
Graded Homework 3 Foundations of Computational Math

1 Fall 2021

The solutions must be submitted by 11:59PM on November 8, 2021 using the
Canvas course page.

Written Exercises

There are no written exercises for this assignment.

Programming Exercise

General Task

The Codes

1. Give your code that computes the LU factorization of a matrix PrAPc without pivot-
ing, using partial pivoting or using complete pivoting from the previous programming
assignment, implement the appropriate triangular system solutions algorithms that
allow the use of your factorization to solve Ax = b where A ∈ Rn×n is nonsingular.

2. Implement the codes necessary to solve the least squares problem defined by a vec-
tor b ∈ Rn and the matrix A ∈ Rn×k with linearly independent columns using the
transformation/factorization

HkHk−1 · · ·H1A =

(
R
0

)
where Hi, 1 ≤ i ≤ k are Householder reflectors and R ∈ Rk×k is a nonsingular upper
triangular matrix.

3. You will also need various test routines designed to evaluate and validate the correctness
of the code and accomplish the tasks described below. You may code in any compiled
and typed language you wish although C, C++, Julia, and Fortran are preferred. In
all cases, however, you may not use standard libraries such as LAPACK or built-in
matrix routines for pieces of your routines implementing the computations described
above.

Suggested Subroutines for the factorization:

1. Initialization: This routine generates the matrix to be factored and places it in the
array to be used during the factorization as well as another array used to preserve the
matrix for use when assessing the accuracy of the factorization and the solutions of the
least squares problems and system solves.

1

2. FormHouse: This routine examines the appropriate part of the active part of the
matrix and determines the parameters determining Hi. You may find it convenient to
return the parameters in a work vector and then place the values in the appropriate
positions of the array in which A is being transformed.

3. ApplyHouse: This routine applies Hi to the active part of the matrix or to a vector.
The former is needed during the factorization and the latter when transforming the
vector b. You will also use this routine to assess the quality of the factorization of A
by computing

‖A−H1H2 . . . Hk

(
R
0

)
‖.

4. The triangular system Rx = c should be solved by an appropriate upper triangular
solve routine. You should be able to exploit all or part of the code from your Ux = y
code from the LU factorization set of codes.

5. You will also need to develop support routines needed to generate A, b etc. that define
linear least squares problems and linear systems to solve. Some suggestions for this
are given below and were given in the LU programming assignment.

Library Codes

You may use libaries and external routines in your test routines to generate solutions for
comparisons, to generate historgrams, graphs and any other useful summary display mech-
anisms. You may also compare your solutions against least squares library routines and LU
factorization.

Metrics

There are several important metrics to use when assessing the code’s correctness. These
metrics should be computed in double precision espeicially if you have run your routines in
single precision. Some suggestions follow:

1. When comparing matrices use more than one matrix norm, e.g., the finitely computable
ones, ‖M‖1, ‖M‖∞ and ‖M‖F .

2. When comparing vectors use more than one norm, e.g., ‖v‖1, ‖v‖∞ and ‖v‖2.

3. Check the QR factorization accuracy (as you did for the LU in the previous program-
ming assignment)

‖A−H1H2 . . . Hk

(
R
0

)
‖

‖A‖
where ‖A‖ ≥ 1, i.e., relative error for large A.

2

4. If the solution is known by design of the problem check

‖x− x̃‖
‖x‖

where x̃ is the computed solution and ‖x‖ ≥ 1.

5. You should check the accuracy via the residual b− Ax̃ and

‖b− Ax̃‖
‖b‖

whether or not you know the true solution and for least squares compare to the size of
b2, the part of b not in R(A) when it is known.

6. You should compute the growth factor

γε =
‖ |Lε||Uε| ‖
‖A‖

where LεUε = PrAPc is the computed factorization of PrAPc using the selected piv-
oting strategy. This will be important for the next assignment that will assess the
numerical stability of solving systems but it is also useful for checking the correctness
of structured problems such as the one in the study questions with the large growth of
elements. This can be compared to the growth observed when using the Householder
approach for square nonsingular systems.

