
Study Questions Homework 6 Foundations of Computa-

tional Math 1 Fall 2020

Problem 6.1

Consider the following linear multistep method:

yn = −4yn−1 + 5yn−2 + h(4fn−1 + 2fn−2)

6.1.a. Determine, p, the order of consistency of the method.

6.1.b. Determine the coefficient, Cp+1, in the discretization error dn.

6.1.c. Consider the application of the method to y′ = 0 with y0 = 0 and y1 = ε, i.e., a
perturbed initial condition. Show that |yn| → ∞ as n → ∞, i.e., the numerical
method is unstable.

Problem 6.2

Consider the following linear multistep method:

yn = yn−2 +
h

3
(fn + 4fn−1 + fn−2)

The method is 0-stable but it is weakly stable.

6.2.a. Determine the discretization error dn.

6.2.b. Consider the application of the method to y′ = λy. Write the recurrence that
yields yn.

6.2.c. Let yn, n = 0, 1, . . . be the numerical solution of y′ = λy from the previous part
of the problem. Show that |yn| → ∞ as n → ∞, i.e., the numerical method is
unstable.

Problem 6.3

Adapt the techniques used to derive the Adams Moulton 2-step method with constant step

yn = yn−1 + h

(
5

12
fn +

8

12
fn−1 −

1

12
fn−2

)
.

to find the expression for a nonconstant stepsize 2-step Adams Moulton method with step-
sizes hn = tn − tn−1 and hn−1 = tn−1 − tn−2. Give the result in the form:

yn = yn−1 + h (β0(hn, hn−1)fn + β1(hn, hn−1)fn−1 − β2(hn, hn−1)fn−2) .
where the real coefficients βi(hn, hn−1) are functions of the two stepsizes hn and hn−1.
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Problem 6.4

Recall, we have examined the polynomials ρ(ξ) and σ(ξ) associated with a linear multistep
method. ρ(ξ) is related to the analysis of strong, weak and 0-stability of the method and
µ(ξ) = ρ(ξ) − hλσ(ξ) is used to determine the absolute stabililty properties and region of
the method. All three parts of this question relate in some way to these three polynomials.

6.4.a

i. What stability properties of the method can be examined by looking at the roots
of σ(ξ)? (Take care when σ(ξ) has lower degree than ρ(ξ).)

ii. Explain the statement “The Adams methods are as strongly stable as any linear
multistep method can possibly be.”

iii. The motivation for the design of the BDF methods is stiff decay. Explain how
the form of the BDFs is linked to this motivation.

6.4.b

Consider the linear multistep method:

yn − yn−2 = 2hfn−1

Discuss the absolute stability properties of the method. You may do this by determining
the boundary of the absolute stability region or by other means.

6.4.c

Consider the linear multistep method:

yn = yn−1 + h

(
9

16
fn +

6

16
fn−1 +

1

16
fn−2

)
(i) Is the method convergent?

(ii) The method is not an Adams Moulton method. Examine the absolute stability
properties of this method and identify the main advantage or disadvantages this
method compared to the 2-step Adams Moulton method. You do not have to
determine the entire boundary to solve this problem.
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Problem 6.5

Assume you have an implicit k step linear multistep method of the form

yn = hβ0fn +
k∑

i=1

(hβifn−i − αiyn−i) = hβ0fn + S∗

that has order p, i.e.,

y(tn) = hβ0f(y(tn)) +
k∑

i=1

(hβif(y(tn−i))− αiy(tn−i)) +O(hp+1)

where the t argument to f has been suppressed for convenience.
Suppose you apply a P (EC)mE method to solve approximately this implicit equation to

determine yn and the predictor is assumed to have order ` < p accuracy, i.e.,

y(tn) = y[0]n +O(h`+1)

y[j]n = hβ0f(y[j−1]n ) + S∗

(6.5.a) Assume that yn−i = y(tn−i) for i = 1, . . . , k and show that each iteration of the

EC step increases the order of accuracy of y
[j]
n by 1, i.e.,

y(tn) = y[j]n +O(hl+1+j) +O(hp+1)

(6.5.b) What order ` for the predictor would you recommend be used in practice and
why?

Problem 6.6

6.6.a

Solutions to ODE initial value problems often satisfy invariants, i.e., a condition on y(t) that
is true for all t in the interval defined by the problem. For example, the solution y(t) ∈ Rm

to
y′ = f(y, t), y(t0) = y0

where f(y, t) : Rm×R→ Rm is Lipchitz in y could have a constant size as measured by the
vector 2-norm in Rm, i.e.,

‖y0‖22 = yT0 y0 = ‖y(t)‖22 = y(t)Ty(t)

for all t in the interval of the problem.
What condition must hold for y(t) and f(y, t) to give a solution that is invariant in the

vector 2-norm in Rm? Justify your answer.
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6.6.b

If a solution to an IVP satisfies an invariant it is of interest to know which numerical meth-
ods preserve that invariant in the numerical solution (assuming exact arithmetic, i.e., no
roundoff).

The system of two ODEs

Y ′(t) = MY (t), Y (0) = Y0

(
y′1
y′2

)
=

(
0 ω
−ω 0

)(
y1
y2

)
,

(
y1(0)
y2(0)

)
=

(
1
0

)
where ω > 0 has a solution for which ‖Y (t)‖22 = ‖Y0‖22 where Y (t) ∈ R2 contains y1(t) and
y2(t) as its components and M ∈ R2×2. In fact, for any Y0 ∈ R2 the solution stays on the
circle with radius ‖Y0‖22.

Derive expressions for the numerical solution Yn and ‖Yn‖22 that results from applying the
Trapezoidal Rule to the problem in part above and use them to determine if the Trapezoidal
Rule preserves ‖Yn‖22 = ‖Y0‖22?

Problem 6.7

Consider the Runge Kutta method called the implicit midpoint rule given by:

ŷ1 = yn−1 +
h

2
f1

f1 = f(tn−1 +
h

2
, ŷ1)

yn = yn−1 + hf1

An alternate form of the the method is given by:

yn = yn−1 + hf
(tn + tn−1

2
,
yn + yn−1

2

)
Show that the two forms are identical.
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Problem 6.8

Consider the general form of a 2-stage Explicit RK method:

ŷ1 = yn−1, f1 = f(tn−1, ŷ1)

ŷ2 = yn−1 + α21f1, f2 = f(tn−1 + γ2h, ŷ2)

yn = yn−1 + h (β1f1 + β2f2)

c A
bT

=
0 0 0
γ2 α21 0

β1 β2

γ2 = α21

6.8.a. Determine the set of equations that the free parameters must satisfy in order
to achieve method with order 2.

6.8.b. Is there a single such method? If so prove it. If not discuss the number of free
parameters and give examples of methods and potential parameterized tables
that define families of methods.
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