Study Questions Homework 2 Foundations of Computational Math 1 Fall 2021

Problem 2.1

Recall that a unit lower triangular matrix $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with diagonal elements $e_{i}^{T} L e_{i}=\lambda_{i i}=1$. An elementary unit lower triangular column form matrix, L_{i}, is an elementary unit lower triangular matrix in which all of the nonzero subdiagonal elements are contained in a single column. For example, for $n=4$

$$
L_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\lambda_{21} & 1 & 0 & 0 \\
\lambda_{31} & 0 & 1 & 0 \\
\lambda_{41} & 0 & 0 & 1
\end{array}\right) \quad L_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \lambda_{32} & 1 & 0 \\
0 & \lambda_{42} & 0 & 1
\end{array}\right) \quad L_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \lambda_{43} & 1
\end{array}\right)
$$

2.1.a. Show that any elementary unit lower triangular column form matrix, $L_{i} \in$ $\mathbb{R}^{n \times n}$, can be written as the identity matrix plus an outer product of two vectors, i.e., $L_{i}=I+v_{i} w_{i}^{T}$ where $v_{i} \in \mathbb{R}^{n}$ and $w_{i} \in \mathbb{R}^{n}$. (This is often called a rank-1 update of a matrix.) Make sure the structure required in v_{i} and w_{i} is clearly stated.
2.1.b. Show that L_{i} has an inverse and it is an elementary unit lower triangular column form matrix.
2.1.c. Consider the matrix vector product $y=L_{i} x$ where $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$, and $L_{i} \in \mathbb{R}^{n \times n}$ is an elementary unit lower triangular column form matrix. Determine an efficient algorithm to compute the product and its computational/storage complexity.
2.1.d. Suppose $L_{i} \in \mathbb{R}^{n \times n}$ and $L_{j} \in \mathbb{R}^{n \times n}$ are elementary unit lower triangular column form matrices with $1 \leq i<j \leq n-1$. Consider the matrix product $B=L_{i} L_{j}$. Determine an efficient algorithm to compute the product and its computational/storage complexity.
2.1.e. Suppose $L_{i} \in \mathbb{R}^{n \times n}$ and $L_{j} \in \mathbb{R}^{n \times n}$ are elementary unit lower triangular column form matrices with $1 \leq j \leq i \leq n-1$. Consider the matrix product $B=L_{i} L_{j}$. Determine an efficient algorithm to compute the product and its computational/storage complexity.
2.1.f. Let $L \in \mathbb{R}^{n \times n}$ be a unit lower triangular matrix. Show that $L=L_{1} L_{2} \cdots L_{n-1}$ where L_{i} is an elementary unit lower triangular column form matrix for $1 \leq i \leq$ $n-1$.
2.1.g. Express the column-oriented algorithm for solving $L x=b$ where L is a unit lower triangular matrix in terms of operations involving unit lower triangular column form matrices.

Problem 2.2

2.2.a

An elementary unit upper triangular column form matrix $U_{i} \in \mathbb{R}^{n \times n}$ is of the form

$$
I+u_{i} e_{i}^{T}
$$

where $u_{i}^{T} e_{j}=0$ for $i \leq j \leq n$. This matrix has 1 on the diagonal and the nonzero elements of u_{i} appear in the i-th column above the diagonal.

For example, if $n=3$ then

$$
\begin{aligned}
U_{3} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{c}
\mu_{13} \\
\mu_{23} \\
0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & \mu_{13} \\
0 & 1 & \mu_{23} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Let $U \in \mathbb{R}^{n \times n}$ be a unit upper triangular matrix. Show that the factorization

$$
U=U_{n} U_{n-1} \cdots U_{2},
$$

where $U_{i}=I+u_{i} e_{i}^{T}$ and the nonzeros of u_{i} are the nonzeros in the i-th column of U above the diagonal, can be formed without any computations.

2.2.b

Now suppose that $U \in \mathbb{R}^{n \times n}$ is a upper triangular with diagonal elements $\mu_{i i}$. Let $S_{i} \in \mathbb{R}^{n \times n}$ be a diagonal matrix with its i-th diagonal element $e_{i}^{T} S_{i} e_{i}=\mu_{i i}$ and all of the other diagonal elements $e_{j}^{T} S_{i} e_{j}=1$ for $i \neq j$.

For example, if $n=3$ then

$$
\begin{aligned}
& S_{1}=\left(\begin{array}{ccc}
\mu_{11} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& S_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mu_{22} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& S_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mu_{33}
\end{array}\right)
\end{aligned}
$$

Let $U_{i}=I+u_{i} e_{i}^{T}$ and the nonzeros of u_{i} be the nonzeros in the i-th column of U above the diagonal. (This implies that $U_{1}=I$)

Show that

$$
U=\left(S_{n} U_{n}\right)\left(S_{n-1} U_{n-1}\right) \cdots\left(S_{2} U_{2}\right)\left(S_{1} U_{1}\right)
$$

Note that U may be singular so some $\mu_{i i}$ may be 0 . Therefore, a proof based on expressing the algorithm for the solution of $U x=b$ in terms of U_{i}^{-1} and S_{i}^{-1}, as is done in the next part of the question, is not applicable.

