
Study Questions Homework 2 Foundations of Computa-

tional Math 1 Fall 2020

Problem 2.1

Consider the data points
(x, y) = {(0, 2), (0.5, 5), (1, 8)}

Write the interpolating polynomial in both Lagrange and Newton form for the given
data.

Problem 2.2

Use this divided difference table for this problem.

i 0 1 2 3 4 5
xi −1 0 2 4 5 6
fi 13 2 −14 18 67 91

f [−,−] −11 −8 16 49 24
f [−,−,−] 1 6 11 −25/2
f [−,−,−,−] 1 1 −47/8
f [−,−,−,−,−] 0 −55/48
f [−,−,−,−,−,−] −55/336

2.2.a

Use the divided difference information about the unknown function f(x) and consider the
unique polynomial, denoted p1,5(x), that interpolates the data given by pairs (x1, f1), (x2, f2),
(x3, f3), (x4, f4) , and (x5, f5). Use two different sets of divided differences to express p1,5(x)
in two distinct forms.

2.2.b

What is the significance of the value of 0 for f [x0, x1, x2, x3, x4]?

2.2.c

Denote by p0,4(x), the unique polynomial, that interpolates the data given by pairs (x0, f0),
(x1, f1), (x2, f2), (x3, f3), and (x4, f4) and recall the definition of p1,5(x) from part (a). Use
the divided difference information about the unknown function f(x) to derive error estimates
for f(x)− p1,5(x) and f(x)− p0,4(x) for any x0 ≤ x ≤ x5.
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Problem 2.3

Assume you are given distinct points x0, . . . , xn and, pn(x), the interpolating polynomial
defined by those points for a function f .

2.3.a. If pn(x) =
∑n

i=0 f(xi)`i(x) is the Lagrange form show that

n∑
i=0

`i(x) = 1

2.3.b. Assume x 6= xi for 0 ≤ i ≤ n and show that the divided difference f [x0, . . . , xn, x]
satisfies

f [x0, . . . , xn, x] =
n∑

i=0

f [x, xi]∏n
j=0,j 6=i(xi − xj)

2.3.c. Show that

y[x0, . . . , xn] =
n∑

i=0

yi
ω′n+1(xi)

, where ωk+1 = (x− x0) . . . (x− xk)

Problem 2.4

Text exercise 8.10.1 on page 375

Problem 2.5

Text exercise 8.10.8 on page 376

Problem 2.6

Text exercise 8.10.4 on page 376

Problem 2.7

Consider a polynomial
pn(x) = α0 + α1x+ · · ·+ αnx

n

pn(γ) can be evaluated using Horner’s rule (written here with the dependence on the
formal argument x more explicitly shown)
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cn(x) = αn

for i = n− 1 : −1 : 0
ci(x) = xci+1(x) + αi

end

pn(x) = c0(x)

Note that when evaluating x = γ the algorithm produces n+ 1 constants c0(γ), . . . , cn(γ)
one of which is equal to pn(γ).

2.7.a

Suppose that Horner’s rule is applied to evaluate pn(γ) and that the constants c0(γ), . . . , cn(γ)
are saved. Show that

pn(x) = (x− γ)q(x) + pn(γ)

q(x) = c1(γ) + c2(γ)x+ · · ·+ cn(γ)xn−1

2.7.b

Suppose that Horner’s rule, with labeling modified appropriately, is applied to evaluate pn(γ)

and that the constants c
(1)
0 (γ), . . . , c

(1)
n (γ) are saved to define pn(γ) − c(1)0 (γ) and q(1)(x) =

c
(1)
1 (γ)+c

(1)
2 (γ)x+ · · ·+c

(1)
n (γ)xn−1. Suppose further that Horner’s rule is applied to evaluate

q(1)(γ) and that the constants c
(2)
1 (γ), . . . , c

(2)
n (γ) are saved to define q(1)(γ) = c

(2)
1 (γ) and

q(2)(x) = c
(2)
2 (γ) + c

(2)
3 (γ)x + · · · + c

(2)
n (γ)xn−2. This can continue until Horner’s rule is

applied to evaluate q(n)(γ) = c
(n)
n (γ) and q(n+1)(x) = 0, i.e., there are no constants other

than c
(n)
n (γ) produced.

Show that

q(1)(γ) = p′n(γ)

q(2)(γ) = p′′n(γ)/2

q(3)(γ) = p′′′n (γ)/3!

...

q(n−1)(γ) = p(n−1)n (γ)/(n− 1)!

q(n)(γ) = p(n)n (γ)/n!

and therefore form the coefficients of the Taylor form of pn(x)

pn(x) = pn(γ)+(x−γ)p′n(γ)+
(x− γ)2

2
p′′n(γ)+

(x− γ)3

3!
p′′′n (γ) · · ·+(x− γ)n−1

(n− 1)!
p(n−1)n (γ)+

(x− γ)n

n!
p(n)n (γ)
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Problem 2.8

The set of square integrable functions

L2[−1, 1] = {f(x), −1 ≤ x ≤ 1 |
∫ 1

−1
f 2(x)dx <∞}

is a Hilbert space with the inner product

〈f, g〉 =

∫ 1

−1
f(x) g(x)dx

and the associated induced norm. The space of polynomials with degree n or less, Pn, is a
finite dimensional subspace of L2[−1, 1] with basis {bk} = {xk} with 0 ≤ k ≤ n.

A basis can be problematic if there is wide variation in the norm of the vectors, ‖bk‖ or
if the angles between bk and bj become small for various pairs of vectors.

2.8.a. Analyze the magnitudes of the monomial basis vectors.

2.8.b. Analyze the angles between the monomial basis vectors.

2.8.c. Discuss the results in terms of the robustness of the basis for representing poly-
nomials.

Problem 2.9

Show that given a set of points
x0, x1, . . . , xn

a Leja ordering can be computed in O(n2) operations.
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