Study Questions Homework 2 Introduction to Computational Finance Spring 2023

These are study questions. You are not required to submit solutions (even though the problems are worded like graded assignment problems).

Written Study Exercises

Problem 2.1

2.1.a

Consider the polynomial

$$p(x) = x^3 - x - 5$$

The following three iterations can be derived from p(x).

$$\phi_1(x) = x^3 - 5$$

$$\phi_2(x) = \sqrt[3]{x+5}$$

$$\phi_3(x) = 5/(x^2 - 1)$$

The polynomial p(x) has a root r > 1.5. Determine which of the $\phi_i(x)$ produce an iteration that converges to r.

2.1.b

Consider the function

$$f(x) = xe^{-x} - 0.06064$$

- i. Write the update formula for Netwon's method to find the root of f(x).
- ii. f(x) has a root of $\alpha = 0.06469263...$ If you run Newton's method with $x_0 = 0$ convergence occurs very quickly, e.g., in double precision $|f(x_4)| \approx 10^{-10}$. However, if x_0 is large and negative or if x_0 is near 1 convergence is much slower until there is a very rapid improvement in accuracy in the last one or two steps. For example, if $x_0 = 0.98$ then

$$|f(x_{47})| \approx 0.6 \times 10^{-2}$$

$$|f(x_{49})| \approx 1.5 \times 10^{-5}$$

$$|f(x_{50})| \approx 2.8 \times 10^{-10}$$

Explain this behavior. You might find it useful to plot f(x) and run a few examples of Newton's method.

Problem 2.2

Consider the fixed point iteration by the function

$$\phi(x) = x - \frac{(x^2 - 3)}{(x^2 + 2x - 3)}$$

The value $\alpha = \sqrt{3}$ is a fixed point for this iteration. Provide justification to all of your answers for the following:

- (2.2.a) Show that there exists a nontrivial interval $\alpha \delta < x < \alpha + \delta$ with $\delta > 0$ such that the iteration defined by $\phi(x)$ converges to α for any x_0 in the interval.
- (2.2.b) Is the order of convergence on this interval linear (p = 1) or higher $(p \ge 2)$?
- (2.2.c) Show that for $x > \alpha$ we have

$$\alpha < \phi(x) < x$$

and use this to explain the convergence of the iteration when $x_0 > \alpha$.

(2.2.d) Plot or otherwise enumerate values of the curves $y = \phi(x)$ and y = x on the interval $0 < x < \beta$ for $\beta > \alpha$. Use the information to examine the behavior of the iteration for $0 < x_0 < \alpha$. For what subinterval, if any, do you expect convergence to α ?

Problem 2.3

Let $f(x) = e^{8x}$ on $0 \le x \le 1$. Suppose f(x) is to be approximated by a **piecewise linear** interpolating function, $g_1(x)$. The accuracy required is

$$\forall 0 \le x \le 1, |f(x) - g_1(x)| \le 10^{-6}$$

Determine a bound on $h = x_i - x_{i-1}$ for uniformly spaced points that satisfies the required accuracy.

Problem 2.4

Recall that the error in the interpolating polynomial of degree n is $\forall x_0 \leq x \leq x_n$

$$|f(x) - p_n(x)| = \frac{|(x - x_0)(x - x_1)\dots(x - x_n)|}{(n+1)!} |f^{(n+1)}(\xi(x))| = \frac{|\omega_{n+1}(x)|}{(n+1)!} |f^{(n+1)}(\xi(x))|$$

Note it is sometimes useful to work with a change of variables to analyze the error and related quantities. The interval $x_0 \le x \le x_n$ can be changed to $0 \le s \le 1$, $x = x_0 + sh$.

- i. Assuming a uniform spacing of the x_i , bound $\|\omega_2(x)\|_{\infty}$, i.e., n = 1. The norm $\|g(x)\|_{\infty}$ is defined to be the maximum of magnitude |g(x)| when x is in a given interval. In this case the interval is $x_0 \le x \le x_n$ or $0 \le s \le 1$, $x = x_0 + sh$.
- **ii**. Assuming a uniform spacing of the x_i , bound $\|\omega_3(x)\|_{\infty}$, i.e., n = 2.
- iii. Let $f(x) = e^{8x}$ on $0 \le x \le 1$. Suppose f(x) is to be approximated by an interpolating polynomial $p_2(x)$ of degree 2, i.e., n = 2 and three points x_0, x_1 and x_2 are used to define $p_2(x)$. Suppose three points are taken to be $x_0 = 0$, $x_1 = 0.5$ and $x_2 = 1$. Bound the error $|f(x) p_2(x)|$ using the formulas above then determine $p_2(x)$ and compute $|f(x) p_2(x)|$ for many points in the interval $0 \le x \le 1$ to check the tightness of the bound for absolute and relative error.