
Study Questions Homework 2 Foundations of Computa-

tional Math 1 Fall 2021

Problem 2.1

Recall that a unit lower triangular matrix L ∈ Rn×n is a lower triangular matrix with diagonal
elements eTi Lei = λii = 1. An elementary unit lower triangular column form matrix, Li, is
an elementary unit lower triangular matrix in which all of the nonzero subdiagonal elements
are contained in a single column. For example, for n = 4

L1 =


1 0 0 0
λ21 1 0 0
λ31 0 1 0
λ41 0 0 1

 L2 =


1 0 0 0
0 1 0 0
0 λ32 1 0
0 λ42 0 1

 L3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 λ43 1


2.1.a. Show that any elementary unit lower triangular column form matrix , Li ∈

Rn×n, can be written as the identity matrix plus an outer product of two vectors,
i.e., Li = I + viw

T
i where vi ∈ Rn and wi ∈ Rn. (This is often called a rank-1

update of a matrix.) Make sure the structure required in vi and wi is clearly
stated.

2.1.b. Show that Li has an inverse and it is an elementary unit lower triangular column
form matrix.

2.1.c. Consider the matrix vector product y = Lix where x ∈ Rn and y ∈ Rn, and
Li ∈ Rn×n is an elementary unit lower triangular column form matrix. Determine
an efficient algorithm to compute the product and its computational/storage
complexity.

2.1.d. Suppose Li ∈ Rn×n and Lj ∈ Rn×n are elementary unit lower triangular col-
umn form matrices with 1 ≤ i < j ≤ n − 1. Consider the matrix product
B = LiLj. Determine an efficient algorithm to compute the product and its
computational/storage complexity.

2.1.e. Suppose Li ∈ Rn×n and Lj ∈ Rn×n are elementary unit lower triangular col-
umn form matrices with 1 ≤ j ≤ i ≤ n − 1. Consider the matrix product
B = LiLj. Determine an efficient algorithm to compute the product and its
computational/storage complexity.

2.1.f. Let L ∈ Rn×n be a unit lower triangular matrix. Show that L = L1L2 · · ·Ln−1

where Li is an elementary unit lower triangular column form matrix for 1 ≤ i ≤
n− 1.

2.1.g. Express the column-oriented algorithm for solving Lx = b where L is a unit
lower triangular matrix in terms of operations involving unit lower triangular
column form matrices.
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Problem 2.2

2.2.a

An elementary unit upper triangular column form matrix Ui ∈ Rn×n is of the form

I + uie
T
i

where uTi ej = 0 for i ≤ j ≤ n. This matrix has 1 on the diagonal and the nonzero elements
of ui appear in the i-th column above the diagonal.

For example, if n = 3 then

U3 =

 1 0 0
0 1 0
0 0 1

+

 µ13

µ23

0

 (
0 0 1

)

=

 1 0 µ13

0 1 µ23

0 0 1


Let U ∈ Rn×n be a unit upper triangular matrix. Show that the factorization

U = UnUn−1 · · ·U2,

where Ui = I + uie
T
i and the nonzeros of ui are the nonzeros in the i-th column of U above

the diagonal, can be formed without any computations.

2.2.b

Now suppose that U ∈ Rn×n is a upper triangular with diagonal elements µii. Let Si ∈ Rn×n

be a diagonal matrix with its i-th diagonal element eTi Siei = µii and all of the other diagonal
elements eTj Siej = 1 for i 6= j.

For example, if n = 3 then

S1 =

 µ11 0 0
0 1 0
0 0 1


S2 =

 1 0 0
0 µ22 0
0 0 1


S3 =

 1 0 0
0 1 0
0 0 µ33


Let Ui = I + uie

T
i and the nonzeros of ui be the nonzeros in the i-th column of U above

the diagonal. (This implies that U1 = I)
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Show that
U = (SnUn)(Sn−1Un−1) · · · (S2U2)(S1U1).

Note that U may be singular so some µii may be 0. Therefore, a proof based on expressing
the algorithm for the solution of Ux = b in terms of U−1

i and S−1
i , as is done in the next

part of the question, is not applicable.