3

Empirical Tasks Set 1 : Testing the Correctness of the

Householder Factorization Codes

• Develop, describe and execute a plan that demonstrates that this primitive works
and is efficient in storage. Your plan should include things such as verifying that the
primitive defines a matrix with all of the desired properties: orthogonal, isometry,
correct action on v, and correct action on vectors other than v. This demonstration
should include that it achieves the expected accuracy in finite precision computation,
i.e., single precision. (Note that to include the assessment of single precision it will be
necessary to have a working double precision version also.)

• Develop, describe and execute a plan that demonstrates that this transformation/factorization
routine works correctly and within the tolerances expected for finite precision compu-
tation, i.e., single precision. (Note that to include the assessment of single precision it
will be necessary to have a working double precision version also.)

Empirical Tasks Set 2 : Solving Square Systems

Compare the solutions of Ax = b generated by the LU factorization you have already im-
plemented and the Householder approach. You can use the systems discussed in the LU
programming assignment and any others you think appropriate. For each problem size and
class of problem, generate many example problems and evaluate/compare the quality of the
factorizations, the growth factor, the quality of the residual, and, if the true solution is
known, the relative error in the computed solution x̃, You should present your results in a
form appropriate to characterize these metrics over a large data set, i.e., too large to look at
each problem individually. This can be done, for example, by graphs and histograms. The
latter is particularly useful for detecting outliers in the performance such as large factoriza-
tion error. These outliers can be discussed in more detail and explained if you wish.

Empirical Tasks Set 3 : Linear Least Squares Problems

• Develop, describe and execute a plan that demonstrates that the additional routines
required to solve full rank least squares problems work correctly and within the tol-
erances expected for finite precision computation, i.e., single precision. (Note that to
include the assessment of single precision it will be necessary to have a working double
precision version also.) The last demonstration in the list, solving least squares prob-
lems, must be demonstrated on multiple examples with a wide range of values of n, k,
and b for two situations:

1. n > k and Ax = b for b ∈ Rn and b ∈ R(A) i.e., a rectangular matrix A with
full column rank and a vector b that define a consistent set of overdetermined
equations.

4

2. n > k and b ∈ Rn and b 6∈ R(A) i.e., a rectangular matrix A with full column rank
and a vector b that define a linear least squares problem with a nonzero residual.

This requires careful construction of the test problems. See the discussion below.

Generation of Test Problems

The previous programming assignment discussed the generation of square nonsingular lin-
ear systems to solve using LU factorization and using double precision to represent ”exact”
computations. Those systems can also be solved using the Householder approach when com-
paring its accuracy and stability to LU factorization. Below are some further suggestions
that include some related to the least squares problems. A key consideration in this assign-
ment is the generation of test problems. They must have full rank, i.e., linearly independent
columns.

A Particular Test Problem

We have analyzed the use of LU factorization with multiple pivoting strategies, e.g., partial
and complete. The standard example of a problem that demonstrates that partial pivoting
can be unstable by illustrating an exponential growth factor, e.g., for n = 4,

A =

1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

It is more precise to say that for this matrix partial pivoting does not stop exponential growth
since pivoting is not necessary for the existence of the factorization. After a fairly small
number of Gauss transforms are applied, the relative sizes of elements in the transformed
matrix are problematic, i.e., O(1) sized elements are insignificant compared to the elements
with magnitude O(2k). Solve systems with various values of n with the pattern of values
seen in this example matrix using the Householder reflectors for factorization and discuss if
it is a viable and stable approach for a reasonable range of problem sizes.

Test Problems

When generating test problems, you may use library routines available in whatever language
environment you are using. For generating problems only, you may, for example use
MATLAB, or any other problem solving environment, and its capabilities associated with
generating test matrices at random or with specific properties. You may also use its fac-
torizations, e.g., to compute the QR factors of a given matrix A. These can only be used
to generate tests or to assess the correctness of the results of your code. MATLAB, any

5

other problem solving environment, and any prohibited languages, may not be
used to implement the code you submit as a solution.

Note you can also generate the matrices of the types required for this assignment, e.g.,
nonsingular matrices, full rank rectangular matrices, i.e., A ∈ Rn×k for n ≥ k with linearly
independent columns, and isometries, i.e., Q ∈ Rn×k for n ≥ k such that QTQ = Ik. The
techniques are reviewed below. If there is confusion on how to generate these matrices ask
in class or set up an appointment to discuss them.

