
Program 3 Foundations of Computational Math 1

Fall 2020

Due date: 11:59PM on November 6, 2020

Programming Exercise

Codes

1. Piecewise interpolating polynomial: The routine for the piecewise inter-
polating polynomial gs(x), on [a, b] where the degree s should support chosing
s to be 1 or 2.

2. Interpolatory cubic spline: In addition to the mesh points and the function
f(x) this code must accept as input the specification of two boundary conditions
to be applied in the formation of s(x). You must implement two spline codes.
Spline Code 1 will use either the s′i parameterization or the s′′i parameterization.
Spline Code 2 must use the parameterization in terms of the cubic B-spline
basis.

3. Implement a code that evaluates the spline s(x) and piecewise polynomial gs(x)
produced by your codes.

4. Implement the supporting code required to empirically validate the correct
functioning of your codes and the tasks below.

Code Comments:

1. Your codes should be able to run in single or double precision (assumed to be
IEEE standard FP).

2. Your codes must be efficient in time and space and make sure you discuss these
aspects of your implementations. Include a discussion of how you represent and
evaluate the local polynomials defining gs(x) in your piecewise polynomial code.

3. You may use the parameterization of s(x) in terms of the s′′i or s′i for Spline
Code 1. This code must must accept data on a nonuniform mesh.

4. Spline Code 2 based on the B-spline basis may be restricted to a uniform mesh
if you wish but you may implement the nonuniform mesh at your discretion.
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5. Both spline codes should support both of the basic Hermite boundary condi-
tions. That is, either the pair of values (s′′(x0), s

′′(xn)) or the pair of values
(s′(x0), s

′(xn)) are specified. Depending on your choice of parameterization
one of these cases may require the addition of two extra equations needed to
specify boundary conditions in terms of the appropriate s′′i or s′i parameters.
Your solution should include the derivation of these equations. For the Spline
Code 2 based on the B-spline basis you should also explain how you handle the
two types of boundary conditions.

Tasks

Task 1

Empirically validate the correct functioning of your code.

• You must design experiments and describe the outcomes that provide evidence
that your code is working. Evidence must also be given that you code works
correctly for each of the required boundary conditions.

• This should include running your code to approximate carefully selected func-
tions g(x) for which the results are known. For example, if g(x) is any poly-
nomial of degree d ≤ 3, the spline, s(x), should reproduce its value at any x.
Similarly, if g(x) is a piecewise cubic with intervals defined by the same mesh
as s(x) then s(x) should match g(x) for any x between x0 and xn.

• Compare the functioning of the two spline codes to each other and, when
appropriate for the test function, to the piecewise polynomial code.

• Once this has been done for specific functions, randomly generating similar
functions and summarizing the results can produce good evidence of correct
functioning.

• The rate of convergence can be estimated empirically from estimated values of
‖f(x) − s(x)‖∞ as h → 0. So if you have an error estimate E(h) and E(h/2)
based on a finer grid with the intervals halved, then the rate of convergence
can be estimated by

log2

|E(h)|
|E(h/2)|

which should converge to 4 for the spline codes. You can estimate the rate
of convergence for the first and second derivative as well. See Table 8.5 on p.
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361 of the textbook for an example estimation of cubic spline convergence rate.
You should be able to reproduce it and similar results along with assessing the
convergence of the piecewise polynomial code.

• You can also check you spline results against other libraries. Make sure
however that you know exactly what the other library is choosing
for boundary conditions etc. You must compare splines that are
known to be the same in exact arithmetic. Care should also be taken
with respect to what you consider the “answer” for the other library’s results.
If you print them and then copy to your code you have modified the results so
that they print in ASCII format. This is not the answer’s full single or double
precision representation. The most reliable way is to output to a file raw binary
IEEE single or double precision results and read them into your code using the
appropriate format in the high-level language of your code. This is a technique
of input/output that you should develop skill in using. You are not required to
use it here but make sure you compare an appropriately precise output value
if you use file output to compare your results to a library code.

Task 2

Suppose you have functions y(t), f(t), and G(t) related as follows:

G(t) = e−ty(t) = e−
∫ t
0 f(τ)dτ

∴ f(t) = y(t) + ty′(t)

As a result, given any of one of the functions, G(t), f(t) or y(t) we can recover the
other two. Suppose, in practice y(t) is available as data in the form of discrete values
of (ti, yi), for 0 ≤ i ≤ n rather than as a continuous function. Specifically, consider
the following data (ti, yi):

ti 0.5 1.0 2.0 4.0 5.0 10.0 15.0 20.0
y(ti) 0.04 0.05 0.0682 0.0801 0.0940 0.0981 0.0912 0.0857

Note the mesh in t is nonuniform.
Use a natural boundary condition interpolatory cubic spline, s(t), based on the

data (ti, yi) to estimate y(t), f(t) and G(t). Tabulate your estimates from t1 = 0.5
to t40 with increment ∆t = 0.5.

The piecewise polynomial gs(x) from your code is not continuously differentiable
in general. Investigate the use of gs(x) rather than a cubic spline for this Task. If it
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is possible, what must you do differently to generate estimates for y(t), f(t) and G(t)
and how does the choice of degree affect your results compared to a cubic spline?

Other Test Problems

After you have submitted you solutions you should make an appointment with the TA
Joshua Gonzalez. He will ask you to demonstrate your code on some test problems
as a final evaluation of your codes correctness. So your codes should be able to read
the mesh points and function values (xi, fi), for i = 0, . . . , n, the type of boundary
condition and the associated values from a formatted problem input file. (The format
for the input file will be posted on the class website.) You should also be prepared
to explain the design and operation of your code to him.

Solving the Linear Systems

Construction of the splines requires the solution of a linear system of equations that is
tridiagonal or nearly tridiagonal. You may apply any numerical linear algebra library
you choose, e.g., Matlab system solvers, LAPACK, to find a subroutine to solve
such systems or implement your own. For tridiagonal matrices Thomas’ algorithm is
described in the textbook. This could also be used as a piece of an algorithm to solve
systems with matrices that are tridiagonal in all but a small number, O(1), number
of rows. You must document your approach and cite references appropriately.
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Submission of Results

Expected results comprise:

• A document describing your solutions as prescribed in the notes on writing up
a programming solution posted on the class website.

• The source code, makefiles, and instructions on how to compile and execute
your code including the Math Department machine used, if applicable.

• Code documentation should be included in each routine.

• All text files that do not contain code or makefiles must be PDF files. Do not
send Microsoft word files of any type.

These results should be submitted by 11:59 PM on the due date.
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