
Graded Homework 4 Foundations of Computational Math

2 Spring 2021

The solutions are due by 11:59PM on November 19, 2021

Written Exercises

There are no written problems in this assignment.

Programming Exercise

Part 1: Codes

For symmetric positive definite matrix problems, implement

• A matrix-vector product for a symmetric matrix that supports the structures discussed
below.

• A factorization routine and an associated solution routine for a symmetric positive
definite tridiagonal matrix.

• A routine that solves a lower or upper triangular system defined by a lower triangular
matrix L and the upper triangular matrix LT , i.e., that upper triangular matrix is
specified by transposing a lower triangular matrix. The matrix should not be trans-
posed within the data structure but the appropriates should be accessed from the data
structure storing L.

• Routines that use the last two routines to solve the preconditioning equation Mzk = rk
on each step (see the list of preconditioners to be supported below).

• Preconditioned Richardson’s Stationary method (PRF)

• Preconditioned Steepest Descent (PSD)

• Preconditioned Conjugate Gradient (PCG)

The codes for PSD and PCG should be based on the application of a two-sided symmetric
positive definite preconditioner to Ax = b. Specifically,

Ã = C−1AC−T , x̃ = CTx, b̃ = C−1b

x̃k+1 = x̃k + α̃kr̃k.
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Note that the notes and homework problems have already dealt with this for SD and CG
and your solutions should be based on those discussions. In particular, code is given in
the notes where M = C2 and Mzk = rk is solved on each step rather than explicitly using
the two-sided form of the transformed system above. Here we will define M directly as a
symmetric positive definite matrix.

The codes should be able to operate both with preconditioning, M 6= I, and without
preconditioning, M = I. Note that the PRF code can be implmented as a stationary option
in PSD (with or without preconditioning.)

The matrix-vector product routine should support and exploit the following structure in
the matrix

1. A is a symmetric matrix, i.e., no zero/nonzero pattern. The code should not duplicate
the storage of elements that are known to be the same, i.e., αij = αji and only one
should be stored.

2. A is symmetric and banded with the nonzeros constrained to the main diagonal, k
subdiagonals and k superdiagonals. It should be able to operate with k = 0, i.e., a
diagonal matrix, and up to k = 6.

Use problems with known solutions to provide sufficient evidence of the correctness of
your codes presented in an appropriate and convincing manner and to probe the empirical
validation of the predictions of the theory we have discussed.

For problems with a known solution, x∗, you can monitor the relative error ‖xk−x∗‖/‖x∗‖
when discussing the convergence behavior of the methods on a particular problem. This is,
of course, not a real convergence check but is useful for empirical evaluations.

For problems with known or unknown solutions monitoring ‖rk‖/‖b‖ is a reasonable
assessment of how well the current estimate of the solution solves the system. Note that
when M 6= I, i.e., preconditioning is used the “preconditioned residual” zk is also available.
So there is also the ratio ‖zk‖/‖M−1b‖ that can be tracked. Note in your discussions if you
see any significantly different behavior for the two residuals.

Codes should be able to run in both single and double precision, but for this assignment
double precision will be used to represent “truth” or infinite precision compared to single
precision. Therefore, all of your problems should be initially generated as a double precision
matrix, Adp and two double precision vectors x∗ (the known solution) and bdp (the righthand
side vector). Given Adp and x∗, bdp should be computed in double precision with your
matrix-vector product routine.

You should copy Adp to a single precision version Asp and bdp to a single precision bsp and
pass the single precision versions to the iterative methods as input. The known solution x∗

should be specified in double precision and The iterative methods and all associated routines
should run in single precision.

Double precision should be used to check the computed single precision vectors with the
“truth” stored as double precision vectors. So ‖DP (xk) − x∗‖/‖x∗‖ should be computed
with the known solution x∗ in its double precision as it was specified when the problem was
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constructed. DP (xk) represents the computed xk, which is single precision, copied into a
double precision vector DP (xk).

Similarly, ‖rk‖/‖b‖ can be computed in double precision when it is used for assessing the
performance of a method. If it is used as a termination criterion then of course it is part of
the iterative method and should be in single precision within the code.

Part 2: Influence of the Spectrum

Let Λ ∈ Rn×n be a diagonal matrix with positive elements and consider solving systems of
the form Λx = b. Recall that the behavior of RF, CG and SD depends only on the spectrum
in the sense that if A = QΛQT is transformed into the diagonal coordinate system by using
the eigenvectors then the solution iterates in the two coordinate systems are related via Q
and QT and the errors at each step have the same 2-norm, i.e., convergence behavior is
identical in both coordinate systems.

