## Study Questions Homework 2 Introduction to Computational Finance Spring 2023

These are study questions. You are not required to submit solutions (even though the problems are worded like graded assignment problems).

Written Study Exercises

## Problem 2.1

## 2.1.a

Consider the polynomial

$$
p(x)=x^{3}-x-5
$$

The following three iterations can be derived from $p(x)$.

$$
\begin{gathered}
\phi_{1}(x)=x^{3}-5 \\
\phi_{2}(x)=\sqrt[3]{x+5} \\
\phi_{3}(x)=5 /\left(x^{2}-1\right)
\end{gathered}
$$

The polynomial $p(x)$ has a root $r>1.5$. Determine which of the $\phi_{i}(x)$ produce an iteration that converges to $r$.

## 2.1.b

Consider the function

$$
f(x)=x e^{-x}-0.06064
$$

i. Write the update formula for Netwon's method to find the root of $f(x)$.
ii. $f(x)$ has a root of $\alpha=0.06469263 \ldots$. If you run Newton's method with $x_{0}=$ 0 convergence occurs very quickly, e.g., in double precision $\left|f\left(x_{4}\right)\right| \approx 10^{-10}$. However, if $x_{0}$ is large and negative or if $x_{0}$ is near 1 convergence is much slower until there is a very rapid improvement in accuracy in the last one or two steps. For example, if $x_{0}=0.98$ then

$$
\begin{aligned}
\left|f\left(x_{47}\right)\right| & \approx 0.6 \times 10^{-2} \\
\left|f\left(x_{49}\right)\right| & \approx 1.5 \times 10^{-5} \\
\left|f\left(x_{50}\right)\right| & \approx 2.8 \times 10^{-10}
\end{aligned}
$$

Explain this behavior. You might find it useful to plot $f(x)$ and run a few examples of Newton's method.

## Problem 2.2

Consider the fixed point iteration by the function

$$
\phi(x)=x-\frac{\left(x^{2}-3\right)}{\left(x^{2}+2 x-3\right)}
$$

The value $\alpha=\sqrt{3}$ is a fixed point for this iteration. Provide justification to all of your answers for the following:
(2.2.a) Show that there exists a nontrivial interval $\alpha-\delta<x<\alpha+\delta$ with $\delta>0$ such that the iteration defined by $\phi(x)$ converges to $\alpha$ for any $x_{0}$ in the interval.
(2.2.b) Is the order of convergence on this interval linear $(p=1)$ or higher $(p \geq 2)$ ?
(2.2.c) Show that for $x>\alpha$ we have

$$
\alpha<\phi(x)<x
$$

and use this to explain the convergence of the iteration when $x_{0}>\alpha$.
(2.2.d) Plot or otherwise enumerate values of the curves $y=\phi(x)$ and $y=x$ on the interval $0<x<\beta$ for $\beta>\alpha$. Use the information to examine the behavior of the iteration for $0<x_{0}<\alpha$. For what subinterval, if any, do you expect convergence to $\alpha$ ?

## Problem 2.3

Let $f(x)=e^{8 x}$ on $0 \leq x \leq 1$. Suppose $f(x)$ is to be approximated by a piecewise linear interpolating function, $g_{1}(x)$. The accuracy required is

$$
\forall 0 \leq x \leq 1, \quad\left|f(x)-g_{1}(x)\right| \leq 10^{-6}
$$

Determine a bound on $h=x_{i}-x_{i-1}$ for uniformly spaced points that satisfies the required accuracy.

## Problem 2.4

Recall that the error in the interpolating polynomial of degree $n$ is $\forall x_{0} \leq x \leq x_{n}$

$$
\left|f(x)-p_{n}(x)\right|=\frac{\left|\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)\right|}{(n+1)!}\left|f^{(n+1)}(\xi(x))\right|=\frac{\left|\omega_{n+1}(x)\right|}{(n+1)!}\left|f^{(n+1)}(\xi(x))\right|
$$

Note it is sometimes useful to work with a change of variables to analyze the error and related quantities. The interval $x_{0} \leq x \leq x_{n}$ can be changed to $0 \leq s \leq 1, \quad x=x_{0}+s h$.
i. Assuming a uniform spacing of the $x_{i}$, bound $\left\|\omega_{2}(x)\right\|_{\infty}$, i.e., $n=1$. The norm $\|g(x)\|_{\infty}$ is defined to be the maximum of magnitude $|g(x)|$ when $x$ is in a given interval. In this case the interval is $x_{0} \leq x \leq x_{n}$ or $0 \leq s \leq 1, \quad x=x_{0}+s h$.
ii. Assuming a uniform spacing of the $x_{i}$, bound $\left\|\omega_{3}(x)\right\|_{\infty}$, i.e., $n=2$.
iii. Let $f(x)=e^{8 x}$ on $0 \leq x \leq 1$. Suppose $f(x)$ is to be approximated by an interpolating polynomial $p_{2}(x)$ of degree 2 , i.e., $n=2$ and three points $x_{0}, x_{1}$ and $x_{2}$ are used to define $p_{2}(x)$. Suppose three points are taken to be $x_{0}=0$, $x_{1}=0.5$ and $x_{2}=1$. Bound the error $\left|f(x)-p_{2}(x)\right|$ using the formulas above then determine $p_{2}(x)$ and compute $\left|f(x)-p_{2}(x)\right|$ for many points in the interval $0 \leq x \leq 1$ to check the tightness of the bound for absolute and relative error.

