
Graded Homework 1 Foundations of Computational Math

1 Fall 2020

The solutions are due by 11:59PM on September 28, 2020

Written Exercises

Problem 1.1

Let f(ξ1, ξ2, . . . , ξk) be a function of k real parameters ξi, 1 ≤ i ≤ k. Recall, the relative
condition number of f with respect to ξ1 can be expressed

κrel = max(1, c(ξ1, ξ2, . . . , ξk))

where 0 ≤ c(ξ1, ξ2, . . . , ξk) is a value that indicates the sensitivity of f to small relative
perturbations to ξ1 as a function of the parameters ξi, 1 ≤ i ≤ k. If c(ξ1, ξ2, . . . , ξk) ≤ 1
then f is considered well-conditioned. Additionally, however, when c < 1 its value gives
important information. The smaller c is the less sensitive f is to a relative perturbations in
ξ1.

Let n ≥ 2 be an integer and β > 0. Consider the polynomial equation

p(x) = xn + xn−1 − β = 0.

1.1.a. Show that the equation has exactly one positive root ρ(β).

1.1.b. Derive a formula for c(β, n) that indicates the sensitivity of ρ(β) to small relative
perurturbations to β.

1.1.c. Derive añ upper bound on c(β, n).

1.1.d. Comment on the conditioning of ρ(β) with respect to β.

Problem 1.2

Each question below has a brief answer and justification.

1.2.a Explain the idea of a “hidden bit” in a floating point system with base β = 2
and the benefit achieved by using it.

1.2.b Consider a floating point representation system with base β = 8, precision t = 12
and exponent range determined by L = −15 and U = 16. How many bits are
required to represent a floating point number in this system?

1

1.2.c A communications laboratory has a signal processor that computes with pre-
cision high enough to satisfy easily all of the requirements by applications of
interest to the laboratory. Suppose for one of the applications the data must be
collected using sensors that measure the appropriate signals in the environment
and the resulting problem to be solved using the data has a condition number of
κ ≈ 105.

If at least 2 decimal digits of accuracy in the solution are required, how many
decimal digits must the sensors accurately measure in the input signals assuming
the problem is solved with an unconditionally very stable algorithm?

1.2.d Let x ∈ Rn, and y ∈ Rn be two vectors with

x =

ξ1
ξ2
...
ξn

 , y =

η1
η2
...
ηn

 .

|ξi| ≥ 1 |ηi| ≥ 1

Consider the evaluation of the two inner products

µ = xTx

γ = xTy

Suppose you have a robust backward stable routine to compute the sum of n
numbers and it is used to compute the two inner products. Which of the two
inner products would you expect to be less sensitive to the perturbations caused
by the finite precision of IEEE floating point arithmetic? Justify your answer.

Problem 1.3

Consider the summation σ =
∑n

i=1 ξi using the following “binary fan-in tree” algorithm
described below for n = 8 but which clearly generalizes easily to n = 2k:

σ = {[(ξ0 + ξ1) + (ξ2 + ξ3)] + [(ξ4 + ξ5) + (ξ6 + ξ7)]}
or equivalently

σ
(0)
j = ξj, 0 ≤ j ≤ 3

σ
(1)
0 = ξ0 + ξ1, σ

(1)
1 = ξ2 + ξ3, σ

(1)
2 = ξ4 + ξ5, σ

(1)
3 = ξ6 + ξ7

σ
(2)
0 = σ

(1)
0 + σ

(1)
1 , σ

(2)
1 = σ

(1)
2 + σ

(1)
3

σ = σ
(3)
0 = σ

(2)
0 + σ

(2)
1

2

In general, there will be k = log n levels and σ = σ
(k)
0 . Level i has 2k−i values of σ

(i)
j ,

each of which corresponds to a sum

σ
(i)
j = ξ2ij + . . .+ ξ2i(j+1)−1.

The algorithm is easily adaptable to n that are not powers of 2.

1.3.a. Derive an expression for the absolute forward error of the method for a fixed
n = 8 or n = 16 and then generalize to n = 2k.

1.3.b. Derive an expression for the absolute backward error of the method for n = 8
or n = 16 then generalize to n = 2k.

1.3.c. Bound the errors and discuss stability relative to the simple sequential summa-
tion algorithm given by, for n = 8 but easily generalizable to any n,

σ = (((((((ξ1 + ξ2) + ξ3) + ξ4) + ξ5) + ξ6) + ξ7) + ξ8)

or equivalently

σ = ξ1

σ ← σ + ξi, i = 2, . . . , 8

3

Programming Exercise

Problem 1.4

1.4.a Overview

The purpose of this exercise is the become familiar with defining and organizing a set of
experiments that include specific individual tests and large groups of related tests in order
to demonstrate the correctness of your codes and to assess empirically theoretical properties
such as conditioning and numerical stability. This exercise considers the two most basic
approaches to summing n numbers and an important modification of the most basic one:

1. the recursive algorithm of the notes (simple accumulation)

2. the binary fan-in tree algorithm of the notes

3. double precision accumulation

You must design experiments to demonstrate the correctness of your code and check
conditioning and stability bounds.

1.4.b Implementation Requirements

Data for the codes to be tested

The accumulation sum algorithm and the fan-in algorithm should be implemented in a
compiled and typed language. Since these are the codes to be evaluated all operations, input
data and output data are to be single precision unless otherwise indicated.