(4.1.a) We have seen several convergence results for RF, SD and CG related to the
spectrum and bounds on the stepsize for RF (that are related to bounds on
the stepsize for SD). Design a set of experiments that choose Λ to influence the
behavior of these methods. All methods should be run without preconditioning
in this part of the assignment.

(4.1.b) Clearly identify the convergence theorems that you are testing with each of the
sets of experiments, state the predictions of behavior the theorems predict, and
relate the observed behavior to those predictions. Make appropriate use of details
of the behavior of a representative iteration as well as statistics and distributions
of errors, residuals, and iteration counts from a set of runs.

(4.1.c) You need not run large sets for this part of the assignment. A mod-
erate number of well-chosen problems is sufficient if the discussion is
clear and the data is presented in a precise and compact manner.

(4.1.d) Consider RF and SD and the choice of stepsize. What happens when RF
is run with αopt? How does the convergence behavior related to SD with its
nonstationary and locally optimal choice of αk? (Recall in this set of tests you
are omniscient and have all of the eigenvalues)

A method that is not convergent for a particular Ax = b does not necessarily
diverge for all x0. What happens with RF when α approaches and possibly
exceeds 2/λmax? How would you choose Λ, b, and x0 to show that, at least in exact
arithmetic, you can make the iteration diverge or converge while α > 2/λmax.

You can perform similar experiments on SD by taking the usual αk = rTk rk/r
T
kArk

and scaling it by some 0 < µ ≤ 2, i.e., used the stepsize α̃k = µ(rTk rk)/(r
T
kArk).

Does SD still converge? Does it slow down? What happens if you take µ > 2?
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(4.1.e) Comment on the general effect of single precision on the ability of the algo-
rithms to solve systems to a particular accuracy. Specifically, how does precision
limit show up in the trends of the “exact” solution or its associated residual? You
can also run a few of the problems completely in double precision, i.e., the prob-
lem specified by Adp, xdp and bdp solved by the iterative method run entirely in
double precision to approximate what an “infinite” precision computation would
produce.

Part 3: Influence of the Preconditioners

(4.1.a) Let A be a banded symmetric positive definite matrix with nonzeros restricted
to the k subdiagonals, k superdiagonals, and an all positive main diagonal.

(4.1.b) Your preconditioning routines discussed above should support preconditioning
in PSD and PCG using a symmetric positive definite preconditioner defined by
at the following:

• Jacobi’s preconditioner, i.e., diagonal preconditioning with M1 = diag(A)
where diag(A) is the diagonal matrix containing the diagonal elements of
A.

• The Symmetric Gauss-Seidel preconditioner MSGS. If A is symmetric pos-
itive definite, D = diag(A) and A = D − L − LT with −L the elements
in the strict lower triangular part of A, i.e., αij with i > j. The matrix L
therefore has elements eTi (L)ej = −αij with i > j and 0 in all other posi-
tions in L. Be very careful with the signs as it is crucial to the definition of
the preconditioner that they be correct. For example for n = 4,

A =


30 1 2 3
1 40 4 5
2 4 50 6
3 5 6 60

 , D =


30 0 0 0
0 40 0 0
0 0 50 0
0 0 0 60

 , L =


0 0 0 0
−1 0 0 0
−2 −4 0 0
−3 −5 −6 0

 .

If A is symmetric positive definite then so is MSGS = (D−L)D−1(D−LT )
and its Cholesky factorization is easily determined to be MSGS = (D −
L)D−1/2D−1/2(D − LT ) = CCT . So no computation is needed to form the
factorization used in the iteration. Note that if A is banded this structure
is also reflected in L

• Block diagonal preconditioning using 2× 2 diagonal blocks of A. For exam-
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ple, for n = 8

A =



α11 α12 α13 α14 α15 α16 α17 α18

α21 α22 α23 α24 α25 α26 α27 α28

α31 α32 α33 α34 α35 α36 α37 α38

α41 α42 α43 α44 α45 α46 α47 α48

α51 α52 α53 α54 α55 α56 α57 α58

α61 α62 α63 α64 α65 α66 α67 α68

α71 α72 α73 α74 α75 α76 α77 α78

α81 α82 α83 α84 α85 α86 α87 α88


The block diagonal preconditioner using 2× 2 diagonal blocks is

M2 =



α11 α12

α21 α22

α33 α34

α43 α44

α55 α56

α65 α66

α77 α78

α87 α88


Note that in order to solve the systems on each iteration that involes P2 you
must use the Cholesky factorizations of each of the 2 × 2 diagonal blocks.
Formulas for these are easily derived and the factors should be computed at
the beginning of the solution process so only forward and backward solves
are required on each iteration.

