
Graded Homework 2 Foundations of Computational Math

1 Fall 2020

The solutions are due by 11:59PM on October 14, 2020

Programming Exercise

Algorithms Required

You will need the following algorithms for this assignment. Note that the class notes and
papers posted on the class webpage have pseudocode for many of these functions.

• Interpolation by Barycentric Form 2 of Lagrange interpolating polynomial that can use
any of three meshes: uniform and Chebyshev points of the first kind and Chebyshev
points of the second kind. This requires two routines and they should be able to work
in IEEE double or single precision as required by the experiments.

– A routine to evaluate the coefficients βi, 0 ≤ i ≤ n, required by the Lagrange
Barycentric Form 2 should be implemented using O(n) space the appropriate
reduced number of operations depending on the mesh used as described in the
class notes. The routine should also evaluate the function values f(xi), 0 ≤ i ≤ n.
The input to this routine includes a flag indicating which of the three mesh choices
is to be used, n, and the function f(x). The output should be the βi and fi = f(xi)
values.

– A routine to evaluate pn(x) in Barycentric Form 2. It may be useful to give a
vector of x values at which you need pn(x) rather than calling the routine once
for each value. Be sure to address the issues when fl(x − xi) is 0 or very small
as discussed in the papers by Higham, and Berrut and Trefethen on the class
webpage. (Note there is a typo in proposed code solution in the latter paper.)

• A routine to evaluate the divided differences required for the Newton form of an in-
terpolating polynomial pn(x) using O(n2) operations and O(n) space. The routine
should, as with the one for the γi, compute the function values f(xi), 0 ≤ i ≤ n that
are required. You may use any of the algorithms we have discussed to compute the
divided differences. The input to this routine includes a flag indicating if the γi or
the divided differences are to be computed (if they are both computed by the same
routine), n, and the function f(x). The output should be the divided differences and
fi = f(xi) values.

• A routine based on the adapted Horner’s rule to evaluate a polynomial pn(x) defined in
terms of the Newton basis. (Note this also makes it possible to evaluate the monomial
basis by taking all xi to be the same value or any set of xi with all or some of the

1

values repeated.) It may be useful to give a vector of x values at which you need pn(x)
rather than calling the routine once for each value.

• A routine to order a set of distinct mesh points xi, 0 ≤ i ≤ n into increasing order
x0 < x1 < · · · < xn−1 < xn, or decreasing order x0 > x1 > · · · > xn−1 > xn, or
satisfying the Leja ordering (see Set 11 of the class notes). The input includes the
unordered xi and a flag indicating the desired ordering. The output should be the
ordered xi.

• A routine to evaluate ‖r(x)‖∞ and related statistics. To approximate ||r(x)||∞, the
function should be evaluated at a large number of points in the interval and the largest
magnitude returned. This will be applied to various functions, e.g., r(x) = pn(x)−p̂n(x)
where pn(x) is the “exact” value of the interpolating polynomial and p̂n(x) is the
computed value or the “exact” value of a perturbed interpolation polynomial. The
computation of the mean and variance of the values of r(x) or other statistics may be
useful in your empirical analysis and presentation.

Comments on Routines and Experiments

• The tasks require the systematic empirical evaluation of many cases of parameter
choices and summarizing them to make conclusions on code correctness, accuracy,
stability, and conditioning. It is absolutely crucial that you organize your computations
using scripts and parameterized codes etc. to automate the process so as not to be
overwhelmed with “manual” editing, compiling and manipulating data. This is an
important skill to master for computational mathematics of any type.

• Your codes should be able to run in single or double precision (assumed to be IEEE
standard FP).

• Your codes must be efficient in time and space and make sure you discuss these aspects
of your implementations.

• All experiments assessing accuracy and stability will be for the single precision exe-
cution of the codes. Double precision execution will be used when generating “exact”
values needed error when analyzing the accuracy and stability of the single precision
codes.

• When applying Chebyshev points of the first kind as the mesh, it is assumed the
interval of interest is [−1, 1]. This is clearly not the only interval on which you will
assess accuracy, stability and conditioning. So be sure to develop the code to use the
appropriate change of variables. See for example, the discussion in Set 14 of the class
notes on the use of a local reference interval for piecewise polynomial interpolation.

• You will be assessing empirically the stability, and accuracy of interpolating polyno-
mials of various degrees on various intervals for various functions. This will require

2

generating many values such as errors, differences in exact and computed values, sta-
bility and error bounds, and condition numbers are many values of the independent
variable. Carefully consider how you are going to present the data using selected exam-
ples, curves, histograms, statistics and bounds. Pages of tables and brief descriptions
of what you see in the data are not acceptable.

• For some of the functions that are polynomials given below, a product form is available.
This form can be evaluated using the simple incremental product evaluation

pn(x) = αn(x− ρ1) · · · (x− ρn) (1)

given by:

d0 = αn

for i = 1 : n
di = di−1 ∗ (x− ρi)

end

pn(x) = dn

This algorithm can be shown to compute pn(x) to high relative accuracy (Higham 2002
Accuracy and Stability of Numerical Algorithms, Second Edition). Specifically,

dn = pn(x)(1 + µ), |µ| ≤ γ2n+1

where γk = ku/(1 − ku) and u is the unit roundoff of the floating point system used.
his “exact” form can be used when evaluating accuracy or stability of an algorithm. If
an alternate form of pn(x) or f(x) is not available then using double precision will be
acceptable as “exact” when assessing the error and stability of a single precision code
for a well-conditioned or moderately ill-conditioned problem is considered.

