
Study Questions Homework 1 Foundations of Computa-

tional Math 1 Fall 2020

Problem 1.1

The IEEE standard defines the set of normalized floating point numbers with base 2 as

f = ± 2e × (1.b1b2 . . . bn)2 = ± 2e ×

(
1 +

n∑
k=1

bk2
−k

)

bk ∈ {0, 1}, 1 ≤ k ≤ n, Lstand ≤ e ≤ Ustand

with

• Single precision
n = 23, Lstand = −126, Ustand = 127

• Double precision
n = 52, Lstand = −1022, Ustand = 1023.

1. For both the single and double precision binary standard representations, find the

• The number of normalized mantissas.

• The number of exponents.

• The number of elements in the set of IEEE normalized positive numbers.

• fmin the smallest normalized positive floating point number.

• fmax the largest normalized positive floating point number.

• Machine epsilon, εM , defined as the distance from 1 to next positive normalized
floating point number.

• The absolute difference between normalized positive floating point numbers.

2. Recall, that we use a standard parameterized representation of normalized floating
point numbers F(β, t, L, U):

f = ± βe × (0.d1d2 . . . dt)β = ± βe ×

(
t∑

k=1

dkβ
−k

)

dk ∈ {0, 1, . . . , β − 1}, 2 ≤ k ≤ n, d1 ∈ {1, . . . , β − 1}, L ≤ e ≤ U.

Determine the value of the parameters β, t, L, and U so that F(β, t, L, U) is the set
of normalized floating point numbers defined by the single and double precision IEEE
binary standard.

1

3. Verify that the quantities you computed in part (1) of this question match the values
of the expressions for F(β, t, L, U) given in the notes.

Problem 1.2

Suppose the n-bit 2’s complement representation is used to encode a range of integers,
−2n−1 ≤ x ≤ 2n−1 − 1.

1.2.a. If x ≥ 0 then −x is represented by bit pattern obtained by complementing all
of the bits in the binary encoding of x, adding 1 and ignoring all bits in the result
beyond the n-th place, i.e., the bit with weight 2n−1. This procedure is also used
when x < 0 to recover the encoding of −x ≥ 0. What is the relationship between
the binary encoding of −2n−1 ≤ x ≤ 2n−1 − 1 and the binary encoding of −x in
terms of the number of bits n?

1.2.b. Show that simple addition modulo 2n on the encoded patterns is identical to
integer addition (subtraction) for −2n−1 ≤ x, y ≤ 2n−1 − 1. You may ignore
results that are out of range, i.e., overflow.

1.2.c. Show how overflow in addition (subtraction) can be detected efficiently.

1.2.d. Multiplying an unsigned binary number by 2 or 1/2 corresponds to shifting the
binary representation left and right respectively (a so-called logical shift). Show
how multiplying signed integers encoded via 2’s complement representation by 2
or 1/2 can be done via a shifting operation (an arithmetic shift).

Problem 1.3

1.3.a. Suppose x ∈ R and y ∈ R with x < y. Is it always true that fl(x) < fl(y) in
any standard model floating point system?

1.3.b. Suppose x, y and z are floating point numbers in a standard model floating
point arithmetic system. Is floating point arithmetic associative, i.e., is it true
that

(x op (y op z)) = ((x op y) op z) ?

1.3.c. Is floating point arithmetic distributive, i.e., is it true that

fl(fl(x+ z) ∗ y) = fl(fl(fl(x ∗ y) + fl(y ∗ z)))?

2

1.3.d. Suppose x and y are two floating point numbers in a system F(β, t, L, U) with
opposite signs. How close do x and y have to be in magnitude in order for the
result of the floating point computation

(x + y)

to be exact?

Problem 1.4

Most recent machines use a binary base,β = 2, but the number of bits, t, may vary in a
floating point system. The following algorithm is an attempt to determine t experimentally.

x = 1.5, u = 1.0,t = 0, α = 1.0
while x > α

u = u/2
x = α + u
t = t+ 1

end

1.4.a. Assume that the floating point system has β = 2 and uses a hidden bit normal-
ization. Does this algorithm find t? Assuming you implement the code in a high
level language and ther operations are done in floating point arithmetic, does the
method of rounding affect your answer?

1.4.b. Apply the algorithm to a machine that uses β = 2 in single precision and double
precision. Do your observations from the output of the code agree with the IEEE
floating point standard for single and double precision floating point numbers?
(Note that this is not a programming assignment and you are not required to
submit a solution. You are however encouraged to implement this algorithm in
any language you find appropriate in order to answer this question.)

Problem 1.5

Consider the function

f(x) =
1.01 + x

1.01− x

1.5.a. Find the absolute condition number for f(x).

1.5.b. Find the relative condition number for f(x).

1.5.c. Evaluate the condition numbers around x = 1.

3

1.5.d. Check the predictions of the condition numbers by examining the relative error
and the absolute error

errrel =
|f(x1)− f(x0)|
|f(x0)|

errabs = |f(x1)− f(x0)|

with x0 = 1, x1 = x0(1 + δ) and δ small.

Problem 1.6

Let f(ξ1, ξ2, . . . , ξk) be a function of k real parameters ξi, 1 ≤ i ≤ k. Recall, the relative
condition number of f with respect to ξ1 can be expressed

κrel = max(1, c(ξ1, ξ2, . . . , ξk))

where 0 ≤ c(ξ1, ξ2, . . . , ξk) is a value that indicates the sensitivity of f to small relative
perturbations to ξ1 as a function of the parameters ξi, 1 ≤ i ≤ k. If c(ξ1, ξ2, . . . , ξk) ≤ 1
then f is considered well-conditioned. Additionally, however, when c < 1 its value gives
important information. The smaller c is the less sensitive f is to a relative perturbations in
ξ1.

Let n ≥ 2 be an integer and β > 0. Consider the polynomial equation

p(x) = xn + βx− 1 = 0.

1.6.a. Show that the equation has exactly one positive root ρ(β) such that 0 < ρ < 1
for any β > 0.

1.6.b. Derive a formula for c(β, n) that indicates the sensitivity of ρ(β) to small relative
perurturbations to β.

1.6.c. Derive a lower and upper bound on c(β, n).

1.6.d. Comment on the conditioning of ρ(β) with respect to β and in particular for
n = 2 and the conditioning as β → +∞.

Problem 1.7

The evaluation of
f(x) = x

(√
x+ 1−

√
x
)

encounters cancellation for x� 0.
Rewrite the formula for f(x) to give an algorithm for its evaluation that avoids cancel-

lation.

4

Problem 1.8

For this problem assume that the floating point system uses β = 10 and t = 3. The associated
floating point arithmetic is such that x op y = fl(x op y).

Let x and y be two floating point numbers with x < y and consider computing their
average α = (x+ y)/2.

Consider three algorithms for computing α. The parentheses indicate the order of the
floating point operations.

• α1 = ((x+ y)/2.0)

• α2 = ((x/2.0) + (y/2.0))

• α3 = (x+ ((y − x)/2.0))

For the floating point values x = 5.01 and y = 5.02:

1.8.a. Evaluate α1, α2, and α3 in the specified floating point system.

1.8.b. Explain the results.

1.8.c. Some algorithms produce a series of intervals by splitting an interval (x, y)
into intervals (x, α) and (α, y) and choosing to process one of these two smaller
intervals further in the next step of the algorithm. Could the behavior observed
for the three average computations cause difficulties for such an algorithm?

5