An n × k matrix, A, with linearly independent columns can be generated using the
technique described above to form an n× n nonsingular matrix. Selecting k columns of an
n×n nonsingular matrix yields an n×k matrix, A, with linearly independent columns. You
may also select k rows to get a k × n matrix and then take A to be the transpose.

A technique that avoids producing an n× n matrix starts by forming a set of k linearly
independent vectors by defining a lower trapezoidal matrix, L ∈ Rn×k with nonzero diagonals.
The columns must be linearly independent due to the locations of the 0’s and the nonzeros
on the diagonal. To create the matrix A that does not have the upper triangular part 0
simply postmultiply by a k × k nonsingular matrix. This can be created as above or more
simply by generating a k × k upper triangular matrix with nonzeros on the diagonal. Note
that this technique also generates an n × n nonsingular matrix when k = n. As before
random permutations can also be applied to scramble the matrices.

The conditioning of the nonsingular matrices produced this way can be easily controlled
for the diagonal dominant technique. Think about this using Gershgorin disks to see how
D can be chosen to have the resulting A = G+D be well-conditioned. If A is produced by
generating a triangular L and/or U , well-conditioned matrices A can be generated by keeping
the off diagonal elements of the triangular matrices reasonable in magnitude compared to
the diagonal elements of the triangular matrix. For example, a lower triangular matrix with
diagonal elements all O(1) while all off diagonal elements smaller than 1 in magnitude is
usually well-conditioned. Note in all cases you may make use of available libraries to estimate
the condition numbers of the matrices generated and reject those that are unacceptable, e.g.,
LAPACK or MATLAB.

In addition to using built-in primitives of MATLAB or similar environments to generate
orthogonal matrices it is possible to generate them via simple techniques. For example, an
n × n rotation matrix can be easily defined by considering a random index pair (i, j) and
random angle θ. The matrix, Z, that is the identity everywhere except positions (i, i), (j, j),
(i, j), (j, i), where it is taken to be

cos θ = eTi Zei, cos θ = eTj Zej, sin θ = eTi Zej, − sin θ = eTi Zej

is a plane rotation and orthogonal. Selecting many, say s, random index pairs (i, j) and
random angles θ and multiplying all of the rotations they define together yields an orthogonal
matrix

Q = Z1Z2 · · ·Zs.

Of course, you need to select enough pairs and angles, s, so that the matrix is dense.

6

Similarly, one can use reflectors to generate an orthogonal matrix Q. Simply choose
several random vectors, vi, i = 1, . . . , s for a large s. Then for each vi form an elementary
reflector

Qi = I − 2uiu
T
i , ui =

1

‖vi‖2
vi

and Q = Q1Q2 · · ·Qs. Taking s >> n is a good way of scrambling the directions defining Q.
Once an n × n orthogonal Q is computed selecting randomly k of the n columns yields

an n × k matrix Q̃ that has orthonormal columns, i.e., Q̃T Q̃ = Ik. Of course, it is not
necessary to form the n× n orthogonal Q to take k selected columns. This may be done as
described in the homework solutions. After selecting the indices of the columns of Q you
plan to use, then rather than computing all of Q by taking the products of the s rotations
or reflectors you can simply apply each one in turn to a set of k vectors that are initialized
to the standard basis elements defined by the randomly selected column indices. That is,
suppose you want columns 2, 10 and 50 of Q and Q is defined as the product of s some set
of reflectors. The isometry Q̃ ∈ Rn×3 is efficiently computed using

Q̃ =
(
e2 e10 e50

)
for i = 1, . . . , s Q̃← QiQ̃ end

Of course, there is no reason to use only reflectors or rotations. A mix of reflectors and
rotations can also be used.

When using either rotations, reflectors or a combination, it is necessary to compute
the the matrix-matrix product or matrix-vector products efficiently so as not to take huge
amounts of time when creating test problems since you must run many of them. Make sure
you exploit all of the structure available to gain computational and storage efficiency. You
should of course point out anything you do along these lines in your solution.

Finally, you should verify that the matrix computed has orthonormal columns to at least
single precision accuracy. This computation of QTQ or Q̃T Q̃ and comparison to In or Ik
should be performed in double precision.

Note that it is a good idea to do all of the computations creating the test matrix of any
type, i.e., full rank or orthogonal, in double precision and verify that it satisfies all of the
properties required of the matrix up to single precision levels for assessing single precision
factorization and solution algorithms.