• Tridiagonal preconditioner, i.e., M3 consists of the elements of A on the main
diagonal, first subdiagonal, and first superdiagonal. Clearly this should only
be used for k ≥ 2 otherwise M3 = A. Note that this means you must imple-
ment a factorization routine for symmetric tridiagonal matrices to compute
the Cholesky factorization or LDLT if you prefer. (assuming M3 is positive
definite). This factorization can be computed once at the beginning itera-
tion and all solutions of the preconditioning system on subsequent iterations
are found by a forward and backward solve. Make sure you implement this
factorization efficiently and reliably. If you encounter a symmetric that is
not positive definite you should return an indication that the preconditioner
failed to exist which along with lack of convergence are the two main failure
modes of iterative methods. Note also that if A is generated as a strictly
diagonally dominant symmetric positive definite matrix (banded or not) the
M3 must be symmetric positive definite. It is recommended that you start
with that construction of A for testing M3.
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The tridiagonal preconditioner for A above is

M3 =



α11 α12

α21 α22 α23

α32 α33 α34

α43 α44 α45

α54 α55 α56

α65 α66 α67

α76 α77 α78

α87 α88


(4.1.c) Design tests that generate banded A for various values of k and n and compare

the performance of the SD and CG with and without preconditioning in terms of
the error and residual behaviors. You have seen many ways to generate matrices
that can be adapted to create banded symmetric positive definite matrices. Of
particular interest in this problem, is describing how you generate the matrices,
what type of behavior you observe/expect for each of the preconditioners, and if
there is any correlation between the manner in which you generate the matrices
and the performance of the preconditioners, i.e., different generation techniques
may produce A with different characteristics that help or hinder the performance
of a particular preconditioner.

If A is symmetric positive definite then M1 is symmetric (diagonal) and positive definite
since the diagonal elements of A must be positive. MSGS has a Cholesky factorization when
A is symmetric positive definite. So it too is symmetric positive definite. M2 must be
symmetric positive definite. This is easily seen since vTAv > 0 by assumption and, for
example, taking v = ν1e1 + ν2e2, i.e., any vector in the span[e1, e2], demonstrates that the
first 2× 2 diagonal block is positive definite. This easily generalizes to the other blocks.

While M3 is by definition symmetric, it does not have to be postive definite and therefore,
since we are requiring that the preconditioner be positive definite, P3 may not be usable on
all matrices in the test. The Cholesky factorization will fail, i.e., it will not produce lower
triangular C with positive diagonal elements such that M3 = CCT . For example, the
following A is positive definite but the corresponding P3 is not.

A =


1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5

 , M3 =


1 1
1 2 2

2 3 3
3 4 4

4 5


Note that C when it exists for M3 must be banded with only a positive main diagonal

and a single subdiagonal. This must be exploited in your Cholesky routine and in your
preconditioned iteration. This is also true of the Cholesky factor of A; if A has k subdiagonals
then so does L in A = LLT . This can be used to generate test matrices.
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Requirements of Code

• The techniques used to gain an efficient implementation in space and computation
must be described clearly and concisely.

• For the banded symmetric matrix-vector multiplication, your code must use O(n)
storage for the matrix A and the preconditioner for any size n.

• The computation of the banded symmetric matrix vector product Av → w must be
done efficiently in O(n) computations using the efficient storage scheme.

• The solution of systems Mzk = rk required in each iteration must be done efficiently
in O(n) computations using the efficient storage scheme for the appropriate precon-
ditioners. For any other preconditioners you attempt you may use a dense storage
approach.

• Your code should collect information at each iteration on

– ‖e(k)‖2/‖x∗‖2 = ‖xk − x∗‖2/‖x∗‖2 assuming Ax∗ = b and that x∗ is known and
not small in norm. The precision should be as described above.

– Similarly ‖rk‖2/‖b‖2 and ‖zk‖2/‖Mb‖2 using precision as described above.

• The information collected should be displayed in an appropriate organized manner to
support your answers to the questions above. For representative problem instances,
when considering the trends involved in the evolution of the values ‖rk‖2/‖b‖2 and
‖e(k)‖2/‖xtrue‖2, in addition to plotting the quantities vs. the iteration number k,
you should plot the logs vs. the iteration number k. Recall the asymptotic behavior
discussion where one would expect linear behavior in the log of the error and residual
norms. The observed behavior should be consistent with the theory in so far as roundoff
allows. In addition to respresentative examples you should present global summaries
using statistics and distributions of errors (histograms), residuals, and iteration counts
from larger sets of runs.

• However, as mentioned above, you do not have to resort to large sets of runs for this
assignment. Carefully, choose sets of examples and present them appropriately with
your description of why the data was collected, what you observed, and what you
concluded.

Test Matrices

A key issue is a careful and organized characterization of the attributes of the spectrum of A
and how you can generate such spectra in a systematic manner to test the predictions made
by the convergence theory. It is not important to do massive amounts of testing but make
sure that you clearly describe the experiments and their purpose.