Specifically, your input data ξ1, . . . , ξn will come from one of three sources:

1. file input

2. manual input in response to a request by the code

3. closed form expressions

For the first two the data should be read into a double precision array, e.g., XI DP(1:n).
These values will serve as the “exact” real numbers to be summed. The closed form ex-
pressions, e.g., 1/i2, a−k, should be computed in double precision and stored in XI DP(1:n).
The input to the single precision codes to be tested will be generated by copying the data
in XI DP(1:n) to a single precision input data array XI SP(1:n). This will coerce the type
and create a single precision of the data for consumption by the algorithms.

The three algorithms will therefore compute SUM(XI SP(1:n)) to be compared against
the “exact” sum σexact =

∑n
i=1 ξi.

4

Specifications for the codes to be tested

All three algorithms should be implemented to be as efficient as possible in space and oper-
ations. Your solutions must be clear and concise about justifying your design.

Using the single precision input data XI SP(1:n) all operations for the accumulation algo-
rithm and the fan-in algorithm should be single precision. The double precision accumulation
algorithm is the same as the accumulation algorithm in that it operates on the same single
precision input data and produces a single precision output. However, it differs in that the
variable S DP in which the sum is accumulated is double precision and the addition that
updates it is double precision. Specifically, the two algorithms have the fundamental steps:

• basic accumulation algorithm:

– S SP single precision, XI SP(1:n) single precision

– accumulation statement S SP = S SP + XI SP(I)

• double precision accumulation algorithm:

– S SP single precision, S DP double precision, XI SP(1:n) single precision

– accumulation statement S DP = S DP + double(XI SP(I))

– double(XI SP(I)) converts the single precision value into a double precision repre-
sentation. It is not XI DP(I). This conversion is usually done automatically when
one of the operands and the result are double precision.

– final sum is S SP = single(S DP) that converts the accumulated double precision
value to single precision. This is done automatically when assigning a double
precision variable to a single precision variable.

1.4.c The Exact Data and Sum

As noted earlier, the input data will be read or generated in double precision and stored in
XI DP(1:n) and will represent the “exact” data to be summed. These data could be input
or computed.

Similarly, the “exact” sum σexact =
∑n

i=1 ξi will be either a double precision computation
of a known closed form, e.g.,

n∑
i=1

i =
n(n+ 1)

2

or it will be computed from the double precision data XI DP(1:n) using a double precision
version of the accumulation algorithm or the fan-in algorithm.

Therefore, you must also implement a fully double precision version of either of the
two basic algorithms in which all operations are double precision and the final sum is double
precision S DP. This value will be used as the exact sum f(d) in all conditioning and stability
bounds. You are encouraged to implement both basic algorithms and to provide evidence
supporting your choice of which you use as the exact sum generating algorithm.

5

1.4.d Tasks

1. Correctness: Design, execute and summarize tests to demonstrate that your code is
correct. This should use sums with known closed form totals, random data, sums
with particular structure to the data (think about the comments in the stability and
conditioning lectures/notes). A variety of lengths of sums, n, should be used. The
double precision evaluation of the closed form or the double precision algorithm you
choose should be used to generate f(d) = σexact ≈ S DP. Your algorithms will provide
the “computed” answers g(d) for the stability bound assessment.

2. Conditioning: Design, execute and summarize tests to assess the conditioning bound
on summation. This requires the use of f(d) and f(d+e), i.e., the “exact” closed forms
or double precision algorithm. The data d will therefore be double precision and d+ e
can be generated by perturbing the elements of XI DP(1:n) with relative perturbations
δi for elements that are not small, i.e., not subnormal. Be sure to organize and discuss
your hypotheses, design, and observations clearly.

3. Stability: Design, execute and summarize tests to assess the numerical stability of the
three algorithms. This requires the use of f(d) and g(d) as well as the stability bounds
in the notes and the bound for the fan-in algorithm you derive in the written exercises
(for which your experiments will provide evidence for or against your written problem
answer). For the double precision accumulation algorithm, consider how you expect
the single precision accumulation algorithm stability bound to change and evaluate
that hypothesis with these experiments.

1.4.e Organization of Results

The main goal of this assignment is for you to learn how to organize and present your design,
execution and analysis of observations. You may use graphics, statistical, and algorithmic
support from established libraries and environments such as Matlab. The algorithmic sup-
port, of course, may not be used as a substitute for your codes but it can be used for problem
generation, i.e., random number generation, computation of sums for comparison, and com-
putation of various values useful for presentation of results. Make use of specific tests, i.e.,
particular sums of a particular length, and its results to make points, e.g., verifying very well
or very ill conditioned examples as well as large groups of sums that are some how related to
make a point, e.g., mean and variance of accuracy of the computed sum. Histograms, graphs
and appropriate tables should be used to compress data and support conclusions. Simply
running a few sums and comparing the answers to the exact sums is not acceptable and
will not prepare you for more complicated algorithm evaluation later in the two semesters
or your research.

6

1.4.f Some Test Sums

In addition to sums you may develop for testing based on the notes and your readings, these
might be useful

S1 =
N∑
i=1

(−1)i
1

ip
, p > 0

S2 =
N∑
i=1

i sin

[(
i

2
+

1

i

)
π

]

S3 =
N∑
i=1

i sin

(
i

2
+

1

i

)

S4 =
N∑
i=1

ai

where
{ai} = {1, ω1M, . . . , ωN−1M},

ωi for 1 ≤ i ≤ N − 2 are random integers from [−3, 3],

wN−1 = −
N−2∑
n=1

wn, i.e.,
N−1∑
i=1

wi = 0

and M > 106 is a big number compared to 1.
Finally,

S5 =
N∑
i=1

ai

where the {ai} are as in S4 except the ωi for 1 ≤ i ≤ N − 2 are random values from the set
{−3,−2.9, · · · ,−0.1, 0, 0.1, · · · , 2.9, 3}.

7