Given the ability to generate orthogonal matrices it is then possible to generate matrices
with a specified condition number κ = ‖A‖2‖A−1‖2 for nonsingular A ∈ Rn×n and κ =
‖A‖2‖A†‖2 for full rank A ∈ Rn×k.

The technique is described here for A ∈ Rn×n but it generalizes to rectangular matrices
easily. Any matrix A ∈ Rn×n has a factorization A = UΣV T where U ∈ Rn×n, V ∈ Rn×n,
and Σ ∈ Rn×n where U and V are orthogonal matrices, i.e., UTU = UUT = I and V TV =
V V T = I, and Σ is a nonnegative diagonal matrix, i.e., it has positive diagonal elements
σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 and 0 in all off-diagonal positions. For example, for n = 5, the

7

matrix has the form

Σ =

σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 σ4 0
0 0 0 0 σ5

 .

A is nonsingular if and only if all σj > 0. The condition number is defined by these positive
values by

‖A‖2 = σ1, ‖A−1‖2 =
1

σn

κ = ‖A‖2‖A−1‖2 =
σ1
σn
.

The σj are called the singular values of A. So after generating the orthogonal matrices
U and V you can select the singular values, σj, and define an A with a specific condition
number.

For a rectangular matrix A ∈ Rn×k, U ∈ Rn×n, V ∈ Rk×k, and Σ ∈ Rn×k where U and V
are orthogonal and Σ is a diagonal rectangular matrix, e.g., for n = 10 and k = 3,

Σ =

σ1 0 0
0 σ2 0
0 0 σ3
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

.

For the three situations mentioned in the General Task section, you should run problems
where you have created the problem with a known solution and those for which you do not
know the solution. You must consider each of these classes of problems in your
report.

To form a consistent overdetermined set of equations given A with a known solution, z,
simply set b to b = Az. These computations should also be done in double precision.

A linear least squares problem with known solution, xmin, and nonzero residual rmin =
b−Axmin 6= 0 can be created by modifying a consistent overdetermined system with known
solution as follows:

1. Choose your desired solution xmin

2. Compute b1 ∈ Rn with b1 ∈ R(A) by b1 = Axmin.

8

3. Set b to b = b1 + b2 where b2 is any vector that is chosen to be orthogonal to R(A).

The linear least squares problem
min
x∈Rk
‖b− Ax‖2

therefore has solution xmin and residual rmin = b2.
This requires dealing with the subspace R(A). For these problems it is convenient there-

fore to generate an orthonormal basis, Q ∈ Rn×k, and then generate A ∈ Rn×k so that
R(A) = R(Q). Given Q, A can be generated by computing A = QM where M ∈ Rk×k is a
random nonsingular matrix.

Generating b1 and b2 is a bit more complicated. Given an vector v ∈ Rn we have

v = v1 + v2, v1 ∈ R(Q) v2 ∈ R⊥(Q)

v1 = Q(QTv) v2 = v − v1

So one way of generating these vectors is to take a random vector v and compute v1 and
v2 as above. Of course, a priori you will not know the relative magnitudes of v1 and v2. It
is possible that the random vector v will be almost entirely in R(Q) or almost orthogonal
to it. So you may have to try several random v until you get two reliable directions v1 and
v2. In any case, you should check that cos θ1,2 = vT1 v2/(|v1|2|v1|2) is suitably small to verify
that finite precision has not caused difficulties. You should, in fact, try several such pairs
of various dimensions to test your code. Additionally, to analyze your code’s performance,
given any such pair, you can create multiple b vectors by taking various combinations of v1
and v2 in a controlled manner, i.e., set

b = b1 + b2 = α1v1 + α2v2

keeping ‖b‖2 constant. When α1 is large relative to α2 the system is closer to consistent than
when α2 dominates.

When you generate problems for which you do not know the solution a priori, you should
think about how you would determine if the solution is reasonable. For example, you should
examine the residual carefully to make sure it satisfies all required conditions. Also note,
since the solution is supposed to minimize the norm of the residual over all x, you can also
check residuals generated for randomly selected x vectors and compare their norms to the
norm of the residual generated by xmin. Finally, as noted above, you can compare your
results to other libraries or routines available to you.

9