2.2.c

From the factorization of the previous part of the problem, derive an algorithm to solve
Ux = b given U is an n × n nonsingular upper triangular matrix. Describe the basic
computational primitives required.

Problem 2.3

Suppose that A ∈ Rn×n is nonsingular and that A = LU is its LU factorization. Give
an algorithm that can compute, eTi A

−1ej, i.e., the (i, j) element of A−1 in approximately
(n− j)2 + (n− i)2 operations.

Problem 2.4

Consider an n× n real matrix where

• αij = eTi Aej = −1 when i > j, i.e., all elements strictly below the diagonal are −1;

• αii = eTi Aei = 1, i.e., all elements on the diagonal are 1;

• αin = eTi Aen = 1, i.e., all elements in the last column of the matrix are 1;

• all other elements are 0

For n = 4 we have

A =


1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1


2.4.a. Compute the factorization A = LU for n = 4 where L is unit lower triangular

and U is upper triangular.

2.4.b. What is the pattern of element values in L and U for any n?
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Problem 2.5

Suppose you have the LU factorization of an i× i matrix Ai = LiUi and suppose the matrix
Ai+1 is an i+ 1× i+ 1 matrix formed by adding a row and column to Ai, i.e.,

Ai+1 =

(
Ai ai+1

bTi+1 αi+1,i+1

)
where ai+1 and bi+1 are vectors in Ri and αi+1,i+1 is a scalar.

2.5.a. Derive an algorithm that, given Li, Ui and the new row and column information,
computes the LU factorization of Ai+1 and identify the conditions under
which the step will fail.

2.5.b. What computational primitives are involved?

2.5.c. Show how this basic step could be used to form an algorithm that computes
the LU factorization of an n× n matrix A.

Problem 2.6

Consider a symmetric matrix A, i.e., A = AT .

2.6.a. Consider the use of Gauss transforms to factor A = LU where L is unit lower
triangular and U is upper triangular. You may assume that the factorization
does not fail. Show that A = LDLT where L is unit lower triangular and D
is a matrix with nonzeros on the main diagonal. i.e., elements in positions (i, i),
and zero everywhere else, by demonstrating that L and D can be computed by
applying Gauss transforms appropriately to the matrix A.

2.6.b. For an arbitrary symmetric matrix the LDLT factorization will not always
exist due to the possibility of 0 in the (i, i) position of the transformed matrix
that defines the i-th Gauss transform. Suppose, however, that A is a positive
definite symmetric matrix, i.e., xTAx > 0 for any vector x 6= 0. Show that the
diagonal element of the transformed matrix A that is used to define the vector li
that determines the Gauss transform on step i, M−1

i = I− lieTi , is always positive
and therefore the factorization will not fail. Combine this with the existence of
the LDLT factorization to show that, in this case, the nonzero elements of D are
in fact positive.
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Problem 2.7

Suppose you are computing a factorization of the A ∈ Cn×n with partial pivoting and at the
beginning of step i of the algorithm you encounter the the transformed matrix with the form

TA = A(i−1) =

(
U11 U12

0 Ai−1

)
where U11 ∈ Ri−1×i−1 and nonsingular, and U12 ∈ Ri−1×n−i+1 contain the first i− 1 rows of
U . Show that if the first column of Ai−1 is all 0 then A must be a singular matrix.

Problem 2.8

Suppose A ∈ Rn×n is a nonsymmetric nonsingular diagonally dominant matrix with the
following nonzero pattern (shown for n = 6)

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ 0 0 0 0
∗ 0 ∗ 0 0 0
∗ 0 0 ∗ 0 0
∗ 0 0 0 ∗ 0
∗ 0 0 0 0 ∗


It is known that a diagonally dominant (row or column dominant) matrix has an LU factor-
ization and that pivoting is not required for numerical reliability.

2.8.a. Describe an algorithm that solves Ax = b as efficiently as possible.

2.8.b. Given that the number of operations in the algorithm is of the form Cnk +
O(nk−1), where C is a constant independent of n and k > 0, what are C and k?
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