• For some of the f(x) that are polynomials given below the monomial form is also
available. These should be useful in assessing the Horner’s rule routine.

Functions of Interest

You can use any functions that you think appropriate for evaluating the accuracy and re-
liability of your codes and that approaches they implement, however, some suggestions are
given below. The first 3 functions are polynomials, pd(x), that can be used to define inter-
polation problems using the data points (xi, yi), 0 ≤ i ≤ d, where d is the degree of the
polynomial and yi = pd(xi) for the mesh points of interest. Note that f3(x) = `n(x) satis-
fies the same canonical interpolation problem for any mesh and was used in Higham’s IMA
Journal of Numerical Analysis 2004 paper as a problem that distinguished the behavior of
Barycentric Forms 1 and 2 on a uniform mesh with 30 points. Note that the polynomials

3

can also be used with meshes that have many more points than d + 1 in order to validate
the correctness of your codes by considering the error observed.

For f2(x) and f3(x) you may choose different degrees when performing the tasks below.
The function f4(x) was also used with a uniform mesh of 30 points in Higham’s paper.

• Function 1

f1(x) = (x− 2)9

= x9 − 18x8 + 144x7 − 672x6 + 2016x5 − 4032x4 + 5376x3 − 4608x2 + 2304x− 512

• Function 2 (parameterized by degree d)

f2(x) =
d∏

i=1

(x− i)

• Function 3 (parameterized by degree n)

f3(x) = `n(x)

f3(xi) = 0, 0 ≤ i ≤ n− 1

f3(xn) = 1

where `n(x) is a Lagrange basis function.

• Function 4

f4(x) =
1

1 + 25x2

4

Tasks

The tasks below should be carried out using the routines described above on the functions
listed above and any other functions you think useful. Choose intervals of interpolation [a, b]
that contain all of the defining points of the functions, e.g., the roots of the polynomial.
The intervals on which you assess stability and accuracy can be subintervals of [a.b] and,
e.g., need not contain all of the roots of the polynomial or all of the mesh points. These
subintervals should, of course, be as large as computationally tractable but should also be
of interest, e.g., intervals where there is variation in the behavior of f or the interpolating
polynomial.

Task 1

Describe the design of your codes and discuss the complexity with respect to time and space.
Empirically validate your routines. Your arguments for the correctness of your codes may
include referencing their behaviors on the later tasks if appropriate, but your write up for
this task should summarize those behaviors leaving the details for the write up of the later
tasks.

Task 2, 3 and 4

Task 2 performs the subtasks described below for f1, Task 3 performs the subtasks described
below for f2, and Task 4 performs the subtasks described below for f3.

For the function associated with the task on intervals perform the following subtasks:

1. Consider the interpolating problem that the given polynomial solves on the uniform
mesh points and Chebyshev points of the first kind, i.e., yi = f(xi), 0 ≤ i ≤ m where
m is 9 for f1(x), d for f2(x) and n for f3(x). For f2(x) and f3(x) choose at least two
different degrees that are greater than 20 for each mesh type. For f3(x) include n = 29
(30 points) to compare to the results in Higham’s paper.

2. Assess the accuracy and stability of the single precision codes using the appropriate
bounds from the notes and literature on the class webpage. (As described earlier,
“exact” values of the interpolating polynomial for accuracy and stability assessment
should be done in double precision.)

This should be done for

• Barycentric form 2 of the polynomial

• Newton form with the mesh points in increasing order, decreasing order and
satisfying the Leja ordering conditions.

You should provide plots similar to those in Higham’s paper for a small number of
illustrative examples with 30 points for the uniform mesh and the Chebyshev points of
the first kind. The other results should be summarized to comment on the accuracy and

5

stability. Note that Higham’s experiments are run in double precision and compared
to “exact” values from Matlab’s 50 digit symbolic arithmetic toolbox so you will not
see exactly the same behavior.

Task 5

For function f4(x) perform the following subtasks:

1. For the uniform and Chebyshev meshes with a range of values of n and number of
points n + 1, assess the accuracy and stability of the single precision codes using the
appropriate bounds from the notes and literature on the class webpage and the values
generated in determining the conditioning in the subtask above. This should be done
for

• Barycentric form 2 of the polynomial

• Newton form with the mesh points in increasing order, decreasing order and
satisfying the Leja ordering conditions.

You should provide plots similar to those in Higham’s paper for this function on the
uniform mesh and the Chebyshev points of the first kind. The other examples should
be summarized to comment on the accuracy and stability. Note that Higham’s exper-
iments are run in double precision and compared to “exact” values from Matlab’s 50
digit symbolic arithmetic toolbox so you will not see exactly the same behavior.

2. Investigate the convergence (or lack thereof) to f4(x) as n increases for the Barycentric
Form 2 with the uniform points and Chebyshev points of the first and second kind.
For the convergent mesh family, empirically determine how large n must be to achieve
various levels approximation as measured by ‖f4(x) − pn(x)‖∞. Is there a threshold
below which you cannot go in your observations?

6

