n + 1.

You should include the n+ 1 roots of the Chebyshev polynomial of degree n+ 1, T,,,1 (),
which are known and in the interval —1 < x <1 to be

T = COS Mz , 0<k<n
(n+1) 2

These are called the Chebyshev points of the first kind.
You should include the n + 1 points called the Chebyshev points of the second kind in
the interval —1 < z <1 given by

k
xk:(:os((—yj)), 0<k<n.

Demonstration of Codes:
After submitting your solutions, you may be asked to apply you code to meshes and
functions chosen by the instructor to demonstrate correctness.

Written Exercises

Problem 3.2

Suppose we want to approximate a functionf(z) on the interval [a,b] with a piecewise
quadratic interpolating polynomial, go(x), with a constant spacing, h, of the interpolation
points @ = g < 1... < x, = b. That is, for any a < x < b, the value of f(x) is approxi-
mated by evaluating the quadratic polynomial that interpolates f at x; 1, x;, and x;4; for
some i with © = x;+sh, ;1 = x;—h, x;41 = v;+h and —1 < s < 1. (How i is chosen given
a particular value of z is not important for this problem. All that is needed is the condition
i1 < < Tigq.)

Suppose we want to guarantee that the relative error of the approximation is less than
1077, i.e., d digits of accuracy. Specifically,

@) =@ o
|f ()]
(It is assumed that | f(z)| is sufficiently far from 0 on the interval [a, b] for relative accuracy
to be a useful value.) Derive a bound on h that guarantees the desired accuracy and apply
it to interpolating f(z) = ¢”sinx on the interval T <z < %r with relative accuracy of 1074
(The sin is bounded away from 0 on this interval.)

Compare your predicted accuracy to the accuracy you achieve by forming go(x) for h’s
that satisfy your bound and h’s that do not.

Problem 3.3

Let p3(x) be the unique polynomial that interpolates the data

(x07f0>7 (x17f1)7 (3727f2>7 (x37f3)

and let p3(x) be the unique polynomial that interpolates the data

(1, f1), (w2, f2), (@3, f3), (T4, fa)

Suppose that you have stored a representation of ps(z) based on divided differences, i.e.,
you have stored a vector based at z, for a degree 3 polynomial

Jo
f[flio,xl]
f[5130,$1,952]
f[$0,901,$2,$3]

INFO(z,3) =

and you have the values of o, xy, x3, x3 stored.
Note you only have the information in INFO and the 4 values of x;. You do
not have any other f; values or any other divided differences available unless

explicitly stated in the questions below.

3.3.a. Suppose that in addition to the vector INFO you are given the the new pair
(x4, f1). Describe an algorithm that updates the vector INFO to contain the
information needed to specify ps3(z) in the same manner the initial contents
of INFO, i.e., INFO(xg,3), specified ps(z). That is you want to compute
INFO(xy,3) which specifies the cubic ps(z).

You should make your algorithm as efficient as possible in both storage
and number of operations.

3.3.b. What is the compexity of your algorithm, in both storage and number of
operations, when applied to a pair of polynomials of degree n, i.e., is it O(n?)
or O(n)? Justify your answer.