2.2.c

From the factorization of the previous part of the problem, derive an algorithm to solve $U x=b$ given U is an $n \times n$ nonsingular upper triangular matrix. Describe the basic computational primitives required.

Problem 2.3

Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular and that $A=L U$ is its $L U$ factorization. Give an algorithm that can compute, $e_{i}^{T} A^{-1} e_{j}$, i.e., the (i, j) element of A^{-1} in approximately $(n-j)^{2}+(n-i)^{2}$ operations.

Problem 2.4

Consider an $n \times n$ real matrix where

- $\alpha_{i j}=e_{i}^{T} A e_{j}=-1$ when $i>j$, i.e., all elements strictly below the diagonal are -1 ;
- $\alpha_{i i}=e_{i}^{T} A e_{i}=1$, i.e., all elements on the diagonal are 1 ;
- $\alpha_{i n}=e_{i}^{T} A e_{n}=1$, i.e., all elements in the last column of the matrix are 1 ;
- all other elements are 0

For $n=4$ we have

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
-1 & 1 & 0 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{array}\right)
$$

2.4.a. Compute the factorization $A=L U$ for $n=4$ where L is unit lower triangular and U is upper triangular.
2.4.b. What is the pattern of element values in L and U for any n ?

Problem 2.5

Suppose you have the LU factorization of an $i \times i$ matrix $A_{i}=L_{i} U_{i}$ and suppose the matrix A_{i+1} is an $i+1 \times i+1$ matrix formed by adding a row and column to A_{i}, i.e.,

$$
A_{i+1}=\left(\begin{array}{cc}
A_{i} & a_{i+1} \\
b_{i+1}^{T} & \alpha_{i+1, i+1}
\end{array}\right)
$$

where a_{i+1} and b_{i+1} are vectors in \mathbb{R}^{i} and $\alpha_{i+1, i+1}$ is a scalar.
2.5.a. Derive an algorithm that, given L_{i}, U_{i} and the new row and column information, computes the LU factorization of A_{i+1} and identify the conditions under which the step will fail.
2.5.b. What computational primitives are involved?
2.5.c. Show how this basic step could be used to form an algorithm that computes the LU factorization of an $n \times n$ matrix A.

Problem 2.6

Consider a symmetric matrix A, i.e., $A=A^{T}$.
2.6.a. Consider the use of Gauss transforms to factor $A=L U$ where L is unit lower triangular and U is upper triangular. You may assume that the factorization does not fail. Show that $A=L D L^{T}$ where L is unit lower triangular and D is a matrix with nonzeros on the main diagonal. i.e., elements in positions (i, i), and zero everywhere else, by demonstrating that L and D can be computed by applying Gauss transforms appropriately to the matrix A.
2.6.b. For an arbitrary symmetric matrix the $L D L^{T}$ factorization will not always exist due to the possibility of 0 in the (i, i) position of the transformed matrix that defines the i-th Gauss transform. Suppose, however, that A is a positive definite symmetric matrix, i.e., $x^{T} A x>0$ for any vector $x \neq 0$. Show that the diagonal element of the transformed matrix A that is used to define the vector l_{i} that determines the Gauss transform on step $i, M_{i}^{-1}=I-l_{i} e_{i}^{T}$, is always positive and therefore the factorization will not fail. Combine this with the existence of the $L D L^{T}$ factorization to show that, in this case, the nonzero elements of D are in fact positive.

Problem 2.7

Suppose you are computing a factorization of the $A \in \mathbb{C}^{n \times n}$ with partial pivoting and at the beginning of step i of the algorithm you encounter the the transformed matrix with the form

$$
T A=A^{(i-1)}=\left(\begin{array}{cc}
U_{11} & U_{12} \\
0 & A_{i-1}
\end{array}\right)
$$

where $U_{11} \in \mathbb{R}^{i-1 \times i-1}$ and nonsingular, and $U_{12} \in \mathbb{R}^{i-1 \times n-i+1}$ contain the first $i-1$ rows of U. Show that if the first column of A_{i-1} is all 0 then A must be a singular matrix.

Problem 2.8

Suppose $A \in \mathbb{R}^{n \times n}$ is a nonsymmetric nonsingular diagonally dominant matrix with the following nonzero pattern (shown for $n=6$)

$$
\left(\begin{array}{cccccc}
* & * & * & * & * & * \\
* & * & 0 & 0 & 0 & 0 \\
* & 0 & * & 0 & 0 & 0 \\
* & 0 & 0 & * & 0 & 0 \\
* & 0 & 0 & 0 & * & 0 \\
* & 0 & 0 & 0 & 0 & *
\end{array}\right)
$$

It is known that a diagonally dominant (row or column dominant) matrix has an $L U$ factorization and that pivoting is not required for numerical reliability.
2.8.a. Describe an algorithm that solves $A x=b$ as efficiently as possible.
2.8.b. Given that the number of operations in the algorithm is of the form $C n^{k}+$ $O\left(n^{k-1}\right)$, where C is a constant independent of n and $k>0$, what are C and k ?

