Study Questions Homework 5 Foundations of Computational Math 1 Fall 2020

Problem 5.1

Consider the quadrature formula

$$I_0(f) = (b-a)f(a) \approx \int_a^b f(x)dx$$

- What is the degree of exactness?
- What is the order of infinitesimal?

Problem 5.2

Consider the two quadrature formulas

$$I_2(f) = \frac{2}{3} \left[2f(-1/2) - f(0) + 2f(1/2) \right]$$

$$I_4(f) = \frac{1}{4} \left[f(-1) + 3f(-1/3) + 3f(1/3) + f(1) \right]$$

- What is the degree of exactness when $I_2(f)$ is used to approximate $I(f) = \int_{-1}^1 f(x) dx$?
- What is the degree of exactness when $I_2(f)$ is used to approximate $I(f) = \int_{-1/2}^{1/2} f(x) dx$?
- What is the degree of exactness when $I_4(f)$ is used to approximate $I(f) = \int_{-1}^1 f(x) dx$?

Problem 5.3

Consider

$$\int_{a}^{b} \omega(x) f(x) dx \approx \alpha f(x_0)$$

where $\omega(x) = \sqrt{x}$ and $0 \le a < b$.

Determine α and x_0 such that the degree of exactness is maximized.

Problem 5.4

In this problem we consider the numerical approximation of the integral

$$I = \int_{-1}^{1} f(x)dx$$

with $f(x) = e^x$. In particular, we use a priori error estimation to choose a step size h for Newton Cotes or a number of points for a Gaussian integration method.

5.4.a

Consider the use of the composite Trapezoidal rule to approximate the integral I.

- Use the fact that we have an analytical form of f(x) to estimate the error using the composite trapezoidal rule and to determine a stepsize h so that the error will be less than or equal to the tolerance 10^{-2} .
- Approximately how many points does your h require?

5.4.b

Consider the use of the Gauss-Legendre method to approximate the integral I. Use n = 1, i.e., two points x_0 and x_1 with weights γ_0 and γ_1 .

- Use the fact that we have an analytical form of f(x) to estimate the error that will result from using the two-point Gauss-Legendre method to approximate the integral.
- How does your estimate compare to the tolerance 10^{-2} used in the first part of the question?
- Recall that for n = 1 we have the Gauss Legendre nodes $x_0 \approx -0.5774$ and $x_1 \approx 0.5774$. Apply the method to approximate I and compare its error to your prediction. The true value is

$$I = \int_{-1}^{1} e^x dx \approx 2.3504$$

Problem 5.5

Let U(x) and V(x) be polynomials of degree n defined on $x \in [-1,1]$. Let x_j , $0 \le j \le n$ and γ_j , $0 \le j \le n$ be the Gauss-Legendre quadrature points and weights. Finally, let $\ell_j(x)$, $0 \le j \le n$ be the Lagrange characteristic interpolating polynomials defined with nodes at the Gauss-Legendre quadrature points.

Show that the following summation by parts formula holds:

$$\sum_{j=0}^{n} U'(x_j) V(x_j) \gamma_j = (U(1)V(1) - U(-1)V(-1)) - \sum_{j=0}^{n} U(x_j) V'(x_j) \gamma_j$$

Problem 5.6

Consider the quadrature formula $I_3(f) = \alpha_1 f(0) + \alpha_2 f(1) + \alpha_3 f'(0)$ for the approximation of $I(f) = \int_0^1 f(x) dx$, where $f \in C^4([0,1])$. Determine the coefficients α_j , for j = 1, 2, 3 in such a way that $I_3(f)$ has degree of exactness s = 2. Also, for the resulting method, determine the leading term of the quature error, i.e., find C, d and r in $I(f) - I_3(f) = Ch^r f^{(d)} + O(h^{r+1})$.

Problem 5.7

Consider numerically approximating the integral

$$I = \int_{a}^{b} f(x)dx$$

using the open Newton-Cotes with n = 2, i.e., 3 points

$$I_2^{(o)} = \frac{4}{3} h_2 [2f(x_0) - f(x_1) + 2f(x_2)].$$

(5.7.a) Determine C, d, and s in the error expression

$$I - I_2^{(o)} = C(b-a)^d f^{(s)} + O((b-a)^{d+1})$$

(5.7.b) Suppose I is numerically approximated using a composite method, $I_{c2}^{(o)}$, based on $I_2^{(o)}$ with m intervals each of size H = (b-a)/m. Determine C, d, and s in the error expression

$$I - I_{c2}^{(o)} = C(b-a)H^d f^{(s)} + O(H^{d+1})$$

- (5.7.c) Suppose global step halving is used to define a coarse grid with m intervals of size H_c and a fine grid with 2m intervals of size $H_f = \alpha H_c$ for the composite method, $I_{c2}^{(o)}$, where $\alpha = 0.5$. Determine, per interval on the coarse grid, the number of function evaluations made on the coarse grid that can be reused on the fine grid.
- (5.7.d) Determine the number of new function evaluations required per interval on the fine grid to generate $I_{c2}^{(o)}$ on the fine grid.
- (5.7.e) Is there a step refinement $\alpha \neq 0.5$ that allows you to reuse all of the function evaluations from the coarse grid with interval size H_c on the fine grid with interval size $H_f = \alpha H_c$?

Problem 5.8

5.8.a

Suppose $y_j = y(x_j)$ for a set of points x_j with constant spacing $h = x_j - x_{j-1}$. Consider the following linear difference formula, D:

$$Dy_{i} = \frac{1}{h} (\alpha_{2}y_{i+2} + \alpha_{1}y_{i+1} + \alpha_{0}y_{i})$$

Determine the coefficients α_i , i = 0, 1, 2 to maximize the order to which Dy_i approximates $y'(x_i)$ and determine C and k in the resulting error expression

$$y'(x_i) = Dy_i + Ch^k y^{(k+1)} + O(h^{k+1}).$$

5.8.b

Consider applying the the difference operator to the function $y(x) = \sin x$.

(i) Take $x_i = \pi/4$. What value of h must be used to get an approximation of $y'(\pi/4)$ that satisfies

$$|y'(\pi/4) - Dy_i| \le 10^{-4}$$
?

(ii) Apply the difference operator to $y(x_i)$ with $x_i = \pi/4$ using the h you have derived to verify that your error is less than the required bound.