Study Questions Homework 2 Foundations of Computational Math 1 Fall 2020

Problem 2.1

Consider the data points

 $(x,y) = \{(0,2), (0.5,5), (1,8)\}$

Write the interpolating polynomial in both Lagrange and Newton form for the given data.

Problem 2.2

Use this divided difference table for this problem.

i	0		1		2		3		4		5
x_i	-1		0		2		4		5		6
f_i	13		2		-14		18		67		91
f[-,-]		-11		-8		16		49		24	
f[-, -, -]			1		6		11		-25/2		
f[-, -, -, -]				1		1		-47/8			
f[-, -, -, -, -]					0		-55/48				
f[-,-,-,-,-]						-55/336					

2.2.a

Use the divided difference information about the unknown function f(x) and consider the unique polynomial, denoted $p_{1,5}(x)$, that interpolates the data given by pairs (x_1, f_1) , (x_2, f_2) , (x_3, f_3) , (x_4, f_4) , and (x_5, f_5) . Use two different sets of divided differences to express $p_{1,5}(x)$ in two distinct forms.

2.2.b

What is the significance of the value of 0 for $f[x_0, x_1, x_2, x_3, x_4]$?

2.2.c

Denote by $p_{0,4}(x)$, the unique polynomial, that interpolates the data given by pairs (x_0, f_0) , (x_1, f_1) , (x_2, f_2) , (x_3, f_3) , and (x_4, f_4) and recall the definition of $p_{1,5}(x)$ from part (a). Use the divided difference information about the unknown function f(x) to derive error estimates for $f(x) - p_{1,5}(x)$ and $f(x) - p_{0,4}(x)$ for any $x_0 \le x \le x_5$.

Problem 2.3

Assume you are given distinct points x_0, \ldots, x_n and, $p_n(x)$, the interpolating polynomial defined by those points for a function f.

2.3.a. If $p_n(x) = \sum_{i=0}^n f(x_i)\ell_i(x)$ is the Lagrange form show that

$$\sum_{i=0}^n \ell_i(x) = 1$$

2.3.b. Assume $x \neq x_i$ for $0 \leq i \leq n$ and show that the divided difference $f[x_0, \ldots, x_n, x]$ satisfies

$$f[x_0, \dots, x_n, x] = \sum_{i=0}^n \frac{f[x, x_i]}{\prod_{j=0, j \neq i}^n (x_i - x_j)}$$

2.3.c. Show that

$$y[x_0, \dots, x_n] = \sum_{i=0}^n \frac{y_i}{\omega'_{n+1}(x_i)}, \text{ where } \omega_{k+1} = (x - x_0) \dots (x - x_k)$$

Problem 2.4

Text exercise 8.10.1 on page 375

Problem 2.5

Text exercise 8.10.8 on page 376

Problem 2.6

Text exercise 8.10.4 on page 376

Problem 2.7

Consider a polynomial

$$p_n(x) = \alpha_0 + \alpha_1 x + \dots + \alpha_n x^n$$

 $p_n(\gamma)$ can be evaluated using Horner's rule (written here with the dependence on the formal argument x more explicitly shown)

$$c_n(x) = \alpha_n$$

for $i = n - 1 : -1 : 0$
$$c_i(x) = xc_{i+1}(x) + \alpha_i$$

end

$$p_n(x) = c_0(x)$$

Note that when evaluating $x = \gamma$ the algorithm produces n+1 constants $c_0(\gamma), \ldots, c_n(\gamma)$ one of which is equal to $p_n(\gamma)$.

2.7.a

Suppose that Horner's rule is applied to evaluate $p_n(\gamma)$ and that the constants $c_0(\gamma), \ldots, c_n(\gamma)$ are saved. Show that

$$p_n(x) = (x - \gamma)q(x) + p_n(\gamma)$$
$$q(x) = c_1(\gamma) + c_2(\gamma)x + \dots + c_n(\gamma)x^{n-1}$$

2.7.b

Suppose that Horner's rule, with labeling modified appropriately, is applied to evaluate $p_n(\gamma)$ and that the constants $c_0^{(1)}(\gamma), \ldots, c_n^{(1)}(\gamma)$ are saved to define $p_n(\gamma) - c_0^{(1)}(\gamma)$ and $q_{(1)}(x) = c_1^{(1)}(\gamma) + c_2^{(1)}(\gamma)x + \cdots + c_n^{(1)}(\gamma)x^{n-1}$. Suppose further that Horner's rule is applied to evaluate $q_{(1)}(\gamma)$ and that the constants $c_1^{(2)}(\gamma), \ldots, c_n^{(2)}(\gamma)$ are saved to define $q_{(1)}(\gamma) = c_1^{(2)}(\gamma)$ and $q_{(2)}(x) = c_2^{(2)}(\gamma) + c_3^{(2)}(\gamma)x + \cdots + c_n^{(2)}(\gamma)x^{n-2}$. This can continue until Horner's rule is applied to evaluate $q_{(n)}(\gamma) = c_n^{(n)}(\gamma)$ and $q_{(n+1)}(x) = 0$, i.e., there are no constants other than $c_n^{(n)}(\gamma)$ produced.

Show that

$$q_{(1)}(\gamma) = p'_{n}(\gamma)$$

$$q_{(2)}(\gamma) = p''_{n}(\gamma)/2$$

$$q_{(3)}(\gamma) = p'''_{n}(\gamma)/3!$$

$$\vdots$$

$$q_{(n-1)}(\gamma) = p_{n}^{(n-1)}(\gamma)/(n-1)!$$

$$q_{(n)}(\gamma) = p_{n}^{(n)}(\gamma)/n!$$

and therefore form the coefficients of the Taylor form of $p_n(x)$

$$p_n(x) = p_n(\gamma) + (x - \gamma)p'_n(\gamma) + \frac{(x - \gamma)^2}{2}p''_n(\gamma) + \frac{(x - \gamma)^3}{3!}p'''_n(\gamma) \dots + \frac{(x - \gamma)^{n-1}}{(n-1)!}p_n^{(n-1)}(\gamma) + \frac{(x - \gamma)^n}{n!}p_n^{(n)}(\gamma)$$

Problem 2.8

The set of square integrable functions

$$\mathcal{L}^{2}[-1,1] = \{f(x), \ -1 \le x \le 1 \mid \int_{-1}^{1} f^{2}(x) dx < \infty \}$$

is a Hilbert space with the inner product

$$\langle f,g\rangle = \int_{-1}^{1} f(x) g(x)dx$$

and the associated induced norm. The space of polynomials with degree n or less, \mathbb{P}_n , is a finite dimensional subspace of $\mathcal{L}^2[-1,1]$ with basis $\{b_k\} = \{x^k\}$ with $0 \le k \le n$.

A basis can be problematic if there is wide variation in the norm of the vectors, $||b_k||$ or if the angles between b_k and b_j become small for various pairs of vectors.

- **2.8.a.** Analyze the magnitudes of the monomial basis vectors.
- **2.8.b.** Analyze the angles between the monomial basis vectors.
- **2.8.c**. Discuss the results in terms of the robustness of the basis for representing polynomials.

Problem 2.9

Show that given a set of points

$$x_0, x_1, \ldots, x_n$$

a Leja ordering can be computed in $O(n^2)$ operations.