There are many ways to derive test matrices:
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• nonsingular matrices from factorizations (possibly structured to impose structure on
A), e.g., random lower triangular L with positive diagonal elements and using A =
LLT . This does not directly control the spectrum however. You may use other library
routines to compute the eigenvalues and to compare to the eigenvalues of the the
preconditioned matrix C−1AC−1 in this case.

• Nonsingularity and controlling the spectrum can be done using diagonal dominance
(strict in column and row for symmetric matrices).

• Modifications to random matrices using some of the techniques above can also be used
(see the Gershgorin theorems in the text);

• Generating orthogonal matrices and combining with diagonal and other matrices to
generate A, i.e., choose eigenvalues as the elements of Λ then apply, say, elementary
reflectors based on a series of randomly chosen vector ui with ‖ui‖2 = 1:

A = (I − 2uku
T
k ) . . . (I − 2u1u

T
1 )Λ(I − 2u1u

T
1 ) . . . (I − 2uku

T
k ).

This A will be dense, symmetric positive definite with the spectrum given by Λ.

• Λ can be changed into a banded matrix if the transformations applied to the left and
right are constructed from plane rotations.

For example, given

Λ =



λ1 0 0 0 0 0 0 0
0 λ2 0 0 0 0 0 0
0 0 λ3 0 0 0 0 0
0 0 0 λ4 0 0 0 0
0 0 0 0 λ5 0 0 0
0 0 0 0 0 λ6 0 0
0 0 0 0 0 0 λ7 0
0 0 0 0 0 0 0 λ8


you can apply orthogonal matrices Qk . . . Q1ΛQ

T
1 . . . Q

T
k where the Qi’s have forms such as

Q1 =



γ1 σ1 0 0 0 0 0 0
−σ1 γ1 0 0 0 0 0 0

0 0 γ2 σ2 0 0 0 0
0 0 −σ2 γ2 0 0 0 0
0 0 0 0 γ3 σ3 0 0
0 0 0 0 −σ3 γ3 0 0
0 0 0 0 0 0 γ4 σ4
0 0 0 0 0 0 −σ γ4


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where γi = cos θi and σi = sin θi with randomly chosen angles;

Q2 =



1 0 0 0 0 0 0 0
0 γ1 σ1 0 0 0 0 0
0 −σ1 γ1 0 0 0 0 0 0
0 0 0 γ2 σ2 0 0 0
0 0 0 −σ2 γ2 0 0 0
0 0 0 0 0 γ3 σ3 0
0 0 0 0 0 −σ3 γ3 0
0 0 0 0 0 0 0 1


where these are different angles;

Q3 =



γ1 0 σ1 0 0 0 0 0
0 γ2 0 σ2 0 0 0 0
−σ1 0 γ1 0 0 0 0 0

0 −σ2 0 γ2 0 0 0 0
0 0 0 0 γ3 0 σ3 0
0 0 0 0 0 γ4 0 σ4
0 0 0 0 −σ3 0 γ3 0
0 0 0 0 0 −σ4 0 γ4


where these are different angles. The banded structure of the product must be verified and
can be controlled by what planes are used by each of orthogonal matrices, Qi.

In addition to these techniques you can make use of matrix families with known eigen-
values and/or eigenvectors. For example, Toeplitz tridiagonal matrices parameterized by a
single parameter

Tα =



α −1 0 . . . . . . . . . 0
−1 α −1 0 . . . . . . 0
0 −1 α −1 0 . . . 0

. . . . . . . . . . . . . . .

0 . . . 0 −1 α −1 0
0 . . . . . . 0 −1 α −1
0 . . . . . . . . . 0 −1 α


have eigenvalues

λj = α− 2 cos jθ, θ =
π

n+ 1
qj =

(
sin(jθ), sin(2jθ), . . . , sin(njθ)

)T
Feel free to consult the literature for other such families.

You may use environments like MATLAB or libraries like LAPACK to generate matrices
for testing and, more importantly, to analyze the spectrum of the preconditioned matri-
ces to see if the preconditioners have altered the spectrum in such a way as to accelerate
convergence. Recall, that the PCG and PSD iterations can be shown to be equivalent to
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solving a system with Ã = C−1AC−1 or Ã = L−1AL−T where the preconditioner P = C2

or P = LLT . This equivalent symmetric form should be when computing the spectrum of
the precondtioned matrix since codes for symmetric eigenvalue problems are plentiful and
reliable. Clearly, this type of numerical evaluation of the spectrum for both A and Ã should
be done only for problem sizes where the computation is reasonable. Be sure to cite the
libraries/routines or environments/commands used in you solutions.